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ABSTRACT

We developed a mathematical model based on a system of ordinary differential

equations to explore the dynamics of typhoid fever sickness, taking into account

the delay caused by false negative diagnosis. Typhoid fever continues to be a

significant public health problem in a number of countries, particularly devel-

oping countries. Typhoid fever, for example, has been classified among the top

twenty illnesses in Ghana, accounting for approximately 0.92 percent of hospital

admissions. An epidemiological model was developed to determine the impact

of delay caused by false negative diagnosis in the spread and treatment dynam-

ics of the disease. Protected (P), Susceptible (S), Infected (I), Delayed (D), and

Treated (T) classes were established. The next generation technique was used to

calculate the basic reproduction number R0. Additionally, it was demonstrated

that for R0 < 1, the disease-free equilibrium points were both locally and glob-

ally asymptotically stable, whereas the endemic equilibrium points were locally

asymptotically stable. Having done numerical simulations, it was found that the

delay caused by false negative diagnosis significantly contributes to the spread

dynamics and also has an effect on treatment. As a result, we determined that

delays caused by false negative diagnoses should be kept to a minimum in order

to minimize disease spread.
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CHAPTER ONE

INTRODUCTION

Typhoid fever disease is a potentially fatal multisystemic illness whose

causative agent is a bacterium known scientifically as salmonella typhi. It be-

longs to the family Enterobacteriaceae. Members of this family are salmonella

paratyphi A, salmonella paratyphi B, salmonella choleraesurs and salmonella

typhi. The causative agent of typhoid fever is Salmonella typhi and it is asso-

ciated with the ability of the organism to multiply within mono-nuclear phago-

cytes (Adetunde, 2008).

A proper treatment of typhoid fever yields a higher cure rate but if left

untreated, typhoid fever may progress to delirium which lead to a sudden al-

teration in the brain that results in mental bewilderment and emotional distress,

intestinal obstruction, intestinal hemorrhage, bowel perforation and even death

within a month.

Background to the Study

Typhoid fever is a contagious infection that is endemic in many parts of

the world. Salmonella typhi is the bacteria that causes it (Khan et al., 2015).

Typically, the organism is transferred via contaminated food and water contam-

inated with feces or urine from an infected person or host. Once swallowed,

the organism is taken through the cells to the intestinal lymph nodes, where it

is then transferred to the bloodstream. After that, they are distributed to the

liver, spleen, and bone marrow. The bacterium then multiplies in the organs’

cells and re-enters the bladder and bowel’s lymphatic tissue, where it multiplies

rapidly. Typhoid fever has an incubation period of eight to fourteen days and the

duration of the illness is about four to six weeks, according to Adetunde (2008).

In low- and middle-income nations, the disease is endemic. It is particu-

larly prevalent in the Asian and African continents due to insufficient hygienic

systems, i.e. a lack of proper sanitation facilities and safe drinking water in
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homes.

Each year, it affects millions of individuals globally, with over 20 million

cases reported and roughly 200,000 deaths. For example, it is estimated that

400,000 cases occur annually in Africa, with a prevalence of 50 per 100,000

(Nthiiri, et al. 2016).

Ghana’s situation is not dissimilar to that of other endemic countries. Ty-

phoid fever has consistently ranked among the top twenty Out Patients Depart-

ment (OPD) infections in recent years, accounting for 0.92 percent of hospital

admissions (Saleh, 2012).

Another study conducted by Fusheini and Gyawu (2020) in the Hohoe mu-

nicipality in Ghana’s Volta Region discovered that typhoid fever was among the

top twenty causes of outpatient morbidity in 2015, 2016, and 2017. It accounted

for 1.3 percent, 1.7 percent, and 1.2 percent of all hospital cases admissions, re-

spectively.

Typhoid fever is so named due to the fact that its signs and symptoms

are similar to those of typhus. Mild to severe fever, abdominal signs, constipa-

tion, and headache, lack of appetite, nausea, vomiting, and the appearance of

rashes on the belly, sweating, coughing, weakness, dizziness, and muscle pain

are all symptoms of infection of typhoid fever. As the fever and abdominal pain

become more severe, diarrhea develops (Adetunde, 2008).

Other evaluations show the possibility of problems such as disseminated

intravascular coagulation, pneumonia, rheumatoid arthritis, altered mental sta-

tus, hepatitis, and meningitis.

Due to the perplexing nature of these diseases’ symptom manifestations,

rigorous procedures are required to identify each disease based on other pecu-

liar symptoms. Combinations of abdominal pain, chills, weariness, and loss of

appetite, in addition to headache and possibly fever, are significant indicators of

typhoid infection, albeit a number of these symptoms may manifest more promi-

nently in the later stages of illness (Buzğan et al., 2007). Numerous researchers

2
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have discovered that typhoid’s primary symptoms include a fever lasting more

than 48 hours, followed by an intense headache in approximately 43-90 percent

of cases, and then gastrointestinal symptoms such as abdominal pain or cramps,

nausea and vomiting, constipation or diarrhoea.

As noted in LaSalle (1976), modeling the transmission dynamics of ty-

phoid disease is an integral and intriguing problem for a large number of com-

putational mathematical scholars.

Statement of the Problem

Typhoid Fever and Malaria are two of the most endemic diseases in the

world’s poorer countries, posing serious public health challenges in these ar-

eas.Additionally, real similarity in the symptoms between Typhoid and malaria

is responsible for the incorrect diagnoses due to the similar symptoms and signs

leading to false positive results in testing methods, resulting in insufficient con-

trols, are significant obstacles in managing both diseases (Mutua et al., 2015).

Typhoid fever and malaria have many of the same signs and symptoms,

including fever, vomiting, headache, and diarrhoea. Due to the similarity of

the symptoms, clinicians associate them with the incorrect disease, resulting in

a false negative diagnosis. According to Afoakwah et al. (2011), methods of

testing, involving the most widely used Widal test, consequently provide false

positive results. For instance, in a study by Ekesiobi et al. (2008), the Widal test

detected approximately 57% of typhoid positive cases when a more accurate

bacteria-culture tests were undertaken. While the bacteria-culture test is more

precise, it is less frequently utilized due to its higher cost and longer processing

time.

Such erroneous diagnoses result in the mismanagement of numerous ty-

phoid cases, creating a slew of complications in controlling the disease. That

is, prescribing malaria medication to someone who genuinely has typhoid fever

3
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may not only aggravate the person’s health condition, but may also result in the

emergence of future drug resistance. According to WHO (2003), the case mor-

tality rate for typhoid fever is predicted to be 10 – 30 percent without prompt

treatment and 1 – 4 percent with adequate management and treatment.

Against this backdrop, this thesis will use mathematical modeling to in-

vestigate the influence of false negative diagnosis on the spread and treatment

of typhoid fever disease.

Purpose of the Study

The purpose of this study is to inform the local and the global scientific

community of the impact false negative and false positive diagnoses have on the

spread and treatment of typhoid fever. This research would help the decision

makers and health practitioners to put the right measures in place to check, re-

duce and prevent to the barest minimum the false negative diagnosis by procur-

ing test kits or machines with high percentage of specificity and sensitivity.

Research Objectives

General objectives

The general objective of this thesis is to develop a model similar to an

SIR model, incorporating delay caused by false negatives diagnosis of Typhoid

fever.

Specific objectives

1. determine the equilibrium points at the disease free and endemic states of

the model.

2. determine the basic reproductive number, Ro.

3. perform the stability analysis of the equilibria for both local and global.

4

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



4. determine which parameters influence the model dynamics most.

5. perform numerical simulations of the model.

Significance of the Study

Invasive Salmonella infections collectively account for a considerable bur-

den of morbidity and mortality worldwide. Typhoid fever causes an estimated

11–21 million cases and approximately 128000–161000 deaths per year, com-

pared to paratyphoid fever, which causes an estimated 6 million cases and 54000

deaths per year. The majority of instances occur in South and Southeast Asia,

as well as Sub – Saharan Africa, according to (WHO, 2007).

Mathematical modeling can assist us in gaining a better knowledge of

illness transmission patterns, evaluating the efficacy of various preventive mea-

sures and tactics, and ultimately determining how to control it. There exist

mathematical models for typhoid fever, but little work has been done on math-

ematical models for typhoid fever that account for the effect of false negative

diagnosis. Thus, by incorporating delay caused by false negative diagnosis into

a mathematical model, the worldwide and scientific communities would be in-

formed to build testing systems that minimize false negative diagnosis.

Additionally, this effort would aid our health practitioners and decision

makers in evaluating the efficacy of interventions and tactics that can be used in

combating the disease.

Delimitations

This research is limited to finding the delay caused by false negative diag-

nosis of typhoid fever and its impact on spread and treatment. It did not explore

all about typhoid fever.

5
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Limitations

The Protected, Susceptible, Infected, Delayed and Treated (PSIDT ) math-

ematical model under consideration which incorporates delay caused by false

negative diagnosis is a necessary but not sufficient method that can be used to

prevent the spread or eradicate the typhoid fever disease. This is because some

of the model parameters were assumed whiles other parameters were obtained

from literature. The results as presented may not provide the true reflection of

what is on the ground in certain jurisdictions.

Definition of Terms

Basic reproduction number (R0):

It is the average number of secondary cases caused by an infected individual

during his/her infectivity period when he/she is introduced to a population of

susceptible individuals without any intervention

False negative diagnosis:

It is the erroneous labeling of an infected person of typhoid fever as not having

the infection or the condition.

False positive diagnosis:

A false positive diagnosis on the other hand labels an uninfected person as in-

fected with typhoid fever.

Sensitivity:

It signifies the probability of positive test results that are truly positive.

Specificity:

Signifies the probability of correctly diagnosed negative results that are truly

negative.

6
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Organization of the Study

This thesis is composed into five chapters. The first chapter introduces

typhoid fever and its transmission dynamics. It stated the background of the

study, the statement of the problem, the purpose of the problem, the research

objectives, the delimitation, limitations and definition of some terms. Chap-

ter Two provided the related literature reviews on the mathematical models on

typhoid fever dynamics.

Chapter Three provided the compartmental diagram for typhoid fever which

incorporated delay. In this chapter, we also checked the positivity and bounded-

ness of the model solutions. This was followed by the study states, that is, the

disease-free and the endemic equilibrium. We also established the local and the

global stability in Chapter Three.

The numerical simulations and the sensitivity analysis was discussed in

Chapter Four.

The thesis was concluded in Chapter Five with relevant recommendations.

7
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This chapter of the study is concerned with the review of some related rel-

evant literature of our study. It is the part of the study that establishes critically

the research work in context of other scholars’ stand on typhoid fever, its diag-

nosis, test procedures and the impact on spread and treatment. Typhoid fever

infection is an endemic disease in many parts of the world including Africa and

for that matter Ghana. It has become urgent to check its spreading dynamics in

the world as a whole. To do this effectively, there is the need to take a look at the

models other researchers used and how we can modify them to help eradicate

the typhoid fever. Based on review of literature, we have noticed that many re-

searchers, academia and policy makers have used mathematical models to check

the behaviour, consequences and effects of typhoid fever infection in the human

population over a given period of time with the basic idea of coming out with

various interventions, measures and control strategies for this deadly disease.

Hence, in this chapter we focus mainly on the review of empirical related liter-

atures on typhoid fever infection with emphasis on false negative diagnosis and

its impact on spread and treatment.

Brief History of Infectious Diseases

This section goes over the history of utilizing a mathematical model as a

tool for investigating and controlling infectious diseases. If a disease’s causal

agent, such as a virus, bacterium, protozoa, or toxin, can be transmitted from

one host to another by multiple mechanisms of transmission, it is said to be

infectious. Physical contact, airborne, water, food, disease vectors, and carrier

mother to newborn babies are all means of transmission. (Ma, 2009).

8
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Infectious illness outbreaks have always been a source of concern in the

communities where they occur, posing a threat to public health and decision-

making bodies. This is because infectious illnesses have wreaked havoc on

human cultures over the world, causing major health issues, as well as economic

and social woes. For example, the Antonine plague, which lasted from early 165

to early 180 AD, was an ancient pandemic that was carried to the Roman Empire

by troops returning from operations in the Near East, possibly via smallpox or

measles. These deadly diseases infected the whole Roman Empire, killing two

Romans and wreaking havoc on the Roman economy (Ma, 2009).

Smallpox was also spread by Spanish armies commanded by Cortez in

areas such as the Caribbean, Mexico, Peru, and Brazil. According to Brauer and

Castillo-Chávez (2001), this has reduced the Mexican population from around

thirty (30) million to fewer than two (2) million within a 50-year period.

The outbreak of corona virus disease in Wuhan, China in 2019 has once

again triggered a global pandemic, claiming millions of lives around the world.

The fight against these infectious diseases has a lengthy history, and significant

progress has been accomplished. This is because the smallpox outbreak has

been eradicated thanks to a worldwide vaccination effort (Ma, 2009).

Furthermore, leprosy has been successfully eradicated as a public health

hazard since a World Health Assembly resolution was passed in 1991 (Ma,

2009).

Despite significant progress in the prevention and control of infectious

illnesses, much more work need to be done to totally eradicate these diseases

worldwide. To effectively prevent and manage infectious diseases, it is nec-

essary to first understand the transmission mechanisms and dynamics of their

spread, and then to give pragmatic interventions based on mathematical models.

9
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Mathematical Model

Modelling is derived from the Latin term modellus, which means human

technique of dealing with reality. According to Andrews and McLone (1976),

mathematical modeling is the portrayal of real-world problems in mathematical

words and techniques in order to gain a better understanding, significance, and

attributes of the problems. As a result, mathematical models are built around

population dynamics, illness transmission behavior, infectious agent character-

istics, and links to other socioeconomic and physiological aspects. Mathemati-

cal models provide a clear understanding of how infectious diseases spread from

one host to another, discover the factors governing disease transmission dynam-

ics, identify the most significant and sensitive parameters, make reliable predic-

tions, and provide useful prevention and control strategies through the use of

analysis such as quantitative, qualitative, sensitivity, and numerical simulations.

Mathematical modeling of infectious diseases dates back to the early 1760s,

when Bernoulli utilized mathematical models to examine the smallpox sickness

(Bernoulli, 1760). In the twentieth century, researchers studied infectious dis-

eases using deterministic mathematical models. A notable example is a discrete

time model developed by Hamer in 1906 to investigate the spread of measles

(Hamer, 1906), as cited in (Anderson and May, 1992).

Dr. Ross later proposed a differential equation model in 1910 to analyze

the transmission patterns of malaria between humans and mosquitoes. In his

model, Dr. Ross was able to set a population size threshold for mosquitos below

which malaria spread can be controlled. His second Nobel Prize in medicine

was given to him as a result of this (Ross, 1911).

Furthermore, Kermack and McKendrick (1932) developed an SIR (sus-

ceptible, infective, recovered) deterministic model to analyze the Black Death

epidemic in London between 1665 and 1666, as well as the plague outbreak in

Mumbai in 1906. Later, in 1932, they developed the SIS compartmental model

10
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(susceptible, infective, susceptible). The examination and analysis of these two

models formally introduced the concept of threshold quantities in mathematical

modeling, which govern whether a disease spreads or dies out in a particular

population (Kermack & McKendrick,1932). The theory of epidemic dynamics

is built on the foundation of ideal thresholds.

After the mid-twentieth century, more intensive studies on epidemic dy-

namics began, and as a result, several developments and advances in mathemat-

ical models to study various infectious diseases such as typhoid fever, malaria,

human cancer disease, tuberculosis, cholera, and so on have been made, partic-

ularly in the last 20 years.

According to Lindsay et al. (2019), the Coalition Against Typhoid Fever

thinks that early detection of typhoid is vital to ensure that sick people get the

care they need. They believe that due to the nature of the disease and the limi-

tations of contemporary diagnostic technology, diagnosing typhoid fever offers

significant challenges. The symptoms of typhoid are similar to those of a num-

ber of other diseases, such as malaria, pneumonia, influenza, and other viral

infections. This leads to a high rate of misdiagnosis, emphasizing the urgent

need for more precise and rapid diagnostic approaches. The capacity of cur-

rent typhoid diagnostics to identify the causative bacterium, Salmonella enterica

serovar Typhi (Salmonella Typhi), as well as their usefulness in resource-limited

and overworked conditions, particularly in third-world nations, are limited.

According to WHO(2003), a conclusive diagnosis of typhoid involves iso-

lation of the Salmonella Typhi bacteria via blood or bone marrow culture. Both

of these procedures are regarded as the best practices and standards for diagnos-

ing typhoid fever, albeit both have significant practical limits.

According to Lindsayet al. (2019), in the coalition’s literature, blood cul-

ture is an expensive procedure that requires specialist workers and laboratory

facilities. Blood culture facilities are rare in many low-resource countries, and

are typically limited to larger hospital facilities in major cities. Because of the
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low bacteria numbers in the blood during illness, only around 40% to 60% of ty-

phoid cases are correctly identified when blood cultures are possible. Although

testing is most effective in the early stages of sickness, the incubation period in-

dicates that the maximum levels of bacteria in the blood are most likely present

before clinical symptoms appear. Blood culture accuracy is also affected by

the patient’s prior antibiotic treatment and the volume of blood obtained for the

sample. Additionally, reports are not available for so many days after blood

is obtained, limiting the test’s utility in clinical situations where a healthcare

provider needs to make a quick treatment decision.

According to the coalition’s research as expressed in (Linsay et al. 2019),

while bone marrow culture is more accurate than blood culture, it is an expensive

and technically demanding technique. In low- and middle-income countries,

this is not a frequent practice.

Due to these constraints, most low-resource settings diagnose typhoid by

clinical criteria, which is highly uncertain given the non-specificity of typhoid

symptoms. Additional procedures, such as urine or stool culture, are less time

consuming and less expensive to perform but do not provide trustworthy results.

Although the Widal test, established in the late 1800s, is straightforward and

affordable, it should not be used for diagnosis alone due to cross-reactivity with

other pathogenic agents. Additionally, The Coalition Against Typhoid Fever

stated in 2018 that numerous diagnostics aimed at overcoming the limitations

of current procedures by being cost effective and providing rapid and accurate

results are currently in development. Three previously approved serological-

based quick diagnostic tests i.e Typhidot, TUBEX, and TEST-It typhoid (KIT)

have demonstrated encouraging preliminary findings. However, their specificity

and sensitivity are not 100%.

Our model is heavily influenced by the work of (Nthiiri et al., 2016). They

developed the PSIT model, which stands for Protected class(P), Susceptible

class(S), Infected class(I), and Treated class(T). Their work included typhoid

12
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fever prevention, demonstrating that with effective protection, the infection rate

of typhoid fever in the population reduces with time. Additionally, with a poor

protection rate, infection becomes prevalent in the community.

Nthiiri et al. (2016) investigated the worldwide stability of the typhoid

fever equilibrium point, which informed their conclusion that disease transmis-

sion may be kept to a bare minimum or managed with protection. However, we

believe that reducing false negatives would result in a significant reduction in

the rate of typhoid fever infection.

Additionally, (Nthiiri et al.2016) based their findings on the assumption

that once the typhoid sickness is treated, it cannot be contracted again.

Motivated also by the work of (Nthiiri et al.,2016), Karunditu et al. (2019)

constructed an SEIR model that included unprotected humans in the spread

dynamics of typhoid illness, a feature that they felt was overlooked by (Nthiiri

et al.,2016).

Their global equilibrium point for global stability was determined utiliz-

ing the (Castillo-Chavez et al., 2002) technique, which satisfied their model’s

global stability criteria. They discovered that unprotected humans had a signif-

icant impact on the disease’s spread dynamics. Additionally, they determined

that if typhoid is to be entirely eradicated from the community, unprotected per-

sons should be viewed among other protective factors.

Their stance strengthened our argument that unprotected populations may

also be falsely diagnosed, hence accelerating exponentially the infection dynam-

ics.

Additionally, Wijedoru et al. (2017) recommends growing Salmonella

from a person’s blood to determine if they have typhoid fever. It does not pro-

vide a result for at least 48 hours, and hence cannot assist healthcare practition-

ers in making a diagnosis the same day a blood sample is obtained.

Although a person may have typhoid fever, a blood sensitivity test may

return negative (Wijedoru et al. 2017). Additionally, the test requires a labo-
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ratory and skilled personnel, which are frequently unavailable in areas where

typhoid disease is prevalent. They contended that rapid diagnostic tests (RDTs)

are intended to be simple to use and to provide a rapid result without requiring

a blood culture laboratory test. A typhoid fever rapid diagnostic test would be

substantially less expensive than a blood sensitivity test or blood culture, and

would require significantly less training to execute. However, because RDTs

generate a high proportion of false negatives and positives, they cannot be relied

upon exclusively.

Sensitivity relates to the proportion of patients with a positive test re-

sult who are correctly identified with the disease, according to (Wijedoru et al.

2017). The fraction of patients who are correctly diagnosed as not having the

condition is referred to as specificity. TUBEX, an RDT, had a sensitivity of

78 percent and a specificity of 87 percent on average. Typhidot investigations,

which included Typhidot, TyphiRapid-Tr02, and Typhidot-M, had an overall

sensitivity of 84% and specificity of 79%. When trials with unambiguous re-

porting of questionable data were included, Typhidot’s average sensitivity and

specificity were 78 percent and 77 percent, respectively, according to the article.

Typhoid Test-It and prototypes (KIT) exhibited a sensitivity of 69% and a speci-

ficity of 90% on average. Based on these findings, (Wijedoru et al. 2017) claim

that in 1000 patients with the infectious diseases, where 30%, that is, 300 pa-

tients have typhoid fever, Typhidot tests reporting indeterminate results or tests

that do not produce indeterminate results would give an overall score of 66 false

negative results, that is, miss the diagnosis in 66 patients with typhoid fever,

and TUBEX would give 66 false negatives The average number of people who

received an incorrect diagnoses of typhoid fever, that is, a false positive result

among the 700 people who did not have typhoid fever would be 161, 91 when

using TUBEX, and 70 when using the Test-It Typhoid and prototypes (KIT).

There are no statistically significant differences in the proportion of patients

who receive false negative and false positive findings from various testing. In
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the diagnosis of typhoid fever, the RDTs examined are inadequately accurate to

serve as a substitute for blood culture.

Existing diagnostic tests for typhoid fever, according to Mather, Hopkins,

and Parry (2019), are insufficiently sensitive and specific to be used reliably at

the point-of-care (POC), leading in antibiotic abuse through empiric treatment.

They suggested that in order to address the needs of consumers in endemic

areas, an improved typhoid diagnostic test must be capable of detecting both

S. Paratyphi and S. Typhi, have a sensitivity of at least 90%, a specificity of at

least 95%, and a low end user cost.

To make a significant difference in the overusage of antibiotics that has

contributed to the emergence of antibiotic resistance in S. Typhi and other bac-

teria, Mather et al. (2019) suggested that an improved Typhoid POC testing

should be done in collaboration with diagnostics for malaria and other acute

feverish illnesses as part of a therapy protocol. However, they were unable to

build any model to address antibiotic usage as a result of incorrect negative or

positive diagnosis.

Edward (2017) established a deterministic compartmental mathematical

model for evaluating the effect of education campaigns, vaccination, and treat-

ment on typhoid disease transmission dynamics in the community in their work.

The disease-free equilibrium has been calculated and shown to be locally asymp-

totically stable for Re < 1 and globally asymptotically stable for Re > 1.

Additionally, the effective reproduction number, Re, was determined and

used to examine various management tactics. Their findings indicate that vari-

ous elements contribute to the management of typhoid dynamics. They believe

that unless concerted measures are made, it will be extremely impossible to

eradicate or even contain typhoid fever disease. They urged that many sectors,

including education, sanitation, and water supply agencies, as well as the health

sector, collaborate to contain typhoid outbreaks in the various communities.

It must be stressed that while both direct and indirect education are key
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components of typhoid fever control, direct education has a higher and longer-

lasting impact on disease management. However, (Edward, 2017) did not stress

typhoid fever screening and diagnosis as a means of eradicating the disease in

their work.

Additionally, utilizing nonlinear ordinary diffential equations, Aji et al.

(2019) built a model for the transmission of typhoid illness. The developed

model is a modification of (Mushanyu et al., 2018) prior typhoid fever model.

In comparison to their typhoid fever model, the model we propose takes

into account the fact that the population receiving treatment may also exhibit the

impact of false negative diagnosis restrictions. After developing their model,

they discovered an asymptotically stable disease-free equilibrium point where

R0 < 1. Additionally, the model’s basic reproduction number was calculated.

They discovered that even with R0 < 1, typhoid was still a possibility in the

population.

Their numerical simulation suggests that any treatment implementation

should take into account the quality of public health resources, such as the avail-

ability of in-patient rooms, the number of physicians, and the quality of hospital

instruments and services that can minimize false negative diagnoses.

Garba et al. (2020) also developed a simple mathematical model of ty-

phoid fever transmission dynamics with vaccination that included protection

against infection. As can be seen, their work was also influenced by the work

of (Nthiiri et at., 2016), which included protection against typhoid fever in-

fection. They determined the R0 by employing a the next generation matrix

technique, which also yielded the model’s DFE and EEP . The stability of the

disease-free population demonstrates that when we strengthen protection, we

can significantly reduce disease prevalence in the population.

While it is true that enhanced protection may result in a low prevalence

rate, this is not a certainty. Not everyone who is vaccinated is protected against

typhoid fever illness. As a result, people who do not receive protection may later
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contract the disease and may be misdiagnosed, and thus there should be safe-

guards in place to account for such circumstances, which is why we conducted

our research.

Again, a publication by Pitzer et al. (2015) indicates that true diagnoses

of Salmonella Typhi accounted for 2% of typhoid isolates detected by sentinel

surveillance at Queen Elizabeth Central Hospital (QECH) Blantyre, Malawi’s

largest hospital, between 1998 and 2004.

Additionally, the study found that just 105 instances of typhoid fever were

diagnosed, reflecting a 2% prevalence. This study by (Pitzer et al., 2015) has

reinforced our position that the majority of typhoid cases are misdiagnosed and

that mechanisms should be put in place to care for people who diagnosed nega-

tive for the disease but are suspected of having it. Thus, integrating delay caused

by false negative diagnosis into our model would significantly help reduce fa-

talities that may occur as a result of delay caused by false negative diagnosis

.

According to Pitzer et al. (2015), the basic reproductive number R0 in-

creased from 1.3% in 1996 to 2.8% in 2015, indicating that those who may have

had the infection but were falsely diagnosed, i.e. those in the delayed class, may

be infecting other individuals in the susceptible class.

The deficiency in their work in no way compensated for the delayed class.

As a result, including it into our work would enable decision makers to make an

informed decision on the prevention of future reinfections of the typhoid fever

disease.

Chapter Summary

This chapter reviewed the use of differential mathematical models to in-

vestigate the transmission dynamics and mechanisms of typhoid fever infec-

tions, as well as the critical role of delay in diagnosis in disease control. Ad-
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ditionally, the history of using mathematical models to study and control infec-

tious diseases was discussed. The models were developed using characteristics

of the transmission dynamics of typhoid fever. While some studies used the

standard SIR model to model typhoid transmission dynamics, others used vari-

ants of the standard SIR model. The fundamental reproductive number, R0, was

determined in both models and was used to determine whether or not typhoid

fever will be endemic in the entire population. Thus, this study examined the

transmission dynamics of typhoid fever by developing a deterministic model

based on variation and modifying the widely used SIR model developed by

(Kermack & McKendrick, 1927). Despite the numerous studies conducted on

this typhoid disease, there has been no mathematical modeling of typhoid fever

transmission dynamics using the PSIDT model that incorporates delay caused

by false negative diagnosis as control strategies to our knowledge. Thus, a com-

bination of this work and the above-mentioned review of mathematical models

of typhoid fever transmission dynamics will be beneficial and aid in the eradi-

cation of this worldwide disease.
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CHAPTER THREE

RESEARCH METHODS

Introduction

Mathematical models can either be a deterministic model or a stochastic

model. A deterministic mathematical model is a model in which the model’s

states are entirely influenced by the model’s parameters as well as preceding

states. Deterministic models have a finite number of compartment where the

mechanisms by which individuals move from one compartment to another are

specified through an array of ordinary differential equations.

By contrast, stochastic estimation approximates the probability distribu-

tions of possible outcomes by allowing for random change in one or more inputs

across time. As a result, stochastic models are dependent on chance fluctuation

in risk of exposure, disease, and other disease dynamics.

We would model the impact of false negative diagnosis of typhoid fever

using the characteristics of typhoid transmission dynamics. Hence a Protected

class, Susceptible class, Infected class, Delayed class and the Treated class

(P,S,I,D,T) model will be formulated based on the deterministic approach and

we would develop a system of differential equations and expressions for which

the equilibrium point, the basic reproductive number and the stability of these

equilibrium points would be determined.

The Existing Model

We would formulate our model by reviewing the model by Nthiiri, et al.

(2016). We would first present their flow chart, parameters and equations and

then our assumptions, flow chart, parameters and equations of the incorporated

model would follow.

The existing flow chart is presented in the figure below;
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Figure 1: Nthiiri et al.(2016) Flow Chart of the Existing Model

Table 1: Variables and their Descriptions of the Existing Model

Variable Description
P Protected class
S Susceptible class
I Infected class
T Treated class
Source: Nthiiri et al.(2016)

Table 2: Parameters and their Descriptions of the Existing Model

Parameters Description
α the proportion of successful vaccination against typhoid
π the proportional rate of getting typhoid fever
θ contact rate of infection
αΛ rate of recruitment into the protected class
γ proportion of the population who failed protection
(1− α)Λ recruitment rate into the susceptible class
µ natural mortality rate
λ proportion of the susceptible class who are infected
δ rate of mortality induced by the disease
β rate at which the infected get treated
Source: Nthiiri et al.(2016)

where, λ = πθI
N
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Equations of the Existing Model



dP
dt

= αΛ− (γ + µ)P

dS
dt

= (1− α)Λ + γP − (λ+ µ)S

dI
dt

= λS − (δ + β + µ)I

dT
dt

= βI − µT

(1)

The Extended Model

It is not logical to say that, everybody in the population who is tested

against typhoid fever is correctly diagnosed. Hence a proportion of the pop-

ulation may fail the correct diagnosis against the disease. We then provide a

mathematical formulation of a compartmental model of typhoid fever which

incorporates delay caused by false negative diagnosis. We divide the total pop-

ulation N(t) into five compartments. These include, the protected individuals

P(t),the susceptible class S(t), the Infected class I(t), the Delayed class D(t) and

the Treated class T(t) and we obtained a system of five differential equations,

which would be shown below.

The parameters and the variables of the incorporated model is discussed

in the table below.
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Figure 2: Flow Chart of the Extended Model, Source:Fiadufe (2021)

Table 3: Variables and their Descriptions of the Extended Model

Variable Description
P Protected class
S Susceptible class
I Infected class
D Delayed class
T Treated class
Source: Fiadufe (2021)

Table 4: Parameters and their Descriptions of the Extended Model

Parameters Description
αΛ recruitment rate into the protected class
γ proportion of the population who failed protection
(1− α)Λ recruitment rate into the susceptible class
µ natural mortality rate
λ proportion of the susceptible class who are infected
δ the disease induced mortality rate
(1− ω) treatment rate with timely diagnoses
β treatment rate with delayed diagnoses
ω rate of false diagnoses
Source: Fiadufe (2021)
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Equations of the Extended Model

We obtained a set of five (5) ordinary differential equations from the model

diagram in 2 that characterized the dynamics of typhoid illness transmission

which incorporates delays caused by false negative diagnosis. We obtained the

following systems of non-linear ordinary differential equations:

λ = π
N

(θ1I + θ2D)



dP
dt

= αΛ− (γ + µ)P

dS
dt

= (1− α)Λ + γP − (λ+ µ)S

dI
dt

= λS − (δ + µ+ 1)I

dD
dt

= ωI − (µ+ δ + β)D

dT
dt

= βD + (1− ω)I − µT

(2)

where N(t) = P (t) + S(t) + I(t) +D(t) + T (t)

Basic Model Properties

We demonstrate the positivity of solutions and the boundedness of our

model in this section.

Positivity of Solutions

To ensure that the system of equations makes sense and is biologically

meaningful, we must establish that all of the model system’s specified variables

are non-negative. Thus, if the initial condition of the is positive, the model

equation’s solutions will remain positive. We begin by stating a Lemma.

Lemma 3.1 Given the system’s initial solutions and parameters in (2) are pos-

itive, the solutions of P (t), S(t), I(t), D(t) and T (t) are all non-negative for
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all t ≥ 0.

Let Ω =

{
(P (t), S(t), I(t), D(t), T (t)) ∈ R+

5;P0 > 0, S0 > 0, I0 > 0, D0 >

0, T0 > 0

}
.

then the solution P, S, I,D, T are positive for t ≥ 0.

Proof :

From the systems of differential equations in (2) above

dP
dt

= αΛ− (γ + µ)P

this implies that

dP
dt
≥ −(γ + µ)P

by separating the variables we have,

dP
P
≥ −(γ + µ)dt

by applying the initial conditions and solving, we have

P (t) ≥ P0e
−(γ+µ)t ≥ 0. (3)

Also, taking the second equation of the system equation (2), thus;

dS(t)
dt

= (1− α)Λ + γP − (µ+ λ)S

then, dS(t)
dt
≥ −(µ+ λ)S

=⇒ dS(t)
S
≥ −(µ+ λ)dt.

Then, by separating variables and applying initial conditions to the solution, we

acquired,

S(t) ≥ S0e
−(µ+λ)t ≥ 0. (4)

In the same manner, the third equation of (2) that is;

dI
dt

= λS − (µ+ δ + 1)I .

It is true that,

dI
dt
≥ −(µ+ δ + 1)I

dI
I
≥ −(µ+ δ + 1)dt.
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Then, by separating variables and applying initial conditions to the solution, we

acquired

I(t) ≥ I0e
−(µ+δ+1)t ≥ 0. (5)

Also, by taking the fourth equation of (2),

dD(t)
dt

= ωI − (µ+ δ + β)D(t).

It is also true that,

dD(t)
dt
≥ −(µ+ δ + β)D(t) .

Solving using the techniques of separation of variables and then applying the

initial conditions, we acquired the following;

dD(t)
D(t)
≥ −(µ+ δ + β)dt

this gives,

D(t) ≥ D0e
−(µ+δ+β)t ≥ 0. (6)

Lastly, we take the fifth equation of the system in equation (2),

dT
dt

= βD + (1− ω)− µT

then,

dT
dt
≥ −µT

and by separation of variables and integrating, gives;

dT
T
≥ −µdt

and this gives,

T (t) ≥ T0e
−(µt) ≥ 0. (7)

The end of the proof of lemma (3.1). Therefore, the solution of the lemma is
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positive.

Boundedness of the Invariant Region

We determined the invariant domain of the model in which the solutions

are bounded. To accomplish this, we begin by examining the total human pop-

ulation (N) where,

N = P + S + I +D + T .

Taking the derivative of N with respect to t, lead to;

dN

dt
=
dP

dt
+
dS

dt
+
dI

dt
+
dD

dt
+
dT

dt
(8)

by combining (2) and (8) , gives

dN

dt
= Λ− µN − δ(I +D). (9)

When typhoid fever disease is not present in the population, then rate of fatality

or mortality, δ = 0 and (9) becomes

dN
dt
≤ Λ− µN

and so,

dN

dt
+ µN ≤ Λ. (10)

Since equation (10) is a standard form of the first order differential equation, we

use the method of integrating factor to solve it. Thus,

e
∫
µdt = eµt

eµt dN
dt

+ µeµtN ≤ eµtΛ

=⇒ d
dt
eµtN ≤ eµtΛ
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Integrating both sides with respect to t gives,

eµtN ≤ N0 + Λ
µ
eµt − Λ

µ

which simplifies into,

N(t) ≤ Λ

µ
+

[
N0 −

Λ

µ

]
e−µt. (11)

As t→∞ in equation (11), the population size N → Λ
µ

this signifies that

0 ≤ N ≤ Λ
µ

.

The model’s solutions remain in the feasible region:

Ω =

{
(S(t), I(t), D(t), T (t)) ∈ R+

5;N ≤ Λ
µ

}
.

As a result, the fundamental model is mathematically well-posed and suf-

ficient condition for studying the fundamental model’s dynamics in Ω.

Model Study State

This section examines the model’s equilibrium points. Equilibrium points

are those points at which the stated variables remain constant over time. The

system in (2) has two non-negative equilibrium states represented by E◦ and

E?, accordingly.(DFE) which is the state at which there no disease in the popu-

lation, denoted by E◦, while the (EE), the state at which the disease is endemic,

denoted by E?. The two steady states have a significant effect on how disease

transmission dynamics behave in a community. While there are an infinite num-

ber of possible initial infections of typhoid fever in a community, these equi-

librium points represent the final reachable states. Using the basic reproduction

number, R0, we also determine the stability of these equilibrium points. Thus,

when a system of differential equations is in equilibrium, (2) becomes,
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αΛ− (γ + µ)P ◦ = 0

(1− α)Λ + γP ◦ − (µ+ λ)S◦ = 0

λS◦ − (µ+ δ + 1) I◦ = 0

ωI◦ − (δ + µ+ β)D◦ = 0

βD◦ + (1− ω)I◦ − µT ◦ = 0

(12)

where,

λ =
π

N
(θ1I + θ2D)

and let π denote the probability rate of getting typhoid fever disease and θ be-

ing the rate of coming into contact with an infected host. Let α also being the

probability rate of successfully gaining protection through vaccination against

the typhoid fever disease, thus the effective force of infection is

λp =
π(1− α)

N
(θ1I + θ2D).

Disease-Free Equilibrium (DFE)

At the DFE state, we assume that there is no typhoid bacterium in the pop-

ulation and as a result there is no transmission of the bacteria that will either lead

to infection and hence no treatment of individuals in the population is needed.

Computing for the disease free equilibrium (DFE), we set I=D=T=0 in

equation (12).

This now result to,
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αΛ− (γ + µ)P ◦ = 0

(1− α)Λ + γP ◦ − (µ+ λ)S◦ = 0

Solving for P ◦ we have;

P ◦ =
αΛ

γ + µ

Now, solving for S◦ gives,

S◦ =
(γ + µ− αµ)Λ

(µ+ λ)(γ + µ)

but since there is no disease in the population, λ = 0.

Hence,

S◦ =
(γ + µ− αµ)Λ

(µ)(γ + µ)
. (13)

Hence, the DFE state gives us,

E◦ (P ◦, S◦, I◦, D◦, T ◦) =

(
αΛ

γ + µ
,
(γ + µ− αµ)Λ

(µ)(γ + µ)
, 0, 0, 0

)
.

Endemic Equilibrium (EE)

The steady state of solutions where the typhoid fever disease is unable to

be totally eradicated from the population but remains to invade the total pop-

ulation is called the Endemic Equilibrium State. We determine the endemic

equilibrium point by solving the systems of differential equation in equation(14)

simultaneously for the state variables S?, I?, D? and T ?.
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At the endemic equilibrium, the following equations are satisfied;

αΛ− (γ + µ)P ? = 0

(1− α)Λ + γP ? − (µ+ λ)S? = 0

λS? − (µ+ δ + 1) I? = 0

ωI? − (δ + µ+ β)D? = 0

βD? + (1− ω)I? − µT ? = 0

(14)

Which means to compute for the (EE), we equate P, S, I,D, T not to be equal

to zero.

Solving the above systems of equations simultaneously,

we can solve for P ? from the first equation of 14 above which gives;

P ? =
αΛ

µ+ γ
. (15)

Let us take the fourth equation of (14)

i.e

ωI − (δ + µ+ β)D? = 0

this implies that;

D? =
ωI

δ + µ+ β
. (16)

Now from the third equation of (14)

λS = (δ + µ+ 1)I?

noting that,
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λp =
π(1− α)

N
(θ1I

? + θ2D
?).

This now becomes,

(
π(1−α)
N

(θ1I
? + θ2D

?)
)
S = (δ + µ+ 1)I?

and substituting (16), gives;

(
π(1−α)
N

(θ1I
? + θ2ωI?

(δ+µ+β)

)
S = (δ + µ+ 1)I?

(
π(1−α)
N

(θ1 + θ2ω
(δ+µ+β)

)
I?S? = (δ + µ+ 1)I?

Let

K1 =
(
π(1−α)
N

(θ1 + θ2ω
(δ+µ+β)

)

this implies that;

K1I
?S? = (δ + µ+ 1)I?

therefore,

S? =
(δ + µ+ 1)

K1

. (17)

Also from the second equation of (14), we obtain
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(1− α)Λ + γ( αΛ
γ+µ

) = (µ+ λ)S?

which produced,

(γ+µ−µα)Λ
γ+µ

=
(
µ+ π(1−α)

N
(θ1I

? + θ2D
?)
)
S?.

Let also K2 = (γ+µ−µα)Λ
γ+µ

implies,

K2 =
(
µ+ π(1−α)

N
(θ1 + θ2ω

(δ+µ+β)
)I?
)
S?

and so,

K2 = (µ+K1I
?)S?.

Now, substitute (17), i.e

K2 = (µ+K1I
?)( (δ+µ+1)

K1
)

hence give,

I? =
K1K2 − µ(δ + µ+ 1)

K1(δ + µ+ 1)
. (18)

Again, substitute (18) into (16) and this gives;

D? =
ω

(δ + µ+ β)

(K1K2 − µ(δ + µ+ 1)

K1(δ + µ+ 1)

)
. (19)

And finally we find T ? by substituting D? and I? into the fifth equation of

(14) and this also gives;
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T ? = β

((
K1K2 − µ(δ + µ+ 1)

)(
(δ + µ+ β) +K1ω

)
K1µ(δ + µ+ β)(δ + µ+ 1)

)
. (20)

Therefore the endemic equilibriumE? =
(
P ?, S?, I?, D?, T ?

)
is given by

E? =

(
αΛ

µ+ γ
,
(δ + µ+ 1)

K1

,
K1K2 − µ(δ + µ+ 1)

K1(δ + µ+ 1)
,

ω

(δ + µ+ β)

(K1K2 − µ(δ + µ+ 1)

K1(δ + µ+ 1)

)
,

β

((K1K2 − µ(δ + µ+ 1)
)(

(δ + µ+ β) +K1ω
)

K1µ(δ + µ+ β)(δ + µ+ 1)

))
.

The Basic Reproduction Number

The system’s basic reproduction number, represented by R0, is a critical

metric for studying the behavior of epidemiological models. It can be explained

as the mean number of illnesses contracted during an infectious period from an

infective individual assuming that the entire community is susceptible. It is a

critical criterion for determining whether an outbreak of a disease will spread

throughout a population or not.

By studying the infectious compartment of the system in (2), we employed

the next generation matrix strategy or technique by Diekmann et al. (1990) and

Diekmann and Heesterbeek (2000) to derive the Basic Reproduction Number

R0. The formation of this matrix involves determining two compartments, in-

fected and non – infected, from the model.

Let Fi(x0) be the rate of emergence of new infections which increase i

compartment and Vi(x0), the rate of transitioning an infected individual from

the i compartment to another compartment, given the disease free equilibrium.
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Then F =
(
∂Fi(x0)
∂xj

)
and V =

(
∂Vi(x0)
∂xj

)
where i, j = 1, 2 and x0 is the disease

free equilibrium. The entries of FV −1 give the rate at which infected individuals

in xj produce new infections in xi, times the average length of time an individual

spends in a single visit to compartment j. The R0 is the largest eigenvalue of

the next generation matrix G = ρ(FV −1) where ρ is the measure of the largest

eigenvalue.

Fi =

λS
0

 and Vi =

 (µ+ δ + 1)I

−ωI + (δ + µ+ β)D


but λp = π(1−α)(θ1I+θ2D)

N

henceFi =

π(1−α)(θ1I+θ2D)
N

S

0

 but at the disease free equilibrium(DFE),

S = N .

Therefore,

Fi =

π(1− α)(θ1I + θ2D)

0


The Jacobian matrices of Fi and Vi at disease free equilibrium E0 respec-

tively give;

F =

πθ1(1− α) πθ2(1− α)

0 0

 and.

V =

(µ+ δ + 1) 0

−ω (δ + µ+ β)


this implies that,

V −1 =
1

(δ + µ+ β)(µ+ δ + 1)

(δ + µ+ β) 0

ω (µ+ δ + 1)
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=

 1
(µ+δ+1)

0

ω
(δ+µ+β)(µ+δ+1)

1
(δ+µ+β)

 .

We then obtain ρ(FV −1), which is defined as the largest eigenvalue of

FV −1. Thus the basic reproduction number R0 for the system is calculated as

R0 = ρFV −1

that is;

FV −1 =

πθ1(1− α) πθ2(1− α)

0 0


 1

(µ+δ+1)
0

ω
(δ+µ+β)(µ+δ+1)

1
(δ+µ+β)


solving,

FV −1 =

π(1−α)
(

(δ+µ+β)θ1+ωθ2

)
(δ+µ+β)(δ+µ+1)

πθ2(1−α)
(δ+µ+β)

0 0

.

Hence the R0 is the largest eigenvalue on the principal diagonal, which is;

R0 =
π(1− α)

(
(δ + µ+ β)θ1 + ωθ2

)
(δ + µ+ β)(δ + µ+ 1)

(21)

which measures the severity of an epidemic and one of the most important pa-

rameter for the disease to invade a population.

Local Stability at the DFE State

We determine the local stability at the DFE state by calculating the eigen-

values of the linearized Jacobian Matrix at the DFE, in this section.

Theorem 3.2 The DFE of the system in (2) is LAS if R0 < 1 and unstable if

R0 > 1
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Proof Let the system of differential equations in (2) be as follows;



F1 = αΛ− (γ + µ)P

F2 = (1− α)Λ + γP −
(
µ+ π(1−α)(θ1I+θ2D)

N

)
S

F3 =
(
µ+ π(1−α)(θ1I+θ2D)

N

)
S − (µ+ δ + 1)I

F4 = ωI − (µ+ δ + β)D

F5 = βD + (1− ω)− µT

(22)

The variation Jacobian Matrix of the system in (22) is given as;

J =



∂F1

∂P
∂F1

∂S
∂F1

∂I
∂F1

∂D
∂F1

∂T

∂F2

∂P
∂F2

∂S
∂F2

∂I
∂F2

∂D
∂F2

∂T

∂F3

∂P
∂F3

∂s
∂F3

∂I
∂F3

∂D
∂F3

∂T

∂F4

∂P
∂F4

∂S
∂F4

∂I
∂F4

∂D
∂F4

∂T

∂F5

∂P
∂F5

∂S
∂F5

∂I
∂F5

∂D
∂F5

∂T


This implies that,

J =



−(γ+µ) 0 0 0 0

γ −
(
µ+ π(1−α)

N (θ1I+θ2D)
)

−
(
πθ1(1−α)

N

)
S −

(
πθ2(1−α)

N

)
S 0

0 π(1−α)
N (θ1I+θ2D) (πθ1(1−α)N )S−(µ+δ+1) (πθ2(1−α)N )S 0

0 0 ω −(µ+δ+β) 0

0 0 β β −µ



We now compute the Jacobian Matrix at DFE and investigate its stability effect due to

the reproduction number R0. Thus,

JE◦ =



−(γ+µ) 0 0 0 0

γ −(µ) −πθ1(1−α) −πθ2(1−α) 0

0 0 πθ1(1−α)−(µ+δ+1) πθ2(1−α) 0

0 0 ω −(µ+δ+β) 0

0 0 β β −µ
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The characteristic equation of the matrix above is obtained by
∣∣∣J−λI∣∣∣ = 0

this produces,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(γ+µ)−λ 0 0 0 0

γ −(µ+λ) −πθ1(1−α) −πθ2(1−α) 0

0 0
(
πθ1(1−α)−(µ+δ+1)

)
−λ πθ2(1−α) 0

0 0 ω −(µ+δ+β)−λ 0

0 0 β β −(µ+λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Solving for the eigenvalues λi, i = 1, 2, 3, 4, 5, we have

(
−(γ+µ)−λ

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ+λ) −πθ1(1−α) −πθ2(1−α) 0

0
(
πθ1(1−α)−(µ+δ+1)

)
−λ πθ2(1−α) 0

0 ω −(µ+δ+β)−λ 0

0 β β −(µ+λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(
−(γ+µ)−λ

)
(−µ−λ)

∣∣∣∣∣∣∣∣∣∣

(
πθ1(1−α)−(µ+δ+1)

)
−λ πθ2(1−α) 0

ω −(µ+δ+β)−λ 0

β β −(µ+λ)

∣∣∣∣∣∣∣∣∣∣
= 0

(
−(γ+µ)−λ

)
(−µ−λ)(−µ−λ)

∣∣∣∣∣∣∣
(
πθ1(1−α)−(µ+δ+1)

)
−λ πθ2(1−α)

ω −(µ+δ+β)−λ

∣∣∣∣∣∣∣ = 0

Hence;

(
−(γ+µ)−λ

)
(−µ−λ)(−µ−λ)[

(
−(µ+δ+β)−λ

)(
πθ(1−α)−(µ+δ+1)−λ

)
−ωπθ2(1−

α)] = 0

This implies that,
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−(γ+µ)−λ = 0 or (−µ−λ) = 0 or (−µ−λ) = 0 or (−(µ+δ+β)−λ) = 0 or [
(
−(µ+δ+

β)−λ
)(
πθ(1−α)−(µ+δ+1)−λ

)
−ωπθ2(1−α)] = 0

and therefore;

λ1 = −(γ+µ) < 0

λ2 = −µ < 0

λ3 = −µ < 0

and the other two roots λ4 and λ5 are the roots of what follows;

λ2+z1λ+z2 = 0 (23)

where

z1 = (µ+δ+1)+(µ+δ+β)−πθ1(1−α),

z2 = π(1−α)[θ1(µ+δ+β)+ωθ2]−(µ+δ+β)(µ+δ+1).

Implies that, if R0 < 1, we would have

π(1−α)[θ1(µ+δ+β)+ωθ2] < (µ+δ+β)(µ+δ+1).

Divide both sides of the inequality by

(µ+δ+β)(µ+δ+1)

and this gives;

π(1−α)[θ1(µ+δ+β)+ωθ2]
(µ+δ+β)(µ+δ+1)

< 1 (24)

38

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Now, comparing 21 and 24, implies that;

R0 < 1.

Since R0 < 1, then the system in (2) has a local stability.

This completes the proof.

Global Stability of the DFE

According Castillo-Chavez et al.(2002),for a system to be globally asymp-

totically stable(GAS) at the DFE state, this two conditions as stated below must

be met. The system of differential equation in (2) should be represented in the

format;
dr
dt

= Q(r, I)

dI
dt

= K(r, I), K(r, 0) = 0

(25)

such that r ∈ Rm representing the number of people or the population not

infected by the disease and I ∈ Rn represent the quantum of the infected popu-

lation. Also U0 = (r, 0) represents the disease free equilibrium of the system.

The conditions (H1) and (H2) must also be met to guarantee global asymptotic

stability.

(H1): dr
dt

= Q(r∗, 0), r∗ is GAS.

(H2): K(r, I) = AI − K̂(r, 0) ≥ 0 for (r, I) ∈ Ω where A = D1K(r∗, 0) is the

Metzler matrix, that is, the non-negative off diagonal element of A and Ω is the

domain where the model makes biological sense and well-posed. This implies

that the fixed point U0 = (r∗, 0) has a global asymptotic stability equilibrium

point of the Typhoid fever model system in (2) provided R0 < 1.

Theorem 3.3 The model system at the DFE state E◦ = (P ◦, S◦, 0, 0, 0) is

GAS if R0 < 1 and the conditions (H1)and (H2) are satisfied.
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Proof Taking the model system in (2),

r ∈ R2 = (P, S)

and

I ∈ R2 = (I,D)

. Therefore for the condition (H1) to be met, we would have;

Q(r, 0) =

 αΛ− (γ + µ)P

(1− α)Λ + γP − (µ+ λ)S


=

 αΛ− (γ + µ)P

(1− α)Λ + γP − (µ+ (1− α)
(
θ1I+θ2D

N

)
)S

.

So for the equilibrium U0 = (r∗, 0), the system now gives,

dr
dt

= αΛ− (γ + µ)P

dr
dt

= (1− α)Λ + γP − (µ+ (1− α)
(
θ1I+θ2D

N

)
)S

Which follows that

Q(r, 0) =

−(γ + µ) 0

γ −µ


The characteristic polynomial is given by

λ2 − TrAλ+ detA = 0

this implies,

λ2 + (2µ+ γ)λ+ µ(γ + µ) = 0 (26)
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Since all the characteristic polynomial in (26) are non-negative, using the

Routh-Hurwitz criterion, solutions of the characteristic polynomial have nega-

tive real parts. Which implies, the eigenvalues have negative real parts. There-

fore r∗ is concurrently GAS i.e a global asymptotic stability.

Furthermore, K(r, I) = AI − K̂(r, I)

=

−(µ+ δ + 1) 0

ω −(µ+ δ + β)


 I

D

−
λS

0

 .

A is a Metzler matrix with non-negative off diagonal elements. It then also

follows from equation (10) that, as t→∞, (I,D)→ (0, 0). Hence K̂(r, I) ≥ 0

and the DFE is GAS in Ω.

This completes the proof.

Local Stability of the Endemic Equilibrium

We present a stability analysis of the endemic equilibrium point in this

section. As discussed in the previous sections, the R0 determines the local sta-

bility of the equilibria.

Theorem 3.4 1. Given that R0 < 1, then the DFE is asymptotically stable.

2. Also if given that R0 > 1, then the DFE is unstable and the EE is

asymptotically stable.

Hence we wish to show that the system in (2) is locally asymptotically stable at

the endemic state whenever R0 > 1.

Proof We studied the stability of the EE by using the trace(TrJ) and the deter-

minant of the Jacobian matrix at E?. That is tr(JE?) < 0 and det(JE?) > 0.

The Jacobian matrix at E? is given by
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JE? =



−(γ+µ) 0 0 0 0

γ −
(
µ+ π(1−α)

N (θ1I
?+θ2D

?)
)

−
(
πθ1(1−α)

N

)
S? −

(
πθ2(1−α)

N

)
S? 0

0 π(1−α)
N (θ1I+θ2D

?) (πθ1(1−α)N )S?−(µ+δ+1) (πθ2(1−α)N )S? 0

0 0 ω −(µ+δ+β) 0

0 0 β β −µ



=



−(γ+µ) 0 0 0 0

γ −
(
µ+ π(1−α)

N (θ1+
θ2

(µ+δ+β) )
)
I? −

(
πθ1(1−α)

N

)
S? −

(
πθ2(1−α)

N

)
S? 0

0 π(1−α)
N (θ1+

θ2
(µ+δ+β) )I

? (πθ1(1−α)N )S?−(µ+δ+1) (πθ2(1−α)N )S? 0

0 0 ω −(µ+δ+β) 0

0 0 β β −µ


If we let

z1 = I? =
K1K2−µ(δ+µ+1)

K1(δ+µ+1)

and

z2 = S? =
(δ+µ+1)

K1
.

Then,

JE? =



−(γ+µ) 0 0 0 0

γ −
(
µ+ π(1−α)

N (θ1+
θ2

(µ+δ+β) )
)
z1 −

(
πθ1(1−α)

N

)
z2 −

(
πθ2(1−α)

N

)
z2 0

0 π(1−α)
N (θ1+

θ2
(µ+δ+β) )z1 (πθ1(1−α)N )z2−(µ+δ+1) (πθ2(1−α)N )z2 0

0 0 ω −(µ+δ+β) 0

0 0 β β −µ


The Trace at E? is given by,

Tr(JE?) = −(γ+µ)−
(
µ+

π(1−α)
N

(θ1+
θ2

(µ+δ+β)
)
)
z1+(

πθ1(1−α)
N

)z2−(µ+δ+1)−(µ+δ+β)−µ.

By substituting z1 and z2 and solving, we have

Tr(JE?) = −(γ+µ)−µR0 (27)

For equation (27) to remain negative, then R0 ≥ 0
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We also determine the det(JE?) as follows,

For simplicity, we let;

h1 =
(π(1−α)

N
(θ1+

θ2
(µ+δ+β)

)
)

h2 = (
πθ1(1−α)

N
)

h3 = (
πθ2(1−α)

N
)

det(JE?) = µ(γ+µ)(µ+δ+β)

(
(µ+h1)z1

(
(h2z2)−(µ+δ+1)

)
+ω
(
h1z1(µ+δ+β)+

(h1z1h3z2)
))

Upon substituting and simplifying, we obtained

= µ(γ+µ)(µ+δ+β)

(
(µ+δ+1)µR0−µ(µ+δ+1)

)
.

Hence,

det(JE?) = µ2(µ+γ)(µ+δ+β)(µ+δ+1)(R0−1). (28)

It is very clear now that, the determinant of the metric is positive provided R0 > 1. Therefore

the model has an asymptotically stable endemic equilibrium as R0 > 1.

This completes the proof.

Chapter Summary

We examined the model formulation for typhoid fever transmission dy-

namics in this chapter by extending the model proposed by Nthiiri et al. (2016)

to include delay caused by false negative diagnosis. The fundamental model as-

sumptions were detailed, as were the model flow chart and the various state vari-

ables, parameters, and their descriptions. Due to the model system’s monitoring

of the human population, we established that all state variables and their solu-

tions are non-negative at all times t and are constrained above a certain value that

the human population cannot exceed. Eq.(2) contains two non-negative equilib-

rium points: the disease-free equilibrium (DFE) and the endemic equilibrium

(EE). The two steady states had an effect on how disease transmission dynamics

43

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



behaved in a community. While an infinite number of different initial distri-

butions of typhoid fever disease could exist in a community, these equilibrium

points represent the final reachable states. Using the basic reproduction number,

R0, we also determined the stabilities of these equilibrium points. We concluded

the chapter with a stability analysis of the model system, which demonstrates

that the disease-free equilibrium is both locally and globally asymptotically sta-

ble using the Jaccobian matrix and the Routh-Hurwitz criterion approach.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

We considered the numerical simulation of the typhoid fever dynamics

which incorporates delay caused by false negative diagnosis and also discussed

the results obtained in this chapter.

Our data was obtained from literature which was referenced accordingly

and we estimated some parameter values for the delay caused by false negative

diagnosis.

The numerical simulation was performed using MATLAB. The aim is to

verify analytically the results and also to demonstrate graphically and numeri-

cally our model solutions in Chapter Three. This is to equip decision makers

in the health sector to know the future trends of typhoid fever especially in the

aspect of delay caused by false negative diagnosis.

We also obtained the values of the parameters from literature for the model

equations in Eq.(2) for the following parameters; the recruitment rate Λ, proba-

bility of success of protection α, the probability of being infected by the disease

π, the rate of contact with an infected host θ, the natural mortality rate µ, the

disease induced mortality rate δ, and the treatment rate β. Also the proportion

of the population who failed protection γ and the proportion of the population

that was delayed ω were obtained.

Numerical Analysis

The mathematical analysis of typhoid fever model with non-linear ordi-

nary differential equation is presented. To observe the effects of the parameters

used in the model in figure 2 presents several numerical simulations by vary-

ing the values of the parameters given in the table below, which resulted in the
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varying effect on the R0 values whereas R0 < 1 and R0 > 1 respectively.

The starting conditions of the state variables are given as;

P (0) = 1500, S(0) = 3000, I(0) = 10, D(0) = 0 and T (0) = 0, N(0) =

4510. The parameters and their values are presented in the table below.

Table 5: Parameters and their Values

Parameters Standard Value Source
Λ 0.0044 (Nthiiri et al.,2016)
γ 0.001 ,,
π 0.8 [Assumed]
α 0.000001 [Assumed]
µ 0.018 (Adetunde, 2008)
θ1 0.1 (Arif et al., 2019)
θ2 0.5 [Assumed]
δ 0.005 (Nthiiriet al.,2016)
β 0 < β < 1 (Howard et al.,1987)
ω 0 < ω < 1 [Assumed]
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Figure 3: Comparing the Five state Variables at the Disease-Free Equilibrium,
R0 = 0.7299

Results

Given the values of the state parameters in Table 5 above, it is observed

that the model systems settled at the disease-free equilibrium with R0 = 0.7299

which is less than unity. This result is replicated in Figure 3 above. At the

disease-free equilibrium, we expect the state variables; I and D to all go to zero

for the fact that, no disease is in the population. Hence from Figure 3, Infected

Class and the Delayed Class all tend to zero.

We do not expect the Protected class, Susceptible class and the Treated

class to tend to zero given the initial conditions. Because of the constant recruit-

ment of new individuals into the Susceptible class coupled with the movement

of some of the individuals from the Protected class who may fail protection, the

susceptible compartment shows a slight downward sloping curve which reduced
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marginally, attains minimum and continues to increase at a constant rate. This is

so because in the absence of an outbreak of a disease, the susceptible compart-

ment becomes the population less the number of natural mortality. Therefore,

the susceptible compartment curve may decreases in the long-run but cannot

approach zero.

Moreover, we do not expect the Protected class and the Treated Class to

tend to zero either. This is because,even if the disease is not present in the

population, the vaccinated individuals would exist in the population even at the

disease free equilibrium as depicted in Figure 3. More so, the infectious com-

partments tend to zero and the population of the infectious classes move to the

Treated class. As a result, the Treated class continue to increase based on the

assumption that, those treated have a permanent immunity against the typhoid

fever as depicted in Figure 3. Figure 3 has also confirmed the local stability of

typhoid fever model which incorporates delay caused by false negative diagno-

sis at the disease-free equilibrium state. The biological meaning is that,since R0

is less than unity, the typhoid fever disease will die out of the population in the

short-run if the disease is modeled at the stated parameter rates.
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Figure 4: Comparing the Five State Variables at the Endemic Equilibrium
State, R0 = 1.0068

We further investigated the evolution of the reproduction number R0 with

transmission probability rate of typhoid π, probability of success of protection

α,the contact rate θ and all the other parameters as recorded in table (5) held

constant, we varied only (ω) from the initial 0.040 to 0.057, to observe its effects

on spread and treatment. The results are shown in Figure (4) above.

Figure (4) shows that our model system in (2) attained the endemic equi-

librium state with reproduction number R0 = 1.0068.

Given that the 10 infected persons that were introduce into the susceptible

population, and given that, ω = 0.057 representing just 5.7% false diagnosis

of the 10 infected persons, we can observe clearly that, the false diagnoses has

increase the R0 from 0.7299 which is at disease free state to 1.0068 which is an

endemic state of the disease.

We can observe also from Figure (4) that, the susceptible compartment
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decreased marginally. This is an indication that, the falsely diagnosed persons

are infecting the susceptible class hence the increase in the curve of the delayed

class from its initial state as depicted in Figure (4).

Similarly, the infected compartments i.e the Infected Class and Delayed

Class increased abruptly from the disease-free equilibrium state in Figure 3 to a

point above the initial state as depicted in Figure 4 which is an indication of the

presence of typhoid fever in the population.It shows that the disease is endemic

in the population.

The graph in Figure 4 has also shown an inverse relationship between the

Delayed compartment and the Treated compartment. That is to say that, as more

and more of the population is delayed by false negative diagnosis, only few of

the infected population get treated.This assertion would be discussed into detail

below.

We also analyzed the range of values of ω for which R0 transitioned from

being less than unity to greater than unity, which is from the stable state to an

unstable state. The results are presented below;

ω = 0.054, R0 = 0.9580

ω = 0.055, R0 = 0.9743

ω = 0.056, R0 = 0.9905

ω = 0.057, R0 = 1.0068

Therefore the range of values of ω for which the disease transitions from

stability to instability is given as 0.056 ≤ ω ≤ 0.057.
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Figure 5: Effect of False Diagnosis on Infections, R0 = 0.072

Figure 6: Effect of False Diagnosis on Infection, R0 = 3.3366
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Figure 7: Analyzing the Effect of False Diagnosis on Infection: R0 = 8.2242

Figure 8: Analyzing the Effect of False Diagnosis on Infection: R0 = 16.3701

Effect of False Diagnosis(Delayed population) on Infected Population

It can be observed from Figure5, Figure6, Figure7 and Figure8 that, as we

vary omega(ω), the rate of false diagnosis from [0 - 0.2] the infected compart-

ment declined from its initial position. We further increased ω from [0.2 - 1.0]
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and the infected compartment again reduces further as can be seen in Figure7

and 8.

The reduction in the number of infected population as the rate of false

diagnosis ω increase means that, as more infected people are falsely diagnose

as not having the disease, this depopulates the infected (ith) compartment and

giving an erroneous indication that the disease is not in the population or only

few people may be having the condition. But on the contrary, the falsely diag-

nosed individual are the delayed population who are also infectious, who may

be transmitting the disease.This is evident, as at this rates of ω, the R0 continues

to increase and greater than unity. This shows that the disease would be endemic

in the population. The false diagnosis which reduces the number of the infected

population, hinders decision making and planning on the part of health officials

and governments as a whole. This may also lead to several numbers of the

population being infected and thereby increasing the disease induced mortality.
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Figure 9: Effect of False Diagnosis on Treatment: R0 = 0.0782

Figure 10: Effect of False Diagnosis on Treatment: R0 = 3.3366

Effect of False Diagnosis on Treatment

From Figure 9, Figure 10, Figure 11and Figure 12 we noticed that, as

more people are falsely diagnosed, that is, as we increase ω from [0 - 1.0], the
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Figure 11: Effect of False Diagnosis on Treatment: R0 = 8.2242

Figure 12: Effect of False Diagnosis on Treatment: R0 = 16.3701
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number of people who get treated declines. This is an indication that, if attention

is not paid to accurate diagnosis of typhoid fever, only few people may get

treated from the disease and the majority of the population who may be falsely

diagnosed remains in the susceptible population thereby infecting others and the

hosts with the disease. The vice versa is true. Therefore, Figure 9 through to

Figure 12 is a confirmation that as infected individuals are falsely diagnosed the

disease may be endemic in the population since R0 > 1 and fewer people get

treated.

Sensitivity Analysis on the Basic Reproduction Number, R0

The parameters π, θ1, θ2, α, ω, β, δ, and µ are functions of the Basic Re-

production number. To avoid a disease breakout, we must keep track of the

parameter values that make up R0 < 1. This is because these variables are

mostly responsible for the disease’s transmission. As a result, we’re curious

about the rate of change of R0 as the parameter values vary. The rate of change

of R0 for a change in the value of a parameter for example x, can be estimated

from a normalized sensitivity index defined as;

SI(x) =
∂R0

∂x
(29)

where x represents the parameter. Furthermore, when there is change in the

parameter, the relative change in the state variables can be measured using the

sensitivity indices. Hence using the normalized sensitivity index in (29) to de-

termine the effect of each parameter on R0, we obtained the following partial

derivatives;

∂R0

∂π
=

(1− α)
(
θ1(µ+ δ + β) + ωθ2

)
(µ+ δ + β)(µ+ δ + ω + β)

≥ 0
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∂R0

∂ω
=

πθ2(1− α)

(µ+ δ + β)(µ+ δ + ω + β)
≥ 0

In similar manner, the rest of the parameters were computed to determine

their sensitivity statutes with the Basic Reproduction Number R0. The results

are simplified in the table below;

Table 6: Parameters and their Relationship with R0

Parameter Relationship
π +
ω +
α -
θ1 +
θ2 +
β -
µ +
δ +

From the Table 6 above, we could observe that, (π, ω, θ1, θ2, µ and δ) all

have a positive relationship withR0, whilst the parameters (α, β) have a negative

relationship with R0.

The implication is that, the parameters with positive relationship have a

positive effect on R0, which means they increase R0, and hence the aim is for

these parameters to be reduced in order to eradicate the spread of the disease.

Also the parameters with the negative relationship should be increased if the

disease were to be eradicated from the population.

Discussions

Typhoid fever, commonly known as enteric fever, is a serious health dis-

ease that affects people all over the world. Its control has been a source of

concern around the world. As a result, (Nthiiri et al.,2016) developed a model

that integrates protection against typhoid fever disease infection in order to aid
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in the discovery of a solution to the disease’s spread.

We extended their analytical approach in this thesis, which includes pro-

tection against infection, to include delay induced by false negative diagnosis,

in order to study the impact of false negative diagnosis on infection spread and

treatment.

A detailed stability and persistent analysis were examined for our model

with the control techniques of minimizing false negative diagnosis and also

agreeing with Nthiiri et al. to boost protection through vaccination.

Parameter values were acquired from standardized published literature

and used in numerical simulations. The magnitude of the R0 is totally defined

by the model’s modalities, according to the model’s analysis. In greater detail,

when the R0 < 1 is reached, the endemic status of the typhoid fever disease

will naturally settle to a disease-free equilibrium, and the disease will be erad-

icated from the population. Despite this, the sickness will continue to spread

throughout the population.

The analysis revealed thatR0 is an increasing function of the Delay caused

by false negative diagnosis parameter, i.e. R0 rises as the delay induced by false

negative diagnosis parameter rises and vice versa. As a result, the time delay

created by a false negative diagnosis is extremely important in the control and

eradication of typhoid fever. For emphasis if only 5.7% of the infected popula-

tion is falsely diagnosed, the disease may enter an endemic state. However, we

believe that R0, which constitutes the threshold, is a necessary but insufficient

condition for the disease to be entirely eradicated.

The parameters in the basic reproduction number, R0, were subjected to

a sensitivity analysis. The model system was found to settle at a disease-free

equilibrium state with low or no false negative diagnosis. Because total eradica-

tion of typhoid fever sickness is still a global concern, we propose in this thesis

that erroneous negative diagnoses that result in delayed treatment be scrutinized

with a keen eye, with the goal of decreasing it to the bare minimum.
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Chapter Summary

Numerical simulation using literature values and some derived parameters

for the spread and management of typhoid disease was explored in this chapter.

The numerical simulation was performed using Matlab.

Also, sensitivity analysis of the model was performed for the model pa-

rameters to assess their link with the basic reproduction number R0.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

A mathematical model for the transmission dynamics of typhoid fever

sickness has been presented in this paper. Delay caused by false negative di-

agnosis has been integrated into an SIR model to assess the impact it has on

spread and treatment. The analytical and numerical results of this model was

discussed in the preceding chapter. We consequently came out with the idea

that, delayed individual induced by false negative diagnosis disseminated the

typhoid disease, hence contributing to the spread dynamics of the typhoid fever

disease. Therefore, reducing the incorrect diagnosis to the barest minimum will

go a long way to restrict the spread and enhance treatment of the typhoid fever

sickness.

Summary

A mathematical model of typhoid fever disease which incorporates de-

lay caused by false negative diagnosis and its impact on spread, treatment and

control strategies of the disease was investigated. We also used analytical tech-

niques to determine when the disease will die out of the population or remain in

the population to invade the entire population. This conclusions were based on

the value of the basic reproduction number R0. That is if R0 < 1, it means an

infected individual is reinfecting less than one person in the susceptible popula-

tion, hence the disease will die out.

On the other hand, ifR0 > 1, then an infected individual can reinfect more

than one susceptible individual in the population and as a result, the disease

remain endemic in the population. Using numerical strategies, we predicted the

types of control strategies that should be adopted in order to control the typhoid
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fever disease. We concluded on the strategy of combining vaccination of as

much as possible the highest number of the susceptible population which was a

conclusion drawn by (Nthiiri et al., 2016), and reducing delay caused by false

negative diagnosis by procuring effective test kits and using the most effective

test methods and personnel. Also treatment of the infected individual timely is

highly recommended as a control strategy.

Our results therefore provide a framework which should be taken into con-

sideration by the government, health practitioners and decision making bodies

when formulating policies to control the typhoid fever disease.

Conclusions

A mathematical model that integrates protection by Nthiiri et al. (2016)

was adjusted to incorporate delay caused by false negative diagnosis. The model

was generated with the aid of a schematic diagram in Figure 2 and the model

parameters are supplied in Table 2. The proposed model solutions were demon-

strated to be theoretically well posed and biologically meaningful since all the

model solutions were proved to be both positive and bounded. The disease free

and the multiple endemic equilibrium state of the model were determined. De-

lay caused by false negative diagnosis and its impact on spread and treatment

was added to know their impact in typhoid fever disease transmission dynamics

using the sensitive index of the model parameters. The model was solved nu-

merically using Matlab and findings from the numerical simulations indicates

that as more and more people are mistakenly diagnosed, they contribute more

to the spread dynamics hence limiting treatment. To be more specific, if the

sensitivity and the specificity of a test kit is less than 94.3% i.e 5.7% false diag-

nosis, is a recipe for the spread of the disease. Therefore, the limited resources

that will be used to manage typhoid fever disease should be focused towards the

reduction in delayed population and increasing the protected population. We
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further ran a sensitivity analysis on the basic reproduction number with all the

model parameters from which we discovered that, the most sensitive parameters

are α, π, θ, ω, β. These criteria demand attention while evaluating ways to con-

trol typhoid fever sickness. Therefore, including delay caused by false negative

diagnosis aid to establish an effective control approach to lower the transmission

dynamics of the disease.

Recommendations

Based on the findings in this study, we give the following recommenda-

tions:

1. The government, stakeholders and the policy makers should consider us-

ing both vaccination and effective test systems in diagnosing typhoid fever

disease which should reduce as much as possible the false negative diag-

nosis.

2. The inception of Covid’19 has increased personal hygiene through hand

washing. We therefore recommend that, the same attitude be geared to-

wards typhoid fever since infection is mainly through injection of faecal

matter.

3. Individuals who show symptoms of typhoid fever disease but having a

negative test results should be quarantined or self isolate for at least four-

teen days for further and proper management, to avoid the possibility of

spreading the disease as a result of false negative diagnosis.

4. Recommended treatments should be carried to the latter.

62

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



REFERENCES

Adetunde, I. (2008). Mathematical models for the dynamics of typhoid fever in

kassena-nankana district of upper east region of ghana. Modern Mathematics

and Statistics, 2(2):45–49.

Afoakwah, R., Boampong, J. N., Acheampong, D. O., and Nwaefuna, E. K.

(2011). Pelagia research library. European Journal of Experimental Biology,

1(3):7–13.

Aji, B., Aldila, D., and Handari, B. (2019). Modeling the impact of limited

treatment resources in the success of typhoid intervention. In AIP conference

proceedings, volume 2202, page 020040. AIP Publishing LLC.

Anderson, R. M. and May, R. M. (1992). Infectious diseases of humans: dy-

namics and control. Oxford university press.

Andrews, J. and McLone, R. R. (1976). Mathematical modelling. Butterworth-

Heinemann.

Arif, M. S., Raza, A., Rafiq, M., Bibi, M., Fayyaz, R., Naz, M., and Javed, U.

(2019). A reliable stochastic numerical analysis for typhoid fever incorporat-

ing with protection against infection. Comput. Mater. Continua, 59(3):787–

804.

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la
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