UNIVERSITY OF CAPE COAST

PRIMARY SCHOOL TEACHERS' AND PUPILS' ATTITUDES TOWARD MATHEMATICS AND THEIR EFFECTS ON PUPILS' ACHIEVEMENT IN MANYA KROBO DISTRICT

BY

CHRISTOPHER KWABENA KUMAH ADDY

A THESIS SUBMITTED TO THE DEPARTMENT OF PRIMARY

EDUCATION OF THE FACULTY OF EDUCATION, UNIVERSITY OF CAPE COAST, IN PARTIAL FULFILMENT OF THE AWARD OF MASTER OF PHILOSOPHY DEGREE IN BASIC EDUCATION

AUGUST, 2006

DECLARATION

CANDIDATES DECLARATION

I hereby declare that this thesis is the result of my own original research and that no part of it has been presented for another degree in this I university or elsewhere.

SUPERVISORS' DECLARATION

We hereby declare that the preparation and presentation of this thesis was supervised in accordance with the guidelines on supervision of thesis laid down by the University of Cape Coast.
 Nanc:-vof:-Gik. Condor
 Name: Dre.C.S. DuES

Abstract

The main purpose of this study was to determine whether any significant difference existed between primary clans sh bols and girs attitude toward mathematics and their effects on achievement. Also. to determine whether any significant difference existed between boys ${ }^{\wedge}$ and girls ${ }^{\circ}$ achievement in mathematics. Finally, the study sought to determine whether primary class six teachers* and pupils attitude toward mathematics contributed significantly to pupits achievemem in the subject.

The simple random sampling technique was used to select fot primary class six pupils for the study. The 400 subjects consisted of 200 boys and 200 girls selected from both rural and urban schools. In all 40 primary schools were involved in this study.

The main instruments used to collect data for this study were two sets of attitude questionnaires of the Likert scale type and an achievement test. The data gathered were analysed statistically using an independent t-test. the multiple regression technique and Pearson`s Product-Moment Correlation.

The study indicated the following results. Firstly. there was no significant difference between primary class si boys and girls` attitudes toward mathematics. Secondly, there was a significam difference in mathematics achievement between primary class six boys and girls in favour of girls. Thirdly, primary class six pupils' attitude toward mathematics contributed significantly to their achievement in the subject. Fourthly, primary class six teachers` attitude toward mathematics related to pupils` achievement in the subject. Implications of the lindings of study were discussed and reccommendations made.

ACKNOWLEDGEMENTS

1 wish to capress my profound gratitude (o Pofesor B.K Gordor of
 supentsor he ensured that tha work as sompleced in ypite of his heas nhedule

I wish abo to exper my heantelt appeciation to two it ms

 an: hame out with this val

the - mputer and! -

DEDICATION

This thesis is dedicated to my' sons Precious Add., Vam, Addy, Paul
Addy. Timothy Addy and My wife Mrs. Mercy Addy.

TABLE OF CONTENTS

Title Pasc
Declaration ii
Abstract iii
Achnowledgements i
Dedication 1
Table of Content $1 i$
List of Tables N
CHAPTER ONE: INTRODUCTION 1
Background to the Study 1
Statement of the Problem 7
Purpose of the Study 1
Hypotheses 9
Significance of the Study 10
Detimitation of the Study 11
1 imitations 11
Derimtion of ${ }^{\circ} \mathrm{c}$ em 12
Summar: $1 ;$
CHAPTER TWO: REVIEW OF LITERATURE 15
The Concept/Definition of Attitude 16
Beliefs and Conceptions of Mathematics Teaching and Learning 19
Teachers' Autudes Toward mathematics 21
Pupils• Attitudes Toward Mathematics 24
Relationship Between Teachers* Attitudes Toward Mathematics
and Pupils Achievement in the Subject 32
Relationship between Pupils* Attitudes toward Mathematics
and their Achievement 34
Acadcmic Achievement 3.4
Achievement of Pupils in Mathematics 35
Difficulty of Mathematics 50
Confidence and Anxiety 50
Mathematics as a Male Domain 61
Perceived Usefulness of Mathematics 63
Summary of Literature Review 63
CHAPTER THREE: METHODOLOGY 68
Research Design 68
Population 70
Sample 70
Sampling Technique 72
Research Instrument 73
The Questionnaires 7.4
The Achievement Test 70
Validity and Reliability of the Instrument 77
Data Collection Procedure 79
Scoring the Items of the Instruments 81
Analysis of Data 8.3
CHAPTER FOUR: RESULTS AND DISCUSSION 80
Background of the Respondents 86
Main Analysis of the Data 98
Additional Findings of the Study 112
CHAPTER FIVE: SUMMARY, CONCLUSION AND
RECOMMENDATION 113
Summary 124
Conclusion 125
Recommendations from the findings of the studs 126
Recommendations for Further Research 127
REFERENCES 128
APPENDICES 157
A Introductory Letter 157
B. Questionnaire for Pupils 158
C. Questionnaire for Teachers 162
D. Mathematics Achievement Test 167
E. Answers for the Achievement Test 172
F. List of Selected Circuits 17.
G. List of Selected Schools 174

LIST OF TABLES

TABLE

1 National CRT Results by Percentage Mean Scores by Year:
1992-97 7
2 National CRT Results by Region: 1993 36
3 National CRT Results by Region: 1996 37
4 Natonal (RT Results by Gender: 1992-1(9)7 $i s$
5 Frequency and Percentage of Pupils by Schools 86
6 Frequency and Percentage Distribution of Pupils by Sol 87
7 Frequency and Percentage Distribution of Pupils by Agc $\$ 7$
8 Frequency and Percentage Distribution of Teachers by Scx 88
9 Frequency and Percentage of Teachers by Highest Academic Qualification 88
10 Frequency and Percentage of Teachers by Highest Professional Qualification 89
11 Frequency and Percentage of Teachers by Ranh 90
12 Frequency Distribution of Teachers by Aspect of mathematica
Studied 91
13 Mean Scores on the Pupils Attitude Variables by Gender 91
14 Analysis of the Mean Scores difference on the six Attitude Variables Between Boys and Girls 92
15 Mean Scores of Teachers on the Attitude Variables $9+$
16 Gender Mean Scores on Teachers* Attitude Variables 95
17 Analysis of the Mean Scores of Pupils on the Achievement
Test by Gender 97
18 Analysis of the Attitude Mean Score Difference between Boys and
Girls 99
1920Percentage of pupils correctly responding to various test fems by
location 103
2223Analysis of total achievement test scores and responses on teacherinfluence108

CHAPTER ONE

INTRODUCTION

Background to the Study

Technological and economic development in all countries depends on effective knowledge and use of science and mathematics. It is for this reason that educational systems of countries have made great studies in their development. This accounts for mathematics being compulsory in our preuniversity schools.

One of the national objectives of Basic Education is to prepare the child for life after school. It is only the teaching and learning of mathemation that can prepare the child adequately to fit into the societs. I good foundation in mathematics is very essential for the success of the child in life. It is for this reason that mathematics teachers knowledge of the subject content and methodology is made a core subject at the first and second cyele schools.

The Ghana mathematics syllabus for the primary schools issued by the Ministry of Education (MOE, 2001). outlines the rationale for teaching and learning of mathematics in schools. Firstly, mathematics at the primary school level should emphasise knowledge and skills that will help the pupil develop the foundation for numeracy. Sccondly, the pupil is expected to read and use numbers competently. reason logically. solve problems and communicate mathematical ideas effectively with other people. Thirdls. the pupil's mathematical knowledge. skills and competence at this stage should enable
him/her make more meaning of his/her world and also develop interest in mathematics as an essential tool for the study of xience ind orter whifech and contribute to national development.

Futhermore the pupil should be ahle to use correctly. accurately and with understanding the four fundamental operations addtum. whbuaction. multiplication and division as applied to both number and measurement. Mathematics has far more to offer the pupil to lead a rich and meaningful life. If the mathematics teacher is not able to help the individual pupil to achieve these goals. then the teacher does both the individual pupil or learner and society gross disservice. Mathematics is not only restricted to the development of the child. but also to that of the society.

The use of mathematics permeates many ficlds of study such as biology, physics. chemistry, economics. geology: medicine. commerce. geography. music. art to mention but a few. Mathematics is perhaps one of the subjects that receives the greatest attention in the school curriculum both at the basic and secondary school levels. Thus. in many descloping countrics including Ghana. mathematics takes the greatest number of hours of instruction per week. For example. in Ghana the time allotted for mathematics instruction at the primary class six levels is one hour per day and a total of five hours per week. The reason for this is perhaps because sufficient knowledge in mathematics is needed to equip the pupils to fit well into various seientific and technological fields in this modern world.

The importance of mathematics is seen in the assertion by Isenberg and Altizer - Tuning (1984) that in order to he prepared for potential success in the world today and in the future, hnowledge of mathematics and seienee is
necessary. Besides this. it is universally accepted that a strong foundation in mathematics is a preqequisite for professions and carcers in today dyamic society. The irons of this is rather that as mathemation is gaining importance. achievement in thas subject at the varinus lesels of education has been porer over the years as compared to the achicvement of pupils in other subject areas of study in the schools. Available literature provides evidence for a trend in decrease in average performance in mathematics precisely on certain tasks that require deeper understanding of mathematics and significant decrease of students' interest in mathematics during the course of high school (Jones. 1988; Reynolds \& Walberg, 1992).

Numerous studies had been carried out to investigate various factors that influence the teaching and learning of mathematics and achievement in this subject. Such factors which include the school environment. student. home. quality of teaching and methods of teaching as well as student Icarning strategies had been identified (Csihszentmihalyi \& Nahamua. 1989: Karp. 1991: Csikszentmihalyi, Rathunde \& Whallen. 1993). Other findings from studies carried out showed that other non - intellectual factors such as personality, anxiety, attitude motivation. interest, to mention but a few, to some extent influence students mathematics learning and their achicvements in the subject (Aiken. 1970, 1976: Gillspie \&Boonie. 1983).

Among these non - intellectual variables Abrego (1966) sces the attitude variable as an influencing factor on pupils achievement in mathematics. To Abrego, without the right attitude the pupils potential growth in knowledge and achievement cannot be attained. This means the
right attitude towards mathematics will result in higher a hievement and vice versa.

The development of a positive attitude toward mathematics in desirable
 correlation between the attitude of SSS students and achicsement in mathematics. Among Junior Secondary school students Neale, Gill and Tismer (1970) also found significant correlation between attitude towards mathematics and students achievement in the subject.

Moses (1991) on the contrary found that attitude toward mathematics was not directly related to achievement. Moses was of the view that other factors such as methods of teaching and class size were probably involved.

Other studies in Ghana on attitudes of students toward mathematios and their achievement in the subject at the Senior and Junior Secondary school levels showed that female students have fairly high positive attitude towards mathematics than their male counterparts (Ohpodjah. 1991). Kpemlie (1993) found that girls in ISS could equally perform as well as boys in all content areas in mathematics. Dealing with studies on urban and rural basis Appiah Ofori (1993) found that both male and female students in both urban and rural Junior Secondary schools have positive attitudes towards mathematics.

Similarly, with regards to studies made in single- sex and mixed schools, the following were revealed. Eshun (1987) found that males in single - sex senior secondar! schools achieved higher than their femate counternarts Besides this, the achievement in mathematics by female students in single- sel Senior Secondary Schools were highest when compared with the achienement of males and females in mixed - Senior Secondary. Schook.

Nkani (1993) concluded that both males and females in mived and single - sex senior secondary schools at the ordinart and ldanced leiek have positive attitude towards mathemation. Besides. Nhan lound positise correlation ($r=0.546$) between the attitude of students (mwand mathematics and their achievement in the subject.

Otchey (1999) carried out a study on teachers` and students` attitudes toward mathematics and their effects on JSS students achievement. Otchey reported the following findings:

1. that there was no significant difference between male and female ISS3 students' attitudes toward mathematics.
2. there was a significant difference between the mathematics achievement of male and female JSS3 students with performance being in favour of female students.
3. teachers attitudes toward mathematics was not cignificantls related to students attitudes toward mathematics and their achievement.
4. girls in girls" schools achieved higher in mathematics than boys in boys schools.

Studies on enrolment in mathematics classes are also of great importance to mathematics educators. Selkirk (1974) found that there is a trend in decrease in the number of students being enrolled into mathematics classes and programmes at the high school and college levels. Selkirh asserted that the reason for this decrease is due to students general negative attitude towards mathematics. However, enrolment in Ghana is increasing. There are many females study ing B.Ed mathematic at ICC and lI: IN:

The researcher was once a circuit supervisor in the Manya Krobo District Education Office and during official school visits and inspections the following common observations could be made. During mathematics lessom some pupils did engage in other activities. others put their heads on the tables. while others stayed away from mathematics classes hut reported for lessons as soon as the mathematics classes were over. Also, sometimes pupils were not motivated to learn mathematics or to attend school. Teaching and learning were not challenging. Teacher absenteeism. lateness and malingering left pupilsto themselves. Sometimes timetables and syllabus were not always followed and some subjects not taught at all. The People`s Daily Graphic (July 2,2003) reported similar comments that teachers must stop negative attitudes such as laziness. unnecessary absenteeism lateness to mention but a few. The teacher characteristics and attitudes have great influence on pupils. mathematics learning. achievement and the types of attitudes developed toward mathematics.

From the discussion greater part of the studies revealed that there is significant correlation between attitudes of students toward mathematics and their achievement in the subject. Moses (1991) on the other hand pointed out that attitude toward mathematics was not directly related to achievement. This has prompted the researcher to carry out this study to be able to determine whether attitude correlates with achievement.

Statement of the Problem

The Criterion-Referenced Tests (CRT) for primar: sis pupik in Gilana from 1992 to 1997 reported the national percentage mean soores for Fnglish and mathematics as presented in Table 1.

Table 1:
National CRT Results by Percentage Mean Scores by Year: 1992 to 1997

Year	1992	1993	1994	1995	1996	1997
English	29.9	30.9	31.6	31.6	33.3	33.9
Mathematics	27.3	27.4	27.7	28.1	28.8	29.9

It is evident from the above figures that over the years the mean scores of pupils' achievement in mathematics was slightly lower than English. However, the mean scores for both subjects were increasing (MOE.1997).

Furthermore, the Performance Monitoring Test (PMT) conducted for pupils from public primary schools from basic stages two to six revealed that in the Manya Krobo District basic stage six pupils obtained mean scores of 42.23 percent and 69.31 percent in mathematics and English Language respectively. The achievement in mathematics was slightly lower than English language (MOE, 1997).

The Chief Examiner's Report (1998) of the Basic Education Certificate Examinations (BECE) highlights candidates weahnesses in mathematics .Candidates demonstrated poor computation skills with the greatest problem being lack of knowledge and understanding. For example. some candidates showed lack of knowledge of unis of measurements and used kilometres for mass and kilograms for distance.

The low achievements by primary school pupils in CRT continucs to attract the concern of pupils, parents, educators. stakcholders and the general public. This could be judged from the remarks and observations made by policy makers as well as the general public. These remarh are that. in spite of the provision of inputs such as textbooks, stationery and the orientation and other measures taken to improve the teaching and learning process in the schools, effectiveness in schools remain low and achievement in primary' school remain low (Ehun, 2001).

The results of the Third International Mathematics and Science Study [TIMSS] for England showed that in terms of 9 to 13 year-olds performance in mathematics had deterioriated slighty (TIMSS,1993-94). Amissah (2000) reported that it was the poor performance of TIMSS that urged MOE in 1992 to institute the CRT to determine the extent of pupils* performance in mathematics in Ghanaian public primary schools.

Modern mathematics was introduced to make mathematics more interesting to pupils and students at all levels so that students could also improve upon their achievement in the subject. Teachers are also always considered as how to improve upon their skills so the Mathematics Association of Ghana (MAG) occasionally organises seminars and workshops for mathematics teachers especially those at the pre-tertiary levels. The aim of this is to enable the teachers to adopt current strategies that will enrich the teaching and learning of mathematics in the schools.

Looking at mathematics in Ghana from 1960 to 2000. Mercku (2000) commented on the influence the changes in mathematics curriculum had on the performance of students. Mereku`s study indicated that the teaching of
mathematics in basic schools focused on computational skills, learning of formulas, rote practice and teaching as telling. The implication he stated was that by the time pupils begin secondary education their foundation in basic mathematics was low.

This study intended to investigate whether the attiludes of pupils and teachers contributed significantly to achievements of pupils in mathematics at the primary school level.

Purpose of the Study

The main purpose of this study was to find out whether the attitudes of pupils and teachers toward mathematics contributed signilicantly to pupils' achievement in the subject. Again. it was to investigate whether any significant difference existed between boys and gias achicevement in mathematics. Finally, it was to determine whether any significant difference existed between boys` and girls' attitudes toward mathematics.

Hypotheses

To guide the study and to achieve the purpose of the study the following null hypotheses were formulated.

1. There is no significant difference between boys` and girls` attitudes toward mathematics.
2. There is no signifieant difference belleen boys and gits achievement in mathematies.
3. Pupils' attitudes toward mathematics do not relate to their achievement in mathematics.
4. Teachers attitudes toward mathematics do now relate to pupils achievement in mathematics.

Significance of the Study

Of late, our primary school pupils poor achievement in mathematics has attracted and continue to attract the concern of parents. pupils, educators and the general public. In view of this. it is the researcher's hope that the findings of this study will inform both teachers and pupils the relationship between their attitudes toward mathematics and pupils achievement in the subject.

Cnowledge about the tipes of attitudes pupils develop foward mathematics will help headteachers. educational authoritics and the general public to adopt strategies to eliminate negative attitudes and improve upon pupils achievement in mathematics. Educational authoritios will use the finding to organise in-service training courses and workshops for teachers to expose them to current methods of teaching and classroom interactional strategies.

Finally. it is hoped that this study will contribute significantly to existing literature and knowledge on pupils attitudes toward mathematics at the primary level. Besides that, it will generate interest in further research on attitudes and achievement in mathematics at the primary school level in other districts and regions.

Delimitation of the Study

This study was delimited to only Manya Krobo District in the I atern Region of Ghana. It was also delimited to only promars chas sis pupils and their class teachers in selected rural and urban public schools.

Finally, the study was delimited to attitudes of teachers and pupils toward mathematics and pupils` achievement in the subject. In the light of this it may not be possible to generalise the result of this study beyond the Manya Krobo District and the public schools. However, the results of this study could be replicated in other districts and regions.

Limitations of the study

1. To be more representative the study would have concred all schools in the districts in the Eastern region of Ghana. However. due to limited time. lack of materials and financial constraints the study was limited to only primary six pupils and their class teachers from selected schools in the Manya Krobo District. The generalisation of this study would therefore be appropriate for only primary six classes in the selected district which is the Manya Krobo.
2. Questionnaires were used to collect data for the study. so the problem of bias which is associated with research that uses questionnaire could not be ruled out.
3. The related literature which supported the study was more foreign than local. so cultural variations may give room for suggestions
4. It is not what people say that they always practice hence pupils: favourable responses about their teachers attitudes may influence the

Definition of Term,

For the purpose of this study the following defintor are implied.
Attitude: Is the characteristics of a person which deserites his her pusitite and
 ideas Nitho. 201m
 referred to as promary class sin.

 for the selecticn of sudents te pursu furher subles at ti: sening seaniay: School level.
 Ghana. It formulates palicies for the Ghana Educaien sonice

 mastered subiect content matter in the schos! curticui: in

Rural area: Is also any settlement area with a popubation below sono people where majority of the people are engaged in farming ativiti> (International Institute of Environmental and Development, 1992).

Criterion Reference Test (CRT): Is a test which determines the degree to which the student has attained a criterion performance ('I amahloc. Itta and Amedahe 1996).

Summary

In the light of the above hackground the rewercher intended in investigate whether teachers" and pupils attitudes toward mathematios in the primary school related to pupils` achievement in the subject. The study also meant to determine whether any significant differences existed between boys and girls attitudes toward mathematics. Finally . the study was to determine whether any significant difference existed between boys and girts* achievement in mathematics.

This chapter discussed bachground to the study. statement of the problem. \boldsymbol{p} urpose of the study. research questions. hypoheses. significance of the study, delimitations, definition of terms and summary.

The next chapters include the following : (Chapter wo. revien of related literature covering the following sub-headmes: the concept and definition of attitude, attitudes toward mathematies. refatomhap beween teachers and pupils attitudes tow ard mathematics and pupils achesemen in the subject. gender differences and achievement in mathematics. difiteult? of mathematics, confidence and anxiety. Chapter three methodology also consists of brief introduction to the chapter. the researeh design. population.
sample and sampling procedures. research matruments. di.t.1 whew.11 procedure and analysis of data. Chapter lour alun (ons a al result. and findings while chapter five included discossonns. summars. whalowin and recommendations respectivel!

CHAPTER TWO

REVIEW OF LITERATURF

Introduction

This chapter, review of literature. discusse presious studies carried out which were related to this study. Thus. a thorough search through avaitable literature showed that a number of studies and articles on attitudes toward mathematics and achievement in the subject had been carried out at various levels of education both local and foreign. More specifically, it was found that some of the studies concentrated on students` achievement in mathematics. teachers` and students` attitude toward mathematics and students` achievement in the subject.

However. for the purpose of this study the literature was reviewed under the following sub-headings.

1. The concept/ definitions of attitude.
2. Beliefs and perception about mathematics.
3. Teachers and pupils attitude toward mathematics.
4. Relationship between teachers allitude (wward mathematics and pupils` achievement.
5. Relationship between pupils` attitudes toward mathematics and their achievement in the subject.
6. Achievement of pupils in mathematics.
7. Difficulty of mathematics.
8. Confidence and anxiety in mathematics.
9. Summary of the literature Review.

The Concept/Definitions of Attitude

 entered educational institutions presisely at the hoher lewe whor litedte
 measure attitude resulted in the construction of a mumber of calle measuring
 accepted part of studies in education. Thus. atume towand ariou abject of study and the effects of attitudes on education had all been studied.

Knowledge about the concept of attitude is vers vital in hum, endeavour and behaviour. According to Aiken (2002) an attitude is an internal disposition to evaluate in positive or negative terms an object which accompanied by affective. cognitive and behavioural responses. The deselopment of positice atitudes toward mathematio is a son for man. educational sestems because they are seen a a requisite for studem. performance. The literate has sugested that there is a positice rehationdip between atitudes iow ard mathematics and acdemic achicement.

Beth. Jenni and Allan (2005) maintained that attutes are generalls regarded as having been learnt. Thes predispose an individual to action that has some degree of consistency. They added that experiences of teachers influence the formation of attitudes and these in turn influenee their classroven practices.

Attitude can be regarded as the description of how poople feel about on react to other people places. events, ideas of things (Buich mid Kubios.
1987). Thus. attitude is a manner of acting. feeling or thonking that shows one's disposition or opinion. It is really how one reupondi to and approacher things. Of all the skills that one develops it is hisike attitude hat inthencer them. A bad attitude does not take one far in lile.

As early as 1935, Allport (1935) defined attitude as a mental and neural state of readiness organised through experience cterting a directive or dynamic influence upon the individual's response to all object and shtuations with which it is related. The following ideas were highlighted in Allport:s definition. First, attitude is a state of mind of readiness which leads an individual or one to perceive people and things surrounding him/her in a particular way and that directs how that individual responds to the situation or object related to it. Second. attitudes are not innate they are learned. developed and organised through experience. Third. attitudes are dymamic and for that matter they are therefore subject to change. Haltoran (1967) with similar opinion opined that an individual's attitude does not develop in a vacuum. but the group affiliations of the individual helpe to detemine the formation of his/her attitude. Thus the type of group that one affiliates to would influche his/her attitude. That is, if one affiliates to a group noted for bad or negative attitude then such an individual is likely to develop the same altitude.

Nitko (2000) sees attitude as characteristics of a person that describe his positive and negative fcelings toward particular nbjects, situations. institutions, persons or ideas. That is, attitude differs in both direction and intensity. In terms of direction ones attitude toward an object or person may be positive or negative. favourable or unfavourable. In terms of intensity it refers to the strength of the fecling or the degree of the magntude

Attitude is therefore seen as predisposition to ropond favourably or unfavourably toward a person. thing. event. place idea or situation in other words attitudes are thoughts and feelings that encourage one to act as though he/she dislikes something for instance. like or dislike fior mathematics. A person's attitude determines his hehaviour (Athimon and Higeard. 198.). Hughes (1978) maintains that attitude is the hes whesess. In this regard. favourable attitudes of pupils toward mathematics school to mention but a few should be encouraged in order to build a good foundation for the future.

Brophy and Good (1986) see attitude as affective or emotional response. This assertion has similar features of the definition of Fontana (1989) which states that attitude is relative enduring oricntations individuals develop toward various subjects and issues they encounter during their lives and which they express verbally as opinions and issues. Thus. attitudes are therefore contained elements of beliefs and values as well as vary ing degree of factual knowledge.

Attitude is a tendency to make a response of eithe atordance or approach to an object or groups of objects. Thus. the way one approaches in object or avoids it is determined by hisher attitude toward that object.

For the purpose of this study the concept and definition of attitude by Nitko (2000) was adopted. This was preferred because it talhs about the characteristics of a person that describe his/her positive or negative leelings toward particular objects. situations. persons or ideas.

From the discussion the following features were highlighted. That is. attitude refers to belicfs. manner of feeling. reacting or thinhing that bows
one’s disposition or opinion. Áttitude describes onespusitice or negatice feeling to mention but a few.

Attitudes are learned and one's group affibatom detemmer the
 therefore subiect to change (Alport. 19:5: Hallown. 10n-
 one may say that every indisidual reacts th his em iromment. dhict. poople ir subject in terms of beliefs. values. interests. opinion and semtiments. \utude consists of affective. cognitive and behavioural responses.

Beliefs and Conceptions of Mathematics Teaching and Learning

Beliefs are defined as personal constructs that can provide an understanding of a teacher's practice Nepor. luse: Pajas. 1002: Rishardson. 1990). Thus. it has been widels reported that teaber hetor influence their clasrom practices.

Research evidence suggens that teachers belicts whate wheir classroom practices. (Thompson. 1992: Fang. 1900: Kagan. 1002) cited in Fang (1996) attest that a better understanding of teachers belief ystems or conceptual base will significantly contribute to enhancing educational effectiveness.

Furthermore. Pajares (1992) sass "beliefs are personal pinciples constructed from experience that an individual employs often uneonscious!. Wh interpret new experiences and information and to guide action" (p.ilo). Pajares noted that the beliefs teachers hold influence their pereeptions.
conceptions and judgements which in turn affect their behaviour in the classroom.

Thompson (1992) opines that beliefs plas an inguritut mole on hapin:
 the following hes belief components of the mathemation teachers. That is. Whe teachers view or conception of the nature of mathematics. vien of the nature of mathematics teaching and the view of the process of learning mathematics. These beliefs or views affect classroom teachers instructional behaviour. These views also determine individuals attitudes toward mathematics. Raymond (1997) confirmed a strong influence of beliefs about the nature of mathematics and teaching styles among elementary school teachors.

Teachers beliefs and attitudes influence their teaching and pupils' achievement in mathematics. In vich of this. Schor (2000) suggests that in teach mathematics effectively teachers must gain competence and understanding of the mathematics the teach. Schorr therefore recommends teacher development services for pre-service teachers.

Koehler and Grouws (1992) attest to the views that teachers belief. and actions and pupils characteristics including their attitudes influence pupils actions in the classroom and their learning outcomes. Nickson (1902) is of a similar view by stating that teachers beliefs about mathematics influence how they teach and therefore the learning activitios pupils will experience.

Considering the beliefs of students/pupils, Jungwirth, (1991) Contends that students beliefs about their abilities in mathematics determine their
achievement. Besides, their atributions for suceess and failure in mathematios may be influenced by the way they interact with hacirlachor.

From the discussion there sems to be evedence that leachers views on conceptions of the nature, teaching and learning of mathematics influence their classroom practices and behaviour. Besides, the influence of teachers' beliefs influence pupils` learning activities, experiences and achievement.

Teachers' Attitudes toward Mathematics

The way individuals develop attitudes toward objects, places, things and people the same way they tend to develop attitudes toward mathematics. Attitudes toward mathematics to some extent determine an individual's willingness and readiness to study and benceit from the subjeed 'The development of positive attitudes toward mathematics in general is necessary for all learners.

Davies and Savell (2000) in a study which involved 53 New Zealand teachers reported that teachers possessed negative attitudes about mathematics. Grootenboer (2000) also reported similar finding. for 31 Nuw Zealand primary school teachers. Rech, Hartzell and Stephen (1993) also studied American elementary school teachers` attitudes toward mathematics. They noted that the respondents possessed significantly more negative attiludes toward mathematics.

A teacher's attitudes toward mathematics inchute his liking. enjoyment. enthusiasm and interest or their opposites. Besides. the teacher's confidence in his/her own mathematical abilities, mathematical self-concept
and his/her valuing of mathematics are determinants of hivilhe attitude tomarl mathematics (Ernest. 1989). Thus. if a teacher likes and enio!s mathematice and its teaching he may pass on such attituder unto ha, her suctents. Benules. when the teacher feels emthusiastic and confident his attitude foward mathematics and its teaching are important contributor to the teacher.s make up and approach because of the effect they have on a child's attitude toward mathematics and its teaching (Aiken. 1970).

Chionidou (1996) studied primary school teachers teaching $3^{\text {rd }}$ to $6^{\text {il }}$ grade classes in Athens- Greece. Chionidou reported that mate teachers prefer trying out different ways of solving problems in both arithmetic and geometry because they believe that they promote critical thinking in their children. Female teachers on the other hand prefer to stick to algebra problems and algorithms and avoid geometry. Chionidou reported that all the teachers studied agreed that successful teachers of mathematics must:

1. Himself/herself be fond of mathematics.
2. Possess some confidence in the subject.
3. Do a lot of revision work and not to proceed unless sure that
his/her pupils understand what has been taught. Try out alternative ways of teaching.
4. Be close to all his/her pupils.

Studies on primary school teachers` attitudes toward mathematics are very important due the potential influence they have upon the pupils. Researeh has argued that positive teacher attitude contribute to the formation of positive pupil attitudes (Sullivan. 1989: Relich. Way \& Martin. 1994). Other studice have shown that classroom strategies used to teach a subion are inflemed b:
teachers attitudes which on rurn influence pupis’ attitudes (©arpenter d Lubınshi.1990).

The prevalent view in literature of for hohd that how when companced to girls receive more attention. praise and critical feed-bak from their twither (Sadker. Sadker \& Klein, 1991). Chionidou (1996) made similar observation when he studied Greek primary school mathematics classrooms. Chionidou reported that in mathematics classes teachers tend to ask questions to boys rather than girls. That is, boys got more opportunities to give answers and stand to receive more praise than girls.

Teachers contribute to girls` problems by giving them less altention or a low quality of attention during mathematics class (Amentan Association of University women. 1992). Leach (1994) also noted that girls` low participation and negative attitude toward mathematios and seience are seants affected h. teachers behaviour. Schwart, and Hanson (I9日2) also observed that teachers unconsciously pay more attention to male students than female students.

It has been established (Tiedemann.2000) that teachers hold genderloaded views about their pupils mathematics ahilities. Tiedemann reported that when ashed to consider boys and girls achionement in mathematios teachers were inclined to respond in favour of boys.

Karp (1991) contend that teachers with positise attitude incopponate instactional materials and tepresentations that pronide stadents wath resources. Karp added that teachers with positise attitude towand mathem wich use instructional methods that encourage independence.

Pupils' Átritudes toward Mathematics

Burnett (1993) in a study involsing 957 puphts from erade 3107 American elementary school children boss reported higher uewres on allitude variables. Also, the Third International Mathemation and Science Studies [TIMSS] (1994-95) reported that in Austria. Hong Kong. Japan and the Netherlands elementary schools boys attitudes toward mathematics were significantly more positive than girls. The TIMSS further reported that in many countries both boys and girls demonstrated similar positive attitudes toward mathematics. Swetman (995) maintains that initially girls have more positive attitude toward mathematics than boys, but as girls grow older their attitudes become more negative or decline.

Stipek and Granlinski (1991) noted that girls have lower expectation for themselves in mathematics than boys do and that girls believe they do not have mathematical ability. When girls do perform poorly in mathematics the: attribute their poor performance to their inability to do mathematics.

Gopel Rao (1968) investigated British Primary school pupils` attitudes toward mathematics. He later extended the study to the secondary school students. He found that mathematics was liked in the senior secondar: schond but strongly dislihed in the primary schools. Gopel again found that students. attitude toward mathematics become less favourable as pupils progress through the junior to the high school. This mas be due th the fact that siudents
begin to make career choices in the high school.
Collahan (1971) also found that a proportion of pupils dislike mathematics and others expressed strong dislike for the subject between ages 11 to 14. Collahan added that lasting attitude toward mathematics could he
developed at any age. but the most crucial age for estahlinhing ths is aboul eleven. Dutton (1962) who is of similar view contends that nesative attitude toward mathematics develops as early as the third grade. He added that the years in the Junior high schools are very crucial.

Levine (1972) in a study used pupils and their parents to rank four subjects by responding to statements which indicated their perceptions of the importance of mathematics, the respondents own ability and interest in the subject and teachers competences in the subject. The results revealed that pupils considered mathematics important and interesting when compared with the other subjects such as science, social studies and English.

Rowland and Inskeep (1963) observed that students in the intermediate grades ranked mathematics first in a rating of best liked subjects. Again. Rowland and Inskeep found that mathematics was ranked fifth in rating subjects on least liked basis.

Kyles and summer (1977) conducted a study on pupils` reactions to activities and different topies in mathematies. Kyles and Summer found that both primary and secondary school students considered mathematics to be useful.

Lamp (1997) observed that the social differences in mathematios participation were associated with different attitudes soward mathematics. He added that girls from upper primary classes view mathematics as an interesting subject.

Tricia (2001) in an attempt to determine the opinion and Fectinges concerning mathematics and science. 52 percent of males said they enjoy being in the scientific field whilst 29 pereent of females said they would like a
career pertaining to science: Besides. 50 percent of elementat, school ho! against 33 percent of girls described themselves as good at mathemation (Hanmer. 1996) cited in Tricia (2001).

A a ailable data showed that studien at the elementary sehool ferel fonmed mathematics being regarded as one of the most popular subjects. It alwe appears that more studies show that students dislike mathematics and that it becomes less favourable as students progress through junior high schonl to the college level. This trend may be due to the fael that through the high schonl in the college level students begin to make career choices. In the hegh of the foregoing there was the need for this study to enable the rescarcher to determine pupils attitude towards mathematics at the primary school level in the Manya Krobo area.

Relationship between Teachers' Attitudes Toward Mathematics and

Pupil's Achievement in the subject
The role of the teacher in bringing about the desired change in his/her pupils/ students is indispensable in any educational sustem. This could be judged from remarks parents. students, educators. stakcholders and policy makers make when pupils demonstrate poor achierement in the PAT. (RT. BECE. SSCE and other related assessment.

Christou. Philippou and Hiliophotou (1999) in a study that involied elementary school teachers found a relationship between attitudes toward mathematics and pupils achievement. Caraway (1985) also noted that mathematics achievement was positively correlated with teachers` attitudes toward mathematics.

Schofield (2007) in a study involving $8504^{\text {th }}$ - $6^{\text {th }}$ grade pupik, and 48 twacher noted that higher teachers" attitudes toward mathemation "as significint? related to pupils achievement. A number of researcher have aho found significant correlation between teachers attitudes toward mathematics and pupils achievement (Begle.1979: Bishop \& Nickelson. 1983: Schoenfeld. 1988).

Relich (1996) in a study in Australia involving lifih grade elementar: school teachers noted that there was a strong correlation belween teachers. attitudes toward mathematics and pupils achienement. Relich further stated that the relationship was found to be strongest for low achioving pupik. Research evidence suggests that teachers with low mathematies self- concepts may undermine the potential of students to lcarn. appreciate and react positively to mathematics concepts (Relick, 1996). Teachers with low selfconcept in mathematics are less likely to study mathematics at higher levels of education. Hence. many primary school teachers may not only possess negative attitudes toward mathematics. hut may have chosen not to stud) mathematics in the ir last years of high school (Aiken. 1976).

Haladyna, Oslen \& Shaughnessy (1982) ciled by Pricia (2001) Found significant relationship between primary school teachers attitudes toward mathematics and pupils' achievement. Taylor (1987) also attempled to investigate the relationship between classroom process and students. achievement in mathematics. He found that teachers" attitudes and methods used were strongly related to students achievement. Taylor further noted that teachers` attitudes toward problem-solving were strongly related to students. achievement in mathematics.

On the other hand linai (1993) in a studied involving primary school teachers noted that teachers attitude toward mathematice did not relate in pupils achievement. However. Trice and Ogden (1987) noted that anvious mathematics teachers plan significantly less instuctional time for mathematics. Schoenfeld (1988) also concluded by stating that teachers transmit negative attitudes to pupils which contribute to the decline in pupiss performance. That what pupils learn is always less than what teachers teach. How much pupils learn is determined by their ability. bachground and learning style which may or may not match teachers teaching styles. To manimise pupils` learning depends upon the control of the teachers` teaching styles.

Gore and Treagurt (1983) noted that the time teachers waited for a student to respond to questions posed by the teacher in mathematics class differed greatly between boys and girls. Gore and Treagurt concluded that teachers gave more significant "wait time" to boys than to the girls. Besides. girls* ideas in mathematics were not listened to carefully. but rather boys. little efforts and partial answers were further developed by teachers.

Unger (1999) cited in Tricia (2001) also obseried that bovs receive more attention from teachers than girls do. Thus, teachers may be unaware of the fact call on hoys more than girls. Males are called more in class when complex questions are asked and by so doing the males think for themselves and try to break the problem down to discover the answer. These result in males performing better in these situations than females. Unger again noted that sometimes teachers are found solving mathematics problems for females without any encouragement to work out the problem

Hanmer (1996) cited in Tricia (2001) held similar view with Unger (1999). Hanmer added that may be teachers feel that females need that extra push or may he it is the teachers with hian again, what the foel femalew wh and cannot do. Males and females should be treated sumewhat differently die to their specific need. but at the same time the opportanitien should be equal (Levi 2000) cited in 7 ricia(2001).

Available literature reviewed supported the above notion that bors receive more attention than girls do (.Jones and Wheatles. 1990: Sadker. (1994) cited by Tricia (2001). They added that boys are often called upon to answer questions, given freedom to call out answers and receive detailed feedback on their effort and work. Leder (1993) was of a similar view where he noted that males had more contacts with teachers. dominated public interactions and involved in more disciplinary exchanges than were females.

Fennema (1984) noted that the mathematical expectations which teachers hold for boys and girls are manifested in the differential treatment on sex basis in mathematics class. This results in pupils reporting differently in class on teacher attitudes. Thus . sometimes higher cognitive level questions were answered by boys while lower cognitive lesel question were answed by girls. Besides. in the classroom teachers use of praise. criticism and hedp given to individual pupils were based on preferential treatment. These differential treatment strengthen the notion that mathematics was a male domain (Becker.1983).

Tricia (2001) noted that teachers exert enormous influence on the attitudes and achievement of pupils in mathematics. That is. if a pupil helieves
that a teacher has a low expectation/ opinion of himsur then it mat he possitle that the pupil will perform according to that evnectat'on
 also been carried out. Thus. (iutherahl (1)05) dime wownd that the expectations parents and teachers hold for ank on temater m mathematic.
 further stated that girls internatine heir kachers and patence negatme evpectations which become self- fulfilling prophecies. Thus. because givk believe the cannot achieve in mathematics. thes do not achieve in the subjew. Their poor performance reinfores parents and leachers negative expectation and feeds into the cycle of negative expectation and lack of achievement.

Whyte (1985) cated in Sayers(1994) noted the differental sterentspid attitudes toward boys and girls held by teachers. That is. gark wend to be \quad alued for their neatness. conformity and gond behavion whom hos were commended for exuberance. excellence and creativity (Open University. 1986. p. 47).

In Zambia. Shifferaw (1980) cited in Sa cra (1904) fomad that make teachers were much more likely than female teachers whold such sterentype' views of girls. It is possible to argue that even il male teachers at biased. perhaps it does not influence pupils. The sex of the teacher affects attitude differences among pupils.

Relich. Conroy and Webber (1991) cited by Relich (1996) noted that gender in self-concept between male and female teachers of mathematics present inappropriate roie models for students eqpeciall!. Female teachus fir their female students. Gender differences are found at the primary schoul
level. but not at SSS level. This difference was found whe atrihuted w teachers level of study of mathematics. Thus. malen "ere mer lihety whase

 teachere predommate dt the primary chool level and many of what mat have studied mathematios as electue subieet

The direct link between self- concept and ahicuoment may be tenuous. but the evidence that teacher atitude affers studen pertomance is stronger. Eeces (1993) maintained that leaber efficat has sfonger relationship with students self- perceptions about abilitics in mathematics. That is. in effect teachers attitude toward mathematic have influence on bow students perceive their own abilities to deal with mathematics. Tha association was found to be strongest for lnw achiesing sidents who are taught by a teacher $"$ ith low mathematics efficacs.

From the discussion there appears to he enntradietion that there was ne relatonship between attitude tow ard mathemath ant puphe achmement Imai (1993) but majorty of the reviewed literature modiated that there positive correlation between teachers attitudes toward mathematios and students ${ }^{\circ}$ achievement in the subject (Bishop and Vichelson 1983: Talor. 1987: Tricia. 2001: Chistou. Philippou \& Hiliophotou.1999: Carawa. 2000: Schofield.2007: Relich. 1996). Besides, evidence suggests that the expectation teachers hold for students in mathematics as well as stercotyping boys and girls influence students/ pupils achievement in mathematics.

Relationship between Pupils' Attitudes toward Mathematic and their

Achievement in the Subject.

Insestigating the relationship hetween achiwement and attiluder toward mathematics is vital. Common sense reseah that an indsidual man achieve higher in something that he / she delights in doing. has conlidence in doing and finds it to be useful to him/her. Positive attitudes toward mathematics need to be encouraged among primary sehool pupils.

The Third International Mathematics and Science Studies [TIMSS] (1994-95) for grades 3 and 4 primary school children noted that in more than one- third of the countries a positive relationship was observed between pupils` attitude toward mathematics and their achievement. Mcl cod (1992) in a study reported that pupils attitudes toward mathematics was related to the ir achievement. McLeod further suggested that neither attitudes nor achievement are dependent on one another, but rather they interact with each other in complex and umpredictable was. Also. Na and Kishor (1997) hased on 113 studies in primary schools concluded that there war relationship bemeen attitudes toward mathematics and pupils achievemen. They added that the relationship was strong among Asian and black students than among white. but did not differ across gender.

In Isreal Nasser \& Birenbaum (2004) studied the relationship between the Arabs and Jews fourth graders attitudes toward mathematics and their achievement. The authors reported that in both groups pupils attitudes related to their achievement. The authors further reported that attitudes had minor and insignificant effects on mathematios achievement of the lewish chidtren whate it had madest but vignificant effect on the , \aras.

 mathematice reported higher mathematis, whesemen that then pers wh
 attitude has greater effect on achier ement than the consere.

Tay for (1087) attempted to determine the whomshp hetween mpais of schooling and out comes. measmed by studems achicuement in mathematics. Faslor found that studems percepton of mathematics was strongly related to their achievement.

Hart (1976) used a sample of 179 pupils and found a significant correlation between attitude and achievemen. She added that cren though a significant correlation was obtained it was difficult to determined whether the attitude toward mathematics affected the achievement or vice vera Beside. Hart stated further that there mas be other wataben presem which affected both the attitude and achievement. but were not diselomed.

Aiken and Dreger (1961) atempted to determine the effects ol atitude on performance in mathematics. Thes found a mationship between attitude and achievement. but they stated that the relationship was not as great as one might expect.

On the contrary available data from the second International Mathematics study showed that the very high mathematics achicvement of Japanese students was accompanied b: a low attitude toward mathematics(Travers and Westbury.1989). Abrego (1966) found no relationship between attitudes toward mathemation and achiowement in the subject.

From the reviewed literature under this secium greater findines revealed that there is a positive significant relatiomhip betme in studens achievement in mathemation and the attitnde lowand the cuthon
 light of this the researcher deemed it neecessary to carte wot this sudy to determine whether any relationship existed between primary clash sis pupibs attitudes toward mathematics and their achievement in the subjeet in the Manya Krobo district.

Academic Achicvement

Researchers assign academic achievement to several factors and this could be vewed from two broad perspectives. To some academic acherement is intellectual that is emphasising inteligence as its hasis while whem se academic achievement as a product of peychomoter ablifice of a persond learner or students. thus. emphasising skills. that is, intelligence, abilitics and skills are determinants of academic achievement.

Sprinthall and Sprinthall (1990) attest that academic achicvement is what a student was able to achieve when tested on what he had been taught. Bagnato and Neisworth (1987) also maintain that academic achievement depends on natural gifis and talents. They stated further that whether one hath a talent or not that giftedness was not something that could be taught.

Hammil (1987) holds the vien that academic whievement involses skills that a person had mastered as a result of direce instruction. Hammil stated further that the skills may be teacher tanght parem tanght on celltaught. That. in the sehool achievement test were enonducted to find out how
much students knew about a particular content or subject matter taught and this mas be obtained as a result of instruction. De bimme. Werner d I dimin
 events. task difficult. students" ability and effort. lucl. hnowledge and hill could influence performance.

McCleland (1985) in his famous theory of achievement motivation. postulates that the primary factor for any level of achievement is the evisting environment which puts the individual into action. McCleland maintains that the school enviromment is the primary element of achicvement for every student or !earner and that if the school enviromment is stmulating it will help to achieve higher academically or vice versa. This implies that if in all schools boys and girls operate in stimulating entiroment the mall a perform equally well. From the above one may then hall that academic achievement in specific subiect areas is not related to a single factur . bui rather a combination of factors including intelligence. montation. environment and interest to mention but a few.

Achievement of students in Mathematics

Amissah (2000) reported that it was poor performance of pupils in TIMSS that urged the MOE in 1992 to institute the CRT to determine the extent of pupils performance on mathematics and English language fon primary class sin pupils. A summary of some of the results of the CRT for 1993 and 1996 are presented in Tables 2-4. Table 2 shows the 1993 CRT results by region.

Table 2:

National CRT Rerults by Region: 1993

Region	Number ai	Number	Mean core	Number ackhas (mallol	Percontacerahm。 (1 Hollon
	schook	of pupils			
Astante	78	2289	26.1	12	0.5
B/A	54	1292	26.6	5	0.4
Central	51	1165	27.2	11	0.9
Eastern	79	1652	25.1	16	1.0
G / A	29	1178	30.9	29	25
Northern	34	616	27.8	10	16
(1/E	25	567	28.0	19	3.4
U/W	21	510	26.6	?	(0.6
Volta	56	1439	27.5	18	1.3
Western	47	1141	30.4	54	4.7

National Mean: 27.4 percent
From the table in 1993 from about one- third of the regions the number of pupils that reached criterion set was less than 1.0 percent. Also. pupils from about one-third of the regions reached 1.0 pereen but less than 2.0 percent of the criterion set. In the remaining three regions between 2.5 and 4.5 percent of the pupils reached the eriterion set. The highest performance was observed in the Western Region where 4.7 percent of the pupils reached the criterion set. The mational mean was 27.4.

Tatle 3 also shows the 1996 national (R I results region by region. It can be seen from the table that in 1996 there was slight improvemem. In si on more than half of the regions the percentage of pupils reaching the eriterion ou
was hetween 1.0 and 2.0 percent but in no reginn did the procentage reach +11 Only 1.7 percent of the pupils from all the regons reached 11 : witmon eet The national mean score was 28.8 percent.

Table 3:
National CRT Results by Region : 1996

Region	Number of School	Number pupils	of Mcan scomes	Namber raxhang cimem	Perentage Machung Cumerion
Ashante	67	2130	28.8	26	11
B/A	53	1140	27.7	15	1.3
Central	48	1227	27.5	12	1.0
Eastern	77	1717	28.2	17	1.0
G/A	27	1315	30.6	is	2.9
Northern	39	957	27.0	11	1.1
U/E	30	383	29.9	22	2.2
U/W	23	397	28.1	4	111
Volta					
	61	1687	29.2	39	2.2
Western					
	50	119	29.9	41	3.4

National Mean : 28.8 percent.

Also. the CRī results were used to compare the dillonlow in gende
 Table 4. The results from the table show that over the years the mean seores for boys were slightiy higher than girls but both were increasing (M9)L. 1907).

Table 4:
National CRT Results by Gender: 1992-1997

Years	1992	1993	1994	1995	1906	1907
Boys	28.0	28.0	28.3	28.7	29.4	30.5
Girls	26.4	26.6	26.9	27.4	28.10	29.3

Wilmot (2001) studied the achievement of hos sand girts in the primars school level. He used primary classes three. four and si. from five schools in the Central Region of Ghana. He noted that in all the three classes boys outperformed their female counterparts slighty. Analysis of the test scores revealed that in primary classes three and four there was no significant difference in achievement between boys and giths. In the primary six clas there was a significant difference in achievement in fasurn of boys.

Adarkwah (2004) made similar observation in a stud innoling primary classes three. foum and sie pupils within Winneha tommbin acheots. She also noted that there was significant difference in achievement hetween boys and girls in favour of boys in primary clase siv hut no difference in achievement between boys and girls in classes three and four.

Gender difference in mathematics achievement has been a debatable issue and an area of educational research. Acana (2001) reported the first

National Assessment of Progress in Education (NAPE) in Lyanda carried out in 1996 where the achievement of primary 3 and 6 pupsls and their teachers were assessed in Fnglish and Mathematics. Since then three mone ancinment have been done in 1909.2003 and 2004 for the same clawes. Acana moted that boys performed significantly better than the girls Hroughout the periock 1999.2003. 2004. She added that the performanee on matmation 1 an lower than that of English.

The Third International Mathemation and seience studien [TIMSS] (1994-95) provides studies on the achievement of primary schonls pupils from grades 3 and + in 26 countries. TIMSS noted that in mont countrics bonh boys and girls had approximately the same average mathematics achicvement at both grades. However. in some countries significant differences were observed and favoured boys than girls at both grades. Some of these countries included Korea. Japan and the Netherlands. In other countries such as llong Kong. Canada. Iceland. Norway and Slovia at the third grade there were significant differences in achievement in mathematics that favoured boys.

Abo-Zacnah (1985) in South Africa studied the achievement levels in mathematics involving 3882 pupils from $3^{\text {rd }}$ grade and 1990 pupils from the $6^{\text {th }}$ grade. He reported that there was significant difference in achievement between boys and girk in the $3^{\text {rid }}$ grade and that the pertormance was in farnur of boys. He further noted that in the $6^{\text {th }}$ grade there was no significant difference in achievement between boys and girls that is their achicvements were the same.

Mohammed (2005) studied the mathematics achievement of $5^{\text {th }}$ grade pupils in Mohammed Ali Selah primary school in Yemen. He noted
differences in achievement between boys and girls and the performance was in favour of girls.

According Sayers (1994) a number of similar sudien had been reported in the 1 k and Australia. Sayer went futher to sas than mans shdes wath the AP(${ }^{\prime}$ (1981) suggest that there is litte difierence between hoys and gills: achevement in mathematics at the primary sehool level. That although there are differences in the type of items done well by cach sex That is. girls outperform hoys in computational tashs.

In a project reported in "mathematics and the 10- years-old" Cockeroft (1982) tested 2296 children in England and Walcs. Ite noted that girls performed significantly better than boys on 11 items out of 91 . That the items on which girls did significantly better than boys were casier and were thought to be more important by their teachers. Costello (1991) was of similar view with Cochcroft. Costello suggested the possibility that girls may disadvantage themselves by only trying to please their teachers.

Authors have demonstrated that gender differences in mathematics achievements are visible as early as late childhood. hut are clearer in older students (Fennema. 1984). With a similar view Λ ihen (1974) observed that 心か differences in mathematical abilities are present even at kindergarten level and earlier.

In a review of literature on gender differences and mathematics Leder (1992) reported that few consistent gender differences exist at the primary school level. However, this trend changes at the beginning of secondary school level and males frequently, but not always out-perform girls. As children grow older differences in performance increase so be age 13 bere.
are significantly superior to gi.ls in all their mathematical performance and their atitude toward mathematics (Hama Kundecr \&I: Irouche 100())
 "gateheeper" or what has been called a "critical filter" b Sclか(1970). Data from studies on pupils’ attitudes show a picture of girls being less contident. more nervous. enjox ing mathematics lew and recing lew use for their mathematics or perception of utility of mathematich when compared with bows. These differences occur throughou secondar: schoch and are exaggerated in the examination years. Besides, other possible reanoms assigned to why girls performance is lower than boys is the evidence that girls attitudes. differ from boys in terms of confidence, anxicty. enjoyment and perception of utility of mathematics.

Every individual has the opportunity to Iearn and achieve in mathematics. but studies have shown that on the arerage girls do not weore ar high as boys do in mathematics tests especially if those terk imsolve high level of cognitive tasks (Leder. 1990). Females are under represemed in advance mathematics course. college majors and carcers that involve mathematios (Armstrong. 1979) cited in Tartre and Fennema (1995).

Adolescence is a period of great change. Thus, the relationships among skills, talent, attitudes and achievement as pupils/students progress through primary. middle. JSS and high school are not clearl understood. Some gender differences in mathematics perhaps not present at younger ages have been reported to appear as students become adoleseents (Ilyde.Fennema and I.amon 1990).
 on tests of spatial shills (McGree. 1979). Vacohes and Fathlin 19-4 m thein

 verbal shills th he related to mathematies acherement.
 the LSA National Assessment of Educational Programme (NAEP). The ted "was administered to 9.13 and 17 year old pupils to assess their mathematical abilities of knowledge. skills. understanding and application. Fennema and Carpenter concluded that with the high seores on shilk at 9 and 15 :calr his did significantly better than girls in all cases Besides. Wes found that the higher the cognitive tevel the greater the difference in perfimane between

 achievement scores than boys. The surve alon contimed sen- related preferences for mathematics and science subjects were already established in lower schools and that by the end of SSS boys far out- numbered girls in those classes.

The Assessment of Performance Unit (APL'.1980) cted b. Eshun (1999) carried out in the UK indicated similar results that mate performance in mathematics began to widen at age 11 and at age 17 the difference was wider in favour of beys. Similarly. (APU.1981) cited b. Eshum hegeeted hat with regards to mathematics achiesement there is little difference between male:
and females on overall mathematics scored at the primary school keve.

 on measurement tashs.

Again. in the (1/K. (APII. 1985) cited by. Fhun (9999) indicated that there were differences between males and females performanew in mathematics. that. at age eleven hoys seored highe than girl in all content areas of mathematics except computation, but at age hifieen girls have lost this computation area to boys. However. a number of studies found that these differences were greatly reduced in the signle- sex schools (Luna and Gonzalcz. 1981: Schildkamp- Kundiger. 1982) cited by F- Shan.

Husen (1967) conducted broard studies in twelse developed countries from America. Europe and Asia. In all the countries Husen ohserved that the performance of boys were far higher on verbal mathematic prohlems. that on computation considerable difference between the countrich was reported. that the sen differences being greatest in Belgium. lapan and the least being in USA and Sweden. Husen concluded that these differences may be due to cultural variations.

However. in other countries where sex differences in achievement in mathematics were reported the difference seemed greally reduced when achievement of boys in boys schools were compared to the achievement of girls in girls schools. The differences in the decrease were observed and reported in USA. Western Europe and Africa (Schildhamp-Kundiger. 1982) and in the Dominican Republic (Luna and Sara. 1981).

Lee and I ockheed (1990) also found in a sud. mownerg I 1012 ninth graders in forts schook in Nigeria that girls in ungle on achor h had higher mathematical achievement than their female commaport in mach-a.
 sompared tw thone in mined-ser schook
 ophomores found consistent male adrantue in mathemation concept. computation and problem- solving. Battista (1990) in a study found that make and females differ in spatial visualisation and in their performance in geometric problems. but did not differ in logical reasnning ahility or in their use of geometric problem - solving strategies.

During the compulsory years of school in iustralia the participaton rates of students in mathematics is sery high. For the mast demanding electise mathematics courses at the post compulsory sears of schooling and at the tertiary level femates participation rates hate perswienty remained lowes than males (Leder and Forgasz. 1972) cited in Forgas/ (1995). Leder (1992) noted the factors which influence the levels of performance of males and females. Thus. the extent and direction of gender differnees can depend sin the age of students and on the type. the format and content of the measures administered.

Hanna Kundiger \& Larouche (1990) noted that as children get , dele. differences in performance increase so that by age 13 boys are significant: superior to girls both in their mathematical performance and their attitude tomard mathematics. They added that these differences in later sears als characturised be girls heing under represented in the wh dhlity hand b: Eeve
girls pursuing mathematics when it ceases to be a compulsory part of the curriculum. They concluded that gender related differences i: mathematio vary among countries and even hetween ditferent group whm, whmb!

Writers hold the vien that there are some minn eosmitace deferenes yet attitudes plas a much more significant role in the nutcone. Attude are found to become les positive with age, the determation in more marked for females than males (mathematical association, 1988).

Hyde. Fennema and Lamon (1990) observed that males generally achieve better than females at higher cognitive level on mathematics tasks. Benhow (1988) cited in Relich (1996) also noted that at the high ability end of the spectrum. gender differences favouring males appear to have remained constant. However. Friedman (1989) cited by Relich (1996). Hyde. Fennema. Ryan. Frost and Hopp (1990) cited inTartre and Fennema (1995) moted that gender gap in mathematics performane has closed over the time Hyde. Fennema. Ryan fost and Ifopp (1990) noted that it is unmewhat premature to conclude that affective variabie (affect) and attitude are not important influences on gender differences in performance and paticipation in mathematics (p.312)".

Sayers (1994) attempted to determine gender differences in mathematics education in Zambia. Empirical data obtained suggest that gender differences exist in mathematios in terms of access and performance.

Costello (1991) noted that girls do better on topues which are perecied b. the teacher as important. This suggests the possibility that girls max disadrantage themselsea by try ing to please the teacher

However. some female students can cqually perform a well an mato or even better than males in mathematios. Io whout the I hum (1950 reported that a female speaker at one of Wie gink (linco win emder sterentsping in acence and mathemation in (hama primed ont that when tio
 pertormed better than the males. this shmed the ham the wather wind d. 1 . frustrate female students. Eshun concluded that rather than disenuragme females. teachers should rather do everything possithle in improve the performance of female students in mathematics and to encourage more females to participate in mathematics.

Fennema (1979) cited in Taole Zonneveld.I.etsic-Fanle(1995) 4ated that male superiority in mathematios learning had been accepted is a liact almost without question for many sears. I ennema and $\begin{gathered}\text { arpenter (} 1981 \text {) houmd }\end{gathered}$ that sex differences increased in relation to the amount of mathematics studied or taken.

In Gihana and other parts in the world. jobs requering adsance knowledge of mathematics are seen in be dominated h! males Thus. considering areas such as mavigation. finance. architecture. a iation. surveying. engineering. medicine to mention hut a fen females are found in clerical aspects where typing and counting of mones are common.

Many textbooks have influence on set differences in mathematios achievements making it possible for females to develop negative attitudes toward mathematics. That is. in many countries committees attempted to investigate textboohs for sex roles stereotyping. Malen are found whe in active professional situation as mentioned in the preceding paragraph. hut

 behatiour that people gencrall find allatheron! in man

In institutions where vadents are alloned to chnme then whice wer. fen females opt for mathematics. Pratt. Bloomfield and seal (1984) reported that girls tended to opt out of the mathemation and seience when the were permitted a total freedom of choice of subjeet

With the establishment of the girls unit in Ghana in 1997 to serve as a ministry to see to the affairs of the education of the (.hamaian girls with special emphasis on girk offering mathematics and weicnce. nom man! gith hem
 in the girls unit as stated earlier was established in 1987. The STMill han now

 means that many girls now participate in science and mathematios contres. .w sooner the differences in participation and achievenent will be narmowed (MOE.2002).

According to Ileider (1944) cited in Nenty (1980) "when we have a disagreeable experience or a pleasant one we may locate its crigin in another person or things. in ourselves or in fate" (p. 358). Thus. one ofien attributes his/ her performance either success of failure to something or someone. In life people attribute events to how their causal helies influmee thated behavours. Thus. people could assign difference in abhesemem in
mathematics to many factors based on layman's amalyus. Honever. Heider", (1958) thenry: causal attribution of performance is examined in kermb ol istur factors namely. ahility. effort. luch and tarh diflient? Wility and effort ate factors mernal to the individual white luch and dhlicults are external lactors. Besides, ability and tash difficult! are said to be stathe tactor hecaluse the: are not within the control of the individual while effort and luck are classified or considered as unstable factors because they can be changed with time. Attribution of performance to stable factors which are not within the control of the learner tend to induce a cognitive expectation of similar performance in the future. while attribution to unstable factors tend to induce an expectation of possible change in future performance (Bar- Tal. 1987) cited in Nenty (1986). Males tend to attribute their performance to internal factors while females tend to attribute theirs to external factors (Bar-Tal. 1087: Gregors. 1978: Nenty, 1986). Leder (1993) holds a similar view by stating that: "males agree more strongly than females that mathematics was useful, that it was enforable and that the were confiden about getting good grades in the subject" (p.15.s).

Leder added that males attributed their success to ability while females more than males attributed their failure in mathematics to ability and in the task difficulty.

On the contrary. evidence suggests that males are not superior in all aspects of mathematics (Barnes. 1983: Boli. Allen and Pa!ne. (19es) cited in Relich (1996). Wills (1989) noted that umall differences in mandematio
achievement evist hetween males and females the dhlerones win? ir m culture to culture and vary small in fatour of mald the dilference in
 Elled ha Reliah(1900)
 between male and female students in mathematic. Simith (1980) found a significant difference in mathematic achicuement between lemales who were separated into an all females classrom and female in the mised chassonem achieved less than males though they were matehed in their abilits at the heginning of the stud.

Other studies showed that attitudes relate to paticipation and achievement in mathematics (Armstrong and Prince. 198?: ©hathmess: Haladyna Shaughnessy:1983). Traditional view of mathematics as a male domain has contributed to the decline in performance. attitude and participation of females in the high sehool mathemation (1 mest. 1976: Eennema and Carpenter. 1981° Fennema. $198+1$.

From a rescarch. Boserup and Ehhiwain (1985) concluded that females education in some developing countries is adrerely affected by existing social attitudes which favour the intellectual adiancement of males especially in the mixed schools.

From the discussion there appears to be genctal agreement that sexrelated differences exist in mathematies achievement between boys and guls Most of the studies revealed that the performance was in fasour of males more especially on high cognitive level tasks. Besides. due to variations acrons cultures and ser-rebated differences in mathemates atheremem. this athls
was focused on determining the type nt sex-rebated difterences in mathematica achevernent that may evisted amon! phmars ads or puph ill
 achievement tow mstrument.

Difficulty of Mathematic-

leaching mathematios is wer! chatlengeng eypectall! when ome fimk himself or herself teaching in a community which ducs mot home its role in the school. does not value learning. a communit! which randomly prevent their children from attending school. One cannot be sure of the learnere, in terms of their abilities. knowledge. what they can do and what they cannot. I oday the behave like this and tomorrow the behave differentl.

Among the subjects in the school curriculum. common observations and general belief shou that mathemation is the mond dilficull and feared subiect especialls hy female students. Richards (1982) enntend that if ahed to sum viens ahout mathematies at cohont mans sudents deseribe it dulfiente. dull. abstract and dislihed. Buston (1981). cited in Richard, 11952) dercribud the feeling that adults still have about their dificulies in mathematios. Richards maintains that most of the people selected by Buston could remember reactions like "oh my God I am going to make a fool of myself and described hou they associated mathematics with foar and trembling. or a complete detachment.

Physical semptoms of panic and despair were alsn reported. cond sweats. clamms palms and lump in the throat feelng that :ou could ect sume
release if you couid but cry" (p.62). From the foregnong are the physial symptoms of difficulties one encounter in solving mathumatio

Mathematics educators. students. parents to mention hul a few are worried about mathematics teaching and learning in our schools. This is because it is believed that students fear the subject. they lach interest in it. the see it to be difficult. boring and abstract. Besides. לome students complatn that mathematics is not properly taught for their understanding and that. one need to be borne as a mathematician. Thus, these beliefs and features are the manifestations of the difficulty of mathematics. Mathematics teaching and learning has been a problem for many countries all over the world but not Ghana alone.

Leder (1993) observed that males attributed their success in mathematics to their ability while females attributed their failure in the subiect to their ability and task difficulty. Leder further stated that males agreed more strongly than females that mathematics was useful. that it was eniosalle and that they were confident about getting good grades in the subject.

Other studies had found that as well as having lower confidence females also view mathematics as difficult. From survess of eleven and sixteen year old pupils in England Wales (Shuard. 1986) reported that while even at age eleven girls more often described mathematics as difficult than boys did. Besides. girls felt less often that they could grasp new materials in mathematics quichly. By sixteen jears the rating of difficulty hecomes a ver. strong source of difference. It has also been agreed that differences in mathematics attainmen between boys and girls are due to basic biohngical
differences in the sexes. Thus. if a girl believes in an altarable bologial cause. she eavil! surrenders when been confronted with dhewtice In an attempt in identify people with peculiar areas of mathemation problems. Fall (1008) outlined the followinge

1) Some people are able to remember tormula, hut mas mot understand whe the formula makes sense.
2) Some prefer to do paper and pencil tashs and are attentive to the details, but do not see the big picture.
3) Some see the big picture and have insight into patterns of the mathematics. but are poor at computations and have problems with remembering step-by-step procedures.
t) Some understand mathematics concepts and like in solve problems mentally and quickly yet their answers mas he maccurate. These individuals max have difficulte in verthasing and explainne theis answers. All the above may fet an individual to conctude that mathematics is difficult.

We know that the learning of mathematical concepts more than ant other content area or subject is tied closely to the teachers knowledge of mathematics and the manner in which these coneepts are taught (Lyon. 1996). Therefore individuals with mathematics problems is a result of how their instructors are inadequately prepared in mathematical principles and how the: teach them

Mathematics instructors need understanding of the mathematice curriculum. the abilit! to use a variety of instructional technicues that are simultanenusly multisensors and which provide explicit instruction that is
systematic. cumulative, diagnostic and both synthetic and analytical as well as knowledge of current research in mathematical instruetion.

Other problems assoctated wh mathemation or the languse of mathematics and the concepts associated with it. These inchude spaltal and quantitative references such as before, after, between, one more than or less than. Mathematics terms such as numerator and denominator. prime numbers and prime factors, carrying and borrowing may also he problematic.

Harper (1986) in a study noted the following factors which account for the difficulty of mathematics learning. Thus, rigidit? of mathematios. the affective domain. relevance of mathematics. personalits. Fear. keachers of mathematics and the styles of teaching, language of mathematics 10 mention but a few.

In attempts to determine the effect of second language (1 2) edtacation and mathematics achievement. Baker (1003) fees that karnem in 12 education lag behind their peers in areas such as mathematics and seience. The explanation he offers is that. this may be because their 1,2 wills ate insufficiently developed to be able to think mathematically and seientifically in their second language. This vien was supported by Cummins and Swain (1986) as well as Saville- Troike (1991) who stated that." certainl! (1 2) students are at disadvantage trying to understand instruction and expres themselves in a forcign language especially when the mus compece with other pupils who have already mastered the (1 1$)^{\prime \prime}(1.175)$.

The second language hinders learners and results in fow achievement

low level of tenglish" (p.6). Mathematics is taught and karncd in a kanguage in an intensive manner The (iS National Councl of leathen of mathematic

 mathematical tanewge plass an importum whe in the widapment it
 often wertooked in the mistaken belief that mathematio in sumbluw independent of language proficiency. Howerer. particulal! with the incerated emphasis placed on problem - solving. command of mathematical langude plays an important role in the development of mathemateal abilits Mathematics vocabulary. special syntactic structure inferinge mathemation meaning and discourse patterns typical of "ritten tevt all contrihute ${ }^{\prime \prime}$ difficulties many (1.2) , iudents have when learning mathematic in I nelish (p 24). From the foregong it seems that languse whetime watahum in mathematics difficultics.

Available literature shows that learners have their best chance of success in mathematics and science if they study it througl their L.t.thun mathematics and science contain a high proportion of conceptual and abstract notions. These notions cannot be internalised in a meaningful manner through the memorisation of verbal formulae. Understanding is cesential and a high degree of cognitice maturity and verhal lluenc! is. required to neentiate and acquire this understanding. It is clear from the Third Inmemanamal Mathematics and Science Surveys (TIMSS) (1997) results that students and probably mans teachers are not able to demonstrate a peremal undertanding of mathematios and serence concepts in their own wowd. they rathut wh

 well be the karners and tha will rewh in hereer man whatmen an! hishat achovement in mathemation.

Mathematical literace is conceptually wheme and delficull in understand and communicate in a meaningful was. In this vein teachen need to try as much as possible to vary methods and assist pupils to construct their own hnowledge and concepts on given topics (TMMS.S. 1907).

Wilson (1992), cited in Taole et al. (1995) tathing ahout mathematich education in Ifrica observed that whe reality of mathematios waching in African primary sehonls has long diverged marhedf from that in the "le, ${ }^{\prime \prime}$ (p.135). Wilson noted that factors such as lach of tevthooks. materials lir activities as well as overcrowding, have been reyponsible ler the adhption il the traditional chalk- and - talk method by most teachers in African primary schools.

Gibson and Dembo (1984) maintained that students tend to have positive attitudes toward courses and subjects that are at the appropriate level of their abilities and which provide rewarding experience instead of frustrating ones. More often than not the attitude toward a particular subject determines the rate at which the subject should be developed in the school. Difficulty of mathematics is associated with feelings. emotions. ansieties. expectation and these contribute to poor participation and low achievement in the subject.

From the diecussion there seems to be the general feelings. opinion. beliefs and impression held by people that mathemation is a diliticult sublecu. Harper (1982) noted the factors that account for the difficuld? of mathemation

That is. rigdity of mathematics. the altechs doman ckance of
 teaching stico
bhard (1980) reported that exen an age chaco. puph keribed mathematics to be difficult especially girls. Leder (1993) noted that males attributed their success in mathematics to their abilities while femals attributed their failure in the subject to there abilition and whash difficull!. In the light of this the study was concentrated on primas! class sis pupik and their elass teachers in the Mansa Krobo District in the I astern Resem of Ghana to determine how respondents described mathemation in terms of difficult!.

Confidence and Amviet?

 anxiety that interfere with the manipulation of number, and the solving of mathematical problems in a wide variety of ordinary life and academic situations.

Chic,nidou (1996) in a study in Athens- (irecee involing $3^{\text {rid }} 166^{14}$ grades pupils reported that girls tend to find mathematics boring and boys have higher confidence in mathematics than girls. Research reveals a substantial relationship between mathematics ansielt and contidence in learning mathemation in the evtent that the are often undidered an the same concept (Freislihch \& Bowen- James.20(13). Bretheher. Dwinell. Hes! a Hegbee (1989) found significant correlations between the allitude fatorn if mathematics andety and confidence in ones abilits to kan mathematm. Mathematics amiety can cause one to forget and lose one" self contidence
(Tobias. 1993), Wathematics anxiety is wer! real and acor among thmand of people. Much of this anxiety happen in the ciawnem due th lach ... consideration of different learning styles of students. Besides. traditional mathematics classronms. imposed authority. puhlic expusure to mention hut a few cause great anxiety in many students.

Vewstead (1998) also presents other somien of anviets. These are categorised under educational. environmental. wacher and sineietal factors. failure and the influence of the early school evperience of mathematio. Ihus. any of these factors may establish andiety among students.

For example. students` prior negative experiences in mathematics class and at home when learning mathematics are often transfored and can cause lack of understanding of mathematics. According on Tohian (1993) millions of adults are blocked from professional and personal opporturities because the feared or performed poorly in mathematics and these negative experiences remain throughout their adult lives.

Mathematics is often associated 1 ith pain and frustration. For instance. unforeseen debts. unpaid bills. unbalanced chech books. imternal reventue services (IRS) forms to mention but a fen are negative evperiences associated with number.

Mathematies must be looked upon in a positive light to reduee andies. A person's state of mind has a great influence on his her sucees. Therefied teachers must design chassrooms that will make pupith vident Feel more successful. Ineorret responses must be handled in a ponitive was to encomate student participation and enhance students confidence.

Studes have shown that studeats learn hel whor the dr d': rather than nassac learners (Spikell 1993). Sudent-h his has a hecd by practical mathemath therafore matimation med
 must te engaged in exploring. conjecturing and thanhir! then than engdecd only in rote learning of rules and procedures.

Children will master mathematical comcepts and shill mote teadily if they are presented first in concrete. pictorial and sumbuts. Beader. cooperative groups provide students a chance in evchange ideas. to ash questions freely. to explain to one another. to clarify ideas in meaningful ways and to express feelings about their learning. These shalle weyuired an an erit: age will be great! beneticial throughout their aduli woinhe liた

Confidence and anxiety are important aftexive lambles m
 a strong factor that causes females to avoid mathomation and tis related courses for they suffer more mathematics ansiety than males.

Affective variables have been found to relate to mathematics achievement. Thus. studies have shown that confidence in one's ability to learn mathematies positisels correlates with mathemater achievement Nex or and Koehler. 19901. Vever and Koehler maintained that sinee girls have tended to he less confident in their abilities to do mathematios than his. are it is reasonabie to hypothesise that contidence is an imporamt variable is investigate.

Tartre and Fennema (1995) in their stud! on mathematic achieneme.i and gender shersed that contidence in learnong mathematic is the aticeit:
variable most consistently related to mathematics achievement. Ihey alow noted that males tend io sterentype mathematics as male domai more than females do

The greates differences between males and fomales com be found in their attitude to and self- confidence in mathematics bather than in actual achievement (Boli.Allen and Payne. 1985: Eccles.1982) cited in Relich (1996). Mars et al (1985) cited in Relich. in a study with fifth grade students found that although the girls out- performed the boy's on a standardised mathematics test they nevertheless had lower mathematics self-concepts than the boys. Other studies (Leder. 1988: Mura. 1987: Thomas \& (astello. 198S) cited in Relich also provided evidence of boys' perecived superior competence and girls under valuing their achiovement in mathematics

As discussed carlier. some of the causes of mathemation andiet! for pupils include the leaching styles in the classoome Thus. pupits in the elementary schools complain that teachers do not kach them well to understand. Besides. pupils complaii that mathematics offers little opportunity for debate or discussions. On the other hand tachers also say pupils prefer literature and social studies since they can participate more in class and are under no pressure to find the one right answer. Again. teachers may create more anxiety by placing too much emphasis on memorising formula. learning mathematics through drill and practice applying role-memory rules and setting work in the traditonal way rather than understanding and leasoning (Greenwood: 1984).

People fail to do their best when seared. Mathematies amien develope from uncertainty and lack of confidence. Whough mathematics aim at righ
answers these can be reached through open- ended pohkems hame

 question. tex and find solutions. Kinowledge and will whtins w wh processes can later be applied in any situation. Who will bing , whon this and how? Which methods of instruction or approaches to leaming can brins mathematics to a large number of people within the reach and interest of soung minds? Mans authors fave looked at the causes of mathematics annict and alternative teaching techniques to aid understanding (Cirecmood. 1084. Newstead. 1998: I lembres, 1900: Hopho and Isheralf. 1008).

The critical age for the development of mathematics fear is between nine and eleven whough fear may deepen or hange throughon shatime
 change and may persist into adult life with lat reathing conseguences in the form of avoidance of mathematios. distress and interference with conceptual thinking and memory processes.

Fennema and Sheman (1977) found that amvety and confidence appeared similar because they found that a high mating on eontidence seale correlated highly $(\underset{r}{ }=0.89)$ with a low rating on the ansely scate. Resides. Fennema and Sherman found that from grades sis whelo boys were significanty more contident in then abilitios to deal wht mathematics than were girls.

 for the development of ansiely in mathemation in hemeen alew nane and

 the level of confidence between mate and female puph

Mathematics as a male Domain

Common beliefs. views. feelinges, opinion and coprewnom h: people from culture to culture cause individuals in vien mathematics as a male domain. Besides, traditionally. mathematies has been regarded as a mate domain. Looking at careers that use mathematics an their tools . such as surveying. medicinc. engineering to mention but a few. confirm that males dominate occupations that are mathematics related. There is available literature to support this belief or notion.

Fon (1977) in a research revealed that parents. counsellom and teachers believe that mathematics is an activity meant for males, more than females. Besides, in a research with twelth grade students Stein (1969) provided evidence that females perceived that the use and the crealion of mathematics is a male domain.

In an attempt to review 36 studies. Fennema (1974) cited in Sasers (1994) concluded that there was little evidence that sex-related differences exist in mathematics learning before or during secondar: school lesel and the general trend was that males excel in higher cognitive tash, while femates excell in the lower cognitive tashs. Fennema (1979) cited in Tanle et al.(1995) howerer. remarhed that all the important affective variables are related to the stereotyping of mathematics as a male domain ryht from the eiementar:
 adult stage as a male domain. Besides. Stein and bmithell (19(1) and sein (1979) observed that mathematics is not considered as maculine b. both males and females until adolescent stages. Thus. during that period evidence shows that mathematics is not ranked highly as masculine as athletics. mechanical and spatial tasks do.

Fennema and Sherman (1979) observed that male superiority in mathematics has been an accepted fact without question for many sears. Today common observations show that more males use mathematics dail? than females do and this is confirmed by the careers which use mathematios as stools as discussed carlicer.

Maccoby and Jacklin (1974), concluded that all of the intellectual se.:- differences that still exist in male superiority in mathematics is ability. Aiken (1972) was of similar view when he observed that sex-differences in mathematical abilities are even present at the kindergarten level or earlicr. All the review showed that male superomity was ex ident at the upper elementary or ISS level.

From the discussion it seems that traditionally. mathematics has been regarded as a male domain. Besides, the careers which have mathematics as their tool are dominated by males. More females confimm that mathemation is a male domain. Finally. male superiority in mathemation begins right from the kindergarten level through the elementary sehool level to the whll stage However. Stein and Smithell (1969) and Stein(1979). in their uludion reported that mathematics was not considered as masculine by both make and Eemale students until the adolescent stage.

Parceived Relevance of Mathematics

Most teachers want to meet the needs of all the of cudents the best was the can. It is helpful for these teachers to be aware that students/pupils perceptions of the uscfulness of mathematics are highly correlated "th their plans to take more mathematics courses (Pedro. Wolleat. Fenneman \& Bekir. 1981: Thorndike-Christ. 1991. Edhard. 1995). Female students often do not pereive mathematics as being useful. Thecofore in teathong infomation need to be presented to them in general form as well as in female specific form. Students perceptions of relevance or relatedness include secing the connection between the course material and the students experiences and career goals.

Wolters and Pintrich (1998) found that knowing task value was a predictor of cognitive and regulatory strategy. but not a predictor of performance. Wolters and Pintrich again found that self- efficacy belicfs were predictors of achievement in mathematics. They suggest that task value may enable students to begin tasks. but that cfficacy beliefs help students persist and overcome obstacles. Besides. Wolters and Pintrich found that students With high test anxicty tended to use fewer regulatory strategies and receive lower grades.

Summary of literature Revien

Of late. there is growing interest in finding out the man factors that contribute to students mathematics learning and their achievement in the subject. Thus. factors such as the school environment. the home, content and methods of teaching. attitudes to mention but a few could be investigated inte.

Among these factors the concept of attitude is an important lactor in human behaviour. Attitudes affect the way people petcerise and repond la cacms. ideas situations. other people, subjects, things to mention but a fow.

Dealing with attitudes toward mathemation studics sercmed icuealed that teachers possessed negative attituden towatd mathemation (Das ien Savell.2000: Groetenber. 200:Rech.Hartell.stephen.!993). Fachers vies : beliefs. attitudes and actions influence pupils actions and altitudes in the classroom and their learning outcomes (Kinehler \& (irouws. 1902). Teachers ${ }^{\circ}$ beliefs abou mathematies influence hou hes sach and thereline the karmins activities pupils experience (Nickson. 1902).

It was also noted that differences exist hetween bows and girts attitude toward mathematics. Thus initially girls have more positive attitude toward mathematics than boys. but as girls grow older their attitudes decline or become more negative (Swetman 1995). Boys have higher positive altitude toward mathematics than girls (Burnett.1996: TIMSS.1994-5).

Some studies are not in agicement with the general trend and belief that females have negative attitude toward mathematich. I INASS (1994-5, noted that in some countries both boys and girls were similar in their attitudes tow ard mathematics.

With regards to age and attitudes Fecles et al. (1993) opined that eren at ver: young age boss and girls feel more or les compelent in certan subject areas. Besides, a proportion of pupils dislike mathematics and othe"s express strong dislike for the subject between ages eleven and fourteen. hut the most crucial age for establishing this is about cleven years (Collahan. 1971).

From studies reviewed under the relationship between teachers attitude toward mathematics and pupils acherement in the subject. the following were noted That is. teachers attituden mard mathomation related to pupils* achievement (Christou. Philippou \& Himphotou. 1090 . Carawd. 1985: Schofield.2007: Schoenfeld 1988: Begle.1979: Bihhup $\underset{\text { de }}{ }$ Nickelson. 1983). Imai (1993) on the other hand reported that teachers allituic toward mathematios did not relate to pupik ahiowement. I eashore exe enormous influence on pupils attitudes and achienemem in mathematios (Guidry. 2000) cited by Tricia (2001).

Teachers find themselves attempting to teach mathematics which the have not mastered (Heaton, 1992). Besides. primary school teachers e \backslash pressed their dislike for mathematics.

Furthermore. studies revealed that teachers hold differential stereotyped attitude toward boys and girls (1Hhte. 1985) cited by Sayers (1994). This results in differences in attitudes and acheremem among the sexes. Male teachers were much mose likely than female wachers to hold such stereotype views (Shifferaw. 1980) cited by Sayers. Boys receive more attention from teachers than girls do (linger. 1900: Jones and Wheatley 1000: Kahle and Lakes. 1993: sadker. 1994: Tobin. Kable and 「raser 1990) cited by Tricia (2001).

Again. studies revealed that pupils attitudes tow ard mathematics relate to their achievements in mathematics (TIMSS,199+-5: Mclıcod.1992: Ma $\varepsilon:$ Kishor 1997). Besides. students` perception of mathematics strongly relate 10 their achievement in the subject (Taylor. 1987). It was also noted that the
higher the achievement the more positive were students attitudes townd mathematics.

Studies on pupils achievement in mathematic were mioned and the following were noted. That is. CRT results in Ghana from 1092- 1097 indicated that from sear to year boys out-performed their fimale coumterparts (MOE. 1997). Other researeh lindinge alle in agrement that hins
 Wilmot.2001: Adarkma.2004: Acana.2001: APL 1980. 1981.1985: Maysme
 the contrary Mohammed (2005) in a study which involsed $5^{\text {lit }}$ grade primar? school pupils reported that girls out-performed their mate counterparts. Besides. it was noted that there exited gender differences between male and female students achievement in mathematios. Thus. it was noted that is children get older the differences in achievement increase on that by age is boys are significantly superior to girls both in their achiouement and attitude toward mathematics (Hanna et al. 1990). That. se differences begin (o widen at age eleven.

Irom studion reviewed under difficulty of mathemation. 11 was noted that many students view mathematics to be difficult. dull and abstract (Richards. 1984). Besides, Richards concluded that many students dislihed mathematics. It was also noted that students fear mathematies and the critical age for the development of mathematics fear is between ages ${ }^{9}$ and 11 (Mclcad. 1993).

Finally. from studies reviewed on mathematics as a male domam. It was noted that mate 'end to stereotype mathemater 小 ande dom, an th.m females do (Tartre and 1 ennema. 1995)

In the light of the foregoing discusion. it 12 ordem that the de disagrement in some of the research findinge. conpled wh the fact than there are relatively fen studies on attitude twand mathemation at the prim. 1 scheol level in Ghana and especiall! in the Nany kioho district researcher will therefore agree that more studies are needed in his area to support the existing findings presented by notahle mathemato athonitio.

CHAPTER THREE

METHODOLOGY

This chapter discusses the researeh design used. the population. sumple and sampling procedure and the characteristics of repondenk. The rewath instruments used to collect data and data collection procedure were also discussed. Furthermore. methods for scoring responses as well as methods for data analysis were all discussed in detail.

Research Design

The research design used for the study was descriptive sample survey. The descriptive sample survey design as pointed out hy Gay (1987. p. 189). involves collecting data in order to test hypotheses or to answer questions concerning the current status of the subjects of the stud!". Agan. a descriptive study provides a general descriptive picture of a situation to establish norms and baseline data for consideration by researchers in making their decisions to assist them raise relevant questions. Furthermore. descriptive suricy determines and reports the way things are.

Descriptive survey as described by Ary. Jacob and Ravazich (1990) surveys sample populations in order to discover the incidence and distribution of and the interrelations among sociological . Psychological and educational variables. The data gathered in a survey are usually responses 10 predetermined questions that are asked of a sample of respondents.

Furthermore, according to Best and hhan(1998, rited hy imedate (2002) descriptive research is concerned with the condition or rehammbins

 to find answers to questions through the analasin of rehmmhin hemeen m amone variables

In the light of the diseussion abose the decriptive sample burse "a appropriate for this studs since the studs attempted to dewihe ants ande aspects of a population he selecting inditidath in th. amph isum. the
 relationships and differences that mas exa hetween the dutuke al keahor and pupils toward mathematios and pupils athictomen in the when

 surve! deals with what evists or prevailing conditions. practice and attitude It searches for accurate information about the charateristice of particula suhiects. groups institutions of cituations.

Population

For the purposen of research. the term popilation can lie when to mean
 (Nuana. 1992:Saunders. Lewis and Thornhill. 1097). Imedahe (2002) maintains that population is the aggregation of cases that meet a designated set of criteria. Therefore . for the purpose of this study the target population includes all primary school pupils and their teachers in the Manya Krobo District in the Eastern Region of Ghana lhe accessible population included all primary class six pupils and their class teachers in the selected schools in the Manya Krobo District in the Eastern Region of Ghana.

The primary six pupils were selected becaluse the pupils can give better description of their feeling toward mathematics. P'imary si.s was considered because it is the transitional stage for primary school education. At that stage pupils are expected to complete or cover the subject matter or content specified in the primary school mathematics syllabus/ curriculum.

Sample

In all a sample of 400 primary classes six pupils were used for the study. This figure consisted of 200 boys and 200 girls. This sample of 400 pupils represented twenty- five percent (25%) of 1.600 pupils in primary class six of public schools in the Manya Krobo district. The ages of the students ranged between 10 and 15 .

Besides. 40 primary class six teachers made up of 22 males and 18 females were included in the study. Thus, 40 class sis seachers of the selected 40 schools were used as automatic respondents, no selection procedure wan
used. This sample of to primary class si teacher represerted an perem it the class teachers of the population. Hewever. certan charack bitio of the
 teachers who had taugh for at least one year in the puhle proms: whan or teachers from both sever. These characternion were whomeded beathe in professional teachers they had all in one way of the wher had the same training during their pre-service. The were abo evposed to pedagogical shill and for that matter methods used to teach mathematio might he simbiar from school to school. Besides. the gender of teachers wan cumadered because there may be differences between male an female teachers atitude toward mathematics.

The sample of 400 pupils representing 25% of the 1610 pupils of the target population and the +0 class six teachers represenung 50.0 pereent of the 80 primary class six teachers in the public schools were representative of the population. That is. commenting on sampic size. \unan (ing2) sugeests that if the population is fen thousands then a sample of abont ion o will do, if few hundreds then a sample of about $40^{\circ} \%$ will do. Dale (1) ${ }^{\circ}$) alo sugesests that for credible results a minimum of 20 percent size of sample for population of few thousand to be ideal. Furthermore. according in Fracikel and Wallen (2000) for descriptive studies a sample with a minimum number of 100 is essential and for correlational studies a sample of at least 50 is deemed necessary to establish the evistence of a relationship.

Sampling Technique

 three rural and three urban circuits were selecten (ase ippendi 「., The names of the circuits were written on slips ar pacco nt pape and filded the folded pieces of paper were put in a bowl and shuffled. The pieces of paper were removed one at a time from the bowl without looking in to it. Instime a slip of paper is removed its name or number is registered or recorded. This process continued until the siath circuit was picked.

Similarly. from the circuits 15 and 25 schonls were sciected from the rural and urban circuits respectively using the schools registration numbers (see Appendir G). These schools were also celected with the iminte lotion:
 most of the primar: she classe were handed be untram d wather - :hat whe not meet the criteria under the teacuer characteristies disursed carlier under the sample. From each of the schools selected ton (10) pripils were selectiat which were made up of 5 boys and 5 girls. The simple hotors technique was used to select 150 and 250 pupils from rural and urban schools respectivels.

That is. in each school and class the names of the boss and girls were written on pieces of paper and put in separate buwh. The pieces of paper were shuffled and picked at randon until the requred number of bo. .ar girls were obtained

of the following reasons. Amedahe (2002) maintum, thit proh, halla whinh: is a more respected approach hecause greate comt. ten wan he phacd in tre

Research Instruments

Attitude is not directly observable: it is rather inferred from hehas inur but may be affected by several factors. The qualit! of one's attitude can be judged from ohservable evaluative responses he'she makes. since atitudes are manifested in conscinus verbal responses. gross behavinur and experience. Through observation of what one does or sats hiwhe: whiom n feling about an object person or something can be meatured Howere. questionnaire is designed to measure athudes (oncommane in used ll determine one's expression of references among alailable alternative Besides. questionnaire is used to ash one his/her feelinge or opinion on mathers that relate to general attitude to be measured. In light of this. three instruments were used to collect data for the study. That is. two attitude questionnaires and an achievement test.

There are a number of procedures for the measurement of attitude. The commonest methods include the Thurstone seales. Cutman seales. Likent scales. social distance seales and Scalogram anal! sis (0penheim. 1968: Sas. 1974: Borg and Gall. 1989). Besides. Fenneman \& bheman Vathemato Attitude scales (1976) cited in Tapia and Bern (20(1) is one of the mis propular instruments ased in research. The Fenmema- Sheman Vathematu

Attitude scales consist of a group of nine instruments: dthtud toward nhecion in mathematio scale. leacher scale confidenee in I arning mathematio scishe mathematics andicty scale. effectance motisation seale in mathematios and mathematics usefulnes seale. Among the various prosedum mentioned the Likert scale was found to be the most populat in the literature on mathematical attitude reviewed. In light of this. the likert scale was used hor this study. Borg \& Gall (1989) maintain that the Likert scale is the most simple and efficient approach. With the Likert scale respondents are requested to say or indicate whether they strongly agree (SA). agoee (A). disagree (D). strongly disagree (SD). or undecided (U) with statements as indications of their attitude toward ohjects. people or situations of inquiry. The statement can either be positive or negative or a blend of both. Furthermore, acending " Best and Kahn (1989). the Likert seale type emables respondents to indicate the degree of their feelings or belief abou an object or given statement

The Questionnaire

The use of questionnaire is very common in the social sciences including research in education. In any case questionnaires are employed as the only method of data collection (Amedahe.2002). Two sets of Likert scale type of questionnaire were developed by the researcher by borrowing idcas from(Nkani.1993: Otchey. 1999). Other ideas were aisn borrowed from the internet. For instance. some of the statements under the pupils questionnair: items borrowed from Nkani (1993) were :
4. mathematics lessons make me feel bore in class.
12. mathematics is very interesting.
14. I do not like mathematics.
17. Girls fear mathematics more than boys.

27 It in uneful for girls to leam mathemmin
Also, the following were borrowed from (Hehey (|)(み) :
30. Mathematics is the most difficult subject that I harn at schonl.
11. I like mathematics more than any other subject
7. My mathematics teacher encourages me to learn mathomatics.
5. I could do mathematies better if my leachers ween patient with me in class.
16. I would not use mathematics after leaving school.

Similarly, the following are some statements down Inaded from studice by Tricia (2004):
13.1 would like to stop the study of mathematics at the ISS level.
15.I thinh mathematics is the most enjoyable subject that I kurn at

School. 21 . I do not think mathematics is important.
However. the instruments were pilot tested for validit! and reliability. These questionnaires were used to collect needed data on attiludes of teachers and pupils toward mathematics.

The pupils` questionnaire contained 31 items and respondents were asked to respond to all of them (sce Appendix B) .

The items had pre-printed responses of which respondents were to tich onls one appropriate responsc. Besides. the items of the questionaire were choseended type. The questionnaire were in two sections that in. Sections A and B. Section A contained only three (3) items which were used welicit the hackground information on the characteristich of the respondem, Ihat is. the

the sewnd se: at quentamain
 also divided into itw sections,λ and B. Section A containd ane items ak. w elicit bachground information on the characteristies of rupondents. The main

 in the proceeding naragraph.

Achievement Test

Another instrument used th collect datio frit this zud: \because an .ir achievement test (see Appendi人 D). The achievement tesi uas dev shoned : \because

 mathematics s:llabus so multiple chnice test items vere preferred ard

 30 were authori example and many more.
 item contained four responses A-D with onl! one whert repponse of which subjects pupils were to circle only one cormed respons anigncid the kellers A-D to each item

Validits and Reliabilits of the Instramend

Borg and Gall (1989) contend that conten validit! 1 important m achievement testing and tarious tests of thill and proticioney stach a occupational skills to test. In order to attain content validit of the instruments the two sets of questionmaires and the achiesement ter wex giten w the supervisors and evperts from the Faculty of Edncation for seruting. Since content validit! is determined by evpert judgement (Cins. 1987: Borg $\mathbb{\&}$ Gall. 1989).

Amedahe (2002) describes threats 10 intemal valiclit! and how we control them. These include histor:. selection. nature of the wat. instrumentation. maturation and many others. History refers to events occurning in the environment at the same time that the test is geing on. lor euch elents it w ensured that the testle were in good mond and dumg keving bam other events such as moxement of cars animals people. gamen to mention but a lew taking place in the sehool were controlled to the mommom.

Also. because of threats like the nature of the tex :mblang ceorms and administration procesture. it was ensured that cepual fime was a whed wall
 the problems of bias in scoring was ruled out.

In selecting respondents variables such as school. age. gender. ability and others were considered as discussed in paragraph none under the sample. Thus. rural and urban schools were selected for comparative purposes. ages of respondents ranged between 10 to 15 and equal number of hoys and girls were selected for the study: Maturation on the other hand refer, wo the processes of change that take place with the subjects at the time of testing. These events which include influence by others, hunger. thirst. over leaning. forgetfulness and many others were controlled for some of their occurrence.

Furthermore, the instruments were pilot tested in the Yilo Kroho District in the Eastern Region of Ghana. This district was considered because it has similar characteristics to that of the Manya Krobo district where the study was carried out. Some of the characteristics include language spoken which is Dangme. location, staffing. infrastructure. achievement of pupils and others. The questionnaires and the achievement test were administered to 20 primary class six pupils and 20 teachers who teach primary six classes.

After the pilot testing the reliability co-efficient of the achievement test was computed using the split- half method that is. using the Pearson's Product Moment Correlation (r). The reliability co- efficient of the achievement text was found to be 0.80.The Pearson's correlation coefficient was preferred because Amedahe (2002) maintains that the most common correlation coefficient in educational research is the Pearson's correlational coefficient.

 compares how con, istently each value pars. with annwer ballue in a linear fashion

Also. the reliahilite co-efficient of the tan ets at the allitude questonnaite "lere computed wing the (wombanh Whata formula and the we

 reliability co-efficient of the attitude questionaires becanee the nem were in a four-point Lihen seale, wo the Cronbanch Apha was palimed.

Based on the pilot testing results sugendom lame expert and supersisors were incorporated to refine and modil? the coments in the instruments in order to make them more relevant and alid for the purponce wt the stud. The final instruments for the studs therefore meluded all important issues which gate all the necessary answers to the formulated hypotheses.

Data Collection Procedure

The researcher went in introduced himself and cr.planed the purpone of the studs to the District Directors of Education for What: a and Yian Kroton Districts with the introductor: letere issued be the lleat al the Depatment in Primary Education (see ippendis A). These lettern "ere permonall! handed over to them and approval given to carry out the pilot study and the stude in their respective districts. Copies of the approval Jetters "ere distributed to the various schools personally by the researcher. The headteachers. teachers and
pupils were briefed about the purpose and the implicatom of the stud. The: were also assured that any information the gave 'ace going in be hept confidential. In each school days and comenient time were set aside for the administration of the instrument.

The questionnaires and the achievement test were administered on the same das in each school. The questionnaires were admmistered firs inllowed by the achievement test. To ensure the chnice of appropriate responses by the pupits the researcher explained the responses Strongly Agree (SA). Agree (A). Disagree (D) and strongly disagree (SD). On each item the statements was read to the respondents first and were asked to tead inclividuall: reanomed and ticked the appropriate option as their response th the statements. This practice was carried out in all the selected schools. The practice ensured that all the respondents in each school completed the questionnaire at the same time.

It was observed that in some schools pupils could not even write the name of their schools. This was why the practice was adopted by the researcher to read the statements first to pupils or respondents personally.

In each school while the students were taking the achievement tex their class teachers were also given copies of the questionaire for teachers for completion. All the class sia teachers were present in their tarious schools on the days the instruments were administered and that ensured a hundred pereent return- rate of the questionnaire.

However. for the purposes of identification and to remain anonymous. each respondent was given an identification number. Pupils used the same identification numbers on both the questionnaire and the achievement test.

The data whlection process lavted for lif: weith the proce w,

soring the ltem of the Invirument

The pupils revponse sheets were wed to wapare and conted wh
 pupils were soored or coded using a four- pont litert t! pe whe whother the statements were worded positive or negative. For ponilme sated items subh as
 they were ouded as tolloms:

tgree
111
$?$

Disagree
(D)

2

Strongly Disagree
(SD)
1

The above procedure was reversed for negative statements such as \cdots do mon like mathematics" and "I fear mathematics". Thes "ere also coded as fillos,

Strongl! igrec (S i) (SA) I
Agret
(A)

2

Disagree (D) 3
Strongly Disagrce (SD) +
The four-point t ihere scale waspretered duct the la el afthe puphe Ans additonal option could give room tom mans merpendtems lan unformity the teachers" questionaire was also limited to the four-point scale. Bendes. ant additional option such as undecoded conald men man! thang. However. for the sake of positive and negative statements of the items of the instrument the following criteria was used to determine positive and negative mean scores: A mean score of 2.5 and above on an! attitude variable was considered positive mean score whilst a mean score of below2.5 was considered a negative mean score.

Section A of the pupils' questionnaire was coded as follows:
Item 1. Name of school: rural schools coded 1 and urthan sehools ended 2. Item 2. sea: boys coded 1 and girls coded 2.

Item 3. age: below 13 years coded 1. 13-14 coded 2 and abore it y ars coded 3. Items of the teachers questionnaire were abo coded in follows:

Items 1 and 2 coded similar to that of pupils item 1 and 2 ltem 3.age in years:below 30 coded 1. 30-40 coded 2 and abovet) coded i. Item 4. Ilighest academic qualification: MSLC=1 SSCE $=2, ~ G C E " O "=3 . G C E " A "=4$. higher qualification $=5$ Item 5 , highest professional qualification: cert ' A ' + years $=1$. Cert A 2 year post secondary $P / S=2$. Cert ' $A^{\prime} 3$ y'car $P / S=3$. Diploma and others $=5$ Item 6. Rank in G.E.S: Teacher $=1$. Assistant Superintendent $A / S=2$. Superintendent $=3$. Senior Superintendent $=4$. Principal Superintendent $P / S=5$. Assistant Director $\triangle /$ - 6

Item 7. years of teaching experience: below, $5=1.5-10=2,10-20-i$ and above $20=4$. Item 8. aspect of mathematics studied: (n). I electise ?

Item 9. Enrolment of pupils: less than $15=1.16-29=2$ and 30 and ahove $=3$
The achievement test scripts were also marhed and each item whs scored one The masimum and minimum seores that a pupil cond ohnath were $2 t$ and zero respectively.

After seoring the instuments the lan seomes for cach pupil on the attitude questionnaire and the raw scores of the abherement test were obtained and recorded for analysis. Right answers to the achievement test were provided (see Appendix E).

Analysis of Data

To facilitate the data analysis process. respondents were re-numbered serially. That is. those of the rural schools ranged from $1-150$ and those from urban schools $151-400$. The same serial number was tecorded on both the questionnaire and the achievement test sheet for cach pupil. The attitude factors or variables were considered and items of the questionnaire were categorised as follows:

1. Enjoyment of mathematics
2. confidence in mathematics
3. anxiety in mathematics
4. difficulty of mathematics
5. mathematics as a male domain
6. Perceptions

The teachers* questionnaire items were classified under various variables as follows.

[^0]the hypotheses were the independent t-test. multiple regressions and Pearson's

 mathemation it aloo sought to detemine differeme in mathematu achievement between boys and girk. That is. the data wis categerical. Fraenkel and Wallen (2000) maintain that the most common tool used in analizing categorical data is the t-test. Fraenkel and Wallen added that a parametric technique is more likely to reveal a true difference or relationship if one really existed. so the t-test can reveal any difference.

Hypotheses 3 and 4 were tested using the multiple regression technique. This technique was preferred because of the following reatons. It can be used to determine the correlation between one dependem tartable and a combination of two or more independent variables. (ial (1987) maintains that multiple regression does not only determine hom sariahles relate hut akn the degree to which the relate. In addition. multiple regessions can be ued th determine the relative and joint combinations of the independent variables 10 the dependent variables. All the hypotheses were tested at 0.05 alpha level.

CHAPTER FOCR

RESULTS AND DISCUSCION

The resuln and findings of the stud are presented in the chapler llw pupils' questionmaire responses were presented lirst fillowed by the dencher questionnaire and the achievement test scores. The data gathered were analysed statistically using the SPSS Programme from the computer. The SPSS Programme enabled the researcher to test each hypothesis

Background of Respondents (pupils)

Tables 5 to 7 under this section show the frequency and pereentage distributions of respondents (pupils) on the questionnaire and the achievement test. Table 5 shows the classification of the respondents in! schook imto (me categories that is. rural and urban .

Table 5:
Frequency and percentage of pupils by schools

School	Number	Percentage
Rural	150	37.5
Urban	250	62.5
Total	400	100.0

From the table about one-third of the respondents were from rural schools while two-thirds from urban schools.

Table 6：

Frequenes and percentage distributun o！pupl 心 心

The table sow．that there were cqual number of hos and gild
Table 7 shoms the classification of $心$ pondent（puphts inte the ate
groups

 fourth of the pupils were above it ！ears．

Table：${ }^{7}$

Frequency and percentage distribution of pupils M，ase

Age	Vumher	l＇cruntuger＂
Below 13 sears	114	28.5
$13-1+$ years	195	+8.8
Above 1＋years	91	22.7
Total	400	100.0

Background of Respondents（teachers）
Tables 8－13 shons the frequencs and pereentage wi wacher．bethermmi information

Table 8:

Frequency and Percentage Distribution of Teacher. W. 心.

Sev ofreapondents	Number	
Dale	こ2	$\therefore 11$
Female	18	45.0
Total	40	100.00

From the table males teachers used were a little more than the female teachers. Table 9 shows the classification of teachers into fine categorics of highest academic qualifications. From the table about one-half of the respondents obtained GCE ' O ' level and SSCE as their highest academic qualifications. Also. less than one-fourth of the respondents were MSLC holders and only 2.5 percent of the teachers had diploma

Table 9:
Frequency and Percentage of Teachers by Highest Academic
Qualification

Highest Academic Qualification	Number	Percentage (\%)
MSLC	7	17.5
SSCE	12	30.0
GCE $\cdot O \cdot$ Level	13	32.5
GCE $\cdot A$ Level	7	17.5
Others	1	2.5
Total	41	1010.0

Table 10 shows the classification of respondent by heha a prolewomat qualificatom into tour categrics. The result from the tathe hom that ahnul.
 professonal qualification. Also, three-quatern of the thather, had centicati-- A ' 3 year P / S while one teacher or 2.5 percent of the teachers 1 cer certhicate 'A' 2 year P/S. Again, only one teacher or 2.5 percent of the respondents had diploma.

Table 10:
Frequency and Percentage of Teachers by Highest Professional Qualification.

Highest Professional Qualification	Number	Percentage ("0)
Certificate $\cdot \mathrm{A} \cdot 4$ Year P/M	8	20.0
Certificate $\cdot \mathrm{A}$ ' 2 Year P/S	1	2.5
Certificate 'A'3 Year P/S	30	75.0
Diploma	1	2.5
Total	40	100.0

Table 11 shows classification of respondents by rank into six categorics. The results from the table show that about one-half of the teachers did not attain any rank as at the time of the study. Also. ahout one-fourth of the teachers were senior superintendents. Less than one-fouth of the number of teachers were principal superintendents and assistant ditectors reapectivel.

Toble 11：

Table 12：

Frequency Distribution of Teachers B Aypeet of Vathemation studiad

ses	（い心	1 バいいく
Malc	11	：
Female	10	2
Iotal	\because	$=$

 characteristic of the attitude sariable. If a respomich diwared with anesatric
 strongly disagreed it was interpreted as atrongly agred. The werghed meanh were computed. The mean score responses on the attitude variables be gender were computed and presented in Table 13.

Table 13:
Mean Scores on the Pupils' Attitude Variables by Gender

Variables	Mcans	
	Bo!s	Ciirls
Pupils enjoyment of mathematics	34.41	3.4 .12
Confidence in mathematics	9.10	8.70
Anxiet! about mathematics	5.21	5.27
Difficulty of mathematics	7.77	7.80
Mathematics as a male domain	7.66	8.16
Teachers` influence (perception)	13.77	13.3
Total	77.91	77.34

The results from the table show that. respondents obtained positive mean scores on all the sin attitude variables. The pesitive mean seores indicated respondents agreement or acceptance of the attituct variables. Thus. the positive mean seores implied that respondents agreed that the enjo!ed mathematics. That, thes had confidence in mathematics. The results also shoued that pupils did exhibit ansiet! about mathemates. Alon. pupils s.an mathematics as a difficult subject and a subject reseried for males. Ggain.
pupils did see and agree that the attitude of the ceacher (mand mathemalt influenced their attitudes and achievement.

However, difficulty of mathematics amiet , thant mathematics and mathematics as a male domain represent negative tendencion to effectice learning of mathematics Nkani (1993).

The analysis of the mean score difference and standard deviations of pupils on the six attitude variables are reported in Table 14.

Table 14:
Analysis of the mean score difference on the siv Attitude Variables by

Gender

Variable	Number	Mean	s(d. Des.	1	p-ralue
Enjoyment of mathematics	400	34.21	5.64	0.60	0.49
Confidence in mathematics	400	8.94	2.21	0.07	0.16
Anxiety about mathematics	400	5.29	1.67	0.08	0.78
Difficulty of mathematics	400	7.79	1.72	0.86	0.89
Mathematics as a male domain	400	7.91	1.90	0.08	0.13
Teachers influence (perception)	400	13.56	2.53	0.13	0.10

Total $400 \quad 77.70$

Enjoyment of Mathematics

The results from Table 14 show that the t-value was 0.69 with a p-value of 0.49 . The p-value of 0.49 was greater than 0.05 alpha level. This suggests that the enjoyment of mathematics was the same for both sex groups.

Confidence in Mathematic

Inviety about Mathemation

Again. the results from the table show that the t-value was 0.08 with a pvalue of 0.78 . Since the p-value of 0.78 was erater than 06 alphat Fel hid Indicated that beth se groups exhibited the same mathem, mu, dmvicts.

Diffienty of Mathematice

 this suggests that both boys and girls experienced the same level of difficult in mathematics.

Mathematics as a Male Domain

The results from Tahle 14 again show that the $1-\mathrm{a}$ ate was 0.0% with a pvalue of 0.13 . The p-value of 0.13 was greater than 19.15 alpha kevel This suggests that boih se: groups were about the same in heir agement ihat mathematics is a subject reserved for boys.

Teachers’ Influence on Pupils` Mathematič Learning (perception)

Results from Table 14 shom that the $1-$ alue wan 11.1 : wh a p-atur w! 0.10. Since the p-a alue of 0.10 was greater than 0.15 what level this were w

Analy is of responses on the teachers＇que vommatire
The tems of the kachers quevtionnate wan an ery uped int．ふ

Table 15：
Mean Scures of Teachers on the tititude Variable

liem	Vanter	$\because こ . .$.	$\because!$
	$\therefore \cdot$	ここ6	． 5^{-}
	\cdots	：	－
Anviet：fear ：n．\therefore こra＊に	\cdots	$=-$	\therefore
	$\therefore 1$	：－	
	$\therefore 11$	$2-$	\because ，
Vathematizs as araic unmain	41	$1 \ldots$	11.2

Mean seores on 「eachers sis Attitude Variahles by (embler.

Mean seores on the eis attitude variables were compulted and presented in
Table 16

Table 16:
Gender Mean Scores on Teachers' Attitude Variables

Variables	Male			Female
	Mean Std Der.	Nhan Sid. Del.		
Enjoument of mathematics	2.84	767	2.06	0.938
Confidence in mathematics	3.50	.880	2.39	1.195
Anxiets/fear of mathematics	2.50	.786	2.88	0.942
Difficulty of mathematica	1.44	.784	1.17	0.507
Pupils influence (perception)	2.50	0.880	2.22	0.878
Mathematics as a male domain	1.09	0.530	1.00	0.000

Table 16 shows the gender mean scores on each of the teachers sis attitude variables. The results from the table are discusbed under each attitude variable as follows.

Teachers Enjoyment of Mathematics

The results from Table 16 show that both male and lemate teathen recorded mean senres of 2.84 and 2.06 respectively on the enjoyment variable. These mean scores suggest that the two sed groups agreed that they enfoyed mathematics. Since males recorded slightly higher mean score it suggests that male teachers agreed more than female teachers that they enjoyed mathematics.

Teachers' confidence in mathematio

The resula from rable 16 show that both ex group. 'ewnden mean sond of 350 and $2: 9$ This implies that hoth sex !roups atered that the were
 seores it suggens that male teachers agreed mane than the bemate temher, Nat thes were confider in mathemation

Anxiety about mathematic

 females rexpectivels. Ihese mean sones indicate that buth sex eroups agreed
 higher in fasour of the female teachers it suggent that lemate wahne exhibited mathematice anviety more than the male twoner.

Difficulty of mathematich

The results from Table 16 show that the two sed groups recorded mean scores 1.44 and 1.47 for male and femate teacher rebpectiel. These mean
 difficult subjeri. Non. the mean scores show that bi th male and termale teachers experienced the same difficult! lexel in mathematw.

Wathematics as a male domain

Both ses groups recorded mean scores of 1.09 and 1.00 for male and females respectivel. The mean scores suggest that boit se groups had the same opinion ahout mathematics been a subject reserved for males.

Pupils ${ }^{\text {influence (perceptuon) }}$

 attitude on thear matixematu leak hang

Revolts of the Achievement Tent.

The results of the mean senres and standard deviation of icrondenth (pup,) were presented in Iable 17.

Table 1^{7} :

Analysis of Wean scores of Pupils on the dehiesement Test by Fiender.

Item	Ser	Vumber	Vean	Standard deviation
dohievement	B:	200	: $2.1{ }^{-}$	$\therefore \therefore$
Test	Girl	2010	35.01	$\therefore=i, 10$
expect.				

Main Analysic

Hy potheses

Hy pothesis 1.

 greater than 0.ns alpha levels. This shme that the difierence wan mut significant The null hepothesis was not dineredited tha imples that buth boys and girls in primary class sia did not differ in their attitude toward
 repened that in mans countries no significant difteciace whed hetwen
 zontrary Tiviss moted that in lustria. Hong hunse ham and the Xetherland

 (1996). He noted that there was a signifieant difterence hetween prima. schools bos s° and girls* attitude tow ard mathematics in farnur hoys.
\& MOF. 1997 1992-97). They reponed that vembiand difierence in
 bors

Table 19:

Analysi of the difference between the me:n achenement tex wore 1 bowand girl

Girls $\quad 200 \quad 3.501 \quad 3$.
Total $400 \quad 65.18$

Level of significance $=0.05$

Hy potheses 3 and 4

Hypothesis 3:

 contribute signifiants io their acherement in the was

Hypothesis 4:
$H_{\text {_ }}$:It was hepothesised that teachers attitude toward mathematics dones not onntribute significant? to pupils achievement in the subiect.

Hypotheses $\mathfrak{3}$ and $\dot{4}$ were tested using the multiple rearening gisen by the
equation of the form $\backslash-a+b_{1} M_{1}+b_{2} V_{2}$

Where Y puphls achuevement

$\Delta_{1}=$ pupis attimde
$\because=t e a c h e r s a^{\circ}$ atlitude
ladat, and h all und dand

 rejected at the significant level of (p-value- 0.05). This implies that pupts. attitude toward mathematice contributed significants w liseir achiesement in the subject.

This findong supports the findinge of Ma 8 Kislon (1007). Based un
 relationship betseen pupils attitules toward mathemation and pupiis.

 pupils attitude toward mathematies and their achievement. ilel end (1992) also reponted that primary schonl pupil' attitude wa wd mathomatio related to their achicsement.

Similarl! . hy pothesis 4 was tested. From the table the confficient of the teachers attitude was 0.365 with a t calculated value of -3.50 This 1 calculated value of -3.59 was greater than t-critical value of 1.96 . The p- value rif 0.01 was alse less than 0.05 appha level. There was widnce againe the
null hypothesis the researche therefore reiected the null hy pothesh it the

Table 20：
Summary of regression analysis of pupils’ achicuement on pupils and teachers＇attitudes．

Predictor	Confficient	Si den．	1－1alue	p－value
Constant	9.631	3.652	2.57	11.011
Puril attitude	11．224	11.03 .1	いご	anore
Teacher atitude	11365	0．11）	$\because \because$	11001

Additional Findines of the Studs
 mathematics pupils ashicrement test item analys and pupils ahierement are also presented．

Analysis of correct responses to various items on the allowement tevt bu

type of location．

```
``!`
```


Table 21
 hacation．

lest mem，	；	2	？	4	5	，	－	，	＂	10
I rhan		－2			711	$n-$	\therefore	$=1$	1.12	吅？
Rtral		（1） 1		Si		，			－	－．．－
Test item，	｀	！	\because	14	！	1				－＇
Lrina		$\cdots 1-$	ミミ．	$\therefore \square$	：－	－			：．	．
Ru－a	$\because:$	－	S．	r－	；	－${ }^{-}$	－		، ${ }^{-}$	－－

Tesi＇：3rn：	－	22	\because	こ：
1 rinar	\cdots	ミこ	5－11	－
Rural	\because	－＝		$\cdots:$

The resuits irom the iatle shon that rearadent in in rural air－
 respundens．

Also. respondents from the urban schools recorded slighth higher correctly
 21

Respondents from both rural and urban scheol, cornded equal cons.
 recorded the leat percentage correct response for hom matal and whan pupils. The highest percentage correct responses 1 ere to item, ${ }^{9}$ and ? I for rural and urban respondents respectively. In all about half of the total number of respondents from theth rural and urban schools responded correctly to about one-fourth of the test items.

Mean and Standard Deviation on each Achicvement Test item.
The mean and standard deviation by gender on each of the achievement test items were computed and presented in rable 22.

Table 22:
Mean scores by Gender on the Individual Achievement Test Items

Achievement Test Items	Means of respondemin by sen			
	Boys		Girls	
	Mean	St. Dev.	Mcan	St. Dev.
1.	1.79	. 41	1.68	. 47
2.	1.80	. 40	1.70	. 46
3.	1.76	. 43	1.74	. 44
4.	1.48	.50)	155	49
5.	1.69	. 47	155	.49
6.	1.73	45	1.61	4

These tindings support previnus studice of (Barnes. 198: Bell
 all aspects on mathematics. Willss (1989) mated vall dhememe in

Additional Findings that emerged from the Achievement test and attitude

 variables.The total achewement test seoses and pupis eniosment of mathematice were analysed to enable the researcher describe respondents responses and their level of achievement. The overall total achievement tent seores whained hy pupils out of the 24 test items were rated $小$ follows: $0-5=1$ ere Unsuccessful. 6-11=1/nsuccessful. 12-17=Cuccessful. Nome 17 Vier Successful. The revults are presented inTables.3.

Table 23:
Analysis of the achicement test scores and respomen brypuls on their enjoyment of mathematics (in percentages).

Total achicicment	Enjosment of mathematich homer	
	Disagree	Agree
	Percentage $\%$	Percentage ${ }^{\circ} \%$
Very Unsuccessful	7.6	185
('nsuccessful	43.0	51.0
Successful	40.8	27.3
Very successful	8.7	$\vdots 2$

 that the enioyed mathematics. about hall in the number ihn delced wh

 mathemation and hen than half in the number whe dianered ine unsuccesfal in the whinement ter.

 achievement.

Analysis of the achiciement test seores and responses by pupits on teacher influence.

Table 24 prosides the results of the achievemem tw enores and pupht responses on teacher influence. The total sentes utamed he pupik ont of the

 presented in Table 24.

Table 24：

－Watabがomat	1．！，1	
	1いい，	1.
	P吅	1
	i ${ }^{11}$	．：
	40	$=14$
Successful	35.4	311.1
Vers successful	6.7	36.2

The results from Table $2 t$ show that sume respondent disagreed with the teachers atitude variakle．Thus the dingercul that antime of the

 disagred ：

 the expertence the influence of the teachers atitucie wiable on in in matherratics learning and achievement．These result usgen that pupit achievement didert depend on what the said

Additional Findings of the study concerning the rיیpomes on pupis

attitude

Quentionnare llems were comsidered and perented in pereemtanes 1.

ふみh

 stass．This resuh－ugess that respundent atmbuted ther mabilat w 心． mathematus to iheir class teachers．
 agreed that the way their teachers tatug mathemate made them whe ine

 respondents agred that their icache encour we：them： 1 bat mathemath

The result furtia：revaled that about we－that whe winnemin

 opinion that teachers hold about their students may inflacnee he atitude and achiesement of the student．

Additional Findings of the study concerning the respor es on pupils*

attitude

Quevtomnare llems were considered and pex.ited in percentages. In

 adumbe whemか.

 class. This result suggests that respondents atmihued iber inabilnt to cacel in mathematics to their class teachers.

Responsen witem sis revealed that one- than whe reppondent agreed that the way their teachers taught mathematio made them dintite the subject. Howerer. gints agreed clightly more than hos wifl
 respondents agred that their teacher encomaded them on lean matiomatu. Howere bos a areed a lithe more than girl 1 ha reall may indicate bat boss receised more encouragement. attenton. leathat "wat time wis teacher-pupil inte wion more than girl I iedeman (20mm

The results furtho revealed that ahour one-thind of the revpondent agreed that theis teacher thought the were stupid. Howwel. girk agreed a litte more than bon did. These results suggest that the evpectations and opinion that teachers hold about their students mas mfluenee the attitudes and achiesement of the student.

To determine the most liked subject the stud atw iwe.led that in "e than half of the respondents agreed or expressed that they liteed other subyects.

than bir: did.
 the responden's agred that the wouk sim the dins ‘onnemats ir ." attempt to determme the opinion and festing: wromat live unge ar mathematies after leating school, the stud retcale, that one-third of tion respondents expressed or agreed that they would not use mathematios afer leating school. However. bous slight more than gris agred th the six en

 mathematios in nite mere thangirls.

The stud further revealed that more than hut of wemendens dered

 thirds of the respondents agreed that theil suces in matiematio iwn depended on their luck. Yore girls than hoy azeed in the given satame.

Responses on some Individual attitude Quevionnaire item, by Feachers

 'mathematw bired them
 "orhed or taugh. the studs howed that more mate than femate whin

 teaching mathematic. Cimilarly. about the the numbin of femat that mate teachers exprewed ther feling, of dislike for matheman

The tuts adain reveated that more than hat the number wis respendents exprensed strong feeling of anger with
 puri in that the: wahn were ant patient wh them

vuminar

Summary

This chapter presented the results. findines and dacombons at the vad

 chapter provides the summary. conclusion and recommendations of the stud.

CHAPTFRFIN:

afthe tud

Summar:

1. there is no agnifican difference between hos. and wils athume townd mathematics.

2 there is no significant difference hetween bots and gifle achiesoment in mathematics.
3. pupils attitudes toward mathematics do not relate w their dehievement in the subject.
4. teachers attitudes toward mathematice do mot clate to pups. achierement in the subject.

A deseriptise sample survey design was wed the simple randim method was used to select the circuits. schools and wesponcients in the wame a Krobo District in the I astern Region of Chana. Fen puph made up of lise bots and five girls were selected from each of the selected sehook. In all 200 boys and 200 girls that is. 400 respondents were involved in the stud. Besides. 40 primary class six teachers consisting of 22 males and 18 females were also involved.

Two sets of antitude questionnaires and an achievement leat were used to collect data for the stude. The two sets of the questrmatre of a fou print

 not differ in their atitude toward mathemation

 girls respectively on the sis atlitude variables. I he mean womes were abom the same and this mas be that hoth boys and girls mpmat clas is had same
 and importance of mathematics.

This findine contradicts the finding of Burned (ly) $)$. He reported that there was sigmblum difference hetween primats ahomb hose and gut.

 noted that female sudents attitudes toward matomatus were sismatamis more positive than the male students attitudes. Sweman (1095) again noted that initially gits have more positive attitudes toward mathematics than boss. but as girls grow older their attitudes decline.

This finding alse contradicts the findinge of (ill (100.4). that girk hate positive attitude woward chool. hut negative attitude wow and mematice

Hypothesis 2

that boys and girls in primary class six did differ in then Mathemathes

 significantly in their mathematios achevement there was lithe difference in their mean scores. That is. 33.01 and 32.17 for hoys and girl, mexpectivels with girls recording slightly higher mean score.

This finding supports the findings of Mohammed (2005). He noted that girls out-performed their male counterparts. This finding also supports the findings of Willis (1989). He noted a small difference in Mathematics achievemen betwen boys and girls and that the differencos ary from culture to culture. Benhow (1992) and Friedman (1989) also noted that the difterenees in Mathematics performance between males and females ane decreasing oner the years.

The findings of this study on the other hand contradict the find hage of (Wilmot.2001; Acana.2001; Adarkwa.2004; TIMSS.1904-5: MOE. 1997). Their studies reported that significant differences in mathematics achicvement existed between boys and girls in favour of girls. Hammat al (1990) noted that as children get older. differences in performance increane. so that by age 13 boys are significantiy superior to girls both in their mathematical performance and their attitudes toward mathematics. Thes conctuded that gender selated differences in mathematics vary among countries and even between different groups within a country.

Hypothesis 3

 pupils＊attitudes toward mathematios contributed vignificantly to their achievement in the subject．That is．pupils attitude tonard mathematics vas reiated to their achicuement．
 significant relationship between pupils attitude toward mathemation and their achievement．Alan．TiMSS（1004－5）reported that in more than ne－that of the countries studied positive relationshipe were ohewas between piman pupils＂attitudes toward mathematics and their achionement in the subject． Also．in Isreal Nasser \＆Birenbaum（ 2004 ）in a stud involving Arabs and Jewish fourth－sith graders reported that in both group－mupils attudes toward mathematics related to their achievement．

On the nther hand the findire contradicts the findings of Moses（1991）． He found that students attitude tow ard mathematios いいがn directit related in their achievemen．These differences in relationships in this sude and othe studies as well mas be due to the tarious location and time chtings at which such studies＂ere canied out．

Hypothesis 4

Hypothesis 4：The null hepothesis was that：「eahers altitudes toward mathematics do not contribute significantl．to pupis：achievement in tho subject．The results indicated that teachers attude toward mathematios，

 and Vickelson 1983. Begle .1979. Thes found sionificant relationship

Additional Findings of the Study on pupil` Vmiturle Variable

The following additional findinge were revaled in the sud:

1. Both hos and gin expresed that the enjosed mathematice that the:
 However. the results revealed that buss agreed slighty mone than girls.
2. Boys and girls evpresed their confidence m matherwite Ihe former than the latter expressed strong agreement for thein onfidence in mathematio. This finding supports the findings of Meser and kinehler (1990). They
 mathematics.
3. Both boys and girk did see mathematic as a dition whice. but giv agreed slightl more than boss that mathemation I dibictilt. Aso. more

 even at age eleven pupils described mathemation ${ }^{\text {and }}$ dithult.
4. Athough boss and girk did agree that mathematio s a suhicu reser:e for males. the later did agree slights more than the thmer.
 mathemates more than the other subjecos.

 on lia more han gut dic!

 students pereeptinns of the asefunces of mathematics determined their desire to tahe more mathematies. That female student often does mot perecise mathematics as heing useful.
5. Vore than rone-fourth of the pupils atributed then perfomance m mathematics tests io their luck. Girls agreed more than hoss.
 friend

Teacher losues

The vudy ter caled the foll wing

S. A barge number it the teachom onl: vudied mothematio as a cone suher

Teachers' Attitude Variables

The wide retealed the followin":
 teacher agred heht: more than their femate whmeapat

इ. Mare femate that mate kahers exhihited mathematit ansuly.
4. Vale and femate teachers did see mathematios as a difficult subject. but the latter agreeu stight: more than the former that mathematics is difficuli.

5 The fun se groups agreed that mathemation is a whineel teversed fin males. hut the males agreed more than their femate womterparts.
 (1995). Thes noted that males tend to sterentspe mathen atic a a mate domain more than then femate comberpant.

6 Both make and female teathers agreed that the experme ch the mintome it the pupits attitude tomard mathematics. Homern. mak karher atged mome than their female counterparts.
7. There was weah relationship between lighest academic qualification and type of matheramics utudied.

The study further revealed the following additional hondings

1. Nore male than female teachers expressed strong dereement that thes enjoyed teaching mathematics.
2. Female teachers agreed more than their male counterparts hat mathematics teaching bores them.
3. Although male and female teachers agreed that the: lihed working all topes of mathematics. male teachers agred more than their female counterparts.
 stop teaching mathematice if the had ther own wis.
4. Respondents also expressed strong feeling of anger with pupik when the fail to grasp simple concepts in mathematics. Howerer. Female teachers agreed more than their male counterparts.

Additional Findings on the Acherement 7 ： 1 ．

Even though the revults under hypotheon ：mot．li：！that the：at
 gria the slud：Fither mealed the formana：

test tem－

 1hanhい。

 that males generall：achiese better than femake at hieh wenitive kesem mathematにいかった

 mr：\cdot ．

 reif か－＇\because に．

The right responses recorded by pripils mas be ie result of wer learning of the cuhbect matter. On the whe hand the armes bumber

 been used by teachers to present mathematical concept

Additional Findingo on Pupih" Achiesement and heir Attituder
The stud ahorercaled the hallowing under his-ecthon.
 of the teachers aritudes on their mathematic leammes and achierement. a number of them were unsuccessful in the achievement test. Among those who disagreed with the variable. a fraction of them was also unsuccessful.
2. Among the groups of respondents whe agreed or disagreed with their attitudes toward mathematics. large proportions of thom were unsucces ful in the achierement text.

These findinge revealed that what pupis wid hish mitatualt: reflee their achievement. Probable. the pupse yonte foundits in pleare tio researcher and their chass teachers.

Conclusion

The following conclusms could the made then the findinge of thi study on primar! class sin pupils and teachers att.tudes toward mathematics and pupils achievement in the subject in the Eastern Region of Ghana. The

and 1289 respectively The difference was mols smiluall all 11 aphatcer

 agreed more than \because ind mathematio is a cubiect reweed lor be $:$

number of mate than female teachers expresed wrong tereement that the enjoyed teaching mathematice $A l s$. about three tume the nu iber of female
 thes had ther own M.

 of femate than the make teachers expersed then leelings of dislite fion mathematics teaching.

Recommendations from the finding of the study

Based on the findings of this study the following weommendatoms ate made.

1. From the findinges of the study and the arababie dath sethered. there war signifiam difference between primary clase on bose and girls achienement in mathematics. Fducatomal authomier and stahcholden should make this hnown to the pupils sn as in forter healthy comperition
 mathematics. Teachers must also encourage gith th hnow that they can equally do well in mathematics or out-perform boys.
2. Since teachers and pupils attitudes tow ard mathematics influenced/telated to pupils' achievement in the subject. these shoutd be made known to them (teachers and pupils) on that they could refleet on their onn altitudes and make effors to adape more positive attitude Teacher mus atho encomage
pupils to know that mathematics is not a difficult cuhfect ... a subject reserved for males.
 since primary school teachers only studied the subject an a conce whice the
 courses for all teachers in the primary schook. Rexcmath shath lee carricd ont to identify areas in the preparation of me-swhe fewhern that need improvement in mathematics. Besides. individuals and agencies need to be encouraged to write relevant textbooks for pupils" use.
3. More female teachers should be encouraged to teach promary six classes and mathematics. They may serve as role models to the female students.

Recommendations for Further Research.

1. The study used onty one district that is the Mand h Worno Distitu in the Eastern Region. To generalise the finding for all puman! clas sis pupik in Ghana, there is the need to extend the stud? to melude other cehows. districts and regions.
2. There is the need to undertake mone studes an athtude towirs mathematics at the primar? schonl lesel so that negative attitudes could be detected early and measures taken to address them.
3. The reviewed fiterature revealed that sumbich on athmaten fondad mathematics at the primary school level are laching in whand the is the new to carry out more studies to add up to the evisting ones

REFERENCES

Abrego. M.B. (1966). Childrer's attitudes to ward arithmetic. Itılimetic

 Feaker:13(3). 2062008.
 Journal for Resear him. Mathrimatu , I.duc ation.26,157-176.

hemeen primury whonl. I nopublished M-Phil. Thesis. L'niversity of Cape Coas.

Adeleke. A. Y'. (1998) . Teachers attitudinal varmhes in the implementation of the further-mathemation curneulum ds conclaten of studens.

Research. 1011 . 3.
Aiken. L R.. \& Dreger. G. (1961). The effect of athtude performance in mathematics.

Aiken. L.P. (1972). Research on athitudes towards mathemation. Aruhmetic
Teacher: (9). 229-23-
Aiken. L.R. (1972). Biodata correlates of attitudes towards mathematics in
 (72). $380-395$.

Aiken, L.R. (1976). Update of attitudes toward mathematic‘. Journal of
Educatronal Resいarch. 14(1) 293-:3/!

 publications.

Allport. G.W. (1935). Attitude: In C.A. Murchion.(ed.). Hamellhook of social psychologr: Nell York: Russel \& Russel Clark: University press.

Amedahe. F.K. (2002) .Votes on echucational research.
American Association of University Women (1992). Shortchanging girls. shortchanging America: "A call to action". AAUW initiative for educational equity. Washington D.C.

Amissah. S. E (2000). The role of mathematics in FClill programme.
. Mathematic:s C'onnection. 1(1).4-1.
Anstrom. K. (1997). Academic achievement for secombur] hatuage minority' students: Standards, measures and promising practices. Washington. D.C: Cleaning house.

Appiah-Ofori. A.G. (1993). Ittitules (f) stadents fowrarks muthematic: in junior secondary schools. Unpublished PGCl Dissertation. University of Cape Coast.

Armstrong. J. (1979). Women and mathematics: An overview of factor:s affecting women's participation. Paper presented at research on women and education conference. \backslash ashingtom. I). (.

Armstrong. J.. \& Price, I. (1982). Correlates and predictors of women`s mathematics participation. Journal tur Research in Mahhematica E:ducation (18), 99-I(1).
 education ($\boldsymbol{t}^{\text {th }}$ ed.). Nell York: Holt. Rinelart and Winston Inc.

Assessment of Performance Unit (APU) (1980). Mathematics Counts. Edited by W. H. Crockroft (London: Majesty's Stationary Office.1982).
 Siccondary vares ripery HMSO , Lendon.

Assessment of Performance Unit (APU) (1985). A review of monitoring in mathematics: 1978 to 1982 HMSO.

Atkinson. R.C..\& Hilgard. I.R. (1983). Introduction Io p.sychology ($18^{\text {th }}$ ed.).San Diego: I Harcourt Brace Javanovich publication.

Australian Education Council (1990). National statement on mathematics for Australian Schools.

Bagnato.S.J..\& Neisworth.J.T.(1987).Integrated daycare special education:
Profiles of programmes and chiddren. Topics in Earls

Baker. C. (1993). Foundations of bilingual educathon cund hilinumalism.
Clevedon: Multilingual matter.
Balka, D. S. (1986). Characteristics of outstanding secondary school mathematics teachers. Schooi Science and Muthematics. 86 (4). 322-326.

Bandura. A. (1986). Social foundations of thought ،11d action . I soctal cognitive theory Englewood Clitls. $\triangle . .1$ Prona idalil.
 Review of Educalional Research.48(2), 259-271.

Battista, M.T. (1990). Spatial visualisation and gender differences in high school geometry. Journal for Research in Mathematics Education.21 (1), \uparrow - 60 .

Battista. M.T. (1994). Teacher beliefs and the refom movement in mathematics education. Journal for Research in Muthematic: Education. 75 (6), 462-463, 466.-468. 470.

Bean J.P. (1976).What is happing in mathematic: and scicuce charsooms. student-teacher interactions. Paper presented at the meeting of American education research asseciation. San Iranciseo.

Becher, J.R. (1981). Differential tratment of females and males in mathematics classes. Journal for Research in Mathematics Education .12, 40-4?

Becker. J.R. (1983). Differential treatment of females and males in mathematics classes. Journal for Rexearch in . Mathematic:s Education ,12, 40-53.

Begle. E.G. (1979). A model for mathematics achicvement. Jenrnal for Research in Mathematics Education.5 (7). 367-375.

Benhow.C.P.(1992).Academic achievement in mathematios and science
between ages 13 and 23:Are there difieneme among students
in the top one pereem of mathematia abilits? Imanain'
Educational Psuchologr, St, 57-61.

Best.J. (1986). Research in education. New Jersey: Prentice-Ha, Inc.
Best, J.W., \& Kahn, J.V. (1989). Resear'/l in educulon .New Uethi :Prentice Hall.

Best. J.W.. \& Kahn, J.V. (1995). Research in education ($7^{\text {lh }}$ ed.). Englewood Cliffs N.J.U.SA: Prentice-Hall Inc.

Beth. S.. Jenni. W.. Allan. L. W.. \& Bob, P. (2005).Attitude Versus Achievement in Mathematics. Teadk' liducation and Development. 7, 33-52.

Bishop, A., \& Nickelson, M. (1983). Research on social context of mathematics education. Windsor: INFER-Nelson.

Boaler, J. (1999).Experiencing school mathematics teaching styles, sex and Setting. Buchingham: Open University Press.

Borg. W.R.. \& Gall, M.D. (1983). Educational research: An introduction (4) ed). New York: Longman lic.

Borg. W.R.,\& Gall, M.D. (1989). Educational rescurch: An introduction (5 ${ }^{\text {th }}$ ed.). New York: Longman Inc.

Borich, G.. \& Kubiszn . T.(1987). Educational hesmne and méasur'me'm. Glenview, Illinois: Scott Foresman and Compan.

Boserup. M.. \& Eshiwani. G.S. (1985). A Study of women's weress to mathematics higher education in Kema with a special reference to mathematics and science education: Nairobi. Kenya: Kenyatta University College.

Brophy, J.. \& Good. T.L (1986). 「eacher behan in un .mi yudern whievement.
 ed.). New York: Macmillian.

Brush, L.R. (1980). Encouraging girls in mathematics: The prohlem and the Solution. Journal for Research in Mrathemutic, Education. 6 (10).431-449.
 Failure: V'ariables affecting mathematic: performance. Paper presented at the $13^{\text {th }}$ annual conference for the National Association of Developmental Education. ERIC Reproduction Service Document ED 304340.

Buckman. A.M. (1970). The relationship between cerenth-gtade pupils academic self-concept and achievement in mathematich .follonal for Research in Mathematics Education.1. 35-1り.

Burnett, P.C. (1996). "Gender and grade differences in elementary school children’s descriptive and evaluative self-statement and selfesteem". School Ps!chologer Internathonul.17,159-170.

Callahan .L.G.,\& Clemnon. V.J.(1975). Elementary school mathe'mutics. A guide to current research. Association for supervision and curriculum dev elopment. W'ashington D.C.

Camphell . P. (1992). Horking togehther making chamger. Horking and out of school to encolurage girls in mathematics and sertince. Washington D.C. U.S Deparment oil ducation
 among entering clementary education manor. ('npublished manuscript. University of South Alahama.

Carpenter, F. \& Lubinski, C. (1990). Tcachers ambution and bedicis about girls, boys and mathematics. Lidm w......m yom in :n mathematic: 21. 55-0).
 examination. (ihana Wh:AF.
 (irech). Dishertation for doctoral Vacm 1 macosm.
 relating self. estem. and mathematies achienement. Educational Studic: in Mhath'matic:s. 12, 201-208.

Clement, M.A.(1979).Sex differences in mathematical performances. An
 $50-67$.

Cockeroft, W.H. (1982). Mathematic:s comms, HMSO. I.ondon.
Collahan. W.J. (1971). Adolescent attitude towad mathematies Ahathematis:s Teraller: 04. 751-755.
 Routledge.

Cratt. A. (1996). Primary education: Assessment and plaming hernmms. London: Routledge.

Csikszentmihalyi, M.. \& Nakamura. J. (1989). The dynamic of intrinsic

 Educution. 3. +5-71.

The roots of success and failure. Britain: .MA: Cambridge University Press.

Cummins. J. (1984). Bilingualism and special education: J.suc‘ in assessmem and pedagogr: San Diego: College lial Prers.

Longman.
Daako. F. (2000. July. 2).Report on FCUBE and the status of implementation. Daily Graphic (No. 137t). P 21.

Dale. (1986). Social class and the self emplement wiolugy. The minn ot

Student attitudes upen entry to an corly wars of toaching.
Paper presented at the teacher education form of A.otearoa
New Zealand conference Chritchurch.
 development ($3^{\text {rs }}$ ed). USA: Mike Roche.

Dutton. W.H. (1962). Attitudes of junior high pupils toward arithmetics. The School Review. 64 (1).1.S-22.
 and tash percepton duing cememan! - how! •":uh Developmunt. 6t (3), $830-8+7$.

Edkard ,J.S. (1995) .Correlating attitudes and college majors among

 undergraduate women. Unpublished Master's thesis. Chadron State College, N.E.Ehun. A.S. (2001). The effective teacher. Iournal of Ressearch and
Development in Education. 1 (1), 86-92.
Ernest, J. (1976). Mathematics and sex. American Muthematical Monthly, 83, 595. 614.

Ernest. P. (1989). The knowledge, beliefs and attitudes of the mathematical
 113-133.

Eshun, B.A. (1987). Sex related differences in mathematics achievement of secondary school students. Unpublished paper. University of Cape Coast.

Eshun, B.A. (1999). The pattern of mathematics achevement of secondary school students in Ghana. Jowrnal of Science and Mathemataics Education,2 (1), 22-32.

Evans,J. (2000). Adults' mathematical thinking and emotions. London: Routledge Fahner.

Fall. (1998). Mathematios and dyslexia persperives: Intronumand deveria association.

Fang. Z. (1996). A review on teacher beliefs and practices. Educational Research,38(1), 47-64.

Fennema, E. (1984). Girls, Women and mathematics. In Fennema L. \& Ayers, M(Eds.). Wome'n and mathrimatic:s equity or erpulty': N .

Berkele, CA: McCutchan Publishing Corp.

Fennema, E, \& Carpenter, 'T.P. (1981). Sex-related differences in mathematics: Results from the national assessment.

 achievement, spatial visualisation and affective factors. American Educational Resuarch Journal, 14,51-77.

Fennema, E.H...\& Sherman, J. (1979). Sex -related differences in mathematics achievement and related factors :A further study. Journal for Research_in Mathematic: Echucation., 10,189-201.

Fontana ,D.(1989). Psychology for teachers .London: Macmillan Publishers.
Fontana, D. (1993). Psychologv for teachers. London: Macmillan Publishers
Fox. L.H. (1977). The effects of sex role socialisation on muthematic:s participation and achievement in women and mathematics: Research perspecture for ('hange. \ashington 1).(

Forgasz. H.J.(1995).Gender and the relationship between alfective beliefs and perceptions of grade seven mathematics classroom environment. Journal of Ecincational Studies in Mathematics, $2 S(3), 218-239$.

Fraenkel, J.R, \& Wallen, N.E. (2000). How to design and evoluate ressearch in education. ($4^{\text {th }}$ ed). USA: McGraw-Ilill Companies Inc.

Friedman, L.(1989).Mathematics and gender gap: A meta analysis of recent studies on sex differences in mathematics tasks. Revien' of Educational Resseard.59.185-213.

Freislich. M. \& Bowen-James, A.(2003). Gender and appoaches to stut! ing mathematics. Instraliam Journal of Mathomatne Liducothon.

6 (9). 318-325.
Gagne. R.M. (1977). The condutions of learning. (: ' ed,: Vew York: Holt. Rinehan and Winstun.

Gibson. S.\& Dembo. V. 1NS +1 . Teacher efficae: 1 eonstruct ialidation.

 presented at the annual meeting of the American educational research association. \ew Orleans. I. $\$.

Gillespie. J..\& Bonnie. V. (1083). Personality tspe matmathantio
 $+021$.

Gopel Rao. G.S. (1968). The evaluation of certam imellectual and cognitive

 femule . L'npublished doctoral dissertation. Lniversity of Marsland.

Green. J.. \& Smy ser. S. (1996). The teacher portfolio) . I stratien ior

Greenwood, J.(1984). My anxieties about mathematies anniely. Vathematic, Teacher.77.662-663

Gregory. W.L. (1978). Locus of control for positive and negative outcomes

Grootenboer. P. J. (2002). Affective development in mathematics: A case of primary school teachers. Research in . Mathematic Elucation.0. 511-557.

Gutbezahl. J. (1995). How regative evpectancies and dutude undermine females ${ }^{\circ}$
 Mathematic Litucallon. 3. +42-484.

Hammil. L.(1987). Intellectual educationd hest and méaructicm. Dutton: New York.

Halloran. J.D. (1967). Atuitude formation and chanse. Britain. I.eicester Universit? Pres.

Hanna. G. (1986). Sex differences in the mathemaits dehievement of eighth graders in Ontario. . Iommal for Rescoth li in . Mathematic Education, 1 (3). 231-237.

Hanna.G.. Kundiger. F...Larouche.C. (1000). Mathomation achiciement if

 olds: Effects of games and puzzles. Ed. D. Thesis. Indiana state 1 niversity.

Heaton, R.M. (1992). Who is minding the mathematics content: A case study of fifth grade teacher. Elementary Rchuol Journal. 93(2).153162.

Heider. F. (1958). The psychology of interpersonal relatiom: Vew Vork: John Wiley and Sons Inc.

Hembree. R.(1990).The nature, effects and relief of mathematics anxiety, Journal for_Research in Mathematic:s Education, (21), 33-46.

Herrington. A.I. (1990). Strategies for developing mathematical
 Mathematical turning points. Australian Assaciation of Mathematics Teachers. Hobart. Tasmania, 325-340.

Hopko. ,D.R..\& Ashcraft.M.H.(1998). Mathematics anxiety and working memory: Support for the existence of a deficient inhabitation mechanism . Sournal of Anviety Disorders . I2 (t) 3 3+3-355.

Hughes, J. (1978). Attitude is key to success. Schoul Shop, 37. 76-80.
Husen, T. (ed), (1967). International study of achicremen in mathematics
Vols. I \& 2: New York: John Wiley and Sons Inc.
Hyde. J. S.. \& Linn. M.C. (1988). Gender differences in verbal ability: Λ meta-analysis: I'sychology Bulletin, i(1). 53-(1).
 Bulletin. 107. 139-155.

Hyde. J.S.. Fennema. E.. Ryan. M.. Frost . L. A.. \& Hopp. C. (1990). Gender comparisons of mathematics attitude and effect, A metaanalysis. Psychologr of women qumberty. 14. 299-324.

Imai. J.(1993). Causal relationships between attituder tow and mathemation
and perception of matnematics teachers on students. Journal

International Institute of Environment \& Development (1992).
Johnson, S. (1987). Earl! development sex differences in science and mathematios In the L'nited Kingdom. . ourrial of Larly. Adolexcencio. 7.21-23.

Jones. L.V. (1988). School achievement trends in mathematics and science and what can be done to improve them. In E.Z. Rothkopf (Ed). Review of Rexarch in Edacation, 15.307-3+1.

Jungwirth. H. (1991). Interaction and gender findings of a micro ethnographical approach to classroum discourse: Educational Studic: in Mathematicis. 22. 263-28t.ESMIIJ

Psychologist. 27 (10), 65-70.
Karp. K.S. (1991). Elementary teachers attitude toward mathematics: The impact on students autonomous learning skills. .ichool scichi and Mathematic: 1^{10} (0), 205-270.

Keys. W. (1999). What cim mathematics educatom minghand lam fiom
TIMSS? Educutimal Research in livalumion.5(2). 105-213.

Kifer, E. W. (2002). Students' attitudes and perceptions. Analysis of the TIMSS data. Netherlands. Kiuwer A.lademic Press.

Kenschaft, P. (Ed) (1991). Winnung women into math'matic: Washington. D.C. Mathematical Association of America.

Kerlinger, E.N. (1986). Foundations of behaviour ress'arch. Forth worth: Holt, Reineheart and Winston Inc.

Koehler .M .S.. \& Grouws .D.A.(1992). Mathematics leaching practices and their effects. In D.A Grouns (ed). I/mullooh of research on mathematics seaching and learnines. New Y'ork: Nacmillan.

Kpemlie. S.K.(1993). Sex-related differences sumong jumion secondury schowl students in Cape Coast. Unpublished Long Essay, University of Cape Coast.

Kpemlie. S.K.(1993). Altitudes of student., toward mathematic: in single sex female schools. Unpublished PG(1: Dissertation, University of Cape Coast.

Kpemlie, S.K. (1996). Improving girls' achievement in mathematics at Abor secondary school. Masters Dissertation. University of Cape Coast.

Kulm. G. (1980). Research on mathematics attituce hommal/w Researth in
Mathematic: Education. 1, 356-3s1.
Kyles, I.. \& Summer. R. (1977). Test of attainment in mathematic: in schools.
Windsor: NFER-NELSON.
Lamp. P. (1997). Gender differences in mathematios participation: An
Australian perspective. Educotiondel Sitach ? ? (1), 105-12-1.

Leach L．（1994）．Sexism in the classroom：A self－quiz for teachers．Science Scope．17（6）．54－59．

Leder，G．C．（1990）．Gender differences in mathematios：ハn ハーバルい・ in
Fennema E．and Leder，G．（Eds）．Mculk＇matic＇s and womber：
Influences on teachers and students．Teachers＊College Press．
New York．
Leder，G．C．（1992）．Mathematics and gen！der：changing perspective，in D．A．
Grouws（Ed）．A handbook of researith on mathimatic：s teaching and learning：New York：Macmillian Publishing Company．

Leder，G．C．（1993）．Teacher／student interactions in mathematics classroom．
A different perspective in Fennema ．E \＆Leder．
G．C．（Eds）．Mathematics and gender：Australia．Queensland University Press．

Lee，V．E．．\＆Lockheed．M．E．（1990）．The effects of single－sen schooling on achievement and attitudes in Nigeria．Comparative Education Review，34（2）．209－231．

Likert．R．A．（1932）．A technique for measurement of attitude．Archives of psychology．New York．

Levine，D．U．（1985）．Guidelines for change and innovation in the secondary school curriculum in NASSP Bulletin．May：9－14．

Livine，G．（1972）．Attitudes of elementary school pupils and their parents toward mathematics and other subjects of insurwetion．Iommal

 Republic．Santiago Dominican Republic．unpublished report．

Lyon, G.R. (1996). State of research. In Cramer, S.. \& Lillis, W. (Eds). Learning disahilities•Lifelong Issw' . Baltimore: Books Publishing.

Maccoby, E.E., \& Jacklin, C.M. (1974). The psevchulugh of ser differences. Standford University Press.

Ma. X. \& Kishor. N.(1997). Assessing relationship between attitude toward and achievement in mathematics. Journal for Research in mathematic: Education,28(1), 20-1 ${ }^{-}$

Ma. X. (1999). Analysis of the relationship between and iely ward mathematics and achievement in mathematics. . Iomrnal for Research in Education. 30 (5), 250-5+(0.

Maqsud ,M.,\& Khalique.C.M. (1991).Relationships of some socio-personal factors to mathematics achievement of science schools and University students in Bophuthatswana . Echucenional Situdies in Mathematics. 22 (4). 377-390.

Maraffi, M. (2004) .Girls' attitude, .self-expectations and performance in mathematics. Educational Studies in Afathematics. 7, 359-375.

Mathematical Association (1988).Atanging mathemutic 4 . The mathematical association and Stantey Themes, ('hefenham.

McCleland .D.C. (1985). The achioving socict! ($t^{\text {th }}$ cil). New York: Princeton: Van Nostrand Publication Company.

McLeod, D. P.(1992). Research on the effect in mathematics education: A reconceptanasation handlook of research on mathomatic: reaching and learning. D.A.Grous. New York: Macmiltan.

McGee, M.G. (1979). Human spatial abilities: Psychometric studies and
environmental, genetic, hormonal and neurolygical influences.

Mclead. D.B. (1993). Research on affect in mathematics education: , I
Reconceptualisation. In D.A. Grouws (Ed.). Handbook of research on mathematics teaching and learning. London:

Macmillan Publishing Company.
Mereku. K.D. (2000). School mathematics in Ghatha: 1960-2000.
Mathematics Connection. (1), 18-24.
Meyer, M.R., \& Koehler, M.S. (1990). Internal influences on gender differences in mathematics, In Fennema. E and Leder. G.C. (Eds). Mathematic:s and gender influmees on twathers and studens) New York: Tuachers Conloer Pron.

Mills, R.W.. \& Mills, J. (1993). Bilingualism in the primary school. London Routeledge.

Minato, S.. \& Kamada. T. (1991). Causal relationships between cognitive and affective variables in junior high school mathematics. Journal for Research in Mathematics Echucution. 8. 335-340.

Ministry of Education(1992). Mathematics in the .Vew Zealdund curriculum. learning media. Wellington.

Ministry of Education (1997). Mathematics syllahus for primary schools. Ghana.

Ministry of Education (2001). Mathematic: s.rl/uhur for primury schuols. Ghana.

Ministry of Education (2002). Performance monituring test results. Ghana.

Mogegeh. V.K.D. (1989). Procecdeng of the sath wimp, willund ecomed
 mathematical cience anociatoon ('nivessity of Dar-esSaalem.

Mohammed. F.A.A. (2005) (waluation of the leaning achievement levels of

Moses. J.J. (1991). The allituder of high-and-low: achicumes semen and eighth grades students toward mathematics. Dis.sertation Abstracts International.52 (6). 2057 A.
 Jewn hand irul fith graters in Iratel: 7he cht et of learner. related-sariahles. Boston college: Linpublished manuscript.

National Assessment of Educational Progress [AAEP] (1976). Science achierement in schools. A longitudinal study of learning to use childrens thinking in mathematics inturtion . Journol for

Vational Council of Teachers of Vathematics [$\mathcal{N}(1 \mathfrak{i l}](1990)$. I longitudinal study of learning to use children's thinhing in mathematics instruction Journal for Research in Vathematic: Education, 2-(5) 610-620)

Nenty. H.J. (1986). .turihuthon andlusis of studem 'performance and achievement-related behaviour durmy English language mock WASC Exammations. The Progress in education $: \times 111(S)$. $17+181$.

performance in mathemath, by 心6, wat: whoul lice stadent
 110

 $-151-13:$
 Educalional Studic: in Mathemaic : 30. 53-¹.

Nichson. M. (1092). Ihe enfure of the mathematics clansoom: An unknown

 Publishing Compan!.

Nitho. A.J. (2000). Educational asacrame'm of sudens. New Iesses: Prentice

 Cape Coast.

Nwana, O.C. (1992). Introducion to ceducationat revar h tor viluk'nt
Teachers. Iseyin-Nigeria: Irepo Prinumg Pess.
Okpodjah, B.T. (1991). Attitudes of students towdrdmathematies in single-sex female secondary schools. Unpublished PGCE Dissertation. Universit! ol Cape Coast.
 Press. Cambridge.
 Heinemann.

Otchey, J.E.(1999)_Attitudes of teachers and studenh tow'ard mathematics
 achievemen. Unpublished M. Phil. Wesis. Unitersit. of Cape Coast.

Pagano, R.R. (1994). Understanding statistic: in the hehoriontial wainees (4 $4^{\text {th }} \mathrm{ed}$). U.S.A.: West Publishing Compan?.

Pajares, M. F. (1992). Teachers beliefs and edacational resench: ('learing up
 $62(3) .307-3.32$.

Pedro.J.D.. Wolleat P.. Fennema,E.. de Becher.A.I).(1981).Flection of high school mathematics by females and males: Attributions and
 218.

Ramirez, J.M. (2003).The distribution of mathematic hatowedee among Chilean fourth graders and related caplannory fictors. Research in Malhematic: Eitucation. 8.2.f()-275.

Randhawa, B.S. (1991). Three year study of Saskatchewati high school Sophomores. Alherta. Ienurnal of Ediucational Re search, 37(3). 241-257.

Raymond, A.M. (1993). Understanding relationship between beginning elementary teachers’ mathematics beliefs and teaching practice. Review of Educational Research. 28.(4). 406-432.

Raymond, A.M. (1997). Inconsistency between a beginning clementary school teachers mathematies beliefs and teaching practice. Journal for Research in Mralhematic:s Educallon, - is 15), 5.50.5\%

Rech, J., Hartzell. J. \& Stephen. L. (1993). Comparisons of mathematical competencies and attitudes of elementary education majors with established norms of a general collcge population. School Science and Mathematic:s. 93 (3), 141-124.

Relich, J., Way, J., \& Martin, A. (1994). Attitudes of teaching mathematics: Further development of a measurement instrument. Mathematic:s Educ:tion Research Journal, 6 (1), 56-59.

Relich, J.D. (1996).Gender self-concept and teachers of mathematics: Effeets on attitudes to teaching and learning. Fommal on tiduc atmonal

Reynolds, A.J., \& Wallberg. II.J. (1992). A process model of mathematics achievement and attitude. Journal of Resconch in Mallucmatic:s Education.23. 306-328.

(Ed.) teaching mathematics. Cionm 11 I M. 1 onden and
Canverra.

Richardson, H.H..(1964). Myself when young. Heinemann Melbourne.
Richardson. V. (1996). The role of attitudes and beliefs in learning to teach. In: J.
Sikula (Ed), Itandhook of researchon recther sducation. New Yorh:
Macmillan Publication.

Rowland. M.. \& Insheep, J. (1963). Subjeet performances of upper elementary school children in Cajon Valley union school district. Califonia Journal of Educatonal Research, $1 \neq$ (4) , $15^{-}-191$.

Sadker, M..Sadker. D..Klein. S. (1991). The issue of gender in elementary and secondary school education. Review of Research in Education, 17,269-334.

Saunders. M.N.K.. Lewis. P.. \& Thornhill. A. (1997). Research methocls for busimess smichns. Londion: Pimman Publishing I 1 .
 The role of language development. Washington DC. National clearing house for Bilingual Education.

Sax, G. (1974). Principles of educational measurement and evaluation.
Belmont. alifornia: Wadsw orth Publishing Corp.
Sayers. R.W. (1994). Gender differences in mathematics education in Zambia,
Journal of Echucational Stuches in Muthematics, 26 (t). 389-
403.

Schildkamp-Kundiger, E. (1982). An international review of gender and mathematic: Columbus. Ohio. Laic Clearinghousc forscience. mathematics and ent iromental eduation.

Schoenfeld, A.H. (1988). When good teaching lead to bad rewults: The disaster of "svell-taught" mathematics courses. Journal for Research in Mathematic Education 23 21, 1+5-160

Schoenfeld, A.H. (1989). Explorations of sudens mathematic ll beliof and behaviour. Journal tor Rescurch in Wathematu• Education, 2o (4), 338-355.

Schofield. H. L. (2007). Teacher effects on cognitive and affective pupil outcomes in elementar! school mathematios. foumal on

Schorr.R.(2000). Impaet at the student level: A stent of the efiest of a teache development intervention on students mathematial thimheng. Journal of Mathematical Behaviour:19(2).20ツ231.

Schwartz, W..\& Hanson. K. (1992). Equal mathemutic: ciduc ation for temale students: Newton. Educational derelopmental cemter, Ine.

Seals, J. (1973). Development of gender-roke. New Ionk: John IV ite and
Sons.
Selkirk, J. (1974). An enquiry into attitude and performanee. Ihathimatics Teacher: 66. +2-43.

Sells. L.M. (1976). The mathematic: filter and the 'duculan of wombin and
 psy chological ansociation meeting. Wanheton I). ('.

Sharples. D. (1969). Attitudes to junior schoot activ itios. . In mmal of

Shaughnessy: J.. Haladyna. T..d Shaughnessy .I.N. (1083). Relations of
student teachers and learning environment variables to attitude toward mathematics. School.Science and Mcuhemutics, 83 (1). 21-37.

Shuard. H. (1986). The relative attaiment of hoy and girks in mathematics in the primary years. In: L. Burton. (F-d). (inN momanhematic: can go. London: Holt, Rivehart and Winston.

Shuck. S. (1997). Using a research simulation to challenge pronpective
 Education. 13 (5). 529-539.

Sontiros. P. (1998). Social research (2 ${ }^{\text {nd }}$ ed.). London: Macmillian Press Ltd.
Spikell .M.(1993). Teaching mathematics with manipulatives: A resource of activities for the K-12 tewher. New York: Allyn and Bacon.

Sprinthall. N.A.. \& Sprinthall. 1..(1990). The teacher as and adeleamer: A cognitive - developmental view. In Griffin, G. (Ld) S'aff development. The ' 'niversity of Chicago Press.

Stein. A.H.. \& Smithells. J. (1969). Age and sex differences in children's sex role standards about achievement. Developmental pyehologn: 1

Stein. A. 11 .(1979). The effeets of sen role standards fior atheremem and motivation. Developmental p.ychology' . 4 .

Stipek. D.. \& Granlinski. H. (1991). Gender differences in children’s achievement-related beliefs and emotional responses to success
 83 (3). 361-371.
Stipek. D.. Givvin. K.. Salinon. J.. \& MacGyvers. V (? (ol) Teachers' beliefs and practices related to mathematw inveruction Ia a hang and

 primary teachers Research in Mhathemetls , I ducathom in Itustralia, 1. 1-9.

Suetman. D.L. (1991). Fementar? kachers mathematice amsiely and the ir students' attitudes toward mathematic Misertation Ahseract International. 52 (61). 21558.

Swetman. D.L. (1995). Rural elementary students' allitudes toward mathematics: Rural Educator: 16(3). 20-22.
 weching. Acema: Blach, Mash, I W.
 mathematics classroom: Reflection and transformation. Journal of Educational Studies in Miathematics, 28 (3), 263-27t.

Tapia. M. Berry. C. (2004). An instrument to measure attitudes . Academic exchange quanterly summer. vol. 8. Fsum 2.

Tartre. L.A. (1990). Spatial skills. gender and mathematics: In Femema. E. and Leder. G. (Eds.). Mathematics and gender :Influences on teachers and students. New York.

Tartre. L.A..\& Fennema. E. (1995). Mathematics achievement and gender: A
 (Girades 6-12). International Jourmal of Eiduc atminal Situder in Mathematics. 2813). 199-216.

Taylor. M. (1987). Relationship between classroom process and student
performance in mathematics. Dissertumon.th, wh
Internaltimal. (5). +4
The West African Examinations (ouncil ($i ; 81$) fmmal rephin

The Third International Mathematio and hience Studtel|lN1S| (1994-5)

 research. In Grouws. D. (Ed) Handhook of research in mathematic: teaching and learning. New York: Macmillam.

Thurstone.L. L.. \& Chave.E.I.(1992). The measureme'm of atrmute. Chicago: Unicersity Pres.

Thorndike-Christ. A. (1991). Relationship between attitudes luward mathematics an ' performance. gender and mathematics Course. Dissertation Ah.stracts. 52(4).2057A

Tobias. S.. \& Weissbrod. C. (1980). Anxiet: and mathematics in update. Hantard Liducumad Rowen 5リ. (1)-"
 Norton \& Company.

Tobin. K., \& Imwold. D. (1993). The mediational role of constraints in the reform of mathematics curricula. In Malone. J.. \& Taylor. P.
 mathematics. Australia: Curtin University of I echnolu!?

Travers. K.J., \& Westbury. I. (1989). The Ii:A studn of mathematics analysis

 (enarterh: 11 (3). 3-4.

Tricia. J. (2001). Using information effectively in education. (ISTC.201).

Tyler. B. (1956). Anastasia. S. (1958. Macioh. I : (10(1): inumerical and

L'ganda National Examinations Board (1999. 2003).The achievement of primary school pupils in Uganda in Einglish and mathematics NAPE report. Kampala.

Wilmot.E. M. (2001). Gender differences in mathematics in primary schools in Ghana. Mathematics Connections, 12. 25-29.

Willis. S.(1989). Real girls do not do mathematics: Giender and the comatraction of privileges. Geelong: I eakin University Pess.

Wilson. B.J. (1992). Mathematics education in Africial. In M.S. Arora (Ed.): Studies in mathematics: Moring into the twenty first century, 8. UNESCO Paris.

Wolters. C.A.. \& Pintrich. P.R. (1998). Contextual diflerences in student mutivation and celf-regulated kanne in mathenmice. Lastin and social studies classroums. Instrin thonal in teme 20, 20, 27-47.

Zeleke, S. (2000). Gender differences in mathematics achievement: A search
for explanation. Zimbahwe Journal of Viducutional Re search.
12(1).100-1/8.
Zeleke, S. (2001). Gender differences in mathematic profomance in the elementary grades: Implications for women \frown participation in scientific technical occupations. 「askon Africa social science. Research Review: 17(2).107-127.

Zeleke. S. (2000). Gender differences in mathematics achievement: A search
 12.1.100-11.

Zeleke. S. (2001) (sender differences in mathemath profir mance in the elementary grades: Implicatom for women - patmenation in scientific technical necupation Vavern Whion andal seience

APPENDIX 1
 CNIVESITY OF CAPE COASI

 FACLILTYOF EIO(AIIO

E-mail: LCCdpe atrianonline vahon com!

Our Ref. \o: PI D 49.1 189
Y'our Ref. \o...

The District Directur
C.I. .

Mansa Kiroho y ilir Kiohn Districta

LETTER OF INTRODCCTIO

The bearer of this letter Mr. Christopher k. .dds. is a Posteraduate student at the Department of Primary Education. I nivernt! of Cape Coast.

He is undertaking a project or Primary School Teachers` and Pupils`
Attitudes Toward Mathematics and their effects on Pupils’ Achievement.
In connection with this. he needs to conduct a pre -lest to tox the irstrument and later collect data in schools in the District.

The project is academic in purpose and data collected will be treated a
 necessary assistance that will enable him carry ou hr-purew

Yours faithfull.

Ag. Head of Department

APPENDIX B
 INIVERSITYOF (. IPY (()
I
 FACULTY OF EDIC C.ITIO.
 DEPARTMENT OF PRIMARY FIOI (VIOV.
 STUDY ON PRIMARY SCHOOL TE ICHFRS•ANI P(PILS
 ATTITLDES TOWARD MATHENATICS (ND PLPILS•
 ACHIEVEMENT

Dear Pupil.
This project is academic in pupose thas. 111 . Wulleet infurmann on your personal opinion and fectings about Pimatl: showl tachere and pupils" attitudes toward mathematies and Pupils" .ehesemen in the subioct.. The information that ou are going to provide will help educators. teachers. and stakeholders to determine further improvement that will help pupils to enjoy mathematics in school.

I should therefore be grateful if you could answe the questionmaire as honestly as possible.

I assure you that the information that you pronste will be unated confidentiallt ihat is why sour name is not required in tive questionmaire

Thank :ou.

Yours truly.
(ADDY' CHRISTOPHER K.)

SECTION A

Place a tich $\| f$ in the appropriate boscu ar fill in the hamh pate
1 \ament School
2 ber Bo! | | 1.1 |
3. Age \qquad

SECTION B PIPIIS• QLESTIONN IIRF

This section is a find nut how you feel aboumathemath. - Platere red the statements carefully and place a tich [] agains canh fions wh the options. which correspond to your agreement an dragre:m. n w the statemen.

Tick: if you Strongl agree[SA]

If you Agree [A]-

If you Disagree
If you Disagree [D]

If you Strongly Disagree

[SD]
If wou Stronek Disagree ,
STATEMENTS
E AMPLE: I think manematics teacher encontachin:
me.
4. Yathematics lessons make me feel bre in class
S. 1 could do mathematice hetter if my teachers are patem with

- me in class.

6. Ihe way my teacher teaches mathematics maken me $\overline{\text { w }}$
dislike the subject.

- In mathematics teacher encourages me to learn
mathematics.

8. I think my mathematics teacher thinks I am supuid
9. I have always been afraid of mathematics.
10.1 avoid mathematios hecause 1 am not ver: wow with numbers.
10. I like mathematics more than any other vubjeer.
11. Mathemation is ier? interesting.

13 I would like to soop the study of mathematice al the iss laces.

If I do not like mathematics.

28. I usually get moss of my matheinatics coriscl.
29. I find it difficult to solve mathematics problems on man.
30. Mathematics is one of the most difficult subicict that Luarn at school.
31. Mathematics tests often seem difficult for me. i \qquad


```
APPENIDI\ (
```



```
    !(|||\||| \IN I|| \l||| 1
```



```
mathematun:m,.小
```



```
name 's not required in the quevimmate.
```

Thanh sous.

(CHRICTOPHEF iJI),


```
\ \.1%.,."
\ SON \lik, ;
```



```
    in.f.l
```



```
\\1
                                . 1,11 1
                                i
                                1.1
"ther-19pull:'
```



```
    (crt.1.:..' | | : 
```



```
    4. \mminc: i rumb m:"nmbla
    Boys.... .brk . . L. idi
```


SECTION B

20 ．I interact with boys more than girls during mathematm instruction．

22．Most pupils mise my mathematics lescoln．
23．Pupik do seem to underatand me when Itah them mathematics．

24．Ifeel nerwous when pupils fail to grayp simple
mathematics concepts．
25 ．feel discouraged about the wa！pupils perform in ｜mathematics

26．Pupils responses to simple questions in mathemation man me feel angrs．

27 Girls fear mathematiu more than boss
28．Lisually hoys paticipate in mathematics berom mane＂an
ฏiね。

－バい。

，
than girls．
31．Boys need mathematios in life more than girls．
2．It is useful for gilf whan mathematio．
3．If Tworh carefull！I find mathematios can！

pupik learn at chool35. Mathematics prownirn , fiten frighten me
nunters and '6ll.
1

\PIVNIN

いさIHいい！い


```
|!| \い!.!', ', :'!
```



```
Anc\ampl&Nごいし「!"*
112h•* 15 !in'i`|, duc.1人
A & 12-
1(14
    1)"
    !M...... . . .'...'
```



```
            |ul!ゃん 1 \ \ - 
        If =- % find, 'mw.the the semence trm
```

```
        A 1
                            B. 6
        C. }
                            I). 2
    2.Subtract
    -2865
                                    | ',.
                                    &-4
                                    i) 6
                                    is
```

4. If 4 oranges cost 1200.00 , find the enst of 12 of them.
A. c3.600.00
B. © 30.0000 .00
(.) ${ }^{2} 400.00$
D. $\mathfrak{c 1 . 2 0 0 . 0 0}$

5. $\quad 1 / 2 \ldots / 4$
A. 1,1
B. $I_{2}=I_{4}$
C $1 / 4-\frac{1}{2}$
D. $: 21_{4}$
6. $(225-191) \ldots(225+191)$
A. $34<416$
B. $34>416$
C. $34=416$
D. $416<416$
7. $\quad(51 / 4+7, \ldots$
8. 34 3i4
$183_{4}{ }^{\prime}+$
$\mathrm{C}^{2}+{ }^{2}+$
1) ${ }^{\prime}{ }_{i}$
8. $\quad 7320 \div 60=11$. find the value of n.
A. 1??11
9. 72011
C. 120
D. 122
10. $W=0.6, ~ 0.7$. Find the value of w.
A. 142
B. 0.1042
(. 4.2
1) 42

Use the information below to answer questions 101012.

Factors of 12 are $1,2,3,4,6,12]$

Factors of 18 are $|1,2,3,6,9,18|$
10. The common factors of 12 and 18 arc
A. $112.18 \mid$
B. |1.2.3.6|
(C |1.2..i|

1) , i. 11
11. The highest common factors of 12 and 18 is
A. [1]
B. $\lceil 12\rceil$
C. $[18]$
D. [6]
12. The sum of the common factors of 12 and 18 is
A. 18
B. 30
C. 12
D. 7
13. Express $/ 4$ as a percentage.
A. $25^{\circ} \%$
B. 75%
C. $70^{\circ} \%$
D. 30%
14. Express the ratio $32: 64$ in the lowest term
A. $1 \cdot 2$
B. $1: 3$
C. 1:32
D. $2: 1$
15. Solve $3+n=-3$
A. 3
B. -3
C. 6
D. -6

16．James senred 80% in a class test．W．nprew his score as a fraction in its lmest term．
1 ：
$13:$
（ $\because=$
1）．

17 Find the arean of the figure helow
Ltum．
$11-1 \mathrm{~m}$
13ミが…
（ 42em：
1） $1+\mathrm{cm}^{-}$
18 Write the vilue for ？
$1: 2$
13 ＇ 1
（ 11
（1） 25

he sell in lanuar＂
1 ：こ 11
B ： 2 ：
（． 31
D．i2（1）

20．What is the place value of the underlined digit in 35623 ？
1． ：
B． 504
C．Soric）
D． 50

21．Multiply 163
124
A． 978
B． 79.9
C． 187
（1． 3912

Use the information helow to answer questions 27 (423.
Nine boys obtained the following scores in science (ful/: $5,4,6,5,7,9,3,5$,

and 3

22. What was itic common seore'.
A. 3
B. 5
C. 9
D. 6
23. How many pupils obtained the common score?
A. 3
B. 5
C. 2
D. 9
24. If $w=125+35$, find the value of w.
A. 415
B. 451
C. 57
D. 4115

Nげリいい

11
2 B
$+i$

3．D

41
；1）
1.1
－ 1

A 11

41

1111
i)
$\therefore 1$

APPENDIV 1

List of selected circuits in the Mama Krof, Dハかtict

Rural Circuits

Asesewa Circuil A

Asesewa Circuil B
Sekesua Circuit

Urhan Circuits

Kpong/Akuse Circuit
Agomanya Circuit
Odumase Cireuil

い以巨いいい

1

Asesewa Ingluan Proman！	
Asesewa Methodin Primars	
Asesewa Penteonal 1 Primar：	
Brepan Kpeti Powh Primars	
lworworsh hpen Prmary	Primas：
Thohia Presty Plunar：	
－sesewa R^{\prime} C Pımary	Primar ${ }^{\text {P }}$
Aseena Presby Primaly	
Odomental 1 P Pumar	Primas：
Gavehene Methndis Primars	
Dzomo R ${ }^{\prime}$ Primar	Pimal
1 Mrohper R C Prumars	
Dana Korlewa L．${ }^{\text {Pamary }}$	Primar： 12
Sekesua Preshy Primary	Agormana R（ Primary 4
Sekesua Bishop Andor Primary	
Kpong E．P．／LA Primary	Agormanta R／C Primars C
Kpong Islamic Primar	Odumate Prath Primar？A
Kpong R／C Promar：－${ }^{\text {a }}$	
Kpong $\mathrm{R}^{\prime} \mathrm{C}$ Primar！${ }^{\text {B }}$ •	
Kpong Mehodial Priman！${ }^{\text {a }}$	Piman：
Kpong Methodis Pramar P ${ }^{\text {a }}$	
Kpong L／A／Presbs Prinary	

[^0]: parametria and pamantric techniques. The main shativitat tunk used in wat

