Edumadze, J.K.E., & Annor-Frempong, F. (2009). Gender differences in computer access and literacy –among agricultural students at University of Cape Coast in Ghana. In K. Opuku-Agyemang (Eds), *Culture, Science and Sustainable Development in Africa*. (pp. 363-376). Cape Coast: University Press.

GENDER DIFFERENCES IN COMPUTER ACCESS AND LITERACY –AMONG AGRICULTURAL STUDENTS AT UNIVERSITY OF CAPE COAST IN GHANA

¹Edumadze, J.K.E., and ²Annor-Frempong, F.

¹Computer Centre, University of Cape Coast, Cape Coast, Ghana; Email: jedumadze@ucc.edu.gh, jedumadze@gmail.com; ²Dept. of Agricultural Economics & Extension, University of Cape Coast, Cape Coast, Ghana; Email: papaannor@yahoo.com

ABSTRACT

Computer and its related technologies have become a standard and an enabling tool in almost every career worldwide. Therefore the issue of computer access and literacy have become important for higher education and institutions which churns out graduates for the world of work. The Information Communication Technology (ICT) policy of University of Cape Coast, Ghana is to ensure that all graduates acquire proficiency in ICT. ICT literacy and access are components of agricultural curriculum.

The paper presents findings of a study that determined gender differences in computer access and literacy among agricultural students at University of Cape Coast in Ghana. Survey design involving the use of questionnaire was used to collect data for the study. A cluster random sampling procedure was used to sample 144 respondents out the population of 585 undergraduate students in the School of Agriculture. The study concluded that there are gender differences in computer access and literacy among agricultural undergraduates at the University of Cape Coast. The study recommends compulsory ICT proficiency course and a scheme to acquire Personal Computers for students to bridge the computer access and literacy gap.

Key words: gender, gender differences computer access, computer literacy, information communication technology.

Introduction

Computer technologies are changing the face of education throughout the world and have the potential of providing more effective teaching and learning tools, serve as the medium to transmit content and encourage more immediate, relevant and authentic learning (Porter, 1997; Hawkins, 2003). Robertson (2002) has argued that computer technology will lead the transformation of education and may be the most important tool to occupy the central position in education once

occupied by books. Effective application of computer technologies in education requires computer literacy and access. Computer literacy and access are important to agricultural education because almost all facets of agriculture use computers.

The School of Agriculture, University of Cape Coast has recognised that the application of Information Communication Technology (ICT) in the field of education, homes and work places has increased over the years. Computing is therefore an important component of the curriculum for agricultural students enrolled at the University. Equal computer access and literacy are provided to all students since they are expected to be computer literate to keep up with the current information society and needs of work.

Computing is perceived by many as belonging to the male domain. The need to assess students' ability to use computers is a central tenet of education and research (Selwyn, 1997). Gender which is a significant factor in predicting an individual's potential interest and involvement in computing has not been explored at University of Cape Coast.

Purpose of paper

The paper presents the results of a study that sought to find out the level of computer access and literacy of agricultural students, so as to provide the critical mass of information required for future improvement of curriculum design and planning. Specifically the study sought to:

- Examine gender differences in Computer access among agricultural students of UCC in terms of:
 - a) Ownership
 - b) Location of Use
 - c) Frequency of use
- Determine gender differences of computer literacy among agricultural students of UCC in term of their ability to:
 - a) perform computer operating environment tasks

- b) send e-mailing tasks
- c) perform world wide web tasks
- d) do presentation tasks
- e) perform word processing tasks and
- f) knowledge on software categories

Literature review

Computer literacy is the knowledge and ability to use the computer and its related technologies efficiently. Computer literacy includes the understanding of computer characteristics, capabilities, applications, as well as the ability to use these knowledge in a skilful manner that is productive and suitable to an individual's roles in a society (Simonson, Maurer, Montag-Torardi, & Whitaker, 1987).

Computer access is the ability of an individual to reach and easily obtain computer for use. It is associated with the amount of time spent working with computers (Orpen & Ferguson, 1991), ownership (Brock, Thomsen and Kohl, 1992) and higher levels of literacy (Gattiker and Hlavka, 1992).

Gender is the roles socially assigned by being female or male, girl or boy, woman or man (Zanden, 1990) and learned behaviours expected from members of each sex from the society (Andersen and Taylor, 2004). Many studies have concluded that gender differences affect access and literacy in computing. Males are more likely to use computer than women when equal access is provided (Becker and Sterling, 1987 and Arch & Cummins, 1989). There are differences in the level of confidence in the application of computer skills, interest and perception of the benefits of computers among boys and girls in elementary and secondary schools. The fewer girls than boys have access to computers at school and boys are more self-confident about their potential with computers and perform better than girls in computing tests. (Lancaster ,2007),

According to Volman & van Eck (2001) females tend to be less interested in computers, have less positive views about the value of computing, and report more computer anxiety and less

confidence in their computer abilities. Consequently, girls are often less computer literate than boys (Schaumburg 2001). A number of environmental and social factors such as early exposure to computers, frequency of computer use, parental and peer support for ICT learning which contribute to computer literacy tend to favour boys (Cassidy & Eachus, 2002; van Braak; Vekiri & Chronaki, 2008). Traditionally, girls tend use computer less in their spare time and have more negative attitude towards them (Barnert and Arbinger 1996, Brosnan 1998, Metz-Goeckel et al. 1991, Okebukola 1993, Shashaani 1994). Males dominated computer ownership (Culley, 1986) and are perceived to have higher knowledge about computer functions and disk operating system use (Geissler & Horidge,1993). Males on average spend more hours per week with computers than females. Gender difference in computer literacy was found to diminish with increased computer experience (years and weekly usage) (Smith & Necessary, 1996).

METHOD AND DATA SOURCES

The study used the survey design in the form of questionnaire to collect data from the respondents. A panel of experts ensured the content validity of the research instrument. The study targeted all undergraduate students enrolled in the B.Sc. Agriculture programme at the School of Agriculture, University of Cape Coast. The School of Agriculture is one of the seven Faculties of the University of Cape Coast, Ghana. The school has five departments namely Department of agricultural Economics and Extension, Department of soil science, Department of Agricultural Engineering, Department of Animal Science and Department of Crop Science. Other support units include research and teaching farm, and technology village. The school currently runs postgraduate and undergraduate programmes leading to award of degrees in B.Sc. Agriculture, B.Sc. Agricultural Extension, and B.Sc. Animal Health.

The student population in the School numbered 585 in 2008/2009 academic when the study was conducted. A cluster sampling procedure based on the levels was used to select the level 200 class out of the four levels in the School of Agriculture. The level 200 constituted the sample size

of 200 out of which 144 respondents returned their questionnaires. The response rate of 72% was deemed adequate for the study.

The SPSS (version 16, 2007) was used to generate statistics to describe the data. The perceived level of literacy were measured on a Likert-type scale ranging from 1 to 3 where 1= poor, 2= good, and 3= excellent. Croncbach's Alpha of 0.8 on scales was deemed consistent for the study. Frequencies and percentages were used to describe access in terms of computer ownership, location and frequency of use of computers. Means, standard deviation and t-test were used to establish the difference in computer literacy.

RESULTS AND DISCUSSION

Gender differences in computer access

The study revealed that less than one-third (29.1%) of the respondents own personal computers. Of those who owned PCs, 30 (69.8%) were males while 13 (30.2%) were females (Table 1). This indicates that more male respondents have computers than females. This confirms Gunn (2003) study that concluded that women are still less likely than the men to own a computer.

Table 1:	Computer	Ownership
----------	----------	-----------

Ownership	Male	Female	Total
Yes	30	13	43
No	62	39	101
Total	92	52	144

Location and Frequency of Access to the Computer

Table 2 shows that results of the location and frequency of use of computers by students on University of Cape Coast campus. Generally computer access to all students was quite high in all locations except at the departmental laboratory. Computer access is low at the departmental computer laboratories since most access is allowed for postgraduates only. Undergraduates can access computers at both ICT Centre and Socket Works-a private Internet cafe that authorities of UCC have give laboratory for their operation. The percentage for access were 89.1%, 47.9 %, 68.8%, 56.9%, 75.7% and 67.4% respective for access at residence, department laboratory, ICT Centre, Socket works, private Cafes and friend's residence. Of the respondents who used computers daily, every other day, weekly, monthly or occasionally, more males had access than females. The percentage for total access is shown Table 2.

			Freque	ency of A	ccess to C	omputer			
	Gender				Every other				Total
Location			None	Daily	day	weekly	Monthly	Occasionally	Access
Residence									
		Male	16	37	12	9	8	10	92
		Female	10	18	6	2	1	15	52
	Total		26	55	18	11	9	25	144
Departmental Laboratories									
Laboratories		Male	49	2	1	9	6	25	92
		Female	26	3	3	1	1	18	52
	Total	i emure	20 75	5	4	10	7	43	144
ICT Centre									
		Male	26	2	1	23	5	35	92
		Female	19	3	2	4	0	24	52
	Total		45	5	3	27	5	59	144
Socket Works	Gender								
		Male	37	2	2	10	3	38	92
		Female	25	5	3	3	1	15	52
	Total		62	7	5	13	4	53	144
Other Private Cafes									
		Male	20	3	10	22	7	30	92
		Female	15	5	4	7	0	21	52
	Total		35	8	14	29	7	51	144
Friends' Residence									
		Male	28	7	9	14	3	31	92
		Female	19	5	4	5	1	18	52
	Total		47	12	13	19	4	49	144

Table 2: Location and Frequency of use of Computers

Gender Differences in Computer Literacy

Respondents' ability to use some computer applications including word processing, spreadsheet, presentation software, internet browsing (sending an email, sending and retrieving an attachment), and general operating environment were tested to determine their computer literacy level. Respondents rated their perceived knowledge and level of confidence on Likert type scale from range 1= Poor, 2= Good, 3=Excellent. The ability of respondents to perform computer operating environment tasks is presented in Table 3.

usits related to computer operatin	0				T-	Sig. (2-
Tasks	Gender	Ν	Mean	Std.	value	tailed)
Creating and opening a simple	Male	92	2.54	0.72	5.62	0
text document	Female	52	1.71	1.05		
Saving a document in a new file	Male	92	2.68	0.66	3.65	0.000
and in an existing file.	Female	52	2.19	0.95		
Closing a document	Male	92	2.60	0.81	4.90	0
	Female	52	1.85	1.00		
Printing a document from a list	Male	92	2.52	0.82	4.92	0
file option.	Female	52	1.77	0.98		
Using the print preview option	Male	92	2.42	0.84	5.20	0.
before printing	Female	52	1.63	0.93		
Retrieving an existing	Male	92	2.52	0.83	4.91	0
document, edit and save in new	white	12	2.32	0.05	7.71	0
file.	Female	52	1.75	1.03		
Using RENAME to change the	Male	92	2.33	0.94	3.42	0.001
name of a file.	Female	52	1.75	1.03		
Accessing and using the HELP	Male	92	2.08	0.87	2.98	0.003
function	Female	52	1.62	0.93		
Installing and using a new	Male	92	2.00	0.85	4.13	0
software program without much help.	Female	52	1.40	0.80		

Table 3: Mean, standard deviation and t-values of respondents' ability to perform tasks related to computer operating environment

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=Excellent

With regards to their abilities in performing tasks involving manipulation of documents (operating environment), both male and female respondents rated their competencies to be good or excellent (means raged from 1.65 to 2.68). The only exception is the installing and using a new software program without much help that females perceive their competency to be poor

(mean=1.4, s.d= 0.799). Therefore is the need for users to acquire competency in this area. In the past, software installation was done either by the Computer Professionals or experienced end-users but with more and more software becoming user-friendly and intuitive, this is likely to change in the nearest future. In all cases there were significant differences between the ratings for males and females. Males rated themselves higher than their female counterparts indicating gender differences with regards performing computer operating environment tasks.

With respect to the ability to work with email and browsing (Tables 4), both males and females rating were good. This could be due to the fact that these are mostly used tasks performed on the internet. However, male ratings were higher than their female counterparts.

					T-	Sig. (2-
Tasks	Gender	Ν	Mean	Std.	value	tailed)
Composing and sending an E-mail message	Male	92	2.18	0.838	3.362	0.001
	Female	52	1.67	0.944		
Sending and receiving E-mail message with attachment	Male	92	2.05	0.894	2.155	0.033
	Female	52	1.71	0.957		
Utilizing E-mail, news groups or other web browser applications to obtain information on a	Male	92	2.01	0.92	2.213	0.028
selected topic.	Female	52	1.65	0.947		
Accessing a specific Web page (URL) and search the Web using a variety of tools.	Male	92	2.08	0.855	3.034	0.003
	Female	52	1.62	0.911		
Accessing, Utilize, and research resources through the World Wide Web	Male	92	2.17	0.779	3.681	0
	Female	52	1.63	0.95		

Table 4: Mean, standard deviation and t-values of respondents' ability to perform Internet task

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=excellent

Males rated themselves higher (mean= 2.04) in terms of creating and using a simple presentation documents than females (Table 5). However, both rated their abilities to add animation to presentation to be poor.

Table 5: Mean, standard deviation and t-values of respondents' ability Presentation tasks

Tasks	Gender	N	Mean	Std.	T- value	Sig. (2- tailed)
Creating and using a simple	Male	92	2.04	.84	3.58	.000
presentation	Female	52	1.48	1.02		
Creating animation	Male	92	1.24	.54	2.06	.041
	Female	52	1.04	.59		

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=excellent

Table 6 highlights the fact that both males and females rated themselves to be good in their

abilities to perform basic word processing tasks. This may be due to the fact that word processing

is the first software application package to be learnt and the most used for it typing assignments,

emails, chatting and the like. Still the ratings of male respondents were significantly different from

than female respondents.

Table 6:Mean, standard deviation and t-values of respondents' ability to perform Word Processing tasks

Task	Gender	Ν	Mean	Std	T- value	Sig. (2- tailed)
Setting and changing left, right, top and bottom margins;	Male	92	2.25	0.89	3	0.003
	Female	52	1.77	1.00		
Underlining, boldfacing, and italicizing text as it is being typed;	Male	92	2.3	0.94	2.4	0.017
it is being typed,	Female	52	1.9	1.00		
Using a blockage function;	Male	92	2.27	0.89	3.5	0.001
	Female	52	1.71	1.00		
Moving and copying text to other parts of a document	Male	92	2.47	0.82	4.2	0
uocument	Female	52	1.83	0.99		
Deleting text from a document	Male Female	92 52	2.42 1.85	0.80 1.00	3.8	0
Using SPELL CHECK and correct errors in the document	Male	92	2.22	0.88	2.6	0.01
the document	Female	52	1.81	0.97		
Selecting and altering font style and size	Male	92	2.3	0.80	4	0
	Female	52	1.69	1.04		
Saving a block of text as a separate document	Male Female	92 52	2.28 1.65	0.88 0.97	4	0
Reformatting margins, spacing justification	Male	92	2.11	0.81	3.5	0.001
and tabs within documents	Female	52	1.6	0.89		

Creating a simple table	Male	92	2.11	0.83	2.3	0.024
	Female	52	1.77	0.90		
Copying tables to a separate document	Male	92	2.09	0.82	3.9	0
	Female	52	1.5	0.96		

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=excellent

In Table 7, general capabilities of other application packages such as Spreadsheet, Database Management Systems, Graphic programs, and On-line bibliographic databases are presented. Both males and females considered their competencies with the use of the above mentioned software packages to be poor. With exception of Database Management Systems, there was no significant difference in gender capabilities.

Table 7: Mean, standard deviation and t-values of respondents' Knowledge other software categories

Computer Software Categories					Т-	Sig. (2-
Computer Software Categories	Gender	Ν	Mean	Std	value	tailed)
Spreadsheet	Male	92	1.23	.52	1.74	.085
	Female	52	1.08	.48		
Database Management Systems	Male	92	1.32	.55	2.43	.017
	Female	52	1.08	.59		
Graphic programs	Male	92	1.35	.56	1.73	.086
	Female	52	1.17	.62		
On-line bibliographic databases	Male	92	1.24	.52	1.57	.119
	Female	52	1.10	.53		

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=excellent

Table 8: Mean.	standard	deviation a	and t-value	s of the	overall	Computer	Literacy	of rest	ondents
	,								

ICT literacy	Gender	N	Mean	Std	T- value	Sig. (2- tailed)
Overall	Male	92	1.58	.29	4.46	.000
	Female	52	1.30	.47		•

Means were computed on a scale that ranges from 1-3, where 1=Poor, 2=Good, 3=excellent

Table 8 presents the overall computer literacy of respondents. This estimated from the composite mean of all the Computer software categories namely the word processing, spreadsheet, presentation software, internet browsing, and general operating environment. The results indicate

that there is a significant gender differences in computer literacy. While the overall male student competency was good, that of the female was poor. This may be due to the fact that more male than female owned computers and again spend more time with the computer than female. This is in agreement with Gattiker and Hlavka (1992) who indicated that access to a computer is known to be associated with higher levels of computer literacy.

CONCLUSIONS AND RECOMMENDATIONS

The study has shown that there are gender differences in computer access and literacy levels among undergraduate agricultural students of the University of Cape Coast. The differences are evident in computer ownership, ability to perform specific tasks on productivity software application packages, and the number of hours spent on computers. The study concludes that there exist significant differences in computer access and literacy level among agricultural students. Male respondents are more computer literate than female respondents. This has implication for all undergraduate Agricultural students at University of Cape Coast. As a way of rectifying the gender gap in computer access and literacy, the study recommends the following:

- a) The computer proficiency course for first year students should be made as a compulsory or core course for all first year students.
- b) The female students of UCC especially those studying MEd (ICT), BSc Computer Science, BEd Computer Science and BSc Information Technology should be encouraged to form a club whose purpose is to train other female students to become computer literates. It has been established that peer tutoring demonstrates effectiveness in facilitating progress in the general education curriculum (Cohen, Kulik & Kulik, 1982).
- c) There are 250 and 150 PCs at ICT Centre and Socket Works respectively for a student population of 18,000 making PCs density in the UCC is very low. Therefore more avenues for computing should be provided.
- d) Students had more access to computers in their halls than any other locations surveyed. In this regard, a scheme should be established by the university's authorities or the Student

Representative Council (SRC) whereby students acquire PCs on high-purchase. If possible with special concession given to female students since few owned PCs. Also, the Ghana Government decision of one laptop to a child should be extended to students in the Tertiary institutions since they will join the working world very soon where computer literacy is a must requirement is most places. When these are done it may go a long way to increase students' access to computers.

e) Since practice makes perfect, assignment should be submitted in electronic form and occasionally students should be required to make presentation with PowerPoint.

REFERENCES

Andersen, M. L., and Taylor, H. F. (**2004**). *Sociology: Understanding a Diverse Society*, (3rd ed). New York: Wadsworth Publishing (first edition, 2000).

Arch, E. & Cummins, D. (1989). Structured and unstructured exposure to computers: Sex differences in attitude and use among college students. 20(5-6), 245-254.

Bannet, M. and Arbinger, P.R. 1996. Gender-related differences in exposure to and use of computers: Results of a survey of secondary school students. European Journal of Psychology of Education, 11, 269-282.

Becker, H. and Sterling, C. 1987. Equity in school and computer use: National data and neglected considerations. Journal of Educational Computing Research, 3(3), 289-311.

Brock, F., Thomsen, W.E. & Kohl, J.P. (1992) The Effect of Background Factors on the Computer Literacy of Business Students, International Journal of Management, **9(**4, 447-451.

Brosnan, M.J. 1998. The role of psychological gender in the computer-related attitudes and attainment of primary school children (aged 6-11). Computers and Education, Vol. 30(3-4), 203-208.

Cohen, P.A., Kulik, J.A., & Kulik, C.C. (1982). Educational outcomes of tutoring: A meta-analysis of findings. American Educational Research Journal, 19(2), 237-248.

Gattiker, U. & Hlavka, A. (1992). Computer attitudes and learning performance: Issues for management education and training. *Journal of Organizational Behavior*, 13, 89-101.

Geissler, J and Horridge, P. (1993). University students' computer knowledge and commitment to learning. *Journal of Research on Computing in Education*, 25(3), 347-365.

Hawkins, R. (2003). World links for Development Programme Washington: The World Bank

Hennessy, S., and Dunham, P., 2001, EQUITY ISSUES AFFECTING MATHEMATICS LEARNING USING ICT, retrieved on 7th August 2009 from <u>http://www.bsrlm.org.uk/IPs/ip21-</u>2/BSRLM-IP-21-2-17.pdf

Kent, N., Facer, K., (2004). Different worlds? A comparison of young people's home and school ICT use. Journal of Computer Assisted Learning, 20, 440-455.

Lancaster, A. (2007). Acknowledging the Significance of Gender. Southern Connecticut State University, Research Center on Computing & Society. Retrieved from

http://www.southernct.edu/organizations/rccs/resources/research/adap_tech/equity_access/lancaste r/intro.html

Metz _Goeckel, S., Frachnert, S., Hahn-Mausbach, G., and Kaurmann-Walter, J. (1991). Girls, boys and computers. Gender specific social and learning behaviour in dealing with computers series: Sozialvertragliche Technikgestaltung, Vol.24. Opladen: Westdeutscher Verlag. Ofcom, (2008). Media Literacy Audit: Report on UK children's media literacy. Retrieved from http://www.ofcom.org.uk/advice/media_literacy/medlitpub/medlitpubrss/children/

Okebukola, L. 1993. The gender factor in computer anxiety and interest among some Australian high school students. Education Research, 35(2), 181-189.

Orpen, C. & Ferguson, C. (1991). The Attitudes of Accounting Students to Working with Computers: A Preliminary Study, Accounting and Finance, 31(2), 113-119.

Miura, I (1987). Gender and socioeconomic status differences in middle- school computers interest and use. Journal of Early Adolescence, 7, 243-254. Porter, T. (1997). The Level of use of the Internet by Ohio State University Extension Educators.

Comlumbus: The Ohio State University.

Robertson, D.S. (2002). 'The New Renaissance: Computers and the Next Level of Civilization'. Oxford University Press.

Selwyn, N. (1997). Assessing students' ability to use computers: theoretical considerations for practical.

Simonson, M. R., Maurer, M., Montag-Torardi, M., & Whitaker, M. (1987). Development of a standardized test of computer literacy and a computer anxiety index. *Journal of Educational Computing Research*, 3(2), 231-247.

Schaumburg, H. 2001. Fostering girls' computer literacy level out the gender difference? Paper presented at the NECC conference, June 25-27, Chicago, IL.

Smith, B. N. & Necessary, J. K. 1996. Assessing the computer literacy of undergraduate college students. Journal of Educational Computing Research, 117(2), 188-194.

Volman, M. & van Eck, E. (2001) Gender equity and information technology in education: The second decade. Review of Educational Research, 71(4), 613 – 634.