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On the One-Outlier Displaying Component

B.K. Nkansah and B.K. Gordor

Abstract. A method of displaying an outlier in a multivariate data set is the
Outlier Displaying Component. This method is based on the sample mean vector
and the sum of squares and cross- product matrix. The main weakness of this
method is that both of these measures involve the very outlier that is being
detected. This paper presents an approach to eliminating this weakness. By
eliminating the outlier from the sample mean vector and the sum of squares and
cross-product matrix, the proposed method combines a number of advantages: It
enhances the separation of the outlier from the rest of the data so that it appears
more distinct. It also increases the general dispersion in the projected data so that
the presence of multiple outliers could be revealed.

1. Introduction

A way of obtaining a revealing view of a multivariate dataset is to find its
univariate equivalent by a projection vector. One of the projection methods that
specifically seeks to highlight the outlier so that it ‘sticks out’ from the remaining
observations is the One-Outlier Displaying Component [7]. It is well known that
the observation that has the most distinctly projected univariate value is always
the one with the largest Mahalanobis distance from the general sample mean.
Equivalently, the single outlier, xε, among a p-dimensional data set, xn×p =
(x1, x2, · · · , xn)′, is the one for which the Wilk’s ratio

r1 =
|S(ε)|
|S| (1)

is minimum, where S is the sample sum of squares and cross product (SSCP) matrix
and S(ε), is the SSCP matrix of the remaining (n−1) observations when the outlier
is deleted from the sample. The matrices, S and S(ε), are given respectively, by

S=
n∑

j=1

(x j − x̄)(x j − x̄)′, where x̄=
1

n

n∑

j=1

x j , (2)
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and

S(ε) =
∑

j 6∈I

(x j − x̄(I))(x j − x̄(I))
′, where x̄(I) =

1

n− k

∑

j 6∈I

x j . (3)

The vector x̄ is the general sample mean and the vector x̄(I) is the mean of the
remaining (n− 1) observations when the outlier is deleted from the data. The set
I is an indexed set of outliers in the sample which, in the case of a single outlier,
contains only one element, ε. The ratio in Equation (1) has been expressed ([7];
[4]) in various ways to be equivalent to

r1 = 1− n

n− 1
(xε − x̄)′S−1(xε − x̄) . (4)

Thus, the outlier, xε, is that observation for which r1 is minimum. Equivalently, the
outlier is that for which

U(x̄,S) = (xε − x̄)′S−1(xε − x̄) . (5)

is maximum.
It is evident that for the purpose of detecting a single outlier, the general sample

mean, x̄, and hence, the sample SSCP matrix, S, are appropriate measures of
average and dispersion. However, the problems associated with these measures
are well known. One problem is that, x̄ and S are themselves influenced by the
outlier.

In this paper, we analyse the projection approach of [7] to the detection
and display of a single outlier. Subsequently, we characterize the drawback of
the approach and propose an improved method. We first describe the original
approach. Then based on what we will refer to as the difference decomposition,
an alternative projection method is proposed. We will then show analytically that
the proposed method is able to project the outlier observation more distinctly than
the original method.

2. The One-Outlier Displaying Component

In this section, we provide a review of the One-Outlier Displaying Component
(1-ODC). Following work by [6] on outliers in q-dimensional projections of the
p-dimensional samples (q < p), [7] derived a projection vector, β , which converts
a p-dimensional observation, Xn×p, into a corresponding univariate observations,
yi; 1, 2, · · · , n such that

yi = β
′xi .

An equivalent expression for U(x̄,S) in Equation (5), of the distance of yε after
projection of xε then becomes

U(x̄,S;β) =
β ′(xε − x̄)(xε − x̄)′β

β ′Sβ
. (6)
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The vector, β , is chosen to maximize Equation (6) subject to the constraint that
β ′Sβ = c, where c is an arbitrary constant. The solution of the maximization
problem reveals that β is the eigenvector associated with the p× p matrix

S−1(xε − x̄)(xε − x̄)′ .

The solution further shows that β is given by

β = S−1(xε − x̄) (7)

and the associated eigenvalue was found to be the squared Mahalanobis distance
given in Equation (5). This vector provides the dimension on which the labelled
outlier, xε, sticks out the most from the remaining observations and is referred to
as the 1-ODC.

If we substitute the vector S−1(xε − x̄) for β in Equation (6), it can be shown
that

U(x̄,S;β) = U(x̄,S) . (8)

Since U(x̄,S) is the likelihood based statistic ([2]; [4]) for testing the extreme
p-dimensional observation, xε, in the original sample, this result shows that the
value of the discordancy test statistic in (the original) p dimensions is numerically
the same as that in the single dimension provided by the 1-ODC.

3. A Modification of the One-Outlier Displaying Component

Even though the original 1-ODC approach is theoretically correct, its ability to
isolate the outlier can still be enhanced. The main drawback in its performance is
due to the use of the sample mean in the projection vector. As has been pointed out
earlier, the computation of the sample mean is itself influenced by the outlier. As
a result, its involvement in the detection and display of the outlier can negatively
affect this effort. In this section, we obtain a modification of the projection vector
that excludes the use of the sample mean.

First, we examine the difference, x j − x̄, between any observation x j and the
general mean x̄. Let Ik denote the set of k outliers in the data set. Then, the general
sample mean vector, x̄, is given by

x̄=
(n− k)x̄(Ik) + kx̄Ik

n
,

implying that

nx̄= (n− k)x̄(Ik) + kx̄Ik
. (9)

Now, writing the left hand side of Equation (9) as nx̄+ nx j − nx j , we have

nx̄+ nx j − nx j = (n− k)x̄(Ik) + kx̄Ik

n(x̄− x j) = (n− k)x̄(Ik) + kx̄Ik
− nx j .
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Multiplying through by −1, we have

n(x j − x̄) = nx j − (n− k)x̄(Ik) − kx̄Ik

= (n− k)x j + kx j − (n− k)x̄(Ik) − kx̄Ik

= (n− k)x j − (n− k)x̄(Ik) + kx j − kx̄Ik
.

Therefore,

x j − x̄=
n− k

n
(x j − x̄(Ik)) +

k

n
(x j − x̄Ik

) . (10)

Equation (10) provides a partitioning of the difference x j − x into a weighted
sum of two components in the presence of k outliers. These components are: (1)
the difference between x j and the mean, x̄(Ik), of the remaining (n−k) observations
which excludes the set of k outliers; and (2) the difference between x j and the
mean, x̄Ik

, of the set of outliers. In outlier detection, n� k, implying that k
n

is very
close to zero. Consequently, if n is large, regardless of the relative position of x j ,
x j − x̄ is approximately equal to the first component as the second vanishes.

Particularly, in the single outlier case, x̄Ik
= xε, which is the labelled outlier, and

Equation (10) reduces to

xε − x̄=
n− 1

n
(xε − x̄(ε)) . (11)

Following the approach outlined in the previous section, we find the projections
of the p−dimensional observations x j into corresponding univariate observations
y j such that for some βe, yε = β ′exε. Now the distance of yε from the remaining
n− 1 observations is

U(yε; x̄(ε),S(ε)) = (yε − ȳ)′S−1
y (yε − ȳ)

=
β ′e(xε − x̄(ε))(xε − x̄(ε))βe

β ′eS(ε)βe
. (12)

If we maximize this expression subject to the constraint β ′eS(ε)βe = c, we obtain

βe = S−1
(ε)(xε − x̄(ε)) . (13)

Subsequently,

U(x̄(ε),S(ε)) = (xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε)) . (14)

Now the that the generalized distance of yε = β ′xε, is given by

U(x̄,S) = (xε − x̄)′S−1(xε − x̄) .

We now show that

(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))� (xε − x̄)′S−1(xε − x̄) .

Writing the inequality as an equation, we have

(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε)) = (xε − x̄)′S−1(xε − x̄) + κ

where κ is a constant.
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Thus,

(xε − x̄)′S−1(xε − x̄) = (xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))− κ . (15)

We know that for any set I of k outliers, S and S(I) are related by the equation

S= S(I) +AIk
.

Taking the inverse of both sides, we obtain

S−1 = (S(I) +AIk
)−1 . (16)

Thus, the left hand side of Equation (15) is written as

(xε − x̄)′S−1(xε − x̄) = (xε − x̄)′(S(I) +AIk
)−1(xε − x̄) . (17)

Again, it has been shown [4] that in the case of a single outlier,

AI1
=

n

n− 1
(xε − x̄)(xε − x̄)′ (18)

which is of rank 1 and therefore has no inverse; S(I) is of full rank and hence has an
inverse. To obtain the inverse in Equation (16), we recall the Sherman-Morrison
result ([10], [8], [5]) that if G and G+ E are non-singular matrices where E is a
matrix of rank 1, then the inverse of the sum G+ E is

(G+ E)−1 = G−1 − 1

1+ trEG−1 G−1EG−1

where trEG−1 6=−1. If we relate S(Ik) to G and A(I1) to E, we obtain

(S(I) +A(I1))
−1 = S−1

(I) −
1

1+ trAI1
S−1
(I)

S−1
(I)AI1

S−1
(I) .

Substituting the result above into Equation (17) and noting the result in Equation
(11), we obtain

U(x̄,S) = (xε − x̄)′
�

S−1
(I) −

1

1+ trAI1
S−1
(I)

S−1
(I)AI1

S−1
(I)

�
(xε − x̄)

= (xε − x̄)′S−1
(I)(xε − x̄)− 1

1+ trAI1
S−1
(I)

(xε − x̄)′{S−1
(I)AI1

S−1
(I)}(xε − x̄)

=
�

n− 1

n

�2

[(xε − x̄(ε))
′S−1
(I)(xε − x̄(ε))

− 1

1+ trAI1
S−1
(I)

(xε − x̄(ε))
′{S−1
(I)AI1

S−1
(I)}(xε − x̄(ε))] . (19)

If n is large, Equation (19) becomes approximately

(xε − x̄)′S−1(xε − x̄) = (xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))− κ

where

κ=
1

1+ trAI1
S−1
(I)

(xε − x̄(ε))
′{S−1
(I)AI1

S−1
(I)}(xε − x̄(ε))
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implying that

(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))� (xε − x̄)′S−1(xε − x̄) .

Equation (19) also shows that the distance of the outlier from the mean x̄ is much
less than its distance from the centre of the sample without the outlier. As a result,
a projection of the data on the vector given in Equation (13) will reveal the outlier
better. In the next section, we illustrate the performances of the proposed 1-ODC
and the original 1-ODC using some data sets.

4. Illustration of the Performance of the Original and Modified 1-ODCs

Three sets of data have been used to illustrate the performance of the two
projections discussed. These datasets are (1) the well studied Iris Setosa data [1]
obtained from 50 plants on four dimensions: sepal length, sepal width, petal length
and petal width; (2) the Milk Transportation-Cost data [9] obtained from 36 farms
on three dimensions: fuel, repair and capital (all measured on a per-mile basis);
(3) the U.S.A. Food-Price data [11] collected from 23 cities on five dimensions:
bread, burger, milk, oranges and tomatoes (all measured in cents per pound). The
third set of data has been attached in the appendix for reference since it is not as
popular as the other two.

In Figures 1, 2 and 3, the projection unto the original 1-ODC is shown below
the projection unto the modified 1-ODC. It can be seen from all the graphs that the
projection unto the proposed 1-ODC (βe) increases the spread in the projected data
more than that achieved by the original 1-ODC (β). In particular, the distance of
the specified outlier from the next isolated observation is much more greater with
(βe) than (β). In addition, as a result of the increase in dispersion, the proposed
method reveals other observations that could be examined for outlyingness. For
example, in Figure 1, observation 33 may be the next to consider as an outlier
apart from observation 42. In Figure 2, observation 21 is more isolated from
the observation on the left than observation 36 on the right. It is therefore not
surprising that observations 9 and 21 have been identified [3] as the pair of outliers
in this dataset.

5. Relative Efficiency of the Modified 1-ODC over the Original 1-ODCs

In Equation (19), we have shown that

U(x̄,S) =
�

n− 1

n

�2

[(xε − x̄(ε))
′S−1
(I)(xε − x̄(ε))

− 1

1+ trAI1
S−1
(I)

(xε − x̄(ε))
′{S−1
(I)AI1

S−1
(I)}(xε − x̄(ε))] . (20)

We also know from Equation (18) that

AI1
=

n

n− 1
(xε − x̄)(xε − x̄)′ .
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Figure 1. Projection of Iris Setosa on Original (below) and Modified
(above) 1-ODCs

Figure 2. Projection of Transport data on Original (below) and Modified
(above) 1-ODCs

Using a substitution from Equation (10), we obtain

AI1
=

n

n− 1

�
n− 1

n

�2

(xε − x̄(ε))(xε − x̄(ε))
′

=
n− 1

n
(xε − x̄(ε))(xε − x̄(ε))

′ .
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Figure 3. Projection of Food Price data on Original (below) and
Modified (above) 1-ODCs

If we substitute this expression for AI1
in Equation (20), we obtain the right hand

side as
�

n− 1

n

�2

[(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))

−λ(xε − x̄(ε))
′{S−1
(ε)[(xε − x̄(ε)(xε − x̄(ε))

′]S−1
(ε)}(xε − x̄(ε))]

=
�

n− 1

n

�2

[(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε))

−λ(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε)(xε − x̄(ε))

′S−1
(ε)(xε − x̄(ε))]

=
�

n− 1

n

�2

U(xε; x̄(ε),S(ε))[1−λU(xε; x̄(ε),S(ε))]

where

λ=
n− 1

n

1

1+ trAI1
S−1
(ε)

, trAI1
S−1
(I) 6=−1 .

Equation (20) now simplifies as

U(xε; x̄,S) =
�

n− 1

n

�2

U(xε; x̄(ε),S(ε))[1−λU(xε; x̄(ε),S(ε))] .

Therefore, we obtain the ratio

U(xε; x̄,S)
U(xε; x̄(ε),S(ε))

=
�

n− 1

n

�2

[1−λU(xε; x̄(ε),S(ε))]



On the One-Outlier Displaying Component 237

or

U(xε; x̄(ε),S(ε))

U(xε; x̄,S)
=
�

n

n− 1

�2

[1−λU(xε; x̄(ε),S(ε))]
−1 . (21)

Equation (21) gives the amount by which the distance of xε from x̄(ε) exceeds its
distance from x̄. It thus, measures the relative efficiency of the modified method
over the original. Now, since the ratio is maximum among all observations xi , it
means the expression in the square brackets on the right of Equation (21) which
we represent as

r(ε)1 = 1−λ(xε − x̄(ε))
′S−1
(ε)(xε − x̄(ε)) (22)

is smallest. In terms of x̄(ε) and S(ε), Equation (22) may be seen to correspond to
the one in Equation (4).

In the following table, we use Equation (21) to compute the relative efficiency
(R.E.) of the modified 1-ODC over the original 1-ODC, using the datasets that have
been used in the illustrations in Figures 1, 2 and 3.

Table 1. Relative efficiency of the modified 1-ODC in detecting single
outlier in three datasets

Data set n Outlier Obs. U(xε, x̄(ε),S(ε)) trAI1 S−1
(ε) R.E.

Iris Setosa 50 42 0.3524 0.3454 1.4 : 1

Milk Transport-Cost 36 9 1.1075 1.0768 2.2 : 1

U.S Food Price 23 10 1.3110 1.2540 2.5 : 1

From the table, we see that in the Iris Setosa data the modified method isolates
the outlier from the centre x̄(ε) of the remaining n− 1 observations by a distance
of about one and half times the distance of the outlier from x̄ under the original
method. In the Milk Transportation-cost data, the separation achieved under the
modified method is about two and a quarter times that achieved under the original
method. In the U.S. Food Price data, the outlier is at a distance from x̄(ε) about two
and half times its distance from x̄.

The relative efficiency ratios in the table obtained from the respective datasets
(displayed in Figures 1, 2 and 3) reflect the extent to which the distance of xε from
the observation next to it (on the left) is greater with the modified method than the
original method. Thus, the ratios reflect the extent of “discordancy” or significance
of extremeness of the outlier in the data.

With reference to the three datasets, we can say that observation 10 is more
extreme in the Food Price data than observation 9 is in the Milk Transportation-
cost data, which in turn is more extreme than observation 42 is in the Iris Setosa
data. If we assume the multivariate normality for these samples, observation 42 is
not a discordant outlier at 5 percent level of significance since the corresponding
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statistic

D42 = (n− 1)U(x42, x̄,S) = 12.35, n= 50

is less than the tabulated value of 15.89 (see Table XXXII in [4]). However,
by a similar test procedure, observation 9 in the Milk Transportation data and
observation 10 in the Food Price data are discordant outliers. These findings are
confirmed to a large extent by the relative efficiency values in the table and the
plots in the figures.

Thus, in general, the value of the R.E. of the modified method given in Equation
(21) is an indication of the significance of extremeness of the outlier in a given
dataset.

6. Conclusion

The paper considered a modification of the One-outlier Displaying Component,
a projection method that is used to highlight a single outlier in multivariate data.
The original method is based on the sample mean vector and the sum of squares
and cross-product matrix, both of which involve the very outlier that is detected.
This is a source of weakness in the method. In an attempt to eliminate this
weakness, we derived a method that excludes the outlier from the mean vector
and the sum of squares and cross-product matrix. The resulting method now has a
number of advantages: it increases the separation of the outlier from the rest of the
data points so that it appears more distinct. It also increases the general dispersion
in the projected data so that the presence of multiple outliers could be highlighted.

The paper also derived a measure of relative efficiency of the modified method
over the original method. This measure gives an indication of the extent of
extremeness of the outlier in a given dataset.

Appendix: U.S. Food Price Data

No. City Bread Burger Milk Oranges Tomates
1 Atlanta 24.5 94.5 73.9 80.1 41.6
2 Baltimore 26.5 91.0 67.5 74.6 53.3
3 Boston 29.7 100.8 61.4 104.0 59.6
4 Buffalo 22.8 86.6 65.3 118.4 51.2
5 Chicago 26.7 86.7 62.7 105.9 51.2
6 Cincinnati 25.3 102.5 63.3 99.3 45.6
7 Cleveland 22.8 88.8 52.4 110.9 46.8
8 Dallas 23.3 85.5 62.5 117.9 41.8
9 Detroit 24.1 93.7 51.5 109.7 52.4

10 Honolulu 29.3 105.9 80.2 133.2 61.7
11 Houston 22.3 83.6 67.8 108.6 42.4
12 Kansas city 26.1 88.9 65.4 100.9 43.2
13 Los Angeles 26.9 89.3 56.2 82.7 38.4

Contd.
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No. City Bread Burger Milk Oranges Tomates
14 Milwaukee 20.3 89.6 53.8 111.8 53.9
15 Minneapolis 24.6 92.2 51.9 106.0 50.7
16 New York 30.8 110.7 66.0 107.3 62.6
17 Philadelphia 24.5 92.3 66.7 98.0 61.7
18 Pittsburgh 26.2 95.4 60.2 117.1 49.3
19 St. Louis 26.5 92.4 60.8 115.1 46.2
20 San Diego 25.5 83.7 57.0 92.8 35.4
21 San Francisco 26.3 87.1 58.3 101.8 41.5
22 Seattle 22.5 77.7 62.0 91.1 44.9
23 Washington, DC 24.2 93.8 66.0 81.6 46.2

Source: Estimated Retail Food Prices by Cities, March 1973,
U.S. Department of Labour, Bureau of Labour Statistics [11]
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