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ABSTRACT

This thesis is about the stability of completely delayed dynamic equations

on time scale.

Fixed point theory is used to study the stability properties of the zero

solution of dynamic equations on time scales. In particular, the Banach

fixed point theorem is used in this thesis.The dynamic equation is inverted

into an equivalent integral dynamic equation and a suitable define map-

ping is defined based on the equivalent integral dynamic equation which

is then used to discuss the stability properties of the zero solution of the

dynamic equation. Sufficient conditions are obtained for the zero solution

of completely delayed dynamic equations to be asymptotically stable.
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CHAPTER ONE

INTRODUCTION

This chapter gives an introduction and background to the study. It

also briefly presents the problem statement and outlines the objectives of

the study. The chapter is concluded with information on the organization

of the thesis.

Background to the Study

The subject dynamic equations on time scale is fairly a new and

emerging area of mathematics which describes the theories of both differ-

ential and difference equations under one domain. It has attracted a lot

of attention by researchers in recent times. The concept was introduced

in 1988 by the German Mathematician Stephan Hilger in his Ph.D thesis

according to Bohner and Peterson (2001), to allow for the unification and

extension of differential and difference equations. Many results of problems

concerning differential equations carry over quite easily to corresponding

results for difference equations , while other results have a completely dif-

ferent structure from their continuous counterparts. Thus the study of

dynamic equations on time scale exposes these discrepancies between dif-

ferential and difference equations and this helps prevent one from proving

results twice, once for differential equations and once for difference equa-

tions. In dealing with equations provided by this concept the idea is to

obtain a result for a dynamic equation where the domain of the unknown

function is a so-called time scale which is an arbitrary closed subsets of

reals. For instance, If one chooses the time scale to be the set of reals, we

have a continuous case and hence the general results obtained yields the

same results concerning an ordinary differential equation. On the other

hand, if one chooses the time scale to be the set of integers, we have a

discrete case and hence the general results obtained are the same results
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one would obtain concerning a difference equation. However, since there

are many other time scales that one may work with besides the set of reals

and integers, one has a more general results.

Bohner and Peterson (2001) and Agarwal et al. (2002) together with

their collaborators authored books which deal extensively on the concept

of time scale caculus. Differential equations are essential tools in scientific

modeling of physical problems which is important in almost every sphere

of human endeavor from Engineering, Physical Sciences, Medical Sciences,

Agricultural Science to Social sciences.

Therefore, the analysis of qualitative properties of solutions of these

equations is necessary for applications. It is therefore important to develop

new and efficient methods as well as modify and refine known techniques

and adjusting them for the analysis of new classes of problems.

Many mathematical models arising from Engineering, Mechanics, Physics

and Social sciences usually involve delays in which the derivative or differ-

ence of the past history of the unknown functions are involved as well as

those of the present state of the system.

There have been a lot of research activity concerning qualitative the-

ory of dynamic equations on time scales. The first person to carry out a

major investigation in the line of qualitative theory was Henry Poincare as

noted by Boyer and Merzbach (2011): This was the basis of development of

the qualitative theory of differential and difference equations which have im-

portant applications in diverse areas such as Engineering,Economics,Physical

and Biological sciences.

The investigations of qualitative properties of the solutions of dy-

namic equations on time scales usually seek to find out about the;

(i)Boundedness,

(ii)Periodicity,

(iii)Stability, and

2

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



(iv) Positivity of the solutions.

One of the key areas of qualitative analysis of the dynamic equations is

studying the stability of solutions which seeks to harmonize the stability of

the continuous and discrete equations. Stability theory of dynamic equa-

tion on time scales is very important in the study of qualitative properties

of solutions of dynamic equations on time scales and this occurs when a

small change in initial data results in a small change in behaviour for future

time.

Stability analysis of solutions of these dynamic equations on time

scales usually require the use of a wide variety of approaches and math-

ematical tools. The most fundamental concept for studies in stability of

dynamic equations was introduced by Lyapunov in the 19th century. One

technique which has widely been the main tool used to study the stability of

differential equations, difference equations and dynamic equations on time

scales is the Lyapunov’s Direct Method. This involves the construction

of a suitable function called the Lyapunov function which is positive defi-

nite and whose derivative is negative definite.Nevertheless, the application

of this method to problem of stability in differential equations with delay

usually encounters serious difficulties if the delay is unbounded or if the

equation has unbounded term. It has been noticed by Burton (2003) and

Ardjouni and Djoudi (2011) that some of theses difficulties vanish by using

the fixed point technic. Other advantages of fixed point theory over Lya-

punov’s method is that the conditions of the former are average while those

of the latter are pointwise. This thesis basically investigates the stability of

a completely delayed dynamic equation on time scales with variable delays.

A delayed differential equation is one in which the derivative of the previ-

ous history is involved, as well as those of the present state of the system.

Similarly, a difference equation is one in which the difference of the previous

history are involved , as well as those of the present state of the system.

3
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Statement of problem

The theory of time scale was developed basically to unify continuous

and discrete analysis. Yankson (2009) studied the stability conditions of

the solutions of the difference equation

x4(t) = −
N∑
i=1

ai(t)x(t− τi(t)), t ∈ T, (1.1)

with variable delays. In particular the fixed point theory was used.

Adıvar and Raffoul (2009) studied the dynamic equation

x4(t) = −a(t)x(δ(t))δ4(t)

by means of the fixed point theorem and obtained results for the asymptotic

stability of the zero solutions of Equation (1.1).

However, the problem solved by Yankson (2009) holds for only the time

scale T = Z and the results obtained by Adıvar and Raffoul (2009) holds

for a single constant delay dynamic equation.

Research Objectives/Research Questions

The objectives of this thesis are to obtain sufficient conditions for the

zero solution of the dynamic Equation (1.1) on time scale to be

(i) Stable,

(ii) Asymptotically stable.

Significance of the Study

This study aims at setting out ways to solve hybrid(time scale calcu-

lus) problems by means of the fixed point theorem.Thus the results obtained

can be applied in modelling of problems that arecontinuous at some point

and also dicrete at some point.

4
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Delimitations

This thesis actually looked into the stability properties of dynamic

delay equations on time scale with variable delays using the fixed point

theorem.It also looked at time scale calculus which study seeks to bring

continuous and discrete calculus under one umbrella.

Limitations

The fixed point theorem was used in this study.it required that the

dynamic equation is inverted into an equivalent integral dynamic equation

on time scale. When a correct integral dynamic equation is not found, then

it will lead to wrong conclusions when the fixed point theorem is used.

Organisation of the Study

This thesis is structured as follows:

This Chapter presents the background of the research including its objec-

tives and statement of the problem. In Chapter Two, Relevant literature

for our investigation of dynamic equations on time scale is reviewed. In

Chapter Three, we give a general overview of time scale calculus by stating

some definitions, theorems and lemmas. In the fifth section of the Chapter,

we state fixed point theorems as well as provide some details on how fixed

point theorems are used to study qualitative properties. In Chapter Four,

criteria for the zero solution of the dynamic equations to be stable and

asymptotically stable are obtained.

In Chapter Five, the summary and conclusions of the thesis are given.

Chapter Summary

This chapter introduces the thesis, by first giving the motivation for

studying the problem contained in this thesis.I then move on to state the

related problem, announce the research objectives and the importance of

the results both practically and mathematically.I conclude the chapter by

describing the structure of this thesis.

5
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This chapter reviews literature in the areas of dynamic equations on

time scale. This starts with the ground breaking exploits of Hilger and

some related works on stability of dynamic equations. The background

concepts on time scales are taken from Bohner and Peterson (2001) and

Agarwal et al. (2002).

Dynamic Equations on Time Scale

The study of qualitative behaviour of dynamic equations on time scale

has received a lot of attention by researchers in recent years since the work

of Stefan Hilger came to light in 1988. Agarwal et al. (2002) in a study of

dynamic equations on time scales outlined some conditions of functions on

an arbitrary time scale and used it to solve linear dynamic equations of first

order. The fundamental method that has widely been used to study the

qualitative properties of solutions of dynamic equations is the Lyapunov

method. This method involves the construction a positive definite function

which is usually represented as V (t, x) and whose delta-derivative V 4(t, x)

is negative definite. The Lyapunove method has by far been the general

method used in studying dynamic equations on time scales. For instance,

Hoffacker and Tisdell (2005) made studies on the stability and instability

of the first order dynamic equation x4 = f(t, x) on time scales. The

Lyapunov functions were used to develop an invariance principle regarding

the solutions to the above dynamic equation.

Also, Adivar and Raffoul (2011) used the Lyapunov method to study the

stability of the dynamic equation

x4 = a(t)x(t) + b(t)x(δ−(h, t))δ
4

− (h, t). (2.1)

6
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In the same way, Akin-Bohner and Raffoul (2006) used nonnegative def-

inite Lyapunov functionals and proved theorems for the boundedness of

functional dynamic equations on time scales.

Raffoul (2006) cosidered the equation

4x(n) = a(n)x(n− τ), (2.2)

and obtained sufficient conditions for the zero solution for the equation

to be asymptotically stable. By using matrix-valued functions in dynamic

equations on time scales, Bohner and Martynyuk (2007) obtained suffi-

cient conditions ensuring stability of dynamic equations on time scales.

This matrix-valued functions makes it possible to construct heterogenous

Lyapunov functions(ie functions with both continuous and discrete compo-

nents).

However the construction of an appropriate lyapunov function usually pose

a challenge and also there is a problem with the type of conditions which

are imposed on the dynamic equation.

Burton and Furumochi (2002) noticed in their study that a number of di-

ficulties encountered when the Lyapunov method is used to study stability

of solutions are overcome or disappear when the fixed point theory is used

instead.

Islam and Yankson (2005) dealt with the stability and boundedness of the

zero solution of the nonlinear difference equation

x(t+ 1) = a(t)x(t) + c(t)4x(t− g(t)) + q(x(t), x(t− g(t))), (2.3)

The authors used the fixed point theorem and established asymptotic Sta-

bility of the zero solution of the equation.

7
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Yankson (2009) also considered the difference equation

4x(n) = −a(n)x(n− τ(n)) (2.4)

and its generalization

4x(n) = −
N∑
i=1

a(n)x(n− τj(n)), (2.5)

with variable delays. The author obtained sufficient conditions for the

difference equation to be asymptotically stable using the fixed point theory.

In the same way Kaufmann and Raffoul (2007) also dealt with the nonlinear

dynamic equation on time scale

x4(t) = −a(t)xσ(t) + (Q(t, x(t), x(t− g(t))))4 +Gt, x(t), x(t− g(t)),

(2.6)

The contraction mapping principle was used to establish asymptotic sta-

bility of the zero solution of the dynamic equation provided Q(t, 0, 0) =

G(t, 0, 0) = 0.

Adıvar and Raffoul (2009) studied the stability and periodicity of the dy-

namic delay equation on time scale and obtained by means of the fixed

point theorem sufficient conditions for the stability and periodicity of the

dynamic equation on time scale of the form

x4(t) = −a(t)x(δ(t))δ4(t). (2.7)

Chapter Summary

In this chapter,some literature on stability of dynamic equations is

reviewed.

8
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CHAPTER THREE

TIME SCALE CALCULUS AND METHODOLOGY

Introduction

This chapter captures the methods and tools utilized in this study.

These methods are theoretical and analytical in nature and limited to time

scales calculus. In this chapter we outline central concepts and definitions

of the time scale calculus initiated by Hilger in 1988 under the supervision of

Bernd Aulbach. Attention is given to the concepts such as continuity, Rd-

Continuity, differentiability which are relevant in the analysis of continuous

and discrete systems.

The time scale calculus

The following defnitions and theorems, as well as a general intro-

duction to the theory, can be found in the text by Bohner and Peterson

(2001).

Definition 1

A time scale is an arbitrary nonempty closed subset of the real.

Thus

R,Z,N,Nø,

that is, the real numbers, the integers, the natural numbers, and the non-

negative integers are examples of time scales.

Definition 2

Let T be a time scale. For t ∈ T, we define the forward jump operator

σ(t) : T→ T by

σ(t) := inf{s ∈ T : s > t}

9
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while the backward jump operator ρ(t) : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In the case that s ∈ T : s > t is empty, put inf φ = supT (that is,

σ(t) = t if T has a maximum t). Similarly, if s ∈ T : s < t is empty, we

put supφ = inf T (that is, ρ(t) = t if T has a minimum t). If f : T→ R

is a function, we define the function fσ : T → R by fσ(t) = f(σ(t)) for

all t ∈ T. Points are classified as follows: If σ(t) > t, we say t is right-

scattered, while if ρ(t) < t we say t is left-scattered. Also, if t < supT and

σ(t) = t, then t is said to be right-dense, and if t > inf T and ρ(t) = t, then

t is called left-dense. Points that are right-scattered and left-scattered at

the same time are called isolated, and points that are both right and left

dense are called dense.

The graininess function, µ : T→ [0;∞), is defined by µ(t) := σ(t)− t.

Example 1

Consider the examples T = R and T = Z.

(i) If T = R, then we have for any t ∈ R

σ(t) = inf{s ∈ R : s > t} = inf (t,∞) ,

and similarly ρ(t) = t. Hence every point t ∈ R is dense. The graininess

function µ turns out to be

µ(t) ≡ 0 for all t ∈ T

(ii) If T = Z then we have t ∈ Z

σ(t) = inf{s ∈ Z : s > t} = inf{t+ 1, t+ 2, t+ 3, ...} = t+ 1,

10
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and similarly ρ(t) = t − 1. Hence every point t ∈ Z is isolated. The

graininess function µ in this case is

µ(t) ≡ 1 for all t ∈ T.

Differentiation

Definition 3

Assume f : T → R is a function and let t ∈ Tk. Then we define f4(t) to

be the number (provided it exists ) with the property that given any ε > 0,

there is a neighbourhood U of t (that is, U = (t − δ, t + δ) ∩ T for some

δ > 0) such that

| [f(σ(t)− f(s))]− f4(t)[σ(t)− s] |≤ ε[σ(t)− s]

We call f4(t) the delta (or Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger) differentiable (or in short:

differentiable) on Tk provided f4(t) exists for all t ∈ Tk. The function

f4 : Tk → R is then called the (delta) derivative of f on Tk.

Theorem 1. The delta derivative is well defined.

Proof. Let t ∈ Tk and f4i (t), i = 1, 2, be such that

| f(σ(t))− f(s)− f41 (t)(σ(t)− s) |≤ ε

2
| σ(t)− s |,

and

| f(σ(t))− f(s)− f42 (t)(σ(t)− s) |≤ ε

2
| σ(t)− s |,

for all ε > 0 and all s belonging to a neighborhood U of t, U = (t− δ, t+

δ) ∩ T for some δ > 0, s 6= σ(t). Hence

11
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| f41 (t)− f42 (t) |

=
∣∣∣f41 (t)− f(σ(t))− f(s)

σ(t)− s
+
f(σ(t))− f(s)

σ(t)− s
− f42 (t)

∣∣∣
≤
∣∣∣f41 (t)− f(σ(t))− f(s)

σ(t)− s

∣∣∣+
∣∣∣f(σ(t))− f(s)

σ(t)− s
− f42 (t)

∣∣∣
=
| f(σ(t))− f(s)− f41 (t)(σ(t)− s) |

| σ(t)− s |
+
| f(σ(t))− f(s)− f41 (t)(σ(t)− s) |

| σ(t)− s |

≤ ε

2
+
ε

2

= ε

Since ε > 0 was chosen arbitrarily, we conclude that

f41 (t) = f42 (t),

which completes the proof.

Theorem 2. Assume f : T → R are functions and let t ∈ Tk. Then we

have the following:

(i) If f is differentiabble at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable

at t with

f4(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at

lim
s→t

f(t)− f(s)

t− s
,

exists as a finite number. In this case,

f4(t) = lim
s→t

f(t)− f(s)

t− s

12
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(iv) If f is differentiable at t, then f(σ(t)) = f(t) + µ(t)f4(t).

Proof. Part (i). Assume that f is differentiable at t. Let ε ∈ (0, 1). Define

ε∗ = ε[1+ | f4(t) | +2µ]−1. Then, ε∗ ∈ (0, 1). By Definition 3 there exists

a neighbourhood U of t such that

| [f(σ(t)− f(s))]− f4(t)[σ(t)− s] |≤ ε∗[σ(t)− s]

for all s ∈ U . Therefore we have for all s ∈ U ∩ (t− ε∗, t+ ε)

| f(t)− f(s)|

=| {f(σ(t))− f(s)− f4(t)[σ(t)− s]}

− {f(σ(t))− f(t)− µ(t)f4(t)}+ (t− s)f4(t) |

≤ ε∗ | σ(t)− s | +ε∗µ(t)+ | (t− s) || f4(t) |

≤ ε∗µ(t)+ | t− s | +µ(t)+ | f4(t) |]

= ε.

It follows that f is continuous at t.

Part (ii). Assume f is continuous at t and t is right-scattered. By continuity

lim
s→t

f(σ(t))− f(s)

σ(t)− s
=
f(σ(t))− f(t)

σ(t)− t

=
f(σ(t))− f(t)

µ(t)

Hence, given ε > 0,there is a neighborhood U of t such that

∣∣∣f(σ(t))− f(s)

σ(t)− s
− f(σ(t))− f(t)

µ(t)

∣∣∣ < ε

for all s ∈ U . It follows that

∣∣∣[f(σ(t))− f(s)]− f(σ(t))− f(t)

µ(t)

∣∣∣ ≤ ε | σ(t)− s |

13
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for all s ∈ U . Hence we get the desired result

f4(t) =
f(σ(t))− f(t)

µ(t)
.

Part (iii). Assume f is differentiable at t and t is right-dense. Let ε > 0 be

given. Since f is differentiable at t, there is a neighbourhood U of t such

that

| [f(σ(t))− f(s)]− f4(t)[σ(t)− s]ε | σ(t)− s | for all s ∈ U

Since σ(t) = t we have that

| [f(t)− f(s)]− f4(t)(t− s) |≤ ε | t− s | for all s ∈ U.

It follows that

∣∣∣f(t)− f(s)

t− s
− f4(t)

∣∣∣ < ε

for all s ∈ U , s 6= t. Therefore we get the desired result

lim
s→t

f(t)− f(s)

t− s
.

Part (iv). If σ(t) = t, then µ(t) = 0 and we have that

f(σ(t)) = f(t) = f(t) + µ(t)f4(t).

On the other hand if σ(t) > t, then by (ii)

f(σ(t)) = f(t) + µ(t).
f(σ(t))− f(t)

µ(t)

= f(t) + µ(t)f4(t),

14

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



and the proof of part (iv) is complete. Next we would like to find the

derivatives of sums, products, and quotients of differentiable functions.

This is possible according to the following theorem.

Theorem 3. Assume f, g : T→ R are differentiable at t ∈ Tk. Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)4(t) = f4(t) + g4(t).

(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)4(t) = αf4(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)4(t) = f4(t)g(t) + f(σ(t))g4(t)

= f(t)g4(t) + f4(t)g(σ(t)).

(iv) If f(t)f(σ(t)) 6= 0, then 1
f

is differentiable at t with

( 1

f

)4
(t) = − f4(t)

f(t)f(σ(t))
.

(v) If g(t)g(σ(t)) 6= 0, then fg is differentiable at t and

(f
g

)4
(t) =

f4(t)g(t)− f(t)g4(t)

g(t)g(σ(t))
.

Proof. Assume that f and g are delta differentiable at t ∈ Tk.

Part (i). Let ε > 0. Then there exist neighbourhoods U1 and U2 of t with

| f(σ(t))− f(s)− f4(t)(σ(t)− s) |≤ ε

2
| σ(t)− s |, for all s ∈ U1

15
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and

| g(σ(t))− g(s)− g4(t)(σ(t)− s) |≤ ε

2
| σ(t)− s |, for all s ∈ U2

Let U = U1 ∩ U2. Then we have for all s ∈ U

| (f + g)(σ(t))− (f + g)(s)− [f4(t) + g4(t)](σ(t)− s)|

=| f(σ(t))− f(s)− f4(t)(σ(t)− s) + g(σ(t))− g(s)− g4(t)(σ(t)− s) |

≤| f(σ(t))− f(s)− f4(t)(σ(t)− s) | + | g(σ(t))− g(s)− g4(t)(σ(t)− s) |

≤ ε

2
| σ(t)− s | +ε

2
| σ(t)− s |

= ε | σ(t)− s |

Therefore f + g is differentiable at t and (f + g)4 = f4 + g4 holds at t.

Part (iii). Let ε ∈ (0, 1). Define ε∗ = ε[1+ | f(t) | +|g(σ(t)) | + | g4(t) |

]−1. Then ε∗ ∈ (0, 1) and hence there exist neighbourhoods U1, U2, and U3

of t such that

| [f(σ(t)− f(s))]− f4(t)[σ(t)− s] |≤ ε∗[σ(t)− s]

for all s ∈ U1 and

| [f(σ(t)− f(s))]− f4(t)[σ(t)− s] |≤ ε∗[σ(t)− s]

for all s ∈ U2 and

| f(t)− f(s) |≤ ε∗
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for all s ∈ U3. Put U = U1 ∩ U2 ∩ U3 and let s ∈ U . Then

| (fg)(σ(t))− (fg(s)− [f4(t)g(σ(t)) + f(t)g4(t)](σ(t)− s) |

=| [f(σ(t))− f(s)− f4(t)(σ(t)− s)]g(σ(t)) + [g(σ(t))− g(s)− g4(t)(σ(t)− s)]f(t) + [g(σ(t))− g(s)− g4(t)

× (σ(t)− s)][f(s)− f(t)] + (σ(t)− s)g4(t)[f(s)− f(t)]|

≤ ε∗ | σ(t)− s || g(σ(t)) | +ε∗ | σ(t)− s || f(t) | +ε∗ε∗ | σ(t)− s |

+ ε∗ | σ(t)− s || g4(t) |

= ε∗ | σ(t)− s | [| g(σ(t)) | + | f(t) | +ε∗+ | g4(t) |]

≤ ε∗ | σ(t)− s | [1+ | f(t) | + | g(σ(t)) | + | g4(t) |]

= ε | σ(t)− s | .

Thus (fg)4 = f4gσ + fg4 holds at t.

Theorem 4. Let fg : R → R be continuously differentiable and suppose

g : T→ R is delta differentiable. Then fog : T→ R is delta differentiable

on Tk and the formula

(fog)4(t) =
{∫ 1

0

f
′
(g(t) + hµ(t)g4(t))dh

}
g4(t)

holds for t ∈ Tk

Integration

Definition 4

A function f : R → R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exist (finite) at all left dense

points in T. The set of rd-continuous functions f : R→ R will be denoted

in this thesis by Crd = Crd(T) = Crd(T,R). The set of functions f : R→ R

that are differentiable and whose derivative is rd-continuous is denoted by

C
′

rd = C
′

rd(T) = C
′

rd(T,R).
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Theorem 5. (i) If f is continuous, then f is rd-continuous.

ii) If f is rd-continuous then f is regulated.

(iii) The jump operator σ is rd-continuous.

(iv) If f is regulated or rd-continuous, then so is fσ.

(v) Assume f is continuous. If g : T → R is regulated or rd-continuous,

then fog has that property too.

Theorem 6. (Existence of Pre-Antiderivatives) Let f be regulated. Then

there exists a function F which is pre-differentiable with region of differen-

tiation D such that F4(t) = f(t) holds for all t ∈ D.

Definition 5

Assume f : T→ R is a regulated function. Any function F as in Theorem

6 is called a pre-antiderivative of f . We define the indefinite integral of a

regulated function f by

∫
f(t)4 = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We

define the Cauchy integral by

∫ s

r

f(t)4t = F (s)− F (r)

for all r, s ∈ T.

A function F : T → R is called an antiderivative of f : T → R

provided

F4(t) = f(t)

holds for all t ∈ Tk

Definition 6

If a ∈ T, supT =∞, and f is rd- continuous on [0,∞), then we define the
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improper integral by

∫ ∞
a

f(t)4t := lim
b→∞

∫ b

a

f(t)4t

provided this limit exists, and we say that the improper integral converges

in this case. If this limit does not exist, then we say that the improper

integral diverges.

Theorem 7. (Chain Rule). Assume that ν : R → R is strictly increasing

and T = ν(T) is a time scale. Let ω : T→ R. If ν4(t) and ω4(ν(t)) exist

for t ∈ Tk, then (ω o ν)4 = (ω4 o ν)ν4.

Definition 7

A function F : R → R is called an antiderivative of f : R → R provided

F4(t) = f(t) for all t ∈ Tk. Then we define the Cauchy integral by

∫ b

a

f(t)4t = f(b)− f(a), for all t ∈ T.

Theorem 8. Every rd-continuous function has an antiderivative. In par-

ticular, if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)4τ for t ∈ T

is an antiderivative of f .

Theorem 9. (Substitution) Assume ν : T → R is strictly increasing and

˜T := ν(T) is a time scale. If f : T→ R is an rd-continuous function and

ν is differentiable with rd-continuous derivative, then for a, b ∈ T,

∫ b

a

f(t)ν4(t) =

∫ ν(b)

ν(a)

(f o ν−1)(s)4s

The following theorem provides useful properties of delta integrals.
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Theorem 10. If a, b, c ∈ T, α ∈ R and f, g ∈ Crd then

(i)
∫ b
a
[f(t) + g(t)]4t =

∫ b
a
f(t)4t+

∫ b
a
g(t)4t;

(ii)
∫ b
a
(αf)(t)4t = α

∫ b
a
f(t)4t;

(iii)
∫ b
a
f(t)4t = −

∫ a
b
f(t)4t;

(iv)
∫ b
a
f(t)4t =

∫ c
a
f(t)4t+

∫ b
c
f(t)4t;

(v)
∫ b
a
f(σ(t))g4(t)4t = fg(b)− fg(a)−

∫ b
a
f4(t)g(t)4t;

(vi)
∫ b
a
f(t)g4(t)4t = fg(b)− fg(a)−

∫ b
a
f4(t)g(σ(t))4t;

(vii) if | f(t) |≤ g(t) on [a, b), then |
∫ b
a
f(t)4t |≤

∫ b
a
g(t)4t;

(viii) f(t) ≥ 0 for all a ≤ t < b then
∫ b
a
f(t)4t ≥ 0;

(ix)
∫ a
a
f(t)4t = 0.

Definition 8

A function p : T → R is said to be regressive provided 1 + µ(t)p(t) 6= 0

for all t ∈ Tk. The set of all regressive rd-continuous functions f : T → R

is denoted by R while the set R+ is given by <+ =
{
f ∈ R : µ(t)f(t) >

0 for all t ∈ T
}

.

Definition 9

Let p ∈ R and µ(t) 6= 0 for all t ∈ T. The exponential function on T is

defined by

ep(t, s) = exp
(∫ t

s

1

µ(z)
log(1 + µ(z)p(z))4z

)
,

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also,

the exponential function y(t) = ep(t, s) is the solution to the initial value

problem y4 = p(t)y, y(s) = 1. Other properties of the exponential function

are given in the following lemma.

Lemma 1

Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t)ep(t, s);
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(iii) 1
ep(t,s)

= e	p(t, s) where, 	p(t) = − p(t)
(1+µ(t)p(t))

;

(iv) ep(t, s) = 1
ep(t,s)

= e	p(t, s);

(v) ep(t, s)ep(s, r) = ep(s, t);

(vi)
(

1
ep(.,s)

)4
= − p(t)

eσp (.,s)

Next we consider the first order non-homogeneous linear equation

y4 = p(t)y + f(t)

and the corresponding homogeneous equation y4 = p(t)y on a time scale

T.

Definition 10

If p ∈ < and f : T → R is rd-continuous, then the dynamic equation

y4(t) = p(t)y(t) + f(t) is called regressive.

Theorem 11. (Variation of Constants). Suppose p ∈ < and f ∈ Crd. Let

t0 ∈ T is fixed in T and y(t0) = y0 ∈ R, then the unique solution to the

first order dynamic equation on T

y4(t) = p(t)y(t) + f(t) y(t0) = y0;

exists and is given by

y(t) = y0ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ)4τ

Definition 11

The zero solution of a dynamic equation on time scale T is said to be stable

if, for every t0 ∈ T and for every ε > 0, there exists a δ = δ(ε, t0) > 0 such

that, for any solution x(t, t0, x0) of the dynamic equation, the inequality

|| x0 ||< δ implies || x ||< ε,for all t ≥ t0, t0 ∈ T.

Definition 12

The zero solution of a dynamic equation on time scale T is said to be
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asymptotically stable if it is stable and for every t0 ∈ T, there exist a

δ = δ(t0) > 0 such that the inequality || x0 ||< δ implies

lim
t→∞
| x(t) |= 0.

.

Definition 13

The function f : T → R is said to be continuous at t0 ∈ T for all ε > 0,

if there exists a neighbourhood Nε(t0) such that | f(t) − f(t0) |< ε for all

Nε(t0)

The next Lemma is a result obtained by Adıvar and Raffoul (2009)

which will be used to establish the proof in the next chapter.

Lemma 2 (Adıvar and Raffoul (2009))

Let f : T→ R be an rd− continuous function, Then

∫ t

δ(t)

f(s)4s = f(t)− f(δ(t))δ4(t).

Proof. Case 1. Let σ(δ(t)) 6= t. Then σ(δ(t)) < t. Thus, there exists a

constant τ0 ∈ [δ(t), t) ∩ T such that σ(δ(t)) = τ0. The result is immediate

from

∫ t

δ(t)

f(s)4t =

∫ τ0

δ(t)

f(s)4t+

∫ t

τ0

f(s)4s

22

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Case 2. Let σ(δ(t)) = t. Hence, we arrive at

[

∫ t

δ(t)

f(s)4s]4 = [µ(δ(t)f(δ(t)))]4

= [(σ(δ(t))− δ(t)f(δ(t))]4

= (1− δ(t))f(δ(t)) + (σ(t)− δ(σ(t)))[f(δ(t))]4

= f(δ(t)− δ4f(δ(t) + µ(t)[f(δ(t))]4

= f(δ(t))− δ4f(δ(t)) + f(δ(t))− f(δ(t))

= f(t)− δ4f(δ(t))

This completes the proof.

Research Approach

The fixed point theorem is the main approach that will be used in

this study. Thus we give appropriate definitions and theorems that will

be relevant in this thesis. A fixed point of a function is an element of the

function’s domain that is mapped to itself by the function. A set of fixed

points is sometimes called a fixed set. That is to say, c is a fixed point of

the function f(x) if and only if f(c) = c.

Many different kinds of problems can be solved by means of fixed

point theory. Generally, to solve a problem with fixed point theory is to

find:

(a) a set S consisting of points which would be acceptable solutions;

(b) a mapping P : S → S with the property that a fixed point solves the

problem;

(c) a fixed point theorem stating that this mapping on this set will have a

fixed point.

Definition 14

A pair (S, ρ) is a metric space if S is a set and ρ : S × S → [0,∞) such

that when y, z, and u are in S then
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(a) ρ(y, z) ≥ 0, ρ(y, y) = 0 and ρ(y, z) = 0 implies y = z,

(b) ρ(y, z) = ρ(z, y), and

(c) ρ(y, z) ≤ ρ(y, u) + ρ(u, z).

Definition 15

A fixed point of a function T : X→ X is a point x ∈ X such that Tx = x.

Definition 16

A vector space (V,+, .) is a normed vector space if for each x, y ∈ V there

is a nonnegative real number || x || called the norm of x,such that

(a) || x ||= 0 if and only if x = 0,

(b) || αx ||=| α ||| x || for each α ∈ R,

(c) || x+ y ||≤|| x || + || y ||.

Definition 17

A banach space is a complete normed space.

Theorem 12. Let (X, d) be a nonempty complete metric space and T :

X → X is a contraction mapping, if there exist a constant α with 0 ≤ α < 1

such that d(T (x), T (y)) ≤ αd(x, y) for all x, y ∈ X, then T has a unique

fixed point x such that T (x) = x.

Chapter Summary

This chapter is firstly concerned about providing some definitions,

theorems and lemmas together with some proofs. We also gave a general

overview of the fixed point theory which will be our main tool for analyzing

our results.
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CHAPTER FOUR

RESULTS AND DISCUSSION

In this chapter we state and prove the main results of the thesis.The

dynamic equation is inverted into an equivalent integral dynamic equation

and a mapping is defined based on the integral equation. The stability

results of the dynamic equation considered in this thesis are then proven.

Let T be a time scale which is unbounded above and below with

0 ∈ T. Consider the dynamic equation on a time scale,

x4(t) = −
N∑
i=1

ai(t)x(t− τi(t)), t ∈ T,

where, ai : T+ → R and τi : T+ → T+ are continuous with t − τ(t) → ∞

as t→∞. For each t0, we define mi(t0) = inf{s− τi(s) : s ≥ t0},m(t0) =

min{mi(t0) : 1 ≤ i ≤ N}. Let D(t0) be the set of bounded ∆-differentiable

functions ψ : [m(t0), t0]T → R with the supremum norm. Also, let Crd =

Crd(T,R) be the space of all rd-continuous functions from T→ R.

In studying the stability properties of dynamic equation using a fixed

point technique, it usually involves the construction of a suitable fixed point

mapping and this can be a difficult task. So, to construct our mapping, we

begin by transforming Equation (1.1) into a more manageable and equiva-

lent equation that possesses the same basic structure and properties as the

dynamic equation and then define a fixed point mapping. This is therefore

done in the next lemma.

Lemma 3

Suppose that gi(t) is the inverse of δi(t) for i = 1, ...., N , then Equation
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(1.1) is equivalent to the equation

x4(t) =
N∑
i=1

bi(t)x(t) +
N∑
i=1

bi(δi(t)x(δi(t))τ
4
i (t)−

(
N∑
i=1

∫ t

δi(t)

bi(gi(s))x(s)4s

)4
(4.1)

where bi(t) = −ai(gi(t)) and δi(t) = t− τi(t).

Proof. Differentiating the integral term in Equation (4.1) using the results

by Adıvar and Raffoul (2009) in Lemma 2, we obtain

(
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s

)4
=

N∑
i=1

bi(t)x(t)−
N∑
i=1

bi(δi(t))x(δi(t))δ
4
i (t)

=
N∑
i=1

bi(t)x(t)−
N∑
i=1

bi(δi(t))x(δi(t))

×
(

1− τ4i (t)
)

=
N∑
i=1

bi(t)x(t)−
N∑
i=1

bi(δi(t)x(δi(t))

+
N∑
i=1

bi(δi(t))x(δi(t))τ
4
i (t) (4.2)

Substituting Equation (4.2) into Equation (4.1), we arrive at

x4(t) =
N∑
i=1

bi(t)x(t) +
N∑
i=1

bi(δi(t))x(δi(t))τ
4
i (t)−

N∑
i=1

bi(t)x(t)

+
N∑
i=1

bi(δi(t)x(δi(t))−
N∑
i=1

bi(δi(t))x(δi(t))τ
4
i (t)

=
N∑
i=1

bi(δi(t))x(δi(t))

= −
N∑
i=1

ai(gi(δi(t)))x(δi(t))

But

gi(δi(t)) = t.
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Thus,

x4(t) = −
N∑
i=1

ai(t)x(δi(t))

This shows that Equation (4.1) is equivalent to Equation (1.1).

The fixed point theorem requires that we define a mapping based on

the integral equation which is equivalent to the dynamic equation and thus

obtain the equivalent integral equation in the next Lemma.

Lemma 4

The function x(t) is a solution a solution of Equation 1.1 if and only if

x(t) = x(t0)ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u)x(δi(u))τ4i (u)ep(t, u)4u

−
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s+ ep(t, t0)
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))x(s)4s

−
∫ t

t0

N∑
i=1

bi(s)ep(t, u)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u (4.3)

Proof. Rewrite Equation (4.1) as

x4(t)−
N∑
i=1

bi(t)x(t) =
N∑
i=1

bi(δi(t)x(δi(t))τ
4
i (t)−

(
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s

)4
(4.4)

Multiplying both sides of Equation (4.4) by e	p(t, t0) where

p(t) =
N∑
i=1

bi(t)

we obtain

(x(t)e	p(t, t0))4

=

 N∑
i=1

bi(δi(t)x(δi(t))τ
4
i (t)−

(
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s

)4 e	p(t, t0)
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=
N∑
i=1

bi(δi(t)x(δi(t))τ
4
i (t)e	p(t, t0)−

(
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s

)4
e	p(t, t0)

(4.5)

Integrating both sides of the Equation (4.5) from t0 to t gives

∫ t

t0

(x(u)e	p(u, t0))44u =

∫ t

t0

N∑
i=1

bi(δi(u)x(δi(u))τ4i (u)e	p(u, t0)4u

−
∫ t

t0

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)4
e	p(u, t0))4u

This implies that

x(t)e	p(t, t0) =x(to)e	p(t0, t0) +

∫ t

t0

N∑
i=1

bi(δi(u)x(δi(u))τ4i (u)e	p(u, t0)4u

−
∫ t

t0

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)4
e	p(u, t0))4u (4.6)

Using integration by parts formula from Theorem 10 of the chapter three

on the last term of Equation (4.6), gives

∫ t

t0

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)4
e	p(u, t0))4u

= e	p(u, t0)(
N∑
i=1

∫ u

δi(u)

bi(u))x(u)4u) |tt0

−
∫ t

t0

e4	p(u, t0)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u

= e	p(t, t0)
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s− e	p(t0, t0)
N∑
i=1

∫ t0

δi(t0)

bi(s)x(s)4s

−
∫ t

t0

e4	p(u, t0)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u (4.7)
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Substituting Equation (4.7) into Equation (4.6), we obtain

x(t)e	p(t, t0)− x(t0)e	p(t0, t0)

=

∫ t

t0

N∑
i=1

bi(δi(s)x(δi(s))τ
4
i (t)e	p(s, t0)4s− e	p(t, t0)

N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s

+
N∑
i=1

∫ t0

δi(t0)

bi(s)x(s)4s+

∫ t

t0

e4	p(u, t0)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u

Simplifying the above equation, gives,

x(t)e	p(t, t0) = x(t0) +

∫ t

t0

N∑
i=1

bi(δi(s)x(δi(s))τ
4
i (s)e	p(s, t0)4s

−e	p(t, t0)
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s+
N∑
i=1

∫ t0

δi(t0)

bi(s)x(s)4s

+

∫ t

t0

	pe	p(t, u)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u (4.8)

Dividing through Equation (4.8) by

e	p(t, t0),

gives

x(t) = x(t0)ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u)x(δi(u))τ4i (u)ep(t, u)4u

−
N∑
i=1

∫ t

δi(t)

bi(s)x(s)4s+ ep(t, t0)
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))x(s)4s

−
∫ t

t0

N∑
i=1

bi(s)ep(t, u)

(
N∑
i=1

∫ u

δi(u)

bi(s)x(s)4s

)
4u,

which completes the proof of Lemma 3.

A dynamic equation can be asymptotically stable provided it is first

of all stable. In the next theorem we state sufficient conditions for the

dynamic equation considered to be stable.
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Theorem 13. Suppose the inverse function gi(t) of δi(t) exist for i =

1, ..., N and assume there is a constant α ∈ (0, 1) such that

∫ t

t0

N∑
i=1

|bi(δi(u))||τ∆
i (u)|ep(t, u)∆u+

N∑
i=1

∫ t

δi(t)

| bi(u) | 4u

+

∫ t

t0

N∑
i=1

| bi(u) |
( N∑
i=1

∫ u

δi(u)

| bi(s) | 4s
)
ep(t, u)4u ≤ α. (4.9)

Then the zero solution of Equation (1.1) is stable. Proof. Let ε > 0

be given. Choose δ > 0 such that

(1 + α)δ + αε ≤ ε. (4.10)

Let ψ ∈ D(t0) such that | ψ(t) |≤ δ.

Define S = {ϕ ∈ Crd ϕ(t) = ψ(t) if t ∈ [m(t0), t0]T, ‖ ϕ ‖≤ ε}. Then

(S, ‖ . ‖) is a complete metric space where, ‖ . ‖ is the supremum norm.

Define the mapping Q : S → S by (Qϕ)(t) = ψ(t) for t ∈ [m(t0), t0]T and

(Qϕ) =ψ(t0) +
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s
)
ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u)

× ϕ(δi(u))τ4i (u)ep(t, u)4u−
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)

×
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u, t ≥ t0. (4.11)

We first show that Q maps from S to S. From Eq. (4.10) we have

|(Qϕ)(t)|

=
∣∣∣ψ(to)ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u)ψ(δi(u))τ4i (u)ep(t, u)4u

−
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s+ ep(t, t0)(
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s

−
∫ t

t0

pep(t, u)

(
N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s

)
4u
∣∣∣
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≤
∣∣∣(ψ(t0) + (

N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s

)
ep(t, t0)

∣∣∣
+
∣∣∣ ∫ t

t0

N∑
i=1

bi(δi(u)ψ(δi(u))τ4i (u)ep(t, u)4u
∣∣∣+
∣∣∣{ N∑

i=1

∫ t

δi(t)

∣∣∣bi(s)∣∣∣4s
+

∫ t

t0

∣∣∣p(s) | ep(t, u)
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s4u
}∣∣∣

≤ δ + αδ +
{ N∑

i=1

∫ t

δi(t)

| bi(s) || ϕ(s) | 4s+

∫ t

t0

| p(s) | ep(t, u)

×

(
N∑
i=1

∫ u

δi(u)

| bi(s) || ϕ(s) | 4s

)
4u
}

≤ (1 + α)δ +
{ N∑

i=1

∫ t

δi(t)

| bi(s) | 4s+

∫ t

t0

| p(s) | ep(t, u)

×

(
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s

)
4u
}
|| ϕ ||

≤ (1 + α)δ + α || ϕ ||

≤ (1 + α)δ + αε

≤ ε

This therefore shows that Q maps from S into itself.

We next show that Q is continuous. Let ϕ, η ∈ S. Given ε > 0,

Choose δ =
ε

α
such that | ϕ− η |< δ.Then,

|| (Qϕ)− (Qη) ||

=
∣∣∣(ψ(t0) +

N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s
)
ep(t, t0)

+

∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)ep(t, u)4u−
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s

−
∫ t

t0

( N∑
i=1

bi(u)
)
ep(t, u)

( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u
)

−
(
ψ(t0) +

N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s
)
ep(t, t0)

+

∫ t

t0

N∑
i=1

bi(δi(u))η(δi(u))τ4i (u)ep(t, u)4u−
N∑
i=1

∫ t

δi(t)

bi(s)η(s)4s
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−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)
( N∑
i=1

∫ u

δi(u)

bi(s)η(s)4s
)
4u
)∣∣∣

=
∣∣∣ ∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)ep(t, u)4u−
∫ t

t0

N∑
i=1

bi(δi(u))η(δi(u))τ4i (u)

× ep(t, u)4u+
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s−
N∑
i=1

∫ t

δi(t)

bi(s)η(s)4s

+

∫ t

t0

N∑
i=1

bi(u)ep(t, u)
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u
)
−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)

×
( N∑
i=1

∫ u

δi(u)

bi(s)η(s)4s
)
4u
∣∣∣

≤
∣∣∣ ∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)ep(t, u)4u−
∫ t

t0

N∑
i=1

bi(δi(u))η(δi(u))τ4i (u)

× ep(t, u)4u
∣∣∣+
∣∣∣ N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s−
N∑
i=1

∫ t

δi(t)

bi(s)η(s)4s
∣∣∣

+
∣∣∣ ∫ t

t0

N∑
i=1

bi(u)ep(t, u)
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u
)
−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)

×
( N∑
i=1

∫ u

δi(u)

bi(s)η(s)4s
)
4u
∣∣∣

≤
∫ t

t0

N∑
i=1

| bi(δi(u) || τ4i (u) | ep(t, u)4 | ϕ(δi(u))− η(δi(u)) |

+
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s | ϕ(s)− η(s) | +
∫ t

t0

|
N∑
i=1

bi(u) | ep(t, u)

×
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s4u | ϕ(s)− η(s) |

≤
∫ t

t0

N∑
i=1

| bi(δi(u)) || τ4i (u) | ep(t, u)4u || ϕ− η || +(
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s) |

× | ϕ− η || +
∫ t

t0

N∑
i=1

| bi(u) | ep(t, u)(
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s)4u) || ϕ− η || .

≤
{∫ t

t0

N∑
i=1

| bi(δi(u) || τ4i (u) | ep(t, u)4u +
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s

+

∫ t

t0

|
N∑
i=1

bi(u) | ep(t, u)
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s4u
}
|| ϕ− η || .

≤ α || ϕ− η ||

≤ ε
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This therefore shows that Qϕ is continuous. We next show that Q is

a contraction under the supremum norm. Let ϕ, φ ∈ S. Then,

| (Qϕ)(t)− (Qφ)(t) |

=
∣∣∣(ψ(t0)ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)ep(t, u)4u

−
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s+ ep(t, t0)(
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s

−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)(
N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s)4u
)

−
(
ψ(t0)ep(t, t0) +

∫ t

t0

N∑
i=1

bi(δi(u))φ(δi(u))τ4i (u)ep(t, u)4u

−
N∑
i=1

∫ t

δi(t)

bi(s)φ(s)4s+ ep(t, t0)(
N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s

−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)(
N∑
i=1

∫ u

δi(u)

bi(s)φ(s)4s)4u
)∣∣∣.

=
∣∣∣ ∫ t

t0

N∑
i=1

bi(δi(u)ϕ(δi(u))τ4i (u)ep(t, u)4u+
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s

−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)(
N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s4u

+

∫ t

t0

N∑
i=1

bi(δi(u)φ(δi(u))τ4i (u)ep(t, u)4u−
N∑
i=1

∫ t

δi(t)

bi(s)φ(s)4s

−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)(
N∑
i=1

∫ u

δi(u)

bi(s)φ(s)4s)4u
∣∣∣.

≤
∣∣∣ ∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)ep(t, u)4u−
∫ t

t0

N∑
i=1

bi(δi(u))ϕ(δi(u))τ4i (u)

× ep(t, u)4u
∣∣∣+
∣∣∣ N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s−
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s
∣∣∣

+
∣∣∣ ∫ t

t0

N∑
i=1

bi(u)ep(t, u)
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u
)
−
∫ t

t0

N∑
i=1

bi(u)ep(t, u)

×
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
)
4u
∣∣∣

≤
∫ t

t0

N∑
i=1

∣∣∣bi(δi(u))
∣∣∣∣∣∣τ4i (u)

∣∣∣ep(t, u)4u
∣∣∣ϕ(δi(u))− φ(δi(u))

∣∣∣
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+
N∑
i=1

∫ t

δi(t)

∣∣∣bi(s)∣∣∣4s | ϕ(s)− φ(s)
∣∣∣− ∫ t

t0

N∑
i=1

∣∣∣bi(u)
∣∣∣ep(t, u)

×
N∑
i=1

∫ u

δi(u)

∣∣∣bi(s)∣∣∣4s)4u∣∣∣ϕ(s)− φ(s)
∣∣∣

≤
∫ t

t0

N∑
i=1

| bi(δi(u) || τ4i (u) | ep(t, u)4u || ϕ− φ ||

+ (
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s) || ϕ− φ || +
∫ t

t0

N∑
i=1

| bi(u) | ep(t, u)

× (
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s)4u || ϕ− φ || .

≤
{∫ t

t0

N∑
i=1

| bi(δi(u)) || τ4i (u) | ep(t, u)4u+
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s

+

∫ t

t0

N∑
i=1

| bi(u) | ep(t, u)(
N∑
i=1

∫ u

δi(u)

| bi(s) | 4s)4u
}
|| ϕ− φ || .

≤ α || ϕ− φ ||

This shows that Q is a contraction. By the contraction mapping principle,

Q has a unique fixed point in S which solves Equation (1.1) and for any

ϕ ∈ S, ‖Qϕ‖ ≤ ε.

This proves that the zero solution of Equation (1.1) is stable. In the

next theorem we state sufficient conditions for the dynamic equation to

be asymptotically stable.

Theorem 14. Assume the hypothesis of Theorem 13 hold. Assume further

that

t− τi(t)→∞ as t→∞ for i = 1, ..., N. (4.12)

Then the zero solution of Equation (1.1) is asymptotically stable.

Proof. It has been proved already that the zero solution of Equation (1.1)

is stable. Let ψ ∈ D(to) such that |ψ(t)| ≤ δ and define S∗ = {ϕ ∈ Crd :

ϕ(t) = ψ(t) if t ∈ [m(t0), t0]T, ‖ ϕ ‖≤ ε and ||ϕ|| → 0 as t → ∞}. Define
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Q : S
? → S

?
by (4.11). It has been proved that the map Q is a contraction

and for every ϕ ∈ S? , ‖Qϕ‖ ≤ ε. We next show that (Qϕ)→ 0 as t→∞.

The first term on the right hand side of Equation (4.11) given by

(
ψ(t0) +

N∑
i=1

∫ t0

δi(t0)

ai(gi(s))ψ(s)4s
)
ep(t, t0)

goes to zero as t→∞ since ep(t, t0)→ 0 t→∞.

Since ϕ ∈ S, we have ϕ(t) → 0 as t → ∞. From continuity of norm we

obtain

||ϕ|| → 0 as t→∞. (4.13)

Hence, we obtain for the third term

|
N∑
i=1

∫ t

δi(t)

bi(s)ϕ(s)4s | ≤ || ϕ ||
N∑
i=1

∫ t

δi(t)

| bi(s) | 4s→ 0 as t→∞.

We now show that the second and the last terms on the right hand side of

Equation (4.11) go to zero as t→ 0. Since ϕ(t)→ 0 and δi(t)→∞ as t→

∞, for ε1 > 0, there exist a T1 > t0 such that t ≥ T1 implies |ϕ(δi(t)) |< ε1

for j = 1, 2, 3, ..., N . Also, due to the fact that ep(t, 0) → 0 as t → ∞,

there exist T2 > T1 such that t > T2 implies that

ep(t, T1) ≤ ε1
αε

Then,

| I3 |

≤
∫ T1

t0

[ N∑
i=1

(∣∣∣bi(δi(u))ϕ(δi(u))τ4i (u) +

∫ t

t0

N∑
i=1

bi(u)
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
) ]

× ep(t, u) 4u
∣∣∣+
∣∣∣ ∫ t

T1

[ N∑
i=1

(
bi(δi(u))ϕ(δi(u))τ4i (u) +

∫ t

t0

N∑
i=1

bi(u)
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×
( N∑
i=1

∫ u

δi(u)

bi(s)ϕ(s)4s
) ]

ep(t, u) 4u
∣∣∣

≤ ||ϕ||ep(t, T1) |
∫ T1

t0

[ N∑
i=1

(
| bi(δi(u)) || τ4i (u) | + |

∫ t

t0

N∑
i=1

bi(u) |

×
( N∑
i=1

∫ u

δi(u)

| bi(s) | 4s
) ]

ep(T1, u) 4u + ε1

∫ t

T1

[ N∑
i=1

(
| bi(δi(u)) |

× | ϕ(δi(u))τ4i (u) | + |
∫ t

t0

N∑
i=1

bi(u) |
( N∑
i=1

∫ u

δi(u)

| bi(s)ϕ(s) | 4s
) ]

ep(t, u) 4u

≤ |ep(t, T1)αε+ αε1

≤ ε1 + αε1

This yields I3 → 0 as t → ∞. Hence (Qϕ)(t) → 0 as t → ∞ and so

Pϕ ∈ S
?
. Hence all the conditions of the Banach fixed point theorem

has been established. Therfore, by the Banach fixed point theorem, the

mapping Q has a unique fixed point which solves Equation (1.1) and goes

to zero as t goes to infinity. Therefore the zero solution of Equation (4.10)

is asymptotically stable.

Chapter Summary

In this chapter,an equivalent integral dynamic equation to the dy-

namic equation obtained.A mapping is then defined based on the equivalent

integral dynamic equation. Sufficient conditions conditions are obtained for

the zero solution of the dynamic equation to be stable and asymptotically

stable.
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CHAPTER FIVE

SUMMARY,CONCLUSIONS AND RECOMENDATIONS

Summary

The stability properties of a completely delayed dynamic equations

on time scale is investigated in this research work.The dynamic equation

is inverted or transformed into an equivalent integral dynamic equations

on time scale. The equivalent integral equation is then used to define a

mapping that was used for the discussion of the stability behaviour of the

dynamic equation considered. The Banach fixed point theorem is used to

prove the asymptotic stability of the zero solution of the dynamic equation

on time scale.

Conclusion

Sufficient conditions for the zero solution of a completely delayed

dynamic equation to be stable has been established. Moreover,sufficient

conditions for the zero solution of the completely delayed dynamic equation

on time scale have also been obtained.

Recommendations

For the study of stability properties of dynamic equations with vari-

able delay i recommend that the fixed point theorem be used.
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