
UNIVERSITY OF CAPE COAST

ASYMPTOTIC STABILITY OF SOLUTIONS OF A SYSTEM OF

DIFFERENCE EQUATIONS WITH FINITE DELAY

BY

VICTOR KINGSFORD EGYIR

Thesis submitted to the Department of Mathematics of the School of Physical
Sciences, College of Agriculture and Natural Sciences, University of Cape
Coast, in partial fulfilment of the requirements for the award of Master of

Philosophy degree in Mathematics

JULY 2020

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



DECLARATION

Candidate’s Declaration

I hereby declare that this thesis is the result of my own original research and

that no part of it has been presented for another degree in this university

or elsewhere.

Candidate’s Signature ......................................... Date ......................

Name: Victor Kingsford Egyir

Supervisor’s Declaration

I hereby declare that the preparation and presentation of the thesis were

supervised in accordance with the guidelines on supervision of thesis laid

down by the University of Cape Coast.

Supervisor’s Signature ............................ Date ......................

Name: Prof. Ernest Yankson

i

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ABSTRACT

This thesis is concerned with the stability of solutions of a system of dif-

ference equations with finite delay.

Fixed point theory is used in this thesis to investigate the stability of solu-

tions of a system of difference equations with finite delay.

In particular, the Banach fixed point theorem is used in the thesis. In the

process the system of equations are inverted to obtain an equivalent

summation equations. The result of the inversion is used to define a

suitable mapping which is then used to discuss the stability properties of

solutions of the system of difference equations with finite delay.

Sufficient conditions that guarantee that the zero solution of a

system of difference equations with finite delay are asymptotically stable

are obtained.
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CHAPTER ONE

INTRODUCTION

Background to the Study

A difference equation is a mathematical equality which involves the

differences between successive values of a function of discrete variable. A

discrete variable refers to values that differ by some finite amount, usually

constant and often 1. Difference equations have many applications in a

variety of disciplines such as economics, mathematical biology and physics.

In 1202, Fibonacci formulated his famous rabbit problem that led to the

Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,... . However, it appears that the

corresponding difference equation

Fn = Fn−2 + Fn−1

was first written down by Albert Girard around 1634 and was solved by

De Moivré in 1730. Bombelli studied the equation

yn = 2 +
1

yn−1

in 1572, which is similar to the equation

zn = 1 +
1

zn−1

which is satisfied by ratios of Fibonacci numbers, in order to approximate
√

2. Fibonacci also gave a rough definition for the concept of continued

fractions that is intimately associated with difference equations.

Difference equations describe real life situations associated with sta-

tistical problems, geometry, stochastic time series etc. In the construction

of mathematical models of physical systems it is usually assumed that all

of the independent variables, such as time and space are continuous. This

assumption normally leads to a realistic and justified approximation of

1
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real variables of the systems. However, we regularly encounter systems

for which this continuous variable assumption cannot be made. Systems

in which one or more variables are inherently discrete are in areas such

as population growth, digital communication networks and delay feedback

oscillation as in lasser emission pulsation Rabinovich (1980). Due to their

discrete character, these systems must be modelled by the use of difference

equations.

In recent times, difference equations have attracted a lot of attention

that it deserves which can be attributed to the introduction of comput-

ers where approximate difference equation formulation are adopted to find

the solutions of differential equations. The qualitative theory of difference

equation was born at the end of the 19th century with the works of Henri

Poncaré (1857-1912) and Hedrih (2007).

Stability plays a major role in the qualitative analysis of solutions of

difference equations. A solution of a difference equation is said to be stable

if small changes in initial conditions causes only a small change in the fu-

ture behaviour of the solution. Stability techniques for difference equations

can be used to study the convergence of multistep methods for ordinary

differential equations. The idea of using difference equations to approx-

imate solutions of differential equations originated in 1769 with Euler’s

polygonal method for which the proof of convergence was given by Cauchy

around 1840. The subject seems to have languished until almost the end

of the nineteenth century, when Lipschitz, Runge and Kutta developed im-

proved procedures. The urgent need for numerical approximations during

World War I greatly stimulated research in this area, and the number of

publications later explored with the development of the digital computer.

Lakshmitankhan & Donato (2003) initiated the modern theory of the con-

vergence of multistep methods as in Dahlquist (1985).

The efficient application of linear difference equations to the

2
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computation of special functions originated in 1952 with Miller’s algorithm

for Bessel functions. Such computations must be done with care because of

the possibility of explosive round-off error, as illustrated by the cautionary

example of Gautschi (1972). Wimp (1984) discusses the development of

this method and related algorithms due to Olver (1967), Gautschi (1972),

Wimp (1969) as well as some examples of computation with nonlinear dif-

ference equations. Further development of the theory of linear difference

equations has brought the subject to a state comparable to that of linear

differential equations which is illustrated by Hartman (1978) and Peterson

(1998). Since the introduction of Lyaponuv’s work 100 years ago, Lyaponuv

direct method has been the main tool until recently in dealing with sta-

bility problems in various types of dynamical model equations. However,

the construction of the right Lyaponuv functions prove to be technical, and

are not applicable to all situations. The application of Lyaponuv’s direct

method to problems of stability in difference equations with delay has en-

countered serious difficulties if the delay is unbounded or if the equation

has unbounded terms which were identified by the authors in Islam and

Raffoul (2007) and Islam and Yankson (2005).

The foundation for a thorough study of the asymptotic properties of

solutions of linear difference equations was laid in the 1880’s by Poincare,

who formalized the concept of asymptotic series and also showed that under

favourable conditions the ratio of consecutive values of a solution must

approach a characteristic root.

Statement of the Problem

The study of stability of difference equations have attracted the at-

tention of several mathematicians in recent times. Raffoul (2006) obtained

3
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sufficient conditions for the zero solution of the difference equation

∆x(n) = a(n)x(n− τ),

to be asymptotically stable. This equation however is a scalar equation and

so the stability results do not apply to the system of difference equations

∆x(n) = A(n)x(n− τ),

where, A(n) is an s× s matrix.

Purpose of the Study

The purpose of this study is to determine asymptotic stability of

solutions of a system of difference equations with finite delay.

Research Objectives

The study sought to determine the sufficient conditions under which

the zero solution of the system of difference equations

∆x(n) = A(n)x(n− τ),

with finite delay is

1. Stable;

2. Asymptotically stable.

Significant of the Study

The study generalises some results in stability of a system of difference

equation with finite delay and hence add to literature which can be used

by researchers in the area of stability of difference equation.

4
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Delimitations

The study considers a system of difference equation equation with fi-

nite delay and does not include a system of difference equation with variable

or multiple delays.

Limitations

The fixed point theory is the main tool used in this reasearch because

it is less complex in obtaining the stability solution of difference equation

with delays than construction of Lyapunov Direct Method which is soph-

isficated and difficult to use.

Organisation of the Study

The thesis consist of five chapters that are organised as follows:

Chapter One presents the background of the study, statement of problem,

the objectives of the thesis as well as the organization of the thesis.

Chapter Two examines the previous work related to the thesis.

Chapter Three is all about the relevant mathematical background, various

theorems and methodology. Chapter Four consists of results and

discussions of the study. Chapter Five, which is the final chapter consists

of the summary and conclusions to the study.

5
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CHAPTER TWO

LITERATURE REVIEW

Introduction

The stability of solutions of difference equations has been studied

extensively in academic literature. The focus of this chapter is to review

literature on stability of difference equations related to the work in this

thesis.

Relevant Literature

There are a number of researchers working on stability theory of dif-

ference equations, with or without delay, and this has resulted in the es-

tablishment of many interesting results about the stability of solutions of

difference equations. For instance, M. Islam & Yankson (2005), showed

that the zero solution of the difference equation with variable delay

x(n+ 1) = b(n)x(n) + a(n)x(n− τ(n))

is asymptotically stable with an assumption that

∏n=1
s=0 b(s)→ 0 as n→∞.

In Raffoul (2006), the author considered the finite delay difference

equation

∆x(n) = a(n)x(n− τ),

which is the same as

x(n+ 1) = x(n) + a(n)x(n− τ) (2.1)

where b(n) = 1. Thus, the condition

6
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∏n=1
s=0 b(s)→ 0 as n→∞

obtained by M. Islam & Yankson (2005) does not hold for Equation (2.1)

since b(n) = 1, for all n ∈ Z. Raffoul (2006), obtained sufficient conditions

for the zero solution of the difference equation with constant delay

∆x(n) = a(n)x(n− τ),

to be asymptotically stable by fixed point theory. In addition periodicity

of solutions was also proved.

Moreover,Yankson (2009), obtained sufficient conditions for the zero

solution of the equation

∆x(n) = −
N∑
j=1

aj(n)x
(
n− τj(n)

)

to be asymptotically stable by fixed point theory. The results obtained by

Yankson (2009) improves and generalizes that of Raffoul (2006). Moreover,

Yankson (2015), also proved the existence of a unique periodic solution of

the system of difference equations

∆x(n) = A(n)x(n− τ),

where, A(n) ∈ Rs×s is a non singular matrix and τ is a positive constant

by means of fixed point theory.

Difference Calculus

Many of the computations used in solving and analyzing difference

equations can be simplified by use of the difference calculus, a collection of

mathematical tools quite similar to the differential calculus.

7
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The Difference Operator

Just as the differential operator plays the central role in the differen-

tial calculus, the difference operator is the basic component of calculations

involving finite differences.

Definition 1

Let y(n) be a function of a real or complex variable n. The difference

operator ∆ is defined by

∆y(n) = y(n+ 1)− y(n).

For the most part, we will take the domain of y to be a set of consec-

utive integers such as the natural numbers N = 1, 2, 3, ... . Occasionally we

will apply the difference operator to a function of two or more variables.

In this case, a subscript will be used to indicate which variable is to be

shifted by one unit. Higher order differences are defined by composing the

difference operator with itself. The second order difference is

∆2x(n) = ∆
(

∆x(n)
)

= ∆
(
x(n+ 1)− x(n)

)

=
(
x(n+ 2)− x(n+ 1)

)
−
(
x(n+ 1)− x(n)

)

= x(n+ 2)− 2x(n+ 1) + x(n).

The following formula for the nth order difference is readily verified by

8
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induction:

∆ny(t) = y(t+ n)− ny(t+ n− l) +
n(n− 1)

2!
y(t+ n− 2)

+...+ (−1)ny(t)

=
n∑
k=0

(−1)k
(n
y

)
y(t+ n− k).

These calculations can be verified just as in algebra since the composition

of the operators I and E has the same properties as the multiplication of

numbers. In much the same way, we have

Eny(t) =
n∑
k=0

n
k

∆y(t)

An elementary operator that is often used in conjunction with the differ-

ence operator is the shift operator.

Definition 2 (Shift Operator)

The shift operator E is defined by

Ex(t) = x(t+ 1).

If I denotes the identity operator, that is, Ix(t) = x(t) then we have

∆ = E − I. (2.2)

9
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In fact, Equation (2.2) is similar to the Binomial Theorem from algebra:

∆nx(t) = (E − I)nx(t)

=
n∑
k=0

(n
k

)
(−I)kEn−kx(t)

=
n∑
k=0

(n
k

)
(−1)kx(t+ n− k)

The fundamental properties of ∆ are given in the following theorem.

Theorem 2 [Walter & Peterson (1991)]

(i) ∆a(∆bw(n)) = ∆(a+b)w(n) for all positive integers a and b.

(ii) ∆(x(n) + y(n)) = ∆x(n) + ∆y(n).

(iii) ∆
(
Cx(n)

)
= C∆x(n) if C is a constant.

(iv) ∆(x(n)y(n)) = x(n)∆y(n) + Ex(n)∆y(n).

(v) ∆
(
x(n)
y(n)

)
= y(n)∆x(n)−x(n)∆y(n)

y(n)Ey(n)
.

Proof.

ii. By the definition of the difference operator,

∆[x(n) + y(n)] = x(n+ 1) + y(n+ 1)− (x(n)y(n))

= x(n+ 1) + y(n+ 1)− x(n)− y(n)

= x(n+ 1)− x(n) + y(n+ 1)− y(n)

= ∆x(n) + ∆y(n)

10
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iii. By the definition of the difference operator,

∆(by(n)) = by(n+ 1)− by(n)

= b[y(n+ 1)− y(n)]

= b∆y(n)

iv. Applying the difference operator,

∆(x(n)y(n)) = x(n+ 1)y(n+ 1)− x(n)y(n)

= x(n+ 1)y(n+ 1)− x(n+ 1)y(n) + x(n+ 1)y(n)− x(n)y(n)

= x(n+ 1)[y(n+ 1)− y(n)] + [x(n+ 1)− x(n)]y(n)

= Ex(n)∆y(n) + [∆x(n)]y(n).

v. Using the definition of the difference operator we obtain,

∆
x(n)

y(n)
=

x(n+ 1)

y(n+ 1)
− x(n)

y(n)

=
x(n+ 1)y(n)− x(n)y(n+ 1)

y(n)y(n+ 1)

=
y(n)(∆x(n) + x(n))− x(n)(∆y(n) + y(n))

y(n)Ey(n)

11
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=
y(n)∆x(n) + x(n)y(n)− x(n)y(n)− x(n)∆y(n)

y(n)Ey(n)

=
y(n)∆x(n)− x(n)∆y(n)

y(n)Ey(n)

In addition to the general properties for computing differences, there

are other fundamental properties. Theorems give is a list for some functions

and their differences.

Theorem 3[ Walter & Peterson (1991)]

Let a be a constant. Then

a. ∆wt = (w − 1)wt

b. ∆ sin bt = 2 sin
(
b
2

)
cos b

(
t+ 1

2

)
c. ∆ cos bt = −2 sin( b

2
) sin b

(
t+ 1

2

)
d. ∆ log(bt) = log

(
1 + 1

t

)
e. ∆ log Γt = log(t)

Proof.

a. Using the definition of the difference operator we obtain

∆wt = wt+1 − wt

= (w − 1)wt

12
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b. Applying the diffference operator

∆ sin(bt) = sin b(t+ 1)− sin b(t)

= sin b
(
t+

1

2
+

1

2

)
− sin b

(
t+

1

2
− 1

2

)

= sin b
(
t+

1

2

)
cos
( b

2

)
+ sin

( b
2

)
cos b

(
t+

1

2

)

−
[

sin
(
b
(
t+

1

2

))
cos
( b

2

)

− sin
( b

2

)
cos
(
b
(
t+

1

2

))]

= 2 sin
( b

2

)
cos
(
b
(
t+

1

2

))

c. Applying the difference operator

∆ cos(bt) = cos(b(t+ 1))− cos(bt)

= cos b
(
t+

1

2
+

1

2

)
− cos

(
b
(
t+

1

2
− 1

2

))

= cos b
(
t+

1

2

)
cos
( b

2

)
− sin

( b
2

)
sin
(
b
(
t+

1

2

))

−
[

cos
(
b
(
t+

1

2

))
cos
( b

2

)
+ sin

( b
2

)
sin
(
b
(
t+

1

2

))]

= −2 sin
( b

2

)
sin
(
b
(
t+

1

2

))

13
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d. Using the definition of difference operator

∆ log(bt) = log b(t+ 1)− log at

= log
b(t+ 1)

bt

= log
t+ 1

t

= log
(

1 +
1

t

)

e. Using the definition of difference operator

∆ log Γ(t) = log Γ(t+ 1)− log Γ(t)

= log
(Γ(t+ 1)

Γ(t)

)

= log
tΓ(t)

Γ(t)

= log(t).

The ”falling factorial power” tr: (read ”t to the r falling”) is defined as

follows, according to the value of r.

a. If r = 1, 2, 3, ..., then tr = (t− 1)(t− 2)(t− 3)...(t− r + 1)

b. If r = 0 then t0 = 1

c. If r = −1,−2,−3, ..., then tr = 1
(t−1)(t−2)(t−3)...(t−r)

d. If r is not an integer, then tr = Γ(t+1)
Γ(t−r+1)

14
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Theorem 4 [ Walter & Peterson (1991)]

Let

p(n) = a0n
k + a1n

k−1 + ...+ ak

be a polynomial of degree k. Then

∆p(n) = a0kn
k−1 + ... terms of degree lower than (k − 1).

Proof.

We now apply the difference operator on the polynomial function of degree

k to obtain:

∆p(n) = [a0(n+ 1)k + a1(n+ 1)k−1 + ...+ ak]

− [a0(n)k + a1n
k−1 + ...+ ak]

= a0k(n)k−1 + ...terms of degree lower than (k − 1)

Carrying out this process k times, one obtains

∆kp(n) = a0k!.

Summation

To make effective use of the difference operator, we introduce in this

section its right inverse operator, which is sometimes called the ”indefinite

sum.” The discrete analogue of the indefinite integral in calculus is the

anti-difference operator ∆−1, defined as follows. If

∆P (n) = 0

then

∆−1(0) = P (n) = c

15
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for some arbitrary constant c. Moreover, if

∆P (n) = p(n)

then

∆−1P (n) = p(n) + c

for some arbitrary constant c. Thus

∆∆−1P (n) = p(n).

This implies that

∆−1∆P (n) = p(n) + c

and

∆∆−1 = I

but

∆−1∆ 6= I

Therefore,

∆
(∑

x(n)
)

= x(n)

for all n in the domain of x.

Theorem 5 [ Walter & Peterson (1991)]

The anti-difference operator ∆−1 is linear.

Proof.

16
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Let a, b ∈ R, then

∆−1
[
ax(n) + by(n)

]
=

n−1∑
i=0

[
ax(i) + by(i)

]
+ c

= a
n−1∑
i=0

x(i) + b

n−1∑
i=0

y(i) + c

= a∆−1x(n) + b∆−1x(n).

Theorem 6 [ Walter & Peterson (1991)]

If z(n) is an indefinite sum of x(n), then every indefinite sum of x(n) is

given by

∑
q(n) = z(n) + C(n),

where, C(n) has the same domain as y and ∆C(n) = 0,

says that C(n + 1) = C(n) for all real n, which means that C can be any

periodic function having period one. In the theory of difference equations

it is convenient to use the convention

b∑
k=a

y(k) = 0

whenever a > b. Observe that for m fixed and n ≥ m,

∆n

( n−1∑
k=m

yk

)
= yn,

and for p fixed and p ≥ h,

∆n

( p∑
k=m

y(k)
)

= −yn,

17
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The following theorem contains important formula for calculating definite

sums, which is analogous to the fundamental theorem of calculus.

Theorem 7 [ Walter & Peterson (1991)]

If w(n) is an indefinite sum of h(n), then

n−1∑
k=m

h(k) =
[
w(k)

]n
m

= w(n)− w(m).

Chapter Summary

The chapter focused on a review of relevant literature such Raffoul

(2006) which was later improved by Yankson (2009)on the stability of dif-

ference equations with delay.

18
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CHAPTER THREE

RESEARCH METHODS

Introduction

The chapter discusses the methods, definitions and theorems used in

achieving the objectives of the research work.

Fixed Point Theory

This section contains an elementary set of definitions and theorems

relevant to our study. The stability property we discuss are formulated in

complete metric spaces. This research has a Banach space (B, ‖ . ‖) in the

background. A subset S of B is selected and (S, ‖ . ‖) is the complete

metric space in this work, where the metric on S is defined by the norm

inherited from the Banach space. Thus the notation almost always suggests

a norm ‖ . ‖ instead of a metric ρ. Even if the zero function, say δ, is not

in S, then for Φ ∈ S, ||δ|| is interpreted as ρ(Φ, δ) = ||Φ− δ||.

Definition 3 (Metric Space)

A pair (S, ρ) is a metric space if S is a set and ρ : S × S → [0,∞) such

that when y, z, and u are in S then

(i) ρ(y, z) ≥ 0, ρ(y, y) = 0 and ρ(y, z) = 0 implies y = z,

(ii) ρ(y, z) = ρ(z, y), and

(iii) ρ(y, z) ≤ ρ(y, u) + ρ(u, z).

The metric space is complete if every Cauchy sequence in (S, ρ) has

a limit in that space. A sequence {xn}n≥1 ⊂ S is a Cauchy sequence if for

each ε > 0 there exists N such that n, m > N imply ρ(xn, xm) < ε.

Stating the contraction mapping principle which generally goes under

the name Banach Caccioppoli Theorem, or Banach’s (1932) Contraction
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Mapping Principle. A proof can be found in Burton (1985). It gains more

respect every day. The real power of the result lies in its application with

cleverly chosen metrics.

Theorem 1 (The Contraction Mapping Principle)

The contraction mapping principle states that if (X, d) is a complete metric

space and T : X → X is a mapping such that d(Tx, Ty) < λd(x, y) for all

x, y ∈ X where 0 ≤ λ < 1, then there exists a unique x ∈ X such that

T (x) = x.

Definition 4 (Stability)

The zero solution of a difference equation is said to be stable if for any

ε ≥ 0 there exists δ(ε, n0) ≥ 0 such that ||x0|| ≤ δ implies that ||x|| ≤ ε for

n ≥ n0.

Definition 5 (Asymptotic Stability)

The zero solution of a difference equation is said to be asymptotically stable

if it is stable and in addition for each n0 ≥ 0 there is an η(n0) > 0 such

that ||ψ|| < η(n0) implies that x(n)→ 0 as n→∞.

The Fundamental Matrices

In this section we consider some of the properties of systems of dif-

ference equations with variable coefficients

x(n+ 1) = A(n)x(n) + P (n), (3.1)

and the corresponding homogeneous system

x(n+ 1) = A(n)x(n), (3.2)

where the matrix function A(n) is assumed to be non-singular for all inte-

gers n.With this assumption, initial value problems for Equation (3.2) will
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have a unique solutions defined on the set of all integers.

Definition 6

The solutions x1(n), x2(n), ..., xk(n) of Equation (3.2) are said to be lin-

early independent for n ≥ n0 ≥ 0 if whenever

c1x1(n) + c2x2(n) + ....+ ckxk(n) = 0

for all n ≥ n0, then

ci = 0, 1 ≤ i ≤ k.

Let Φ(n) be a k × k matrix whose columns are solutions of Equa-

tion (3.2).

We write

Φ(n) = [x1(n), x2(n), ..., xk(n)].

Now,

Φ(n+ 1) = [A(n)x1(n), A(n)x2(n), ..., A(n)xk(n)]

= A(n)[x1(n), x2(n), ..., xk(n)]

= A(n)Φ(n).

Hence, Φ(n) satisfies the matrix difference equation

Φ(n+ 1) = A(n)Φ(n). (3.3)

Furthermore, the solutions x1(n), x2(n), ..., xk(n) are linearly independent

for n ≥ n0 if and only if the matrix Φ(n) is non singular (det Φ(n) 6= 0)

for all n ≥ n0. This actually leads to the next definition.
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Definition 7

If Φ(n) is a matrix that is non-singular for all n ≥ n0 and satisfies Equa-

tion (3.3), then it is said to be a fundamental matrix for system Equation

(3.2).

Note that if Φ(n) is a fundamental matrix and C is any non-singular

matrix, then Φ(n)C is also a fundamental matrix. Thus there are infinitely

many fundamental matrices for a given system. However, there is one

fundamental matrix that we already know, namely,

Φ(n,m) =
∏n−1

i=n0
A(i), with Φ(n0) = I.

In the autonomous case when A is a constant matrix,

Φ(n) = An−n0 , and if n0 = 0,

then

Φ(n) = An.

We may add here that starting with any fundamental matrix Φ(n),

the fundamental matrix Φ(n)Φ−1(n0) is also a matrix. This special fun-

damental matrix is denoted by Φ(n, n0) and is referred to as the state

transition matrix. One may, in general, write

Φ(n,m) = Φ(n)Φ−1(m)

for any two positive integers n,m with n ≥ m. The fundamental matrix

Φ(n,m) has some agreeable properties that we ought to list here. Observe

first that Φ(n,m) is a solution of the matrix difference equation

Φ(n+ 1,m) = A(n)Φ(n,m).

The following are the agreeable properties of fundamental matrix:

i. Φ−1(n,m) = Φ(m,n);

ii. Φ(n,m) = Φ(n, r)Φ(r,m);
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iii. Φ(n,m) =
∏n−1

i=mA(i);

iv. Φ(n, n) = I

v. Φ(n, n1)Φ−1(n0, n1) = Φ(n, n0)

First Order Linear Difference Equations

Let p(n) and r(n) be given functions with p(n) 6= 0 for all n. The

first order linear difference equation is

y(n+ 1)− p(n)x(n) = r(n). (3.4)

Equation (3.4) is said to be of the first order because it involves the values

of y at n and only n+ 1 only, as in the first order difference of x(n) that is

∆y(n) = y(n+ 1)− y(n)

If p(n) = 1 for all n, then Equation (3.4) is simply

4x(n) = r(n),

whose solution is given by

x(n) =
∑

r(n) + C(n),

where 4C(n) = 0. For simplicity, we assume that the domain of interest

is a discrete set n = a, a+ 1, a+ 2, ... Consider first the equation

u(n+ 1) = p(n)u(n), (3.5)

which is easily solved by iteration as follows Evaluate Equation (3.5) at
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n = a to obtain

u(a+ 1) = p(a)u(a)

Thus,

u(a+ 2) = p(a+ 1)u(a+ 1)

= p(a+ 1)p(a)u(a),

Hence,

u(a+ h) = u(a)
n−1∏
k=0

p(a+ k).

We can write the solution in the more convenient form

u(n) = u(a)
n−1∏
s=a

p(s), (n = a, a+ 1, ...),

where it is understood that
∏a−1

a p(s) = 1, and for n ≥ a+ 1, the product

is taken over a, a+ 1, ..., n− 1.

Methodology

In this thesis fixed point theory was the main method by which the

results of this thesis was obtained. To solve a problem with fixed point

theory is to find:

i. A set X consisting of points which would be acceptable solutions;

ii. A mapping T : X → X with the property that a fixed point solves

the problem;

iii. A fixed point theorem stating that this mapping on this set will

have a fixed point;
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iv. The mapping T will be obtained by inverting the difference equa-

tions;

The fixed point theorem that was used in this research is the contrac-

tion mapping principle.

Chapter Summary

This chapter dealt with some of the theorems and definitions such as

metric space, stability, difference calculus, difference operator, shift opera-

tor, indefinite sum and orders of difference equation which are relevant in

this research and also methodology of the research.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter deals with the results concerning the asymptotic stability

of a certain class of system of difference equations with finite delay.

Preliminaries Result

In this chapter we consider the system of difference equations

∆x(n) = A(n)x(n− τ), (4.1)

where A(n) is an s × s non singular matrix and τ is a positive constant.

Let ψ(n) defined on [−τ, n0] ∩ Z denote the initial function for Equation

(4.1). For x ∈ Rs define ||x|| = maxn∈[−τ,∞)∩Z |x(n)| where |.| denotes the

infinity norm for x ∈ Rs. Define the norm of an s× s matrix A by

|A| = max
1≤i≤s

s∑
j=1

|aij|.

In this thesis we make the following assumptions:

(H1) Suppose that there exists a non-singular s× s matrix G(n) such that

∆x(n) = G(n)x(n)−∆n

n−1∑
k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ). (4.2)

(H2) Let Φ(n, n0) denote the fundamental matrix solution of the equation

∆x(n) = G(n)x(n). (4.3)
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Lemma 1

Suppose that (H1) hold. Then Equation (4.1) is equivalent to

∆x(n) = G(n)x(n)−∆n

n−1∑
k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ).

Proof.

By taking the difference with respect to n of the summation term in

Equation (4.2) we obtain

∆x(n) = G(n)x(n)−
[ n∑
k=n+1−τ

G(k)x(k)−
n−1∑

k=n−τ

G(k)x(k)
]

+
[
A(n)−G(n− τ)

]
x(n− τ)

= G(n)x(n)−
[
G(n)x(n) +

n−1∑
k=n+1−τ

G(k)x(k)

−
n−1∑

k=n+1−τ

G(k)x(k)−G(n− τ)x(n− τ)
]

+
[
A(n)−G(n− τ)

]
x(n− τ)

= G(n)x(n)−
[
G(n)x(n)−G(n− τ)x(n− τ)

]

+
[
A(n)−G(n− τ)

]
x(n− τ)

27

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



= G(n− τ)x(n− τ)−G(n− τ)x(n− τ

+ A(n)x(n− τ)

= A(n)x(n− τ).

This completes the proof.

In Lemma 2 we provide an equivalent summation equation for Equation

(4.1) which will be used to obtain the mappings in this thesis.

Lemma 2

Suppose (H2) hold. Then x(n) is a solution of Equation (4.1) if and only if

x(n) = −
n−1∑

k=n−τ

G(k)x(k) + Φ(n, n0)
(
x(n0) +

n0−1∑
k=n0−τ

G(k)x(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]
(4.4)

where B(n) = I +G(n).

Proof.

Let x(n) be a solution of Equation (4.2) and Φ(n, n0) be a fundamental

matrix solution of (4.1). Rewriting Equation (4.2) as

∆
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

= G(n)x(n) +
[
A(n)−G(n− τ)

]
x(n− τ)
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= G(n)x(n) +G(n)
n−1∑

k=n−τ

G(k)x(k)−G(n)
n−1∑

k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ)

= G(n)
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]
−G(n)

n−1∑
k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ). (4.5)

In view of the fact that Φ(n, n0)Φ−1(n, n0) = I and applying Theorem 2

(vi) we have that

0 = ∆
[
Φ(n, n0)Φ−1(n, n0)

]

= ∆(Φ(n, n0))EΦ−1(n, n0) + Φ(n, n0)∆(Φ−1(n, n0))

= G(n)Φ(n, n0)Φ−1(n, n0)B−1(n) + Φ(n, n0)∆(Φ−1(n, n0))

= G(n)B−1(n) + Φ(n, n0)∆(Φ−1(n, n0)). (4.6)

Pre-multiplying Equation (4.6) by Φ−1(n, n0) we obtain

0 = Φ−1(n, n0)G(n)B−1(n)

+ Φ−1(n, n0)Φ(n, n0)∆(Φ−1(n, n0))

= Φ−1(n, n0)G(n)B−1(n) + ∆(Φ−1(n, n0))

This implies that
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∆Φ−1(n, n0) = −Φ−1(n, n0)G(n)B−1(n).

If x(n) is a solution of Equation (4.1), then by Theorem 2(iv) we obtain

∆
{

Φ−1(n, n0)
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)}

= ∆Φ−1(n, n0)E
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

+ Φ−1(n, n0)∆
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)
. (4.7)

But

E
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

is given by

E
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

= G(n)
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

+ x(n) +
n−1∑

k=n−τ

G(k)x(k)

−G(n)
n−1∑

k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ)

=
(
G(n) + I

)(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

− G(n)
n−1∑

k=n−τ

G(k)x(k)]

+
[
A(n)−G(n− τ)

]
x(n− τ)
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= B(n)
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

− G(n)
n−1∑

k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ) (4.8)

Thus Equation (4.7) becomes

∆
{

Φ−1(n, n0)
(

x(n) +
n−1∑

k=n−τ

G(k)x(k)
)}

= − Φ−1(n, n0)G(n)B−1(n)

×
[
B(n)

(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

− G(n)
n−1∑

k=n−τ

G(k)x(k)

+
(
A(n)−G(n− τ)

)
x(n− τ)

]

+ Φ−1(n, n0)
[
G(n)

(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

− G(n)
n−1∑

k=n−τ

G(k)x(k)

+
[
A(n)−G(n− τ)

]
x(n− τ)

]
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= − Φ−1(n, n0)G(n)
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

+ Φ−1(n, n0)G(n)B−1(n)G(n)
n−1∑

k=n−τ

G(k)x(k)

− Φ−1(n, n0)G(n)B−1(n)
[
A(n)−G(n− τ)

]
x(n− τ)

]

+ Φ−1(n, n0)G(n)
[
x(n) +

n−1∑
k=n−τ

G(k)x(k)
]

− Φ−1(n, n0)G(n)
n−1∑

k=n−τ

G(k)x(k)

+ Φ−1(n, n0)
[[
A(n)−G(n− τ)

]
x(n− τ)

]

= Φ−1(n, n0)G(n)B−1(n)
[
G(n)

n−1∑
k=n−τ

G(k)x(k)

−
[
A(n)−G(n− τ)

]
x(n− τ)

]

− Φ−1(n, n0)
[
G(n)

n−1∑
k=n−τ

G(k)x(k)

−
[
A(n)−G(n− τ)

]
x(n− τ)

]

= Φ−1(n, n0)
(
G(n)B−1(n)− I

)[
G(n)

n−1∑
k=n−τ

G(k)x(k)

−
[
A(n)−G(n− τ)

]
x(n− τ)

]
. (4.9)
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Summing Equation (4.9) from n0 to n− 1 gives

n−1∑
s=n0

{
∆

[
Φ−1(s, n0)

(
x(s) +

s−1∑
k=s−τ

G(k)x(k)
)]}

=
s−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]
(4.10)

Thus applying Theorem 7 on Equation (4.10) gives

[
Φ−1(s, n0)

(
x(s) +

s−1∑
k=s−τ

G(k)x(k)
)]n

s=n0

=
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]

Thus

Φ−1(n, n0)
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

= Φ−1(n0, n0)
(
x(n0) +

n0−1∑
s=n0−τ

G(s)x(s)
)

+
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)
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×
[
G(n)

n−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]

By property (iv) of fundamental matrices we obtain

Φ−1(n, n0)
(

x(n) +
n−1∑

k=n−τ

G(k)x(k)
)

=
(
x(n0) +

n0−1∑
s=n0−τ

G(s)x(s)
)

+
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)

×
[
G(n)

n−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]
. (4.11)

Pre-multiplying both sides of Equation (4.11) by Φ(n, n0) gives

{
Φ(n, n0)Φ−1(n, n0)

(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)}

= Φ(n, n0)
{(
x(n0) +

n0−1∑
s=n0−τ

G(s)x(s)
)

+
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]}
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This implies that,

(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

= Φ(n, n0)
{(
x(n0) +

n0−1∑
s=n0

G(s)x(s)
)

+
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(n− τ)

]}

Thus we obtain

x(n) = −
n−1∑

k=n−τ

G(k)x(k) + Φ(n, n0)
(
x(n0) +

n0−1∑
s=n0−τ

G(k)x(k)
)

+ Φ(n, n0)
n−1∑
s=n0

Φ−1(s, n0)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)x(k)−
[
A(s)−G(s− τ)

]
x(s− τ)

]

Therefore by property(v) of fundamental matrix we obtain

x(n) = −
n−1∑

k=n−τ

G(k)x(k) + Φ(n, n0)
(
x(n0) +

n0−1∑
s=n0

G(k)x(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)x(k)

−
[
A(s)−G(s− τ)

]
x(s− τ)

]
(4.12)
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This complete the proof.

Main Results

Stability of the zero solution

In this section we obtain conditions for the zero solution of Equation

(4.1) to be stable.

Theorem 4.1

Suppose that there exist a non-singular s× s matrix G(n) and a constant

α ∈ (0, 1) such that

n−1∑
k=n−τ

|G|+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

]]
≤ α. (4.13)

Then the zero solution of Equation (4.1) is stable.

Proof.

Let ε > 0 be given. Choose δ > 0 such that if ||ψ|| ≤ δ then

αε+ δ|Φ|
(

1 +

n0−1∑
k=n0−τ

|G|
)
< ε.

Define

S = {ϕ ∈ C(Z,Rs) : ϕ(n) = ψ(n) if n ∈ [−τ, n0] ∩ Z and for n ≥ n0

||ϕ|| ≤ ε}

where ||ϕ|| = maxn∈[−τ,∞)∩Z |ϕ(n)| with |.| being the infinity norm for ϕ ∈

Rs.
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Then (S, ‖ . ‖) is a complete metric space. Define the mapping P : S → S

by

(Pϕ)(n) = ψ(n) for n ∈ [−τ, n0] ∩ Z,

and

(Pϕ)(n) = −
n−1∑

k=n−τ

G(k)ϕ(k)

+ Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]
(4.14)

Next to show that P maps S into itself. To do that consider

|(Pϕ)(n)| =
∣∣∣− n−1∑

k=n−τ

G(k)ϕ(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]∣∣∣
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≤
n−1∑

k=n−τ

|G|||ϕ||+ |Φ|
(
||ψ||+

n0−1∑
k=n0−τ

|G|||ψ||
)

+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)[
|G|

s−1∑
k=s−τ

|G|||ϕ||

+
[
|A|+ |G|

]
||ϕ||

]

=
( n−1∑
k=n−τ

|G|+
n−1∑
s=n0

|Φ|(1 + |G||B−1|)

×
[
|G|

s−1∑
k=s−τ

|G|+ [|A|+ |G|]
])
||ϕ||

+ |Φ|
(
||ψ||+

n0−1∑
k=n0−τ

|G|||ψ||
)

≤ αε+ |Φ|
(
δ +

n0−1∑
k=n0−τ

|G|δ
)

≤ αε+ |Φ|δ
(

1 +

n0−1∑
k=n0−τ

|G|
)

≤ ε.

This shows that P maps S into itself.

Next to show the continuity of the mapping. To show that P is continuous

let ϕ, η ∈ S such that

(Pϕ)(n) = −
n−1∑

k=n−τ

G(k)ϕ(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]
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and

(Pη)(n) =
n−1∑

k=n−τ

G(k)η(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)η(k)

−
[
A(s)−G(s− τ)

]
η(s− τ)

]
.

Then given any ε1 > 0, choose δ = ε1
α

such that ||ϕ− η|| < δ. Thus,

|Pϕ(n)− Pη(n)| =
∣∣∣− n−1∑

k=n−τ

G(k)ϕ(k)

+ Φ(n, n0)
(
ψ(n0) +

s0−1∑
k=s0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]
−
( n−1∑
k=n−τ

G(k)η(k)

+ Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=h0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)η(k)

−
[
A(s)−G(s− τ)

]
η(s− τ)

]∣∣∣
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=
∣∣∣− n−1∑

k=n−τ

G(k)ϕ(k)− (−
n−1∑

k=n−τ

G(k)η(k))

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]

−
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)η(k)

−
[
A(s)−G(s− τ)

]
η(s− τ)

]∣∣∣
=

∣∣∣ n−1∑
k=n−τ

G(k)
(
ϕ(k)− η(k)

)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
([
G(s)

s−1∑
k=s−τ

G(k)(ϕ(k)− η(k))

−
[
A(s)−G(s− τ)

](
ϕ(s− τ)− η(s− τ)

])∣∣∣
≤

n−1∑
k=n−τ

|G|||ϕ− η||+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|||ϕ− η||+
[
|A|+ |G|

]
||ϕ− η||

]
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≤
n−1∑

k=n−τ

|G|‖ϕ− η||+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1(s)|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

]]
||ϕ− η||

≤
( n−1∑
k=n−τ

|G(k)|+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

]])
||ϕ− η||

≤ α||ϕ− η||

≤ ε1.

Thus showing that P is continuous.

Now prove that P is contraction mapping. Letϕ1, ϕ2 ∈ S then

(Pϕ1)(n) = −
n−1∑

k=n−τ

G(k)ϕ1(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ1(k)

−
[
A(s)−G(s− τ)

]
ϕ1(s− τ)

]

(Pϕ2)(n) = −
n−1∑

k=n−τ

G(k)ϕ2(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ2(k)

−
[
A(s)−G(s− τ)

]
ϕ1(s− τ)

]
.
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Thus,

|Pϕ1(n)− Pϕ2(n)| =
∣∣∣− n−1∑

k=n−τ

G(k)ϕ1(k)

+Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ1(k)

−
[
A(s)−G(s− τ)

]
ϕ1(s− τ)

]

− −
n−1∑

k=n−τ

G(k)ϕ2(k)

− Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

−
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ2(k)

−
[
A(s)−G(s− τ)

]
ϕ2(s− τ)

]∣∣∣
=

∣∣∣− n−1∑
k=n−τ

G(k)ϕ1(k)−−
n−1∑

k=n−τ

G(k)ϕ2(k)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)
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×
[
G(s)

s−1∑
k=s−τ

G(k)ϕ1(k)

−
[
A(s)−G(s− τ)

]
ϕ1(s− τ)

]

−
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

×
s−1∑

k=s−τ

G(k)ϕ2(k) +
[
A(s)−G(s− τ)

]
ϕ2(s− τ)

]∣∣∣
=

∣∣∣ n−1∑
k=n−τ

G(k)
(
ϕ1(k)− ϕ2(k)

)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)

×
[
G(s)

s−1∑
k=s−τ

G(k)(ϕ1(k)− ϕ2(k))

−
[
A(s)−G(s− τ)

](
ϕ1(s− τ)− ϕ2(s− τ)

)]∣∣∣
≤

n−1∑
k=n−τ

|G|||ϕ1 − ϕ2||+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|||ϕ1 − ϕ2||

+
[
|A|+ |G|

]
||ϕ1 − ϕ2||

]

≤
( n−1∑
k=n−τ

|G|+
n−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

])
||ϕ1 − ϕ2||
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≤ α||ϕ1 − ϕ2|| (4.15)

Thus, showing that P is a contraction.

Therefore, by the contraction mapping principle, P has a unique fixed

point in S which solves Equation (4.1) and for any ϕ ∈ S, ‖Pϕ‖ ≤ ε. This

proves that the zero solution of Equation (4.1) is stable.

Asymptotic Stability

In this section sufficient conditions for the asymptotic stability of the

zero solution of Equation (4.1)are obtained.

Theorem 4.2

Assume that the hypotheses of Theorem 2.1 hold. Also assume that

Φ(n, n0)→ 0 as n→∞. (4.16)

Then the zero solution of Equation (4.1) is asymptotically stable.

Proof.

According to definition 3, the zero solution of a difference equation is

asymptotically stable if it is stable and in addition for each n0 ≥ 0 there

is an η(n0) > 0 such that ||ψ|| < η(n0) implies that x(n) → 0 as n → ∞.

We have already proved that the zero solution of Equation (4.1) is stable.

Define

S∗ = {ϕ ∈ C(Z,Rs) : ϕ(n) = ψ(n) if n ∈ [−τ, n0] ∩ Z, ‖ ϕ ‖≤ ε

for n ≥ n0 and ϕ(n)→ 0, as n→∞}.

Define the mapping by P : S∗ → S∗

(Pϕ)(n) = ψ(n) if n ∈ [−τ, n0]
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and

(Pϕ)(n) = −
n−1∑

k=n−τ

G(k)ϕ(k) + Φ(n, n0)
(
ψ(n0) +

n0−1∑
k=n0−τ

G(k)ψ(k)
)

+
n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]
. (4.17)

To show that Pϕ → 0 as n → ∞ we proceed as follows. There are three

terms on the right hand side of Equation (4.17). We denote them

respectively by T1, T2 and T3. The second term denoted by T2 tends to

zero as n → ∞ due to the fact that Φ(n, n0) → 0. We then consider the

first term and show that it also goes to zero as n → ∞. Let ϕ ∈ S∗, then

ϕ(n) → 0 as n → ∞. Thus by the continuity of norms we have ‖ ϕ ‖→ 0

as n→∞.

Hence,

|T1| =
∣∣∣− n−1∑

k=n−τ

G(k)ϕ(k)
∣∣∣

≤
n−1∑

k=n−τ

|G|||ϕ||

≤ ||ϕ||
n−1∑

k=n−τ

|G| → 0 as n→∞

. Now to show that the last term on the right hand side of Equation (4.17)

goes to zero as n→∞. Since ϕ(n)→ 0 as n→∞, for ε1 > 0, there exists

an N1 > n0 such that n ≥ N1 implies |ϕ(n)| < ε1. Thus for n ≥ N1, the
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last term, T3 in Equation (4.17) satisfies

|T3| =
∣∣∣ n−1∑
s=n0

Φ(n, s)
(
G(s)B−1(s)− I

)[
G(s)

s−1∑
k=s−τ

G(k)ϕ(k)

−
[
A(s)−G(s− τ)

]
ϕ(s− τ)

]∣∣∣
≤

N1−1∑
s=n0

|Φ|
(

1 + |G||B−1|
)[
|G|

s−1∑
k=s−τ

|G|ϕ(k) +
[
|A|+ |G|

]
ϕ(s− τ)

]

+
n−1∑
s=N1

|Φ|
(

1 + |G|B−1|
)[
|G|

s−1∑
k=s−τ

|G||ϕ(k)|

+
[
|A(s)|+ |G|

]
|ϕ(s− τ)|

]

≤
N1−1∑
s=n0

|Φ|
(

1 + |G(s)||B−1(s)|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

]]
||ϕ||+ ε1

n−1∑
s=N1

|Φ|
(

1 + |G|B−1|
)

×
[
|G|

s−1∑
k=s−τ

|G|+
[
|A|+ |G|

]]

≤ αε+ αε1

By the contraction mapping principle, P has a unique fixed point that

solves Equation (4.1) and approaches to zero as n goes to infinity.

Therefore, the zero solution of Equation (4.1) is asymptotically stable.

Chapter Summary

This chapter dealt with stability solutions of systems difference equa-

tions with finite delay through the determination of the continuity of the
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solution and showing that the solution contracts by the application of con-

traction mapping principle of the solution when it is inverted. The chapter

also dealt with asymptotic stability of the zero solution of the difference

equation.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

Overview

This chapter provides the summary and conclusion of the study. The

summary briefly presents an overview of the research problem, objectives,

methodology and results of the study.

Summary

In this thesis, as spelt out in the objectives of the research, we inves-

tigated the asymptotic stability of solutions of certain classes of systems of

difference equations with finite delay. The fixed point theory was the main

tool used to investigate the stability behaviour of the system of difference

equations.

The difference equation has been transformed into an equivalent sum-

mation form. The summation equation was then used to define a mapping

that was used to study the stability properties of the system of difference

equations with finite delay. The contraction mapping principle was used

since the mappings were contraction mappings. This theorem was also

used to prove the asymptotic stability of the zero solution of the system of

difference equations.

Conclusions

Sufficient conditions for the asymptotic stability of the zero solution

of a system of difference equations with finite delay have been obtained.
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Recommendations

For a system of difference equations with finite delay the fixed de-

lay point theory should be employed obtain sufficient conditions that can

guarantee the stability of its zero solutions.

49

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



REFERENCES

Burton, T. A., & Mahfoud, W. E. (1985). Stability by decompositions for

volterra equations. Tohoku Mathematical Journal, Second Series ,

37 (4), 489–511.

Dahlquist, G. (1985). 33 years of numerical instability, part i. BIT Nu-

merical Mathematics , 25 (1), 188–204.

Gautschi, W. (1972). On the numerics of recurrent relations. Computing ,

9 (2), 107–126.

Hartman, P. (1978). Difference equations: disconjugacy, principal solu-

tions, green’s functions, complete monotonicity. Transactions of

the American Mathematical Society , 246 , 1–30.

Hedrih, K. (2007). Nonlinear dynamics and aleksandr mikhailovich lya-

punov (1857-1918). Mechanics, Automatic Control and Robotics ,

6 (1), 211–218.

Islam, & Raffoul, Y. N. (2003). Exponential stability in non-linear dif-

ference equations. Journal of Difference Equations and Applica-

tions , 9 (9), 819–825.

Islam, M., & Yankson, E. (2005). Boundedness and stability in nonlinear

delay difference equations employing fixed point theory. Elec-

tronic Journal of Qualitative Theory of Differential Equations ,

26 .

Islam, M. N., & Raffoul, Y. N. (2007). Periodic solutions of neutral nonlin-

ear system of differential equations with functional delay. Journal

of Mathematical Analysis and Applications , 331 (2), 1175–1186.

50

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Lakshmitankhan, V., & Donato, M. D. (2003). Theory of difference

equations–numerical methods and applications. Bulletin (New

Series) of the American Mathematical Society , 40 (2), 259–262.

Olver, F. (1967). Second-order linear difference equations. Journal of

Research of the National Bureau of Standards: Mathematics and

mathematical physics. B , 71 , 161.

Parks, P. C. (1992). Am lyapunov’s stability theory—100 years on. IMA

journal of Mathematical Control and Information, 9 (4), 275–

303.

Rabinovich, M. (1980). Strange attractors in modern physics. NYASA,

357 , 435–452.

Raffoul, Y. N. (2006). Stability and periodicity in discrete delay equations.

Journal of mathematical analysis and applications , 324 (2), 1356–

1362.

Wimp, Y. L., Jet & Luke. (1969). An algorithm for generating sequences

defined by nonhomogeneous difference equations. Rendiconti del

Circolo Matematico di Palermo, 18 (3), 251–275.

Yankson, E. (2006). Stability of volterra difference delay equations. Elec-

tronic Journal of Qualitative Theory of Differential Equations ,

2006 (20), 1–14.

Yankson, E. (2009). Stability in discrete equations with variable delays.

Electronic Journal of Qualitative Theory of Differential Equa-

tions , 2009 (8), 1–7.

Yankson, E. (2015). Existence and uniqueness of periodic solutions for a

system of difference equations with finite delay. Electronic Jour-

nal of Mathematical Analysis and Applications , 3 (2), 193–201.

51

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library


	DECLARATION
	ABSTRACT
	KEY WORDS
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF ABBREVIATION
	 INTRODUCTION
	Background to the Study
	Statement of the Problem
	Purpose of the Study
	Research Objectives
	Significant of the Study
	Delimitations
	Limitations
	Organisation of the Study

	 LITERATURE REVIEW
	Introduction
	Relevant Literature 
	Difference Calculus
	The Difference Operator
	Summation
	Chapter Summary

	 RESEARCH METHODS
	Introduction
	Fixed Point Theory
	The Fundamental Matrices
	First Order Linear Difference Equations
	Methodology
	Chapter Summary

	 RESULTS AND DISCUSSION
	Introduction
	Prelimainary Results
	Main Results
	Stability of the zero solution
	Asymptotic Stability
	Chapter Summary

	 SUMMARY, CONCLUSIONS AND  RECOMMENDATIONS
	Overview
	Summary
	 Conclusions
	Recommendations

	REFERENCES



