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The potential of nondestructive prediction of egg freshness based on near-infrared (NIR) spectra fingerprints would be beneficial
to quality control officers and consumers alike. In this study, handheld NIR spectrometer in the range of 740 nm to 1070 nm and
chemometrics were used to simultaneously determine egg freshness based on marked date of lay for eggs stored under cold and
ambient conditions. The spectra acquired from the eggs were preprocessed using multiplicative scatter correction and principal
component analysis (MSC-PCA). Linear discriminant analysis (LDA) was used to build identification model to predict the
category of freshness, while partial least square regression (PLS-R) was used to determine the marked date of lay. The performance
of LDA model was above 95% identification rate in both calibration and prediction set for the eggs stored under ambient and cold
storage. For eggs stored in ambient storage, LDA had 95.54% identification rate at 5 principal components, while at cold storage
LDA has 100% identification rate at 5 principal components for determining the marked date of lay, and partial least square
regression (PLS-R) gave R=0.87 and RMSEI =2.57 for ambient storage and R=0.88 and RMSEI =2.66 for cold storage in
independent set, respectively. The results show that handheld spectrometer and multivariate analysis could be used for rapid and
nondestructive measurement of egg freshness. This provides a novel solution for egg integrity prediction along the value chain.

1. Introduction

Chicken egg is the most popular type of egg among the
poultry family worldwide. It is consumed by a wide range of
people globally as it cuts across people of different socio-
economic strata. Egg is known to contain high-quality
proteins, be rich in others such as carbohydrates, minerals,
and has easily digestible fats [1]. The recent education on the
health benefits of egg consumption has resulted in intensive
production and consumption worldwide. However, one of
the main concerns to consumers and quality control officers
is the rapid and accurate determination of freshness. This is
particularly important as increased consumption has

resulted in many producers flooding the market with dif-
ferent categories of eggs. Particularly, this glut in supply has
brought about storing eggs for longer periods before they are
bought or sold, and this phenomenon leads to the reduction
of freshness as a result of the influence of storage days on egg
quality [2]. Some producers store eggs during the glut
production and mislabel it as fresh (day-old eggs) for the
market when there is high demand. In West Africa, the
popular question mostly asked when buying egg is “how old
is the egg” as consumers have related the storage duration to
the freshness of the egg. This perception by consumers is
supported by other researchers who found out that Haugh
units is reduced with storage [2, 3]. Hence, many retailers are
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forced to sell their eggs at give-away prices or compelled to
mislabel.

The quality of egg mostly perceived by consumers is its
freshness, cleanliness, weight, shell quality, albumen index,
Haugh unit, and chemical composition [2, 4]; however, the
most popular method used to determine egg quality is
Haugh unit (HU) developed by Haugh [5]. The freshness of
an egg is the characteristic that is related to egg quality, and
this attribute declines after laying [6, 7]. More so, during
storage eggs become susceptible to internal quality deteri-
oration; thus, there is a decline in quality as factors such as
temperature, time, humidity, air movement, and handling
are associated with deterioration [2]. Also storage duration is
noted to have a great deal of influence on egg freshness [8];
however, the marked date of lay on the shell of egg intro-
duced by the European Commission regulation (2003/2295/
EC) alone does not provide enough guarantee for egg quality
[3]. Hence, a combination of factors is needed.

On the other hand, the analytical methods used for egg
quality evaluation are often highly time-consuming, de-
structive, labour intensive, and often require sophisticated
laboratory and cumbersome samples preparation. In this
regard, various researchers have developed quality detection
techniques such as electronic nose-based system [9], and this
is based on the fact that fresh eggs have a very low con-
centration of organic volatiles, which increase during storage
[10]. Another nondestructive operation consists of observ-
ing eggs against light and detecting the air cell. These
methods cannot perform effectively during the first days
after laying [3, 11]. Earlier studies involving a wider
wavelength NIR spectroscopy have been used for the
identification of freshness and quality assessment of eggs
[12-15]. The application of portable NIR calibration model
based on machine learning to determine egg storage time at
room temperature has also been done [16]. These studies did
not consider the simultaneous measurement of freshness
eggs under two conditions to cover peculiar situations in
developing countries (often challenged with cold storage
infrastructure). More so, little or no work has been done
using portable NIR spectroscopy for simultaneous classifi-
cation and prediction of the freshness of egg under different
storage conditions to represent marked date of lay. This will
facilitate the rapid quality control and checking of fraudulent
mislabelling of the marked date of lay on the shell as in-
troduced by European regulations.

NIR spectroscopy is more convenient, nondestructive,
rapid, and simple analytical techniques, which require little
or no elaborate sample preparation [17]. Furthermore, the
advances in computer and electronics that have resulted in
miniaturizing NIR spectrometers have added advantage by
making this technology applicable and user friendly outside
the laboratory. For NIR spectroscopy, the relative contri-
bution of reflected and absorbed radiation depends on the
chemical composition, microstructure, and physical pa-
rameter of the material under consideration [17, 18]. This
current study, which is the first in Ghana and West Africa,
aims at developing a novel rapid nondestructive and si-
multaneous detection of egg freshness and marked date of
lay of eggs in two different storage conditions by using a
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portable NIR spectrometer coupled with multivariate al-
gorithms. This means that our technique will importantly
check egg fraud due to mislabelling in Africa. It will also lead
to the comprehensive quality control and quality assurance
monitoring in the egg value chain. The novelty of this studies
lies in the simultaneous detection of intact egg freshness and
storage days in both ambient and cold storage conditions. In
this regard, egg production and sale will be monitored and
controlled irrespective of the storage type used to reduce
food fraud.

2. Materials and Methods

2.1. Egg Samples. In this study, 120 fresh red intact eggs were
sampled from Lohnman Brown layer strain aged between 36
and 64 weeks directly from the School of Agriculture
teaching and research farm of the University of Cape Coast
in the Central region of Ghana and transported to the re-
search laboratory for further analysis. The samples were
divided into two: one part is that 60 eggs were stored in the
cold storage of 4°C, using tabletop fridge, while the other (60
eggs) was stored in ambient temperature (28°C) with a
relative humidity of 70%. Furthermore, in each storage
condition, 30 eggs were separately used to determine Haugh
unit and York height that were determined as a measure of
freshness during storage by employing the recommended
method. For every five days, five eggs were randomly se-
lected from each storage type for these measurements.

2.2. Sample Spectra Acquisition. The spectrum of each egg
was scanned continuously from the day of lay (fresh sample
collection day) to twenty days (0-20 days) in the reflectance
mode using a handheld spectrometer (SCIO™) with spectra
range of 740nm and 1070nm in a 1 nm resolution for
spectra data recording. For each egg, the equatorial region of
the eggshell was scanned three times after rotating it at 120",
This portion was selected because the internal composition
changes are mostly more significant in that region compared
to the others [19]. The scanning was done at an ambient
temperature of 28.6 + 1°C with a humidity of 68%.

2.3. Reference Measurements of Freshness Using Haugh Units.
The Haugh unit (Hu) of the eggs (as a reference method for
freshness) was computed by the method used (with equation
(1)), while the York height was also measured using a digital
Vernier caliper according to the method used by other
authors [20]. To monitor the freshness of the eggs using HU,
ten (10) eggs from each storage group were used to deter-
mine the Haugh unit and York height during the entire
storage period from day zero to twenty days (0-20 day’s
storage period).

HU = 100log(h + 7.6 — 1.7w0.37), (1)

where HU = Haugh unit, & = albumen height (mm) by using
a digital Vernier caliper and w =egg weight (g) by using
digital weighing scale (0.001 g).
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2.4. Software Device. Spectra data recordings stored in a
cloud-based data-set with their corresponding reference
values for the time of scanning were downloaded using a
research license of SCIO lab and imported to MATLAB
version 9.5.0 (Mathworks Inc., USA) with windows 10 Basic
for data processing for all preprocessing treatments and
multivariate algorithms.

2.5. Data Partition. The raw data were divided into two
subsets, calibration set for developing the model and pre-
diction set for evaluating the predictive ability of the con-
structed models. To avoid bias, 75% of data from the samples
were selected as the calibration set, while the remaining data
were the prediction set. To achieve so, the members in each
set were selected to come to a 3/1 division of calibration set/
prediction set.

2.6. Data Preprocessing. On the spectra, the raw data-set was
preprocessed with multiplicative scatter correction (MSC)
because the models developed using the raw spectra data
usually do not give the desired results. MSC tool is a useful
technique for the correction of scattered light and inclina-
tion of baseline variation [21, 22]. Preprocessing the spectra
data is an integral part of modelling to eliminate background
information and noise from the useful properties of the
scanned samples [16, 23]. Principal component analysis
(PCA) was done to observe any known cluster trends. PCA is
an unsupervised data description and dimension reduction
techniques mostly used to perform cluster analysis in spectra
data [24]. This is normally done before any multivariate
modelling to detect patterns from the data matrix as it brings
out visualized data trends in dimensional space [25].

2.7. Multivariate Analysis Methods. LDA as a linear para-
metric classification technique was employed in this work. It
performs its function by maximizing the between-class
variance over the within-class variance to create a linear
decision boundary between them and find linear combi-
nation of features that best differentiates two or more groups
of events [26]. The principle of LDA is based on the de-
termination of linear discrimination functions and the
number of principal component factors is crucial to its
performance [27]. In this study, PCA data was used as an
input data for the LDA to build the identification model.
Partial least squares regression (PLS-R) on the other
hand was used for predicting the marked date of lay. PLS-R
is a popular linear multivariate tool that analyzes data with
strong collinear, noisy, and redundant variables; for more
information, refer to other authors [28, 29]. The perfor-
mance of LDA was evaluated by identification rate (%), while
PLS model was evaluated by using three main parameters,
namely, the root mean square error of cross-validation
(RMSECV), the root mean square error of prediction
(RMSEP), and the correlation coefficient (R) [30]. These
parameters were calculated by equations (2)-(5):

TaBLE 1: Reference measurement egg quality under two storage
conditions.

Cold storage Ambient storage

D

s Haugh unit  York height Haugh unit  York height

0 96.78 19.3 95.06 18.7

1 95.56 18.6 87.12 18.2

5 88.97 18.4 77.20 16.9

10 86.48 18.3 71.89 13.8

15 82.53 15.9 60.01 11.8

20 82.42 18.2 41.36 9.9

nl
IR = — x 100, (2)
n
0/~ 2
ruseCy = 2 = 3i) (3)
n
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RMSEP = 2 (i) X (4)
n
n =~ 2
R= 1_21‘:1 (i —») (5)
—\2?
XL (=)

where n1 =number of samples correctly identified, n = the
number of samples, y; =the reference measurement
results for sample 7, y; = the estimated result for sample i
when the model is constructed with sample i removed, ¥;
=the estimated results of the model for the sample i, ¥
=the mean of the reference measurement results for all
samples.

3. Results and Discussion

3.1. Egg Freshness Measurements. To monitor and confirm
the freshness of egg under two storage conditions, de-
structive standard method was used. As seen from Table 1, it
was observed that egg freshness decreases or is reduced with
storage duration using the Haugh unit (HU) rating. This
observed phenomenon is in agreement with finding reported
by other authors [8]. Within the HU rating scales, 72 and
above are graded as AA, 60-72 as A, and lower than 60 as B,
while below 60 is also known as consumer resistance point
and below 50 is considered poor and unacceptable, re-
spectively [12]. However, for eggs stored in cold storage
condition, HU values do not correspond directly to fresh-
ness or duration in storage. This information revealed,
therefore, that classifying and predicting the storage dura-
tion of eggs under well-defined storage category provide
useful information to consumers. Furthermore, this table
also supports the idea that developing a model to predict egg
quality under two storage conditions is very vital. It was
observed that eggs stored in the cold storage condition were
still very good with regards to HU even at 20 days of storage
duration.
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F1GURE 1: Raw and MSC preprocessed spectra of eggs (A1-A2) for ambient storage and (B1-B2) cold storage.

3.2. Spectra Presentation. The spectral profile shown in
Figures 1(a) and 1(b) revealed that it is difficult to differentiate
between the spectra of eggs stored at different days for under
ambient storage and cold storage. It could be seen also from
Figure 2 that the differences observed were as a result of the
mean plot for the eggs stored from 0 to 20 days. These figures
revealed both useful and redundant information. Furthermore,
the eggs were grouped into four classes plus a zero-day class.
The mean plot as seen in Figure 3 revealed a distinct spectral
profile. It could be explained that each category of eggs showed a
characteristic fingerprint of CH 3rd overtone and NH 2nd
overtone region that made it distinguish itself. Furthermore, a
PCA was used as unsupervised pattern recognition techniques
to observe a well clustered trend.

PCA was used as an unsupervised tool to identify cluster
trend in the spectra data. From the results obtained it was
observed that PCA after preprocessing with MSC gave some
clear separations as observed for PCA results at ambient
storage and cold storage as seen in Figure 4. The total 3 PCs
were 99.95% for ambient storage and 99.91% for cold

storage. These mean that the three main PCs contributed to
the clear observed cluster trend when MSC was used on the
raw data.

Also the PCA for the four classes studied (Figure 5) further
revealed that raw spectra did not give any separation, while
MSC-PCA gave a neat separation as seen in Figures 5(a) and
5(d). It was, however, observed that cold storage data separated
more neatly than the ambient storage condition. This could be a
result of a more stable storage condition in the cold storage
compared with the ambient storage.

3.3. Classification Models. LDA algorithms were used for
developing an identification model for identifying egg
freshness in the four categories based on storage dura-
tions. The result of the classification models seen in Ta-
ble 2 reveals that MSC-LDA performed better with
classification rate above 96% in both calibration set and
prediction set at optimal principal components of 5 for
eggs stored in ambient and cold conditions, respectively.
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FIGURE 3: Mean spectra of 5 group of egg freshness for ambient (a) and cold storage. (b) Principal component analysis (PCA).

3.4. Quantification Model. In this research, another model
was simultaneously developed to predict the specific egg
storage duration under ambient and cold storage conditions.
PLS-R model was used for predicting these storage durations
under both storage conditions. From Figures 6(a) and 6(b), it
could be seen that the measured values correlated well with

NIR predicted values for both storage conditions. This good
relationship was confirmed in Table 3 with R above 86%. The
measured values correlated linearly with NIR predicted
measurements. However, there were a few outliers that
subsequently affected the PLS model. From Table 3, it could
be seen that the MSC-PLS model was the best with
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FIGURE 4: Raw (A1-B1) and MSC (A2-B2)-PCA score plot of eggs stored under ambient and cold storage.

parameters of R above =0.85 and RMSEC under 3.3 days for
both storage conditions in the calibration set and prediction
set, respectively.

3.5. General Discussion. The application of a portable
spectrometer for fingerprinting egg samples resulted in
creating a spectral profile, which was unique to the freshness
composition of the samples used. The fingerprinting
wavelength range of 740 nm and 1070 nm provided some
information (chemical and physical properties) that could be
vital for classifying and predicting egg freshness categories
and marked date of lay. The spectral profile shows multiply
bands and some peaks as seen from Figure 7. These bands are
made up of overtones and combinations of fundamental
vibrations, which correspond to useful chemical and
physical properties in the categories of eggs used and their
corresponding freshness. These properties could be useful
for qualitative and quantitative fingerprints, because spec-
trum is changed due to physical and chemical interactions
when it is passed through a material and thus can be
compared with the changed spectrum, and optical infor-
mation details of such biological material could be linked
with the chemical and physical quality [31]. Hence, there was

the need to use advanced mathematical models through
preprocessing to extract these vital information. MSC pre-
processing technique provided the need pretreatment for the
spectral data-set. From the results obtained, it was obvious
that MSC improved the performance of both the classifi-
cation and the quantification model in this study. It means
that MSC techniques performed the correction of scattered
light and inclination of baseline variation well as proposed
by other researchers [21, 22]. It also supports the belief that
preprocessing spectra data is an integral part of modelling to
eliminate background information and noise from the useful
properties of the scanned samples [16, 23]. Furthermore, the
optimum classification results obtained revealed that there
was a linear correlation between the NIR spectral and the egg
freshness categories studied. For the determination of the
marked date of lay, PLS-R was used (for the determination of
storage duration). From the results obtained, the measured
values (by using destructive techniques) correlated linearly
with NIR predicted measurements. However, there were a
few outliers that subsequently affected the PLS model.
Figure 7(b) explains how the complexity of the PLS-R model
was developed for predicting freshness in terms of storage
duration. It also refers to how the fingerprint was considered
by the model components and how to interpret the meaning
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TaBLE 2: The overall performance of multivariate classification methods.

Model Number of principal

Correct classification rate (%)

components Calibration set (472) Prediction set (158)
Ambient storage
Raw 9 68.11 65.73
LDA MSC 5 96.82 95.54
Cold storage
Raw 9 70.19 71.02
LDA MSC 5 100.00 100.00

of each model component [32]. The PLS-R weight plot for
the first two PCs shows that the major peaks that contributed
to its performance were around the wavelength of
840-855 nm, 875 nm, and 1000-1033 nm. These wavelengths
correspond to OH second overtone, NH second overtone,
and CH third overtone, which could be associated with pH,
protein, and carbohydrates in biological materials. More

importantly, the NH, CH, and OH overtones represent
aromatic amino acids, which are important organic com-
pounds in egg as it contains amine (NH,) and carboxylic
acid (-COOH) functional groups [33]. These functional
groups are important components of proteins because
proteins are made up of hundreds or thousands of smaller
units of amino acids [33]. More so, research has shown that
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TaBLE 3: The overall performance of PLS regression model.

Calibration Prediction Independent
Pretreatment Factors
R RMSEC (Days) R RMSEP (Days) R RMSEI (Days)
Ambient storage
Raw 9 0.61 6.37 0.59 6.47 0.61 6.85
MSC 5 0.83 3.41 0.89 3.12 0.87 2.57
Cold storage
Raw 9 0.54 5.37 0.49 5.78 0.51 6.05
MSC 7 0.86 3.22 0.91 2.481 0.885 2. 66
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the chemical and physical properties of egg change with
storage time, temperature, and humidity [15, 34]; hence,
these changes also contributed to the identification and
quantification of egg freshness by the portable NIR spec-
troscopy technique. Specifically, the albumen pH of freshly
laid eggs ranges from 7.6-8.5 and changes to 9.5 in the first
few days resulting in the gel-like thick albumen [34, 35].
Therefore, the CH third overtone identified around 875 nm
could be associated with pH in eggs. In addition, decom-
position process in egg may be the cause of changes observed
in the overtones for the eggs [36]. These findings agree with
other findings reported by others [16]. The short OH
overtone may be attributed to eggshell surface being moist
shortly after the egg is laid, and it could be explained that
moisture loss due to drying of the cuticle of the egg may
cause gradual increment in the intensity of the OH band
through time and simultaneously, cuticle becomes thinner
and the eggshell carbonate mineral becomes more exposed
to the surface [16].

Generally, the findings agree with other studies.
Specifically, the R of 0.87 and 0.88 obtained for inde-
pendent set for ambient and cold storage, respectively,
were consistent with the findings reported by Coronel-
Reyes and co-workers [15, 16, 37]; however, the RMSEC of
2.57 and 2.66 varied from these authors. For instance, Sun
and others [37] obtained R value of 0.8653 and RMSECV
of 3.745 for using artificial vision and dynamic weighing
to assess egg freshness. Also, others obtained R value of
0.89 and RMSECV of 1.65 by using lab grade VIS/NIR
spectroradiometer [15]. Furthermore, other studies by
Aboonajmi and Abbasian Najafabadi [38] by using VIS/
NIR spectral measurements from 300-1100 nm found a
square regression of 0.79 for Haugh. The variation

observed in these findings could be attributed to the
differences in the predictive models and the development
of new experimental setup [13].

4. Conclusion

The study has revealed that portable NIR spectroscopic
techniques could be used for rapid nondestructive method
for simultaneous analysis of eggs: for classification of egg
freshness category and prediction of the marked date of lay.
For the classification challenge, the PCA-MSC-LDA gave
IR=< 95% in calibration set and prediction set for eggs
stored under ambient and cold storage conditions. For
predicting the storage duration, MSC-PLSR had a prediction
performance of R=0.83 and above for all the storage
conditions investigated. This finding could be useful for
supporting the utilization of handheld NIR spectroscopy for
simultaneous determination of egg freshness categories and
mark date of lay of eggs stored in either cold or ambient
storage condition.
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