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Abstract: This paper examines the joint movement and tail dependence structure between the pair
of foreign exchange rates (EUR, USD and GBP) against the GHS, using daily exchange rates data
expressed in GHS per unit of foreign currencies (EUR, USD and GBP) between the time range of
24 February 2009 and 19 December 2019. We use different sets of both static (time-invariant) and
time-varying copulas with different levels of dependence and tail dependence measures, and the
study results reveal positive dependence between all exchange rates pairs, though the dependencies
for EUR-USD and GBP-USD pairs are not as strong as the EUR-GBP pair. The findings also reveal
symmetric tail dependence, and dependence evolves over time. Notwithstanding this, the asymmetric
tail dependence copulas provide evidence of upper tail dependence. We compare the copula results to
DCC(1,1)-GARCH(1,1) model result and find the copula to be more sensitive to extreme co-movement
between the currency pairs. The afore-mentioned findings, therefore, offer forex market players
the opportunity to relax in hoarding a particular foreign currency in anticipation of domestic
currency depreciation.

Keywords: exchange rates; depreciation; appreciation; copula; tail dependence structure

1. Introduction

Major financial institutions and investors are concerned about extreme complexity and high
volatility of financial markets, most especially the global currency markets which are known to
dominate other markets such as stock and bond markets. This is attributed to the internationalization
of modern business, the continuing growth in world trade relative to national economies, the trend
towards economic integration and the rapid pace of change in money transfer technology, which all
account for the increased importance of exchange rates (Copeland 2008). Foreign exchange markets
are highly interlinked with other financial markets such that its fluctuations have a pervasive effect
on market participants including governments, central banks, big banks, multinational corporations,
currency speculators and individuals. The dynamics of exchange rates, especially in a floating exchange
rates regime, have practical implications for international traders, investors, analyst and policymakers.
Because movement in exchange rates affect the expected profitability and risk of financial assets,
investors in international financial markets need a reliable estimate for portfolio optimization and
diversification. From the perspective of monetary policy authorities and economic policymakers,
understanding the dynamics of exchange rates provide an avenue for economic policy assessment and
international economic policy coordination.

The measurement of dependence of international financial markets during a period of extreme
fluctuations has received considerable attention in the extant literature. One of the interesting features
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of exchange rates has been the question of whether volatilities in financial markets are interrelated
and whether such linkages are constant or vary over time. Studies that have focused on co-movement
and interdependence of returns of financial assets show that conditional covariances and conditional
correlations between returns of assets vary largely over time (see Bollerslev et al. 1988; Engle 2002)
and co-movement in times of financial distress are significantly higher than during tranquil times
(see Loaiza-Maya et al. 2015a, 2015b). The extreme co-movement between returns of financial assets
during a period of financial distress has been described in financial literature as contagion. In as much
as studies on co-movement among returns of financial assets have focused extensively on the stock
market in the literature (see Karolyi and Stulz 1996; Forbes and Rigobon 2002; Brooks and Del Negro
2004; Boako and Alagidede 2017b), exchange rates co-movement have not been completely left out
(see Engle et al. 1988; Pérez-Rodríguez 2006; Patton 2006; Dias and Embrechts 2010; Antonakakis 2012;
Tamakoshi and Hamori 2014; Beirne and Gieck 2014).

Though currency markets co-movement capture how shocks in a specific market may transcend
to other currency markets, currency movements are not only influenced by country-specific and
idiosyncratic factors such as economic fundamentals and monetary policy direction but also by other
external drivers. Therefore, measuring co-movements and tail dependence structures and ascertaining
the volatility spillover associated with exchange rates and their evolution over time is very essential in
risk management, diversification and pricing.

Interestingly, studies on the co-movement of exchange rates concentrate on inter-country/regional
analysis, although the number of studies is small (Junior et al. 2019). However, to control for
country-specific factors and idiosyncratic factors, intra-country studies present different dimensions
to exchange rates interdependency among major trading currencies in an economy. In most
developing countries, multiple currencies are utilized in foreign and local transactions; therefore, proper
understanding of their interactions is necessary for monetary policy and currency risk management.

Like most currencies in developing countries, Ghana cedi continuously depreciates against its
major trading currencies near major festive period (e.g., Christmas, Ramadan, etc.) due to pressure
from importers to meet the demands of the festivities and repatriation of earning by multinational
companies at the end of the financial year. This confronting issue impacts the economic management of
these economies. For example, the Ghana cedi has depreciated against the US dollar by about 99.98%
over the last three decades.

In times of extreme market conditions, currency markets tend to co-move more than in tranquil or
normal times. The market participants need to know which foreign currency dictates the co-movement
and the interdependences. Usually, in the case of Ghana, participants in the currency markets focus
their attention on the US dollar by hoarding it in anticipation of depreciation of the cedi. But should the
concentration only be on the US dollar during periods of extreme depreciation of the cedi against other
foreign currencies? It is important to note that severe depreciation of the cedi against the US dollar is
likely to occur jointly with depreciation against other foreign currencies more than the appreciation of
the cedi against the US dollar and other foreign currencies. This leads to the fact that the tail dependence
structure between the exchange rate markets is asymmetric and the use of Pearson correlation, which
thrives on using a symmetric multivariate normal distribution or student t-distribution, fails to capture
such asymmetric tail dependence of the markets (see Patton 2006; Garcia and Tsafack 2011).

This study employs a static and time-varying copula to capturing the asymmetric tail dependence
between the major trading currencies (US dollar (USD), euro (EUR) and British pound (GBP)). The choice
of copula model for the study is appropriate because studies have shown that distribution of return of
financial assets exhibits properties such as long memory, heteroscedasticity and fat tail. Also, exchange
rates tend to jointly depreciate against one currency more than appreciating together, making the
distribution of returns asymmetric. The copular function introduced by Sklar (1959) gives us the
flexibility to combine univariate distributions to obtain a joint distribution with a particular dependence
structure. Another advantage of using the copula function is its ability to model dependence in extreme
market conditions and to extract both the degree and structure of the dependence. Besides, as alluded
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by Patton (2012) that the flexibility copula models provide in modeling multivariate distributions is by
fitting models for the marginal distributions separately from the copula that connects the marginals to
form the joint distribution. What makes copulas so unique from other linear correlation measures of
dependence is the fact that copula functions are invariant to strictly increase non-linear data transforms
(Embrechts et al. 2002).

Our study is the first to examine the co-movement and tail dependence structure of the three
major exchange rates (GHS/USD, GHS/EUR and GHS/GBP). It implements a copula-based approach in
quantifying the degree and evolution of co-movement and tail dependence structure among exchange
rates on Ghana’s currency markets. The study differs from the most recent study conducted by Junior
et al. (2019) in a methodological approach which used wavelet coherence analysis to explore the
interdependence of major exchange rates in Ghana. The wavelet coherence is unable to reveal the
existence of tail dependence structure among the exchange rates.

The results of the study show positive dependence between all exchange rates pairs, though the
dependencies for EUR-USD and GBP-USD pairs are not as strong as for the EUR-GBP pair. The results
further reveal symmetric tail dependence between the exchange rates pairs, and dependence evolves.
Notwithstanding, the asymmetric tail dependence copulas provide evidence of upper tail dependence,
implying that the foreign currencies are more likely to jointly appreciate more than depreciating
against the domestic currency (GHS). This means that the fall in the value of GHS is more profound
than appreciating. Furthermore, the copula model results prove to be more sensitive to extreme
co-movement between the exchange rate pairs than the DCC-GARCH model. The remaining sections of
this study are structured as follows: Section 2 presents brief literature on exchange rates co-movements
and dependence structure, Section 3 shows methodology and data description while in Sections 4
and 5, we present our study results and conclusion, respectively.

2. Literature Review

Co-movement of financial markets have received considerable attention in the literature and
establishing the nature of dependence especially in currency pairs is very significant. The vast number
of papers addressing co-movements and dependencies of financial markets have delved more into
stock markets, while less attention is focused on exchange rate markets. Meanwhile, a handful of
studies have focused on co-movements and dependencies between exchange rates and other forms
of financial assets such as stocks and commodities (see Tai 2007; Büttner and Hayo 2010; Wu et al.
2012; Wang et al. 2013; Pal et al. 2014; Chkili and Nguyen 2014; Apostolakis and Papadopoulos
2015; Dua and Tuteja 2016). Earlier studies that investigated exchange rates interdependencies used
linear correlation models such as the vector autocorrelation models, cointegration approach and the
generalized autoregressive conditional heteroskedasticity models (GARCH).

Engle et al. (1988) used the GARCH model to predict whether news in the New York market could
cause volatility in the Tokyo market after many hours later by examining the yen/dollar exchange rate.
Their study reveals that exchange rates react not only to shocks from macroeconomic fundamentals
in the domestic market but also to the transmission of spillovers from other markets. After the
pioneering paper of Engle et al. (1988), Pérez-Rodríguez (2006) and Tamakoshi and Hamori (2014) used
GARCH models to examine exchange rate returns interdependence. Also, the dynamic correlation
GARCH-type models proposed by Engle (2002) were extended by Cappiello et al. (2006) to capture
asymmetric dependence between returns of financial assets have extensively been used to investigate
co-movement and volatility spillovers between major exchange rates (see Antonakakis 2012; Dimitriou
and Kenourgios 2013; Tamakoshi and Hamori 2014).

Aside from the dominant use of GARCH models to explore exchange rates linkages and
interdependencies, other approaches have been well utilized in the literature. Wu (2007) used
an empirical-mode decomposition approach to investigate the correlation of the Deutsche Mark and
Japanese rates against the US dollar from 1 February 1986 to 31 December 1996. The study reveals that
correlation between the two currencies was higher in the early part of the study period than in the
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later period. To establish that the distribution of correlation coefficients concerning relative return in
currency prices is dependent on time, Jiang Jian. and Cai (2007) employed the random matrix theory
to explore the level of correlation among 74 global currencies. Wang and Xie (2013) implemented
the detrended cross-correlation method and found significant cross-correlation between the Chinese
renminbi and other four currencies including the US dollar, Euro, Japanese yen and the Korean won.
Moreover, Heni and Mohamed (2011) carried out an empirical analysis on daily Tunisian exchange
rates co-movements concerning the US dollar, the Euro and Japanese yen using discrete wavelet
transform and concluded that exchange rate series exhibit generalized long memory. Also, Kumar et
al. (2017) used multiple wavelet correlation and cross-correlation analysis to study the co-movement
in daily returns of the US dollar, Euro, British pound and Japanese yen futures contracts on India’s
National Stock Exchange between 1 February 2010 and 26 August 2014 inclusive. They concluded that
the currency futures markets are almost perfectly integrated in the long run with some inconsistencies
that fade away within 3 to 6 months.

However, the afore-mentioned approaches failed to ascertain the asymmetric dependencies
between exchange rates, as studies have shown that the degree to which exchange rates jointly
appreciate and depreciate differ (see Patton 2006). Therefore, copula models have been employed
extensively in the literature to study co-movement and tail dependence structure between returns
of financial assets. Even though the use of copula models has been a common approach recently in
assessing co-movements and tail dependence structure, a plethora of the studies have focused on
stock markets (see He 2003; Hu 2006; Yang and Hamori 2013; Yang et al. 2015; Boako and Alagidede
2017a). Notwithstanding this, a handful of studies have used copula models to examine exchange rates
co-movements after the pioneering work of Patton (2006) who discovered after modeling asymmetry
dependence between the Deutschemark and the yen against the US dollar, that two exchange rates
jointly move against the US dollar when they are depreciating more than when they are appreciating.

In addition, Dias et al. (2004) examined dynamic dependence between the Deutschemark and
the Yen using copulas at high frequencies (two, four, eight, twelve-hour and one day period) and
found out that the dependence structure varied overtime at all frequencies. Benediktsdóttir and
Scotti (2009) employed conditional copula approach to study the dependence structure of several
exchange rates against the dollar and investigated whether dependence structures were affected by
business cycles or interest rate differentials. Their results show that dependencies are time-varying,
that foreign and US recessions affect the joint dependence structure and that currencies with higher
interest rate differentials tend to move less closely together, even at extreme events. Albulescu et
al. (2018) investigated the bivariate dependence structure between four international exchange rates
(EUR, GBP, CAD, JPY) against the US dollar using daily data from 1999–2014. Their study reveals
positive dependence between all exchange rates, except JPY-pairs of exchange rates and finds evidence
of symmetric tail dependence and dependence is time-varying. Our study departs from the latter by
considering exchange rates of USD, EUR and GBP against Ghana Cedi (GHS), which experienced
intense pressure from international activities. Our study is closer to Junior et al. (2019), who employed
wavelet coherence analysis to explore the co-movement amongst the returns of four major currencies
in Ghana (dollar, euro, pound and yen) from May 1999 to February 2018. Their empirical findings
showed that the currencies are closely linked or interconnected and the lead-lag relationships between
the returns of the exchange rates established that volatilities in the euro and yen significantly affect
movements in the other currencies. The current study differs in terms of methodology.

3. Methodology

The basic approach in capturing dependence between two random variables has been the use
of the Pearson linear correlation coefficient and non-parametric measures such as Kendall’s tau and
Spearman’s rho correlation. Though these measures try to establish a link between two random
variables, they do not provide any information about the dependence structure or tail dependence
between the variables. Since the financial time series generally exhibit some characteristics such as
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long memory, fat-tail and heteroskedasticity, the use of copula models introduced by Sklar (1959) are
capable of identifying not only the linear association between the return series but importantly, the
tail dependence of the joint distribution between returns of the series. Copula function decomposes
n-dimensional joint distribution function into its marginal distributions and a copula that completely
describes the dependence between the n variables (Patton 2006). Therefore, using Sklar’s theorem, the
dependence structure between variables of interest can be modeled by first specifying the marginal
distributions of the variable of interest and then specifying a copula which will connect the marginal
distributions to form joint distribution of the variables of interest, if the exchange rates return.

3.1. Specifying the Marginal Models

Models for each marginal distribution are specified first before a bivariate copula model is fitted.
Because financial time series are characterized by some features such fat-tails, long-memory and
heteroskedasticity, it is very necessary to have these characteristics captured using an autoregressive
moving average (ARMA) and generalized autoregressive conditional heteroskedasticity (GARCH)
models. Thus the ARMA(k,m)-t-GARCH(p,q) models for the logarithm exchange rate return series Yit
is described as follows:

Yt = ∅0 +
k∑

i=1

∅iYt−i +
m∑

j=0

θ jεt− j + εt (1)

εt = σtzt, zt ∼ i.i.d.tv (2)

σ2
t = α0 +

p∑
h=1

αhε
2
t−h +

q∑
l=1

βlσ
2
t−l, . (3)

Equations (1)–(3) represent respectively, the mean, the error and variance equations and Yt is
the logarithm exchange rate return at time t, εt is the real-valued discrete-time stochastic process of
exchange rate return at time t, zt is an i.i.d unobserved random variable with zero mean and constant
variance, v is the degree of freedom for the student-t distribution and σ2

t is the conditional variance
of εt. k, m, p and q are non-negative integers representing the order of AR, MA, ARCH and GARCH
terms, respectively; ∅0 and α0 are constants, ∅i and θ j are the respective AR and MA parameters of the
mean equation while αh and βl are respectively the parameters of the ARCH and GARCH components
of the variance equation, where α j + β j < 1.

3.2. Specifying the Copula Models

According to Sklar (1959), multivariate distribution can be decomposed into univariate marginal
distributions and a copular that fully captures the dependence between the marginals. Generally,
given n-variate cumulative distribution function and its univariate marginals respectively as
FX1,...,Xn(x1, . . . , xn) and FXi(xi), i = 1, . . . ., n, xi ∈ (−∞,∞), then there exists a copula function C
that maps [0, 1]n into [0, 1] such that

FX1,...,Xn(x1, . . . , xn) = C
[
FX1(x1), . . . , FXn(xn)

]
. (4)

The above expression shows copula formulation for n number of assets but specifically for
establishing dependence and co-movement between two assets at a time, a bivariate joint distribution
model is formulated. For example, given two random variables X1 and X2 with marginal distributions
F1(x1) and F2(x2), we can define their joint cumulative distribution function F(x1, x2) as:

FX1X2(x1, x2) = C
[
FX1(x1), FX2(x2)

]
. (5)

If Fx1 and Fx2 are continuous, then C is unique and is uniquely defined on RanFx1 × RanFx2.
Separating the joint distribution into marginal parts and the dependence structure (copula) without
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losing any information, is one of the important properties attributed to copula functions. Again, the
tail dependence between the two random variables X1 and X2 is invariant under the strictly increasing
transformation of X1 and X2. The lower (left) tail τl and upper (right) tail τu dependence between X1

and X2 can be defined following previous studies as

τl = limu→0P
(
FX1(x1) ≤ u

∣∣∣FX2(x2) ≤ u
)
= limu→0

C(u, u)
u

(6)

τU = limu→1P
(
FX1(x1) ≥ u

∣∣∣FX2(x2) ≥ u
)
= limu→1

1− 2u + C(u, u)
1− u

(7)

where τl and τU ε [0, 1]. If τl > 0 and τu > 0, X1 and X2 tend to be lower (left) or upper (right) tail
dependent. The tail dependence which measures the probability that both variables are in their lower
and upper joint tails captures the behavior of the random variables during extreme events. Thus,
for this study, an extremely small (large) value for one exchange rate jointly moves with an extremely
small (large) value for another exchange rate when τl , τU and τl > 0(τU > 0).

To capture the tail dependence of a different pattern, time-invariant and time-varying copulas of
different specifications and characteristics so far as tail dependence measurement is concerned are
considered in this study. These include Gaussian copula, Student-t copula, Gumbel copula, rotated
Gumbel copula, Clayton and rotated Clayton copulas. The Gaussian copula which is unable to capture
tail dependence is chosen to assess co-movement based on the traditional linear correlation measure
which allows for equal degrees of positive and negative dependence. The Student-t copula captures
the strength of symmetric extreme dependence and represents a generalization of the Gaussian copula
with non-zero dependence in the tails. The family of Archimedean copulas such as Gumbel and rotated
Gumbel copulas, Clayton and rotated Clayton copulas show asymmetric tail dependence. If we assume
that co-movements increase more in financial turbulence periods, then Clayton or rotated Gumbel
copulas is recommended. On the other hand, if we assume that co-movements increase more in periods
of economic boom, then Gumbel or rotated Clayton copula is recommended. The corresponding copula
model specifications and their dependence parameters that measure the strength of this dependence
are described briefly below:

1. Gaussian copula allows for equal degrees of positive and negative dependence but does not allow
for tail dependence, implying that the tail parameters τl = τU = 0. Therefore, the dependence
parameter of Gaussian copula is Pearson’s correlation coefficient (ρ) with a range of values:
−1 < ρ < 1. The bivariate Gaussian copula is defined by CN(u, v

∣∣∣ρ) = Φ
(
Φ−1(u), Φ−1(v)

)
, where

Φ and Φ−1 are respectively the cumulative and inverse cumulative distribution functions of the
standard normal distribution.

2. Student-t copula allows for symmetric non-zero dependence in the tails and it is the generalization
of the Gaussian copula. With the degree of freedom η and correlation coefficient ρ, the Student-t
copula can be defined by Cη,ρ(u, v) = tη,ρ

(
tη−1(u), tη−1(v)

)
, where t−1 is the inverse function of

the univariate Student’s t distribution.
3. Gumbel copula is asymmetric which shows a higher probability of upper tail dependence

defined by τU = 2 − 21/δ and lower tail dependence (τL = 0). Gumbel copula is specified as

CG(u, v|δ) = exp
(
−

(
(lnu)δ

)
+ (−lnv)δ)

1
δ

)
, where the dependence parameter δ ∈ [1,∞) and does

not allow for negative dependence and the case of independence, δ = 1.
4. The rotated Gumbel copula measures lower (left) tail dependence with the parameter δ ∈ [1,∞)

and δ = 1 implies independence. Thus, it is appropriate when the variables are highly correlated
at low values and does not allow for negative dependence. The lower tail dependence τL is then
defined as τL = 2− 21/δ and the upper tail dependence τU = 0.

5. The Clayton copula is asymmetric which exhibit more dependence in the lower (left) tail than
the right with parameter θ ∈ [1,∞) and θ = 1, implies independence. The Clayton copula is
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specified as CCl(u, v|θ) =
(
u−θ + v−θ − 1

)− 1
θ . The lower tail dependence probability is defined by

τL = 2−
1
θ and the upper tail dependence probability τU = 0.

Dynamic evolution of the Gaussian and Student-t copulas parameter, ρt is modeled following
Patton’s (2006) approach, as an autoregressive moving average process;

ARMA (1, q) specified as:

ρt = ∧

Ψ0 + Ψ1ρt−1 +ψ2
1
q

q∑
j=1

Φ−1
(
ut− j

)
.Φ−1

(
vt− j

) (8)

where ∧(x) = 1−e−x

1+e−x is a transformation function that holds the correlation parameter ρt in the interval
(−1, 1) and ut and vt are probability integral transformation of the margins. The specification of
Equation (8) follows the ARMA (1, q) process where the AR part captures the persistence in the
dependence parameter and the variation effect independence is captured by the average product of the
transformed variables Φ−1

(
ut− j

)
and Φ−1

(
vt− j

)
over the previous q lags.

The Archimedean copulas (Gumbel, rotated Gumbel, Clayton and rotated Clayton) are estimated
using the Generalized Autoregressive Score (GAS) model of Creal et al. (2013). This approach assumes
that the copula parameter evolves as a function of its own lagged value and a forcing variable that relate
to the scaled score of the copula log-likelihood. The choice of GAS model for modeling time-varying
Archimedean copulas is its sensitivity to the off-diagonal observations and observations in the lower
and upper tail. The GAS approach uses strictly increasing transformation (logarithm transform) to
copula parameters to guarantee that the parameters are constrained to lie in a particular range (e.g.,
ρ ∈ (−1, 1)). Following Patton (2012), the evolution of the transformed parameter is denoted by:

ft = h(δt)⇔ δt ⇔ h−1( ft) (9)

where
ft+1 = ω+ β ft + αIt

−1/2st (10)

st ≡
∂
∂ρ

logc(ut, vt; δt) (11)

It ≡ Et−1[sts′t] = I(δt). (12)

These expressions show that the future value of the copula parameter depends on a constant, the
present value and the score of the copula log-likelihood It

−1/2st.

3.3. Estimation Procedure

The copula parameters are estimated using two-stage maximum likelihood (ML), following the
approach of Patton (2006). With the two-stage maximum log-likelihood approach for estimating the
parametric copulas, the model that provides the best fit for the individual variables are first estimated,
followed by the estimation of the dependence structure of the copula. The log-likelihood function for
estimating the parameters is written below as:

f (ψ) =
T∑

t=1

[
ln fX1

(
x1,t; aX1

)
+ ln fX2

(
x2,t; aX2

)
+ lnc

{(
FX1,t ; aX1

)
, FX2

(
x2,t; aX2

)
;θ

}]
(13)

where ax1 and ax2 are the parameters of the marginal distribution of X1 and X2, θ is the copula density
parameter and ψ is the joint density parameter.
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With the two-stage likelihood estimation approach, the parameters of the marginal distributions
that provide the best fit for the individual variables are first estimated as:

aX1,X2 = argmax
aX1,X2

T∑
t=1

fi
(
x1,tx2,t; aX1,X2

)
. (14)

The dependence parameter of the copula is estimated in the second stage as:

θ = argmax
θ

T∑
t=1

lnc(ût, v̂t;θ), (15)

where ût = FX1

(
x1,t; âX1

)
and v̂t = FX2

(
x2,t; âX2

)
.

3.4. Data and Data Description

The data set is composed of daily returns of nominal exchange rates of three major currencies
namely the US dollar (USD), the British pound (GBP) and the Euro (EUR) against the Ghana cedi (GHS)
obtained from DataStream. The time window spans from the period 24 February 2009, to 19 December
2019. The nominal exchange rates are the prices of a unit each of foreign currency in GHS terms so that
if the exchange rate increases (decreases), the GHS is depreciating (appreciating) against the foreign
currency. The returns of the nominal exchange rates were obtained by the computation below:

rt = ln(1 + Rt) = ln(Pt) − ln(Pt−1) (16)

where rt is the continuously compounded return, Pt and Pt−1 are the respective current and
previous prices.

As a precursor to the summary statistics, we present in Figure 1 the plot of the Ghana Cedi to
US dollar, Euro and Great Britain Pound exchange rate as well as the returns. A cursory look at the
respective exchange rates in Figure 1a shows non-overlapping upward trends. This is an indication
that the Ghana Cedi continuously depreciates against all major currencies in the long-run. The plots of
returns presented in Figure 2 show similarity in returns even in times of extreme volatility especially for
the US dollar and the Euro. To better understand the behavior of the exchange rates returns, we study
the summary statistics of the returns.

The summary statistics of the exchange rate return series are shown in Table 1. The mean
percentage returns are all close to zero across all exchange rates and are small compared to the
associated standard deviations. This signifies high exchange rates volatility, especially in GBP exchange
rate return. Except for GBP that shows positive skewness value with lower kurtosis compared with
both EUR and USD where their skewness values show negative with excess kurtosis, indicates the
high probability of decreases in exchange rates returns. Also, the higher values of kurtosis seen across
all exchange rates returns signify frequent extreme price changes. The Ljung-Box test confirms the
presence of strong autocorrelation and the null hypotheses of normality of the returns distributions are
strongly rejected by the Jarque-Bera statistic. The ARCH-LM test of Engle (1982) strongly confirms
the presence of ARCH-effects in the individual return series and this is sufficient enough to employ
GARCH models for the marginals. It is noticed in Table 2 that the level of unconditional correlation of
exchange rates returns are all positive but relatively low between all exchange rates pairs.
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Figure 1. Plot of level and returns of US Dollar(USD), Euro(Eur) and Great Britain Pound(GBP). (a) A 
plot of exchange rates levels; (b) A plot of exchange rates returns. 

The summary statistics of the exchange rate return series are shown in Table 1. The mean 
percentage returns are all close to zero across all exchange rates and are small compared to the 
associated standard deviations. This signifies high exchange rates volatility, especially in GBP 
exchange rate return. Except for GBP that shows positive skewness value with lower kurtosis 
compared with both EUR and USD where their skewness values show negative with excess kurtosis, 
indicates the high probability of decreases in exchange rates returns. Also, the higher values of 
kurtosis seen across all exchange rates returns signify frequent extreme price changes. The Ljung-Box 

Figure 1. Plot of level and returns of US Dollar(USD), Euro(Eur) and Great Britain Pound(GBP).
(a) A plot of exchange rates levels; (b) A plot of exchange rates returns.



Risks 2020, 8, 55 10 of 20

Risks 2020, 8, x FOR PEER REVIEW 10 of 20 

 

test confirms the presence of strong autocorrelation and the null hypotheses of normality of the 
returns distributions are strongly rejected by the Jarque-Bera statistic. The ARCH-LM test of Engle 
(1982) strongly confirms the presence of ARCH-effects in the individual return series and this is 
sufficient enough to employ GARCH models for the marginals. It is noticed in Table 2 that the level 
of unconditional correlation of exchange rates returns are all positive but relatively low between all 
exchange rates pairs. 

0.4

0.8

1.2

1.6

2.0

2.4

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

Clayton_EUR_GBP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7
4/

28
/20

15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

Claycop_EUR_USD

0.0

0.4

0.8

1.2

1.6

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

Claycop_USD_GBP

1.2

1.6

2.0

2.4

2.8

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

Gum_EUR_GBP

1.0

1.2

1.4

1.6

1.8

2.0

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

Gum_EUR_USD

1.0

1.2

1.4

1.6

1.8

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

Gum_USD_GBP

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7
4/

28
/20

15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

norCop_EUR_GBP

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

norCop_EUR_USD

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

norCop_GBP_USD

0.4

0.8

1.2

1.6

2.0

2.4

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

rotClay_EUR_GBP

0.0

0.4

0.8

1.2

1.6

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

rotClay_EUR_USD

0.2

0.4

0.6

0.8

1.0

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7
4/

28
/20

15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

rotClay_USD_GBP

1.2

1.6

2.0

2.4

2.8

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

rotGum_EUR_GBP

1.0

1.2

1.4

1.6

1.8

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

rotGUM_EUR_USD

1.0

1.2

1.4

1.6

1.8

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

rotGum_USD_GBP

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7

4/
28

/20
15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

tCop_EUR_GBP

-2

-1

0

1

2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1
9/

19
/20

12
8/

14
/20

13

20
14

-0
2-0

7
4/

28
/20

15

5/
26

/20
16

6/
30

/20
17

20
18

-0
3-0

5
3/

14
/20

19

tCop_EUR_USD

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

2/
25

/20
09

1/
29

/20
10

20
11

-0
4-0

1

11
/2

3/2
01

1

9/
19

/20
12

8/
14

/20
13

20
14

-0
2-0

7
4/

28
/20

15
5/

26
/20

16
6/

30
/20

17

20
18

-0
3-0

5
3/

14
/20

19

tCop_GBP_USD

 
Figure 2. Time-varying copula parameters for all copula familie. Note: Claycop = Clayton Copulas, 
Gumcop = Gumbel Copulas, norcop = Normal Copulas, tcop = Student-t Copulas, rotClay = Rotated 
Clayton Copulas, rotGum = Rotated Gumbel Copulas. 

Table 1. Descriptive statistics for exchange rates returns. 

GHS/ Mean Std. Dev. Skewness Kurtosis Jarque-Bera Q(2) Q2(2) ARCH-LM 
EUR 0.00055 0.06574 −0.2465 1137.45 1.2835 × 108 * 567.98 * 593.96 * 791.18 * 

USD 0.00061 0.03361 −0.0472 1103.06 1.2071 × 108 * 562.43 * 593.93 * 791.19 * 

GBP 0.00056 0.13398 0.2266 820.34 6.6764 × 107 * 593.89 * 593.49 * 790.88 * 

Notes: Data represent daily exchange rates returns spanning the period of 24 February 2009, to 19 
December 2019. Std. Dev. is the standard deviation. Q(2) and Q2(2) refer to Ljung-Box statistic for 
serial correlation of order 2 in returns and squared returns. ARCH-LM is the Engle’s Lagrange 
multiplier statistic to test for heteroskedasticity computed using 20 lags. * indicates statistical 
significance at 5%. 

Figure 2. Time-varying copula parameters for all copula familie. Note: Claycop = Clayton Copulas,
Gumcop = Gumbel Copulas, norcop = Normal Copulas, tcop = Student-t Copulas, rotClay = Rotated
Clayton Copulas, rotGum = Rotated Gumbel Copulas.

Table 1. Descriptive statistics for exchange rates returns.

GHS/ Mean Std. Dev. Skewness Kurtosis Jarque-Bera Q(2) Q2(2) ARCH-LM

EUR 0.00055 0.06574 −0.2465 1137.45 1.2835 × 108 * 567.98 * 593.96 * 791.18 *
USD 0.00061 0.03361 −0.0472 1103.06 1.2071 × 108 * 562.43 * 593.93 * 791.19 *
GBP 0.00056 0.13398 0.2266 820.34 6.6764 × 107 * 593.89 * 593.49 * 790.88 *

Notes: Data represent daily exchange rates returns spanning the period of 24 February 2009, to 19 December 2019.
Std. Dev. is the standard deviation. Q(2) and Q2(2) refer to Ljung-Box statistic for serial correlation of order 2 in
returns and squared returns. ARCH-LM is the Engle’s Lagrange multiplier statistic to test for heteroskedasticity
computed using 20 lags. * indicates statistical significance at 5%.

Table 2. Unconditional Linear Correlation.

GHS/ EUR USD GBP

EUR 1
USD 0.0163 1
GBP 0.0136 0.0141 1
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4. Empirical Results

4.1. Marginal Model Results

We began our analysis by first estimating the marginal models indicated by Equation (1) through
to (3) before estimating the dependence model parameters (the copulas). Different combinations for
lags values from one to three are taken to ensure the appropriateness of ARMA(k,m)-GARCH(p,q)
specification with Student t-distribution for the marginals and a combination that gives minimum
Akaike Information Criteria (AIC) value is selected as the best fit model.

The parameter estimates for the marginal distribution models are present in Table 3. The results
presented in Table 3 show that a GARCH (1,1) model accurately captures the volatility dynamics of
EUR and USD exchange rates returns while the dynamics of the GBP exchange rate return volatility is
well captured by a GARCH (1,3) model. Various model diagnostic tests (goodness-of-fit test) for the
marginals including the Ljung-Box and ARCH-LM tests as well as normality test based on Shapiro-Wilk
and Jarque-Bera tests are performed. The Ljung-Box statistic and the ARCM-LM statistic respectively
indicate that there is no serial correlation in the residuals of the marginals and absence of ARCH effects
remaining in the residuals. On the other hand, both normality tests results indicate that the distribution
of the residuals deviates from normality. Notwithstanding, the choice of using copula models is so
appropriate to capture dependencies between exchange rates returns pairs because the goodness-of-fit
test results indicate that the marginal distribution models are correctly specified. Therefore, the best
fitting marginal models based on AIC are ARMA (2,2)-GARCH (1,1) for EUR exchange rate return,
ARMA (2,1)-GARCH (1,1) for USD exchange rate return and ARMA (1,1)-GARCH (1,3) for GBP
exchange rate return.

Table 3. Parameter estimates for the marginal distribution model.

GHS/ EUR USD GBP

Mean Equation

∅0 0.000438 * 0.000055 * 0.000249 *
(0.000116) (0.000013) (0.000119)

∅1 −1.282583 * 0.678063 * 0.911089 *
(0.000156) (0.029473) (0.0211017)

∅2 −0.994357 * 0.163287 *
(0.000233) (0.019986)

θ1 1.281877 * −0.741331 * −0.929622 *
(0.000249) (0.024693) (0.020039)

θ2 0.994038 *
(0.000137)

Variance Equation

α0 0.000025 * 0.000007 * 0.000009 *
(0.000003) (0.000001) (0.000001)

α1 0.393398 * 0.375248 * 0.175997 *
(0.063083) (0.024909) (0.006934)

β1 0.367484 * 0.623752 *
(0.041624) (0.017887)

β2 0.054972 *
(0.01028)

β3 0.633581 *
(0.006841)

Log-Likelihood 8430.102 11780.66 7663.246
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Table 3. Cont.

GHS/ EUR USD GBP

Q(20) 0.66597 0.003332 0.1212
[1.0000] [1.0000] [1.0000]

ARCH(20) 0.0014332 0.0015125 0.006177
[1.0000] [1.0000] [1.0000]

Shapiro-Wilk 0.051559 0.052169 0.038803
[0.0000] [0.0000] [0.0000]

Jarque-Bera 1.2833 × 108 1.1453 × 108 6.6767 × 107

[0.0000] [0.0000] [0.0000]

Notes: The table shows parameter estimates for the marginal models in Equations (1)–(3) with standard errors in
brackets and p-values in square brackets. p-values less than 0.05 indicate rejection of the null hypothesis. * represents
statistical significance at the 5% level. Q(20) is the Ljung-Box statistics computed using 20 lags for serial correlation
in the residual models. ARCH is Engle’s LM test for the ARCH effect in the residual up to 20th order. Shapiro-Wilk
and Jarque-Bera tests test for normality of standardized residuals.

4.2. The Copula Models Results

Table 4 reports the estimates of time-invariant copula for all the exchange rate returns pairs.
The parameter estimates for all the copula families used in this study show positive dependence for

all the exchange rates returns pairs. Since the parameter estimates for the Gaussian and Student-t copulas
measure the dependence between exchange rates returns pairs, we can then infer from Table 4 that the
EUR-GBP exchange rates returns pair exhibit strong dependence with higher conditional correlation
coefficient estimate (ρ), while there are moderate dependencies between EUR-USD and USD-GBP
exchange rates returns pairs. The estimates of Gaussian and Student-t time-invariant parameters are
all significant at the 5% level. The estimates of time-invariant parameters of Archimedean copulas
used in this study such as Gumbel (rotated Gumbel) and rotated Clayton (Clayton) copulas capture
upper (lower) tail dependencies and are all significant at the 5% level, as shown in Table 4. It can be
inferred from Table 4 that parameter estimates for Gumbel and rotated Clayton copulas are higher
than their corresponding counterparts (rotated Gumbel and Clayton). This result is consistent in the
literature, that exchange rates tend to jointly depreciate more than they appreciate together. For all
exchange rates returns pairs, there is higher extreme co-movement or tail dependence between the
EUR-GBP pair than the EUR-USD and USD-GBP pairs but all pairs show positive dependence. In all,
the Student-t copula for time-invariant copula models provides a better fit for all exchange rates returns
pairs based on the AIC model selection criterion adopted for this study. This indicates that exchange
rates markets boom and crash together.
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Table 4. Estimates for Time-Invariant Bivariate Copula Models.

Copula Models EUR-USD EUR-GBP USD-GBP

Gaussian copula
ρ 0.3866 * 0.6689 * 0.3872 *

(0.016) (0.009) (0.016)
AIC −379.1791 −1399.383 −380.6324

Student-t copula
ρ 0.3389 0.6824 0.3533

(0.022) (0.012) (0.021)
ϑ 2.8801 * 3.6819 * 3.3945 *

(0.253) (0.368) (0.345)
AIC −534.009 −1598.632 −496.1728

Gumbel copula
δ 1.341 * 1.884 * 1.343 *

(0.021) (0.032) (0.021)
AIC −480.3786 −1497.994 −485.5223

Rotated Gumbel copula
δ 1.302 * 1.845 * 1.295 *

(0.02) (0.031) (0.02)
AIC −386.6807 −1403.206 −364.8547

Clayton copula
α 0.5647* 1.221* 0.5816*

(0.034) (0.044) (0.035)
AIC −267.1438 −1116.208 −239.6604

Rotated Clayton copula
α 0.5986 * 1.349 * 0.6118 *

(0.035) (0.046) (0.035)
AIC −423.8038 −1267.054 −434.7387

Notes: The table displays parameter estimates for different static copula models for each currency pair shown in
each column. Standard error values are in brackets and * indicates statistical significance at the 0.05 level. Each
copula model’s AIC (Akaike information criterion) value is shown. In all AIC values in “bold” indicate minimum
values that recommend the best-fit copula model (Student-t copula).

The results of time-varying copula model parameters shown in Table 5 indicate that all the
time-varying copula models perform better than their static counterparts based on the AIC model
selection criterion. Consistent with the static models, the Student-t copula model provides a better fit for
all pairs than the other models considered in the study with minimum AIC value. However, the choice
of Student-t copula shows that exchange rates jointly depreciate and appreciate together, the Gumbel
and rotated Clayton copulas outperformed their respective counterparts (rotated Gumbel and Clayton),
indicating that exchange rates tend to jointly depreciate more than appreciate. The evolution of
dependence and tail dependence copula parameters is evidenced in Figure 2. The time-varying
Student-t copula that provides a better fit for all pairs, exhibits or is akin to a white noise process, as
well as the time-varying Gaussian copula. The dynamic Archimedean copulas considered in this study
show greater upper tail dependence than the lower tail, suggesting the presence of asymmetry in the
bivariate relationships. Notwithstanding this, the better fit Student-t copula model reveals that the
major trading currencies in Ghana jointly depreciate and appreciate against the GHS. In other words,
whenever the GHS’s value drops (rises), the foreign currencies jointly rise (drop) in value. This can be
attributed to the high integration and efficiency of exchange rate markets of developed economies like
the US, UK and the Euro Zone. Integrated markets tend to move together and any disequilibrium is
quickly restored to limit speculator from making arbitrage profit. From the demand side, the US dollar,
the Euro and Great Britain pound as currencies for international business are near-perfect substitutes,
though US dollar leads. Therefore, in times of high demand for foreign currencies, any of these is
susceptible to demand pressure and hence joint depreciation/appreciation against the cedi.
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Table 5. Estimates for Time-Varying Bivariate copula models.

Copula Models EUR-USD EUR-GBP USD-GBP

TVP-Gaussian
Ψ0 0.0412 * 0.0213 * −0.0047

(0.00601) (0.00587) (0.00594)
Ψ1 0.4532 * 0.6253 * 0.1025

(0.01314) (0.01327) (0.01316)
Ψ2 −2.3641 * 1.7841 * 1.4352

(0.00589) (0.00595) (0.0059)
AIC −430.23 −1405.42 −411.59

TVP-Student-t
Ψ0 0.0384 * 0.0241 * −0.0063

(0.0059) (0.0058) (0.00593)

Ψ1 0.5461 * 0.6562 * 0.1465
(0.0058) (0.0134) (0.01335)

Ψ2 1.7563 * 2.3641 * 1.6343
(0.0061) (0.0059) (0.00595)

AIC −567.89 −1604.36 −546.73
TVP-Clayton

Ψ0 −0.2578 * 0.1115 * 0.2931 *
(0.00582) (0.00582) (0.00596)

Ψ1 −0.7775 * 0.9273 * −0.6219 *
(0.0026) (0.007) (0.0036)

Ψ2 −6.3813 * −0.5998 * −8.3688 *
(0.00592) (0.00587) (0.00595)

AIC −293.4 −1167.26 −285.35
TVP-rotated Clayton

Ψ0 0.0695 * 1.0452 * −0.1654 *
(0.00588) (0.00594) (0.00599)

Ψ1 −0.7163 * −0.3841 * −0.5982 *
(0.0029) (0.0044) (0.0024)

Ψ2 −5.5725 * −4.6319 −4.2662
(0.00593) (0.00589) (0.00601)

AIC −437.17 −1291.99 −442.99
TVP-Gumbel

Ψ0 0.5544 * 1.5418 * 0.498 *
(0.00599) (0.006) (0.00598)

Ψ1 −0.7515 * −0.1367 * −0.5607 *
(0.0019) (0.0036) (0.0019)

Ψ2 −6.5229 * −5.292 * −5.9222 *
(0.00597) (0.00589) (0.00599)

AIC −498.76 −1535.04 −501.56
TVP-rotated Gumbel

Ψ0 0.3416 * 1.0423 * 0.683 *
(0.00596) (0.00602) (0.00585)

Ψ1 −0.7469 * 0.2711 * −0.6123 *
(0.0017) (0.0039) (0.0022)

Ψ2 −6.5702 * −3.923 * −7.875 *
(0.00591) (0.00592) (0.00581)

AIC −405.02 −1447.03 −391.54

Notes: The table displays parameter estimates for different time-varying copula models for each currency pair
shown in each column. Standard error values are in brackets and * indicates statistical significance at the 0.05 level.
Each copula model’s AIC (Akaike information criterion) value is shown. In all, AIC values in “bold” indicate
minimum values that recommend the best-fit copula model (Student-t copula).

The findings imply that there is no opportunity for international currency diversification from the
three major currencies. It is also worthless for market players, speculators, importers and currency
traders to hoard the USD in an anticipation of extreme depreciation of the GHS against the USD.
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As evidenced by our study results, the foreign currency pairs with the GHS co-move in both directions
(depreciation and appreciation) and the co-movement is more prevalent in harsh extreme market
conditions. Therefore, the focus should not only be on the USD to cause unnecessary pressure on the
USD in anticipation of the GHS losing ground to the USD (GHS depreciating against the USD) but the
focus should rather be on all the major trading foreign currencies, especially the GBP and the EUR.

4.3. Comparing Time-Varying Copula Models with DCC-GARCH Model

We compare the copula results with a multivariate GARCH model with dynamic conditional
correlation (DCC) proposed by Engle (2002) where time-varying conditional correlations are driven by
the cross product of the lagged standardized residuals and an autoregressive term. This model assumes
that returns of n assets are conditionally multivariate normal with zero expected value and covariance
matrix Ht. The estimation procedures of DCC-GARCH is like copula model estimation whereby the
GARCH parameters for the individual series (marginal distributions) are estimated first, followed by
estimating the parameters driving the correlation dynamics (see Tse and Tsui 2002). The DCC-GARCH
model has been widely applied to financial phenomena (see Engle and Colacito 2006; Lee 2006; Coudert
and Gex 2010; Cai et al. 2016).

In this study, we consider DCC (1,1)-GARCH (1,1) model. Given the information set ηt−1 available
at time t − 1 of the return rt of an asset is distributed as rt/ηt−1 v N(0, Ht) with

Ht = DtRtDt (17)

where Dt = diag
{√

hit
}

is n× n diagonal matrix of the time-varying conditional standard deviation of

Standardized residual zt at time t,Rt =
{
ρi j

}
t

is n× n conditional symmetric correlation matrix of zt at
time t.

The dynamics of the correlation in the DCC (1,1)-GARCH (1,1) model is expressed as

Qt = (1− a− b)Q + azt−1z′t−1 + bQt−1 (18)

where
a ≥ 0, b ≥ 0 and a + b < 1,
Qt is the n× n time-varying covariance matrix of zt,
Q is the n× n unconditional covariance matrix of zt.
The model parameters are estimated following the two-stage maximum likelihood estimation

procedure proposed by Engle (2002) and, Tse and Tsui (2002).
The results for the DCC (1,1)-GARCH (1,1) model are presented in Table 6. The results show that

apart from the constant parameter α0 in the univariate GARCH model for GHS/USD return series,
all the estimated GARCH model parameters ( α1, and β1) are statistically significant.

We can infer from these results that the conditional variance of exchange rate return is influenced
by past return innovation and by its lagged variance. The parameters a and b of the DCC (1,1) model
respectively capture the effects of standardized lagged shocks (zt−1z′t−1) and the lagged dynamic
conditional correlation effects Qt−1 on current dynamic conditional correlation. It is worth noting
that the existent of time-varying dynamic correlations are determined by the statistical significance
of the coefficients a and b in each pair of the exchange rates returns. Though the results show that
the coefficient a is not significant for both EUR-GBP and USD-GBP pairs except for EUR_USD pair,
b is highly significant and positive for all exchange rate pairs and close to 1. This indicates that
time-varying dynamic correlations exist and therefore, Bollerslev et al.’s (1988) constant conditional
correlation cannot be assumed. The average conditional correlation ρ for all pairs as reported in Table 6
[EUR-USD(0.005637), EUR-GBP(0.012417), USD-GBP(0.002025)], is significant and positive as well
and it should be noted that the low average conditional correlation values between all pairs show no
extreme co-movement between the exchange rate pairs.
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Table 6. Estimation results from the bivariate DCC(1,1)-GARCH(1,1) model.

Panel A: Marginal Model Results
GHS/ EUR USD GBP

Variance equation

α0 0.000012 * 0.0000001 0.000004 *
0.000001 0.000024 0.000001

α1 0.21585 * 0.228549 * 0.074432 *
0.05652 0.039065 0.022583

β1 0.660569 * 0.770451 * 0.877705 *
0.061083 0.340935 0.008594

Panel B: Bivariate DCC results
GHS/ EUR-USD EUR-GBP USD-GBP

ρ 0.005637 * 0.012417 * 0.002025 *
0.00000005 0.00000006 0.00000002

a 0.010367 * 0.000001 0.005039
0.002584 0.000127 0.003424

b 0.9836 * 0.902889 * 0.990627 *
0.007146 0.108864 0.007068

AIC 309.86 132.03 408.26

Notes: The table displays parameter estimates of DCC (1,1)-GARCH (1,1) models for each currency pair shown in
each column. Standard error values are in brackets and * indicates statistical significance at the 0.05 level. The AIC
(Akaike information criterion) value for DCC for each currency pair is shown.

A visual presentation of correlation dynamics between the exchange rate return pairs is shown
in Figure 3 using the DCC (1,1)-GARCH (1,1) modeling framework. By observing the evolution of
these correlations, we identify marginal fluctuations in the correlation dynamics with occasional big
fluctuations either above or below the average, which usually occur close to the beginning or the
terminating periods of the incidental periods. Even though the correlation fluctuations are marginal
over a wide range of the study period, the existence of peaks and troughs occurring around the
beginning and the terminating periods of the incidental periods justify the dynamic nature of the
conditional cross-correlations.

It is interesting to note that both DCC and copula models provide evidence of time-varying
co-movements between the exchange rate pairs, the DCC model shows high persistence of correlations
which is evidenced by the fact that the DCC parameter b is near 1 for all exchange rate pairs. This high
persistence may push away a long-run average of the correlation for a considerable long period
by shocks, thereby failing to detect extreme co-movement between the exchange rate pairs which
is the main purpose of our study. Moreover, the complexity involves in constructing multivariate
distribution by decomposing it into dependence structure and marginal distributions using a DCC
model framework that makes the use of copulas, which are more flexible for achieving such a task and
making them a preferred model to the DCC model.
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5. Conclusions

Excessive demand for foreign currency always disadvantages the domestic currency, causing
the domestic currency to fall in value against the foreign currency. The recognition that currency
markets move together, especially more at extreme market conditions, will help reduce the excessive
pressure that is usually brought to bear on the domestic currency in pursuit of foreign currency to
cause drastic depreciation of the domestic currency against the highly demanded foreign currency.
To ascertain the joint depreciation and appreciation of foreign currencies against the GHS at extreme
market conditions on Ghana’s foreign exchange market, this paper examines the dependence structure
between the EUR-USD, USD-GBP and EUR-GBP pairs with each currency expressed as a unit in
GHS term, using daily data from 24 February 2009 to 19 December 2019. To determine the degree
of the dependence and tail dependence structure between the exchange rates pairs, we use six
different copula functions including Gaussian, Student-t, Clayton, Gumbel, rotated Clayton and rotated
Gumbel copulas. The results show positive dependence between the exchange rates pairs and the tail
dependences are symmetrical and evolve (time-varying). Among all the copula families considered
in our study, student-t copula provides a better fit for both static and time-varying copulas based on
AIC, indicating and consistent with literature that exchange rate markets boom and crash together
at extreme market conditions. Notwithstanding this, the Archimedean copulas provide evidence of
upper tail dependence.

The study also compares the copula results to DCC(1,1)-GARCH(1,1) model by examining the
joint movement between exchange rate pairs in a multivariate sense. The multivariate DCC-GARCH
results show marginal fluctuations of correlations over a wide range of the study period with occasional
big fluctuations close to the beginning and terminating periods of the incidental periods and these
confirm the presence of dynamic conditional correlation between the currency pairs. Moreover,
the DCC-GARCH model results show high persistence in correlation dynamics, leading to its inability
to capture extreme co-movement between the exchange rate pairs. Notwithstanding the DCC
multivariate’s appeal to modeling volatility transmission across financial time series, the complexity
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involves in constructing multivariate distribution by decomposing it into dependence structure and
marginal distributions using the DCC model framework makes the use of copulas more appealing to
modeling dependence structure between exchange rate pairs.

We observe through the copulas that the three major currencies jointly depreciate/appreciate under
extreme harsh conditions This finding provides lessons to be drawn from by investors, importers,
currency market players, speculators and the general public as a whole that there is no point in rushing
out in a panic for the USD in an anticipation of the domestic currency (GHS) depreciating highly against
the USD because, in such situations, all the other foreign currencies and the USD jointly appreciate.
The activity of benefiting from international currency diversification is non-existing. The finding of the
joint movement of the major currencies provides policymakers with useful information for managing
exchange rate risk in the extreme period. Specifically, monetary authorities should continuously
monitor activities of these three currencies and implement appropriate interventions against shocks
from any of the countries to stabilize the cedi.
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