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ABSTRACT

This thesis concentrates on developing a Modified Iterative Method for

computing the approximate solutions of nonlinear equations. We discus the

concept of Error Analysis, Errors in Numerical Methods, Approximation

and Convergence. Newton’s method is discussed and proved. This study is

set out to construct or develop a Modified Iterative Method for computing

the approximate solutions of nonlinear equations by using Taylor Series

expansion and Adomian Decomposition Method (ADM). The Taylor series

is used in this study due to its higher possibility of convergence since it is

a power series. In the same vain, the Adomian Decomposition method is a

semi analytical method which decomposes the nonlinear equations into a

series of functions thereby making the convergence of these functions much

easier. The convergence of this method is proved to be of order 2. The

Modifield Iterative Method is a modification based on Newton - Raphson’s

method. Matlab R2020a is used to compute the solutions of some numerical

examples with the proposed modified method. The computation of the

approximated solutions of the method are compared with some existing

iterative methods in literature such as Newton’s method, Karthikeyan’s

method and External Touch Algorithm method. Then we discussed the

accuracy of the proposed modified iterative method when applied to single

variable nonlinear equations. The study pointed out that, the modified

method is comparable with the existing methods. Finally we concluded

that the modified iterative method is more accurate than the Newton’s

method, the External Touch Algorithm method and even to some extent,

the Karthikeyen’s method.
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CHAPTER ONE

INTRODUCTION

Background to the Study

Computing the approximate solutions of nonlinear equations by itera-

tive methods have become the obvious choice for mathematicians, scientist

and researchers who are into numerical analysis and computing. Find-

ing the roots (solutions) of equations is an important mathematical prob-

lem but there are only a few general classes of the equations of the form

f(x) = 0 that can be solved analytically. These include linear equations

and quadratic equations. Cubic and quartic (3rd and 4th degree poly-

nomial) equations can also be solved by using complicated formulae. We

usually solve these and other equations approximately by using numerical

methods which are often iterative in nature with the help of a calculator

or a computer software or programmes such as Maple, Matlab, R console,

Fortran and Mathematica.

In computational mathematics, an iterative method can be defined as

a mathematical procedure that uses an initial guess to generate a sequence

of improving approximate solutions for a class of problems, in which each

approximation is derived from the previous ones. A fundamental strategy

behind many numerical methods is to replace a difficult scientific problem

with a string of simpler ones and carry out a series of an iterative pro-

cess with the expectation that, the solutions of the simpler problem will

converge to the solutions of the original difficult problem. This strategy

thrives well on finding zeros of functions. This means that, if we possess an

arsenal of numerical methods for locating the zeros of functions, we shall

be able to solve such problems.

In mathematics, a linear equation is defined as an equation that can

be expressed in the form α1x1 + α2x2 + α3x3 + ... + αnxn + β = 0 where,

1
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the variables (unknowns) are x1, x2, ..., xn and α1, α2, ..., αn are coefficients

which are often real numbers as well as

beta the constant term. The coefficients may be considered as the parame-

ters of the equation and may be arbitrary expressions provided they do not

contain any of the variables. Simply put, a linear equation in the variable

x is an equation that can be written in the form ax+ b = 0 where a and b

are real numbers and a 6= 0. On the other hand, an equation is said to be

a nonlinear equation if its general representation can be expressed in the

form axn1 + bxn−12 + cxn−23 + ... + p = 0, n ≥ 2. Here x1, x2, x3, ... are the

variables and a, b and c are the coefficients while p is the constant term.

A system of nonlinear equations is a set of equations where one or

more variables in at least one of the equations have degree two or higher.

In numerical mathematics and computing, a root finding method or algo-

rithm may be considered as an algorithm for finding the solution or roots

of equations, also known as the zeros of continuous functions. The zeros or

roots of a function f from real numbers to real numbers or from complex

numbers to complex numbers is the number for which f(x) = 0. Generally

speaking, the zeros of functions with higher degrees are difficult, expen-

sive or at times impossible to compute exactly or expressed in closed form.

However, root finding algorithms or methods provide an alternative ap-

proach which is approximation to zeros, expressed either as floating point

numbers or as small isolating intervals, or disks for complex root.

In elementary algebra the solution of a first-order degree equation

(linear) ax + b = 0 is given by the formulae x = − b
a

and the roots of

second-order degree (quadratic) equation ax2 + bx + c = 0 is given by the

formulae

x =
−b±

√
b2 − 4ac

2a

2
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Formulae also exist for the solutions of all cubic (third-order degree)

equations and quartic (fourth-order degree) equations. Practically, they

are hardly used due to the fact that they are complicated in their usage. In

1826, it was shown by a Norwegian Mathematician Neils Henrik Abel that

it is highly impossible to construct a similar formulae for the solution of a

fifth – degree or higher equations. For instance, for fifth-degree polynomial

equations such as

x5 − 9x4 + 2x3 − 5x2 + 17x− 8 = 0

or

3x5 + 2x4 − 15x3 + 12x3 − 2x2 − 6 = 0

It may be difficult or impossible to find the exact values for all of the so-

lutions. In addition, non-polynomial equations such as x − cosx = 0 may

have similar difficulties occurring. For such equations, the solutions are

generally approximated by a numerical method (Burden & Faires, 2011).

Solving nonlinear equations is one of the most important problems in nu-

merical analysis.

In science and engineering, many of the non-linear and transcendental

problems of the form f(x) = 0 are complex in nature. This is because it is

not always possible to obtain the exact solution by the usual algebraic pro-

cess. Numerical iterative methods are often used to obtain approximate

solution of such problems. Much attention has been given to the devel-

opment of several iterative methods for solving non-linear equations by

researchers mostly in the field of numerical analysis. Numerical analysis is

a very important branch of Mathematics and Computer Science that deals

with the study of algorithms that make use of numerical approximation in

mathematical analysis.

3
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Although numerical analysis is considered by some to be a subject

of recent origin and development, this is not in fact so. It deals with the

derivation of results in the form of numbers, the numerical analyst is really

the lineal descendant of the first caveman who enumerated the number of

his wives by putting them into one; one correspondence with the fingers of

his hand. The primary activity of the Babylonian scientist was the con-

struction of mathematical tables. An example is the extant, which contains

on a tablet the squares of the numbers from 1-60. Astronomical calculation

formed a part of the activity of these early numerical analysts. Other ener-

getic numerical analysts were the ancient Egyptians who constructed tables

whereby complex fractions could be decomposed into the sum of simpler

forms with unit numerators, and invented the method of false position.

For the Greek mathematicians, we find Archimedes in about 22.B.C,

approximating the value of π and describing it as less than
22

7
and greater

than
233

71
. Heron the elder, in about 100 B.C made use of the iteration

process
√
a ∼

1

2
(xn +

a

xn
) which is usually ascribed to Newton. Diophan-

tus, about A.D.250, apart from his popular known work on indeterminate

equations, was also responsible for a process for the arithmetic solution of

quadratic equations. In the nineteenth century there occurred one of the

triumphs of numerical analysis, the simultaneous prediction by Adams and

Le Verrier in 1845, the existence and position of the planet Neptune (An-

drew & Booth, 1966). Numerical analysis involves the study of methods of

computing numerical approximations. One of the most studied problems of

numerical approximation is the root finding problem. This process involves

finding a root or a solution of an equation of the form

f(x) = 0, (1.1)

for a given function f. A root of this equation is also called a zero of the

4
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function f.

In this business of numerical approximations, we are often interested

in finding x such that f(x) = 0. where f : Rn → Rn denotes a system of n-

nonlinear equations and x is the n-dimensional root. Methods employed to

solve problems of this nature are called root-finding or zero-finding meth-

ods. It is worthwhile to note that the problem of finding a root is equivalent

to the problem of finding a fixed-point. To see this consider the fixed-point

problem of finding the n-dimensional vector x such that

x = g(x), (1.2)

where f : Rn → Rn. It can be inferred from the above two equations that

we can rewrite equation (1) as a root finding problem by setting f(x) =

x − g(x) and likewise we can also recast a root finding problem into a

fixed point problem by setting g(x) = x − f(x). More often than not, it

is not possible to solve such nonlinear equations analytically. When this

occurs, we turn to numerical methods to approximate the solution. These

methods employed are usually iterative. Generally speaking, algorithms for

solving problems numerically can be divided into two main groups. That is

direct methods and iterative methods. Direct methods are those which can

be completed in a predetermined number of steps. Iterative methods are

methods which converge to the solution over time. The problem of finding

an approximate solution to the root of an equation is traced back at least

to 1700B.C.

5

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



A cuneiform table in the Yale Babylonian collection dating from that

period gives a sexigestimal (base 60) numbers equivalent to 1.414222 as an

approximation to
√

2 as a result that is accurate to within 10−5 (Burden

& Faires, 2011). Solving system of nonlinear equations is one of the most

important problems in most numerical computations especially in a diverse

range of engineering applications. Most applied problems can be reduced

to solving system of nonlinear equations which is one of the well-known

problems in mathematics. Its applications in many scientific fields cannot

be over emphasized. Consequently, great efforts have been made in recent

times by a lot of researchers and many constructive theories and algorithms

have been proposed to solve system of nonlinear equations (Li et al., 2015).

Statement of the Problem

Finding the roots of a system of nonlinear equations is one of the

important problems in most numerical computations especially in areas

associated with engineering applications. Many applied problems can be

transformed into solving a system of nonlinear equations which is one of

the well-known problems in mathematics. There are countless applications

in many scientific related fields. As a result of this, many great efforts

have been made in recent years by a lot of researchers and many construc-

tive theorems and algorithms are proposed to solve system of nonlinear

equations. Inspite of these, there still exist some problems with numerical

methods for solving a system of nonlinear equations. For most traditional

methods, for instance, the bisection method convergence is very slow and

cannot detect multiple roots even though it is the method that enhances

good choice of initial guest of the solution. Newton or Newton-Raphson

method is a popular method known for its error decreasing rapidly with

each iteration thereby converging very fast to the solution.

6

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



However, the convergence and performance characteristics is highly

dependent on the good initial guess of the solution. For a bad choice of

initial guess (x0), it may take many iterations to converge to the solution

or in the worse case, the method can fail to converge. Another point

worth mentioning is that, the results obtained may be improper if the

initial guess of the solution is unreasonable. Many different combination of

methods and many intelligent algorithms such as particle swarm algorithms

and genetic algorithms are applied to solve system of nonlinear equations

which can overcome the problem of selecting a reasonable initial guess of

the solution. Li et al. (2015) explained that, these algorithms are too

complicated or expensive to calculate when there are a number of system

of nonlinear equations to solve. Here, a modified iterative method based on

the Newton’s method is proposed which can overcome the dependence on

a reasonable initial guess of the solution and the complex nature of using

intelligent and other algorithms. This proposed modified method to some

extent is user friendly and improve computational efficiency.

Research Objectives

The objectives of this thesis are as follow:

(i) To construct and prove new modified iterative method to compute

the approximate solution of nonlinear equations.

(ii) To establish the convergence of the proposed modified iterative method.

(iii) To compute the approximate solution of some nonlinear equations

using the modified iterative method and Matlab software.

Significance of the Study

Most applied problems in physical sciences, biological sciences and

engineering can be transformed into system of nonlinear equations. The

7
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roots finding of these equations, is therefore crucial to solving contempo-

rary real life problems. Therefore, the efficiency and robustness of the

methods used in solving such equations are very paramount to researchers

and mathematicians alike. This study is aimed at developing an improved

numerical method for solving nonlinear equations that will give a better

approximate solutions. It will also add to the body of knowledge in this

area of numerical analysis thereby setting the stage for further research in

the field of numerical solution of nonlinear equations.

Delimitation

This study is an iterative numerical method for finding the roots of

non-linear equations based on the method proposed by Newton-Raphson.

The proposed iterative algorithm is particularly suited for finding the zeros

of functions for which the derivatives are easy to compute. One class of such

functions are polynomial functions. Another important class are functions

defined via integrals like f : x→
∫ x
a
F (t)dt+G(x).

Limitation

In this study, all the numerical solutions of the nonlinear equations

used in this study were computed using Matlab R2020a on my personal

computer. The researcher therefore admit that, due to truncation error,

the results obtained might have been affected marginally. It may also be

possible that when a different software such as R console, Maple, Fortran,

Mathematica and so on is used to compute the same non-linear equations

on a different computer or advanced calculators, the precision of the results

may be at variance with what is obtained in this study.

8
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Organisation of the Study

The thesis is structured in five chapters. Chapter one actually deals

with introduction of the study. Here detailed explanations and discussions

on iterative numerical method is given, key words in the topic of the thesis

are all well explained. This chapter also talks about the background of

the study, statement of the problem, objectives of the research, methodol-

ogy. The rest of the areas under this chapter are significance of the study,

delimitation and the limitation of the study.

The chapter two is divided into two sections. The first section has

some mathematical concepts directly related to the thesis topic whiles the

remaining section has the relevant literature review of the study. This sec-

tion reviews relevant previous studies done by other researchers in the past

either published or not. The convergence, the strengths and weaknesses

of these reviewed numerical methods are discussed. In the literature re-

view, the knowledge gap created or filled by the various iterative methods

proposed by other researchers are also highlighted in chapter two. Chap-

ter three contains the methodology of this work, here, some mathematical

concepts such as conditional and absolute convergence are captured in this

chapter.

Adomian decomposition method and Taylor series together with the

derivation of Newton – Raphson’s method are also featured in chapter

three. The aim of this work is to develop a modified iterative method to

compute the approximate solutions of nonlinear equations. So the deriva-

tion of this proposed modified iterative method and the proof of its con-

vergence are given in chapter four. Some numerical examples of nonlinear

equations are given and each numerical method is solved by using Matlab

software. Here, the results or findings of each numerical method is ana-

lyzed. Finally, the fifth and last chapter of this work talks about summary,

9
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conclusions and recommendations.

Chapter Summary

This chapter serves as the introduction to the study. It begins with

the background which actually put the problem under study into perspec-

tives. This is followed by the statement of the problem which highlights

the knowledge gab of which researchers in that field have failed to resolve.

Research objectives which must be achieved at the end of the research is

covered in this chapter.The method employed to achieve the stated objec-

tives is discussed. The Taylor series as well as the Adomian decomposition

method together with Matlab R2020a software are used in this study. The

benefits of the results as well as those who are direct beneficiaries of this

study are also outlined.

The kind of equations suitable for this proposed modified method

such as equations whose derivatives can be computed easily is discussed.

This chapter also highlights on the possibility of obtaining results which

are at variance with the results in the work due to the iterative method

truncation, the software used as well as the specifications of computer used.

Finally how the thesis is organized as far as each chapter is concerned is

done in this chapter.

10
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This Chapter presents some discussion on mathematical concepts di-

rectly related to numerical methods which are iterative in nature. These

concepts are Approximation, Error in Numerical Methods, Errors Analysis.

The rest of this chapter is a review on relevant literature on some numerical

methods and their convergence.

Errors in Numerical Methods

Any approximation of a function necessarily allows a possibility of

deviation from the correct value of the function (Ledder, 2005). However,

approximations are inevitable in situations where it is extremely difficult

or in the worst situation not possible to get the true value or the exact so-

lution analytically. Error is the term used to denote the amount by which

an approximation fails to equal the exact solution or the true value. When-

ever any numerical method is applied to system of equations, two forms

of error surfaces. These are Truncation and Round off errors. Trunca-

tion error in numerical method, is any error that is caused by using simple

approximations to represent exact mathematical formulas.

Truncation error comes from the approximation that is inherent in

numerical algorithms. For instance, if you use the first n terms of a series

in methods that are based on series, you have truncated the series and the

method as well. The effect of those ignored terms are called the truncation

error. The only way to avoid truncation error completely is to make use of

exact calculations. Ledder (2005), suggested that, truncation error can be

reduced by applying the same approximation to a larger number of smaller

intervals or by switching to a better approximation.

11
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Truncation error analysis is the single most important source of infor-

mation about the theoretical characteristics that distinguish good methods

from poor ones. One can estimate truncation error accurately by a combi-

nation of theoretical analysis and numerical experiments. The truncation

error also occurs as a result of the conversion of continuous function to

a discrete approximation for numerical evaluation. Therefore truncation

error is also known as discretisation. Truncation error is composed of two

parts namely Local Truncation and Global Truncation Error. Thus, we

seek information about errors on both a local and global scale.

Local Truncation Error arises when a numerical method is used to solve ini-

tial value problem. It is the amount of truncation error that occurs in one

step of a numerical approximation. The local truncation error is defined

by Tn+p and introduce the local error at xn+p. It is shown as

Tn+p = y(xn+p)− y(xn)− hφ(xn, y(xn);h)

This error occurs after the first step and form in each step.

Tn+1 = yn(xn+1)− y(xn+1).

Global (or Accumulated) Truncation Error may be defined as the total

accumulated over all solution steps. It is denoted by En and it is expressed

as

En = yn − y(tn),

where, yn is exact solution and y(tn) is the approximate solution.

12
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Global truncation error is the amount of truncation error that occurs

in the use of a numerical approximation to solve a problem. This error is

caused by the accumulation of local truncation error in all of the iterations.

The Round off Error is another form of error in numerical methods. This

error originates due to the fact that a discrete number of significant digits

is used to represent real numbers which have infinite digits on computers.

Computer representation of numerical values is limited in terms of mag-

nitude and precision. Magnitude here means there are upper and lower

bounds on the magnitude of numbers that can be represented whiles pre-

cision about the fact that not all numbers can be represented exactly. For

instance, according to Burden & Faires (2011), error due to rounding off

should be expected whenever computations are performed using numbers

that are not powers of two.

Every computer has only a finite word length and a finite total capac-

ity, so only numbers with a finite number of digits can be represented and

these real numbers represented in computers are called its machine num-

bers. Every numerical computation with computer system, must conform

to normalized floating point representation format, it must have a finite

expansion. As a result, numbers that have non-terminating expansion can-

not be represented precisely. Moreover, a number that has a terminating

expansion in one base may have a non-terminating expansion in another

base (Ward Cheney & Ronald Kincaid, 2008).

The error that results from replacing a number with its floating points

is called round off error regardless of whether the rounding off or chopping

off method is used. Some types of mathematical operations are more sus-

ceptible to round off errors. These are large computations, adding large

and small numbers as seen in an infinite series and inner product. Since

computers can retain a large number of digits in a computation, round off

error is problematic only when the approximation requires that the com-

13
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puter subtract two numbers that are nearly identical (that is subtraction

cancellations).

This is exactly what happens if we apply an approximation to inter-

vals that are too small. Thus the effort to decrease truncation error can

have the unintended consequence of introducing significant round off error

(Ledder, 2005). Practitioners of numerical approximation are most con-

cerned with truncation error, but they also try to restrict their efforts at

decreasing truncation error to improvements that do not introduce signifi-

cant round off error.

Error Analysis

In approximation theory, error is inevitable. Therefore error analysis is very

crucial in determining how efficient and robust is the numerical method

employed. Error in any approximation is defined by

Er = Tv − Av,

where, Er = Error, Tv = True value and Av = Approximate value. Sup-

pose the linearization of f about a is used to approximate f(x), that is,

f(x) ≈ L(x) = f(a) + f ′(a)(x− a)

The error Er(x) in this approximation is given by

Er(x) = f(x)− L(x)

This implies that,

Er(x) = f(x)− [f(a) + f ′(a)(x− a)]

14
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It is the vertical distance at x between the graph of f and the tangent

line to that graph at x = a. It is observed that whenever x approaches

a, then the error in this approximation Er(x) becomes small as compared

to the horizontal distance between x and a. For iterative processes, the

error c an be approximated as the difference in values between successive

iterations. Approximation errors can be measured by two different methods

namely Absolute and Relative Errors. Absolute Error (|Er|) is the absolute

difference between the true value and the approximate value. Suppose

that p∗ is an approximation to p. Then the absolute error involved in

approximating p with p∗ is given by

|Er| = |p− p∗|

Relative Error is the absolute difference between the true value and the

approximate value divided by the true value. That is, the ratio of the

absolute error and the true value. It is expressed as

RE =
|p− p∗|

p
, p 6= 0.

Burden & Faires (2011) admitted that, the relative error is generally a

better measure of accuracy than the absolute error because it takes into

consideration the size of the number being approximated. In most cases

when performing calculations, we are not concerned with the sign of the

error but are interested in whether the absolute value of the relative error

is smaller than pre-specified tolerance. For such cases, the computation is

repeated until |εa| < εs. This relationship is called stopping criterion.
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Approximation

Many problems in applied mathematics are too difficult to be solved

analytically to obtain exact solutions. All that the practitioners in this field

hope to do is to find an approximate solutions that are correct to within

some acceptably small tolerance. A tangent to a curve y = f(x) at x = a

describes the behavior of the graph near the tangential point M(a, f(x))

better than any other straight line through M because it goes through M

in the same way as the curve y = f(x). The tangent line has equation

y = f(a) + f ′(a)(x− a)

and the approximation

f(x) = f(a) + f ′(a)(x− a)

is called the linear approximation or tangent line approximation of f at a.

The linear function whose graph is the tangent

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f about a (Adams & Essex, 2010). Lineariza-

tion of mathematical problems is common throughout applied mathematics

and numerical analysis. The idea is that, it might be easy to calculate a

value f(a) of a function, but difficult or even almost impossible to com-

pute nearby values of f. So we go for the easy computed values of the linear

function L(x) whose graph is the tangent line of f at (a, f(a)) as an approx-

imation of the curve y = f(x) when x is near a (Stewart, 2008). There is a

formulae for solving third – degree (cubic) equation ax3 + bx2 + cx+d = 0.
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This formulae is given by

x =
3

√
(
−b3
27a3

+
bc

6a2
− d

2a
) +

√
(
−b3
27a3

+
bc

6a2
− d

2a
)2 + (

c

3a
− b2

9a2
)3

+
3

√
(
−b3
27a3

+
bc

6a2
− d

2a
)−

√
(
−b3
27a3

+
bc

6a2
− d

2a
)2 + (

c

3a
− b2

9a2
)3 − b

3a
x

There is a formulae for the solutions of quartic (fourth - degree) equa-

tion though it is hardly use in practice due to its complicated nature.

Abramowitz & Stegun (1972), indicated that, the formulae for solving the

quartic equation z4 + a3z
3 + a2z

2 + a1z + a0 = 0 is given by

z = x+
1

2
(a3 ±

√
a23 − 4a2 + 4y1)x+

1

2
(y1 ±

√
y21 − 4a0),

Z1 = −1

4
a3 +

1

2
R +

1

2
D

Z2 = −1

4
a3 +

1

2
R− 1

2
D

Z3 = −1

4
a3 −

1

2
R +

1

2
E

Z4 = −1

4
a3 −

1

2
R− 1

2
E

where, R =
√

1
4
a23 − a2 + y1

D =


√

3
4
a23 −R2 − 2a2 + 1

4
(4a3a2 − 8a1 − a33)R−1, R 6= 0√

3
4
a23 − 2a2 + 2

√
y21 − 4a0, R = 0

E =


√

3
4
a23 −R2 − 2a2 − 1

4
(4a3a2 − 8a1 − a33)R−1, R 6= 0√

3
4
a23 − 2a2 − 2

√
y21 − 4a0, R = 0
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In 1826, it was shown by a Norwegian Mathematician Neils Henrik

Abel that, it is highly impossible to construct a similar formulae for the

solution of a fifth or higher degree equations. For instance, a fifth-degree

polynomial equations such as

x5 − 4x4 − 7x3 + 14x2 − 44x+ 120 = 0

may be difficult or impossible to find the exact values for all of the solutions.

In addition, non-polynomial equations such as

x− cosx = 0

may have similar difficulties occurring. For such equations the solution

are generally approximated by a iterative numerical method (Anton et al.,

2012).

Some Iterative Numerical Methods and Their Convergence

Solving nonlinear equations is one of the most important problems in

numerical analysis. Much attention has been given to developing several

iterative methods for solving nonlinear equations by researchers. A lot of

iterative methods for solving non-linear equation f(x) = 0 have been pro-

posed. Most of these methods are based on the Newton’s method or the

secant method. The Newton’s method is seen as one of the most efficient

method used to solve nonlinear problems. It serves as one of the fundamen-

tal tools in numerical analysis, control theory as well as operation research.

Newton’s method has countless applications in management science, data

management, medicine, optimization and engineering. Sir Isaac Newton

developed this method in 1669 and it was modified in 1690 by Joseph

Raphson and subsequently termed it as Newton – Raphson method. This

modified method is used in finding successive better approximations to the
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roots of the function f(x).

The Newton method depends on an initial good guess and the be-

havior of the function f(x) near the root. Also the derivative f ′(x) cannot

be left out in the implementation of the Newton’s method. This method

converges quadratically. That is the order of convergence is 2. The secant

method was specifically developed to overcome the above problems posed

by Newton’s method but it is slow to converge. According to Burden &

Faires (2011), Muller’s method will give a rapid convergence without a par-

ticular good initial approximation and also has added advantage of being

able to approximate complex roots, a major drawbacks of both Newton

and Secant methods. It is not quite as efficient as the Newton’s method

because its order of convergence near the root is approximately α = 1.84

as compared to Newton’s method of quadratic order α = 2.

However, it is better than the Secant method whose order is approx-

imately α = 1.62. Brent (2013) suggested a hybrid method that combines

the bisection and the secant method to overcome the problems associated

with the Newton’s method. Meanwhile, in respective of numerous research

work already done on Modified Newton’s method, researchers continued to

work for new improved methods, that are efficient, user friendly, effective,

robust and will produced better results or approximations.

Newton’s method serves as foundation for many recent proposed nu-

merical methods for solving nonlinear equations. Kanwar et al. (2003)

studied new numerical techniques for solving nonlinear equations and sug-

gested a modification of Newton’s method which he called an external

touch algorithms for solving non-linear functions. Chun (2005) modified

Newton Method using Adomian decomposition method conjectured that

n = m,n > 0 case produces an iteration scheme of order (n + 2) and es-

tablished that the decomposition method produces efficient results when

applied as a corrector to the Newton’s method. Basto et al. (2006) con-
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structed a new efficient iterative method for solving nonlinear equations

and established cubic order of convergence. This method was based on the

proposal of Abbasbandy on improving the Newton-Raphson method for

nonlinear equations by modified Adomian decomposition method. Basto

et al. (2007) in a numerical study established that the application of Pade

approximants (PAs) to the truncated series solutions given by Adomian de-

composition technique non-linear equations in particular to Burgers equa-

tion can improve the rate of convergence or enlarge the convergence domain

(radius of convergence).

His work solved the problem created by the application of Adomian

decomposition method to partial differential equations, when the exact so-

lution is not reached, demands the use of truncated solution series which

may have small convergence radius and the truncated series may be inac-

curate in many regions. Homeier (2005) came out with a Newton –typed

method by using quadrature formulae. He later proved that, his new

method converges cubically. After comparative analysis of his proposed

method and the original Newton’s method, he established that, quadra-

ture formulae is effective in making Newton’s method have an efficient

convergence.

Yun & Petkovic (2011) proposed a simple but efficient iterative method

for finding a root of non-linear equations. The study shows that the new

method does not need the derivative of f(x) nor the effort to choose good

initial guess and obtained quadratic order of convergence. Another setback

of the Newton’s method is that the condition f ′(x) 6= 0 in a neighbor-

hood of the required root is problematic indeed for the convergence of the

method and its application is restricted. Some modified Newton’s method

have such problem which restricted their applications. It is against this

back drop that Kou et al. (2007) proposed a class of new iterative meth-

ods, in which f ′(x) = 0 in some points is permitted. Convergence analysis
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show that the new iterative methods converge cubically.

Some researchers in recent times have studied and proposed several

new iterative methods for non-linear equations with higher order conver-

gence by using Adomian decomposition method which employs higher or-

der differential derivatives which is a major drawback. Feng (2009) devel-

oped a two-step method for nonlinear equations which does not involve

higher order derivative of the function and obtained quadratic conver-

gence. This method compute well with other researchers such as Newton-

Raphson, Adomian, Babolian, Abbasbandy and Basto proposed methods.

Karthikeyan (2010) reviewed the external touch method proposed by Kan-

war et al. (2003) and concluded that, even though it converges faster than

the Newton’s method for some functions, but it is not generally efficient

than the Newton method.

He then proposed a new modified Newton’s iterative method known

as efficient algorithm for minimization of non-linear function which is an up-

date of the work of (Basto et al., 2006). Though this method also converges

quadratically, the rate of convergence is faster than the Newton’s method

and the External Touch technique. Yun (2008), proposed a non-iterative

method for non-linear equations in order to overcome the difficulties of

good choice of initial guess and improper behavior of f(x) in using Newton

and other existing iterative methods.

The method uses two kinds of transforms of f(x) based on hyperbolic

tangent function, tanh(β)x and a signum function sgn(x). This method

reduces solving nonlinear equation to evaluating an integral of the trans-

formed function. Zavalaus (2014) showed that the quadrature formulae has

a third-order convergence and concluded that the quadrature formulae is

more efficient than the Newton’s method. This work is an update to the

method of Homeier (2005) and a modification of Newton method. Mitlif

(2014) considered new iterative method for solving nonlinear equations.
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This is an efficient three steps iterative method for finding the roots of

the nonlinear equation. The convergence analysis is proved to establish its

five order of convergence. The new method is comparable with well-known

existing methods in literature and in many cases gives better results. The

Newton’s method is not applicable if the derivative of any function is not

defined in any interval. The Newton’s method was therefore modified by

Steffensen who replaced the first derivative f ′(x) by forward difference ap-

proximation

f ′(x) ≈ f(xn + f(xn))− f(xn)

f(xn)

and obtained the famous Steffensen method

xn+1 = xn −
f(x)2

f(xn + f(xn))− f(xn)

Steffensen’s method is of quadratic convergence and required two

functional evaluations per iteration (Ward Cheney & Ronald Kincaid, 2008).

Cordero et al. (2012) proposed Steffensen - type method by approximating

the derivatives in the well-known fourth-order Ostrowski’s method and the

sixth-order improved Ostrowski’s method by central-difference quotient.

The modification of these methods are free from derivatives and proved

that the methods obtained preserve their convergences order 4 and 6. Yas-

min & Junjua (2012) proposed two new derivative free iterative methods

for solving nonlinear equation f(x) = 0.

These researchers developed these efficient methods to find the ap-

proximation of the root of the nonlinear equation f(x) = 0 without the

evaluation of the derivative. These new proposed methods are based on

central-difference and forward-difference approximations to derivatives. It

is proved that one of the method has cubic convergence and the other

method has fourth-order convergence. Ujević (2006) and Wu & Fu (2001)
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did a similar work in this direction. Their works also suggested derivative

free iterative method for solving nonlinear equations of the form. However,

both works were a one-step quadratically convergence iterative scheme.

Ahmad et al. (2012) proposed and analyze two two-step derivative free al-

gorithms for solving non-linear equation of the form f(x) = 0. This new

two two-step iterative methods combine (Ujević, 2006) and (Wu & Fu,

2001) who suggested derivative free iterative method for solving non-linear

equation f(x) = 0. It is proved that this new two-step iterative method

has quadratic convergence.

Numerical comparison show that, the new developed two-step algo-

rithms are comparable with the existing algorithms and are successful in

case where the existing algorithms have fail to converge or have numerical

difficulties. Akinsunmade (2016) suggested a modified Newton’s method

for solving nonlinear programming problem. The method is constructed

from Taylor’s series expansion and Adomian decomposition method. A

comparative study of the new method with Newton’s method and other

existing methods developed in recent times showed that, the method is

more reliable and converges quadratically but faster than the Newton’s

method as well as some modified Newton’s method for solving nonlinear

equations in optimization. Inspired and motivated by research going on in

this area, we have proposed a modified iterative method for solving a single

variable nonlinear equations.

Chapter Summary

This chapter is in two parts. The first part covers some discussion

on mathematical concepts directly related to numerical methods which

are iterative in nature. These concepts are Errors in numerical methods,

Error Analysis and Approximation. The other part of this chapter presents

relevant literature on some numerical methods and their convergence. In
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this literature review, the strengths and weakness of each method is discuss.

We also highlighted the knowledge gab created or filled by each of these

numerical methods.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter is divided into two parts. The first part deals with

mathematical preliminaries in which we discussed convergence analysis.

The convergence analysis here covers some forms of convergence analy-

sis namely the absolute convergence, conditional convergence as well as

quadratic convergence. The other part focus on the theorems and proof of

Taylor series, the Newton-Raphson’s method as well as the generation of

few Adomian polynomials. These are the methods employed in this thesis

to develop the modified iterative method for computing the approximate

solutions of nonlinear equations.

Convergence Analysis

Complicated functions can be frequently expressed as series of simpler

functions. The convergence of these series of simpler functions implies

convergence of the complicated function. The series
∑∞

n=1 an converges to

the sum S that is
∑∞

n=1 an = S if limx→∞ Sn = S where, Sn is the nth

partial sum of
∑∞

n=1 an where, Sn = a1 +a2 +a3 + ...+an =
∑n

j=1 aj. Thus

a series converges if and only if the sequence of its partial sums converges.

However, it diverges to infinity or negative infinity if the sequence of the

partial sum does so. This therefore means that, the convergence of the

series
∑∞

n=1 an depends on the convergence of the partial sun sequence

Sn =
∑n

j=1 aj but not an

Theorem 1. If
∑∞

n=1 an converges, then the limx→∞ an = 0. If the limx→∞ an

does not exit or limx→∞ an 6= 0, then the series
∑∞

n=1 an diverges.
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Proof. Given that

S1 = a1

S2 = S1 + a2

S3 = S2 + a3

.

.

.

Sn = Sn−1 + an

Sn = a1 + a2 + a3 + ...an =
∑n

j=1 aj

⇒ Sn − Sn−1 = an

If
∑∞

n=1 an converges, then limx→∞ Sn = S exist and limx→∞ Sn−1 = S.

Then limx→∞ an = limx→∞ Sn − limx→∞ Sn−1

Hence limx→∞ an = S − S = 0

. The above theorem plays an important role in the understanding

of infinite series. However, the converse is not true in general. That is

if limx→∞an = 0, then
∑∞

n=1 an must converge. The harmonic series is a

counterexample showing the falsehood of this assertion. Thus limx→∞
1
n

=

0 but
∑∞

n=1
1
n

diverges to infinity (Adams & Essex, 2010). If we find that

limx→∞ an 6= 0, we are certain that
∑
an is divergent but if limx→∞an = 0,

we know nothing about the convergence or the divergence of
∑
an. Some

convergence series such as geometric and telescoping series whose sums

could be determined exactly because the partial sum Sn could be expressed

in closed form as explicit of n whose limit as n → ∞ could be evaluated.

It is not usually possible to do this with some given series and therefore it

is not feasible to determine the partial sum of the series exactly. However,

there are many techniques for determining whether a given series converges

and if it does, for approximating the sum to any desired degree of accuracy.

Some of these techniques are the integral test, comparison test, ratio test,

and root test.
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Absolute Convergence

A series
∑∞

n=1 an = a1 + a2 + a3 + a4 + ...+ an + ... is said to be absolutely

convergent if the series of absolute values
∑∞

n=1 |an| = |a1| + |a2| + |a3| +

|a4|+ ...+ |an|+ ... converges and is said to diverge absolutely if the series

of absolute values diverges.

Theorem 2. If the series
∑∞

n=1 |an| = |a1|+ |a2|+ |a3|+ |a4|+ ...+ |an|+ ...

converges then so does
∑∞

n=1 an = a1 + a2 + a3 + a4 + ...+ an + ...

Proof. Let
∑∞

n=1 an be absolutely convergent and bn = an + |an| for each n

since −|an| 6 an 6 |an|

then |an| − |an| 6 an + |an| 6 |an|+ |an|

0 6 an + |an| 6 2|an|

But bn = an + |an|

⇒ 0 6 bn + 2|an|

Thus
∑∞

n=1 bn converges by the comparison test

From bn = an + |an|, we obtained an = bn − |an|

⇒
∑∞

n=1 an =
∑∞

n=1 bn −
∑∞

n=1 |an| also converges.

The converse of this theorem is false since alternating harmonic series

is a counter example. Thus
∑∞

n=1
(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ ... converges

although it does not converge absolutely. If all the terms are replace by

their absolute values, we get divergent harmonic series∑∞
n=1

1
n

= 1 + 1
2

+ 1
3

+ 1
4

+ ... =∞
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Conditional Convergence

If
∑∞

n=1 an is convergent but not absolutely convergent, then we say

that it is conditionally convergent or that it converges conditionally. Ex-

ample of conditional convergent series is the alternating harmonic series.

Petrovic (2013) acknowledged that,many 18th century mathematicians ig-

nored the difference between the absolute and the conditional convergence

in spite of the evidence to the contrary. It was well known that the har-

monic series diverges and that the alternating harmonic series converges.

Cauchy was the first to make this distinction.

Quadratic Convergence

In numerical analysis, the order of convergence and the rate of conver-

gence of a convergent iterative method are quantities that represents when

and the rapidity with which the iterative method converges to the root. A

sequence xn that converges to L is said to have order of convergence q ≥ 1

and the rate of convergence µ if

lim
n→∞

|xn+1 − L|
|xn − L|q

= µ

The rate of convergence µ is also called asymptotic error constant. It is

therefore possible that two iterative methods may have the same order of

convergence but one method may converge faster than the other because

of different rate of convergence. A sequence is said to converge with order

q to L for q ≥ 1 if

lim
n→∞

|xn+1 − L|
|xn − L|q

< M

for some positive constant M > 0. If q = 2, then it is quadratic conver-

gence.
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Quadratic convergence means that the square of the error at one iter-

ation is proportional to the error at the next iteration. For instance, if the

error in one iteration is one significant digit, at the next iteration, it is two

digits, then next four digits and so on. Thus a doubling (approximately)

with each iteration. The value of x-iterations show the same doubling. this

doubling is referred to as quadratic convergence.

Adomian Decomposition Method (ADM)

Most of scientific problems and phenomena occur nonlinearly. Only a

limited number of such problems have a precise analytical solution. In the

1985, a mathematician by name George Adomian developed a powerful

decomposition method for solving linear or nonlinear and deterministic

or stochastic operator equations, including ordinary differential equations,

partial differential equations and so on (Rudall & Rach, 2008). George

Adomian was at that time chair of the center for Applied Mathematics at

the University of Georgia. His method is known as Adomian Decomposition

Method (ADM) which is a semi -analytical method for solving nonlinear

equations.

This technique is based on the representation of a solution to a func-

tional equation as series of functions. Each term of the series is obtained

from a polynomial generated by a power series expansion of an analytic

function. The crucial aspect of the method is the employment of the Ado-

mian polynomials which allows for solution convergence of the nonlinear

portion of the equation without simply linearizing the system. In recent

years, Adomian and other researchers have successfully applied his decom-

position method to algebraic equations, ordinary, partial, delay, and non-

integer order or fractional differential equations for a wide class of non-

linearities, including polynomial, exponential, trigonometric, hyperbolic,

composite, negative power, radical and even fractional or decimal power
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nonlinearities. Adomian’s decomposition method gives us the liberty to

solve nonlinear differential equations without having to appeal to the de-

cidedly questionable practices of perturbation or linearization. Although

the abstract formulation of Adomian method is very simple, the calcula-

tions of the polynomial and the verification of convergence of the function

series in specific situation are usually a difficult task.

In view of this, Abbaoui & Cherruault (1994) have reported a new

but different formula for fast calculation of the Adomian polynomials, and

have developed software that has quickly generated and listed the classi-

cal Adomian polynomials from A0 to A100 inclusively. Yang (1994) of the

Institute of Applied Physics and Computational Mathematics in Beijing,

China, and Jinqing (1993) of the Institute of Atomic Energy in Beijing,

China, have also each developed software for rapid generation of the Ado-

mian polynomials, a notion due to Adomian (1976), which is key in solving

nonlinear equations, and which notion was named the Adomian polynomi-

als by (Rach, 1984) in obvious recognition of Adomian’s breakthrough in

mathematics. This method has numerous and varied advantages.

Rach (1984) indicated that, a very important advantage of Adomian’s

basic method is the elimination of a number of restrictive and generally

unsatisfactory assumptions on the nature of stochastic processes, the mag-

nitude of fluctuations, or on the nonlinearities which are inherent in other

methods. No linearization or closure approximations are necessary. One

doesn’t require “weak” nonlinearities or “small” fluctuations, stationarity,

gaussian or white noise behavior, etc. Thus, the physical system is not

forced into a nice mathematical mold for which solutions are readily avail-

able. Babolian & Biazar (2002) in their study on the order of convergence

of the Adomian decomposition method admitted that, the Adomian decom-

position method is a simple and powerful tool for obtaining the solution of

functional equations. They however suggested that, it would be desirable
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to rearrange the problem in such a way that, the order of convergence of

the series be as high as possible, so we can apply Adomian method more

efficiently. The Adomian An is found for large classes of nonlinearities

or for a particular nonlinearity by a generation scheme just as one might

develop Hermite, Lagrange, or Laguerre polynomials (Adomian & Rach,

1985). This work was specifically for quadratic, cubic, and general higher

– order polynomial equations as well as negative, or non – integral powers,

and random algebraic equations.

The Adomian polynomialAn depending on h0, h1, h2, h3, ..., hn is given

as

An(h0, h1, h2, ..., hn) =
1

n!
[
dn

dλn
N

[
∞∑
n=1

hnλ
n)

]
λ=0

, n = 0, 1, 2, 3, ...

Some few Adomian polynomials are given by

A0 = N(h0)

A1 =
d

dλ
N

[
1∑

n=0

λ(n)hn

]
λ=0

= h1N
′(h0)

A2 =
1

2!

d(2)

dλ(2)
N

[
2∑

n=0

λ(n)hn)

]
λ=0

=
1

2!

d(2)

dλ(2)
N
[
h0 + λh1 + λ2h2

]
λ=0

= h2N
′(h0) +

h2
2!
N ′′(h0)

A3 =
1

3!

d(3)

dλ(3)
N

[
3∑

n=0

λ(n)hn)

]
λ=0

=
1

3!

d(3)

dλ(3)
N
[
h0 + λh1 + λ2h2 + λ3h3

]
λ=0

= h3N
′(h1) + h1h3N

′′(h0) +
1

3!
h3N

′′′(h0)
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Taylor’s Series

Definition

If f(x) has derivatives of all order at x = a (that is f (n)(a) exist for

n = 0, 1, 2, 3, ...) then the series

∞∑
n=0

f(n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2+

f (3)(a)

3!
(x− a)3 +

f(4)(a)

4!
(x− a)4 + ...

is called the Taylor series of f about c (Taylor series of f in the powers of

(x − a)). If a = 0, the term Maclaurin series is usually used in place of

Taylor series. For any smooth (that is continuously differentiable) function

can be approximated as polynomial. The Taylor series provides a means to

express this idea mathematically. Taylor series of f about a or the Taylor

series of f in powers of (x−a). Taylor series is a general method for writing

a power series representation for function. Therefore the Taylor series is a

power series.

Theorem 3. If the nth – order derivative f (n)(t) for all t in the interval

containing x and a and if Pn(x) is the nth - order Taylor polynomial for f

about a, then,

Pn(x) = f(a)+f ′(a)(x−a)+ f ′′(a)
2!

(x−a)2 + f (3)

3!
(x−a)3+, ...,+f (n)

n!
(x−a)n

f(x) ≈ Pn(x)

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2!

(x− a)2 + f (3)

3!
(x− a)3+, ...,+f (n)

n!
(x− a)n

Proof. Given a power series in (x− a) or a power series centered at a or a

power series about a

f(x) =
∞∑
n=0

cn(x− a)n (3.1)
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f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + ... (3.2)

To find the coefficient cn, put x = a into equation (3.3)

⇒ f(a) = c0

Differentiating equation (3.3) gives

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + 5c5(x− a)4 + ...

(3.3)

Substituting x = a into equation (3.4), we have

f ′(a) = c1

Differentiating equation (3.4) we obtained

f ′′(x) = 2!c2 + 2.3c3(x− a) + 3.4c4(x− a)2 + 4.5c5(x− a)3 + ... (3.4)

Putting x = a into equation (3.5) gives

f ′′(a) = 2!c2 ⇒ c2 =
f ′′(a)

2!

Differentiating equation (3.5) we get

f (3)(x) = 2.3c3 + 2.3.4c4(x− a) + 3.4.5c5(x− a)2 + ... (3.5)

Substituting x = a into equation (3.6) yields

f (3)(a) = 2.3c3 ⇒ c3 =
f (3)(a)

3!
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Differentiating equation (3.6) and substituting x = a into the differ-

ential equation yields

f (4)(a) = 2.3.4c4 ⇒ c4 =
f (4)(a)

4!

It can be observed from the above results that

f (n)(a) = 2.3.4.5...ncn

that is

f (n)(a) = n!cn ⇒ cn =
f (n)(a)

n!
(3.6)

Now substituting equation (3.6) into equation (3.2), we obtained

f(x) =
∞∑
n=1

f (n)(a)

n!
(x− a)n

which can be expanded as

f(x) = f(a) + f ′(a)(x− a) +
f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 +

f (4)(a)

4!
(x− a)4 + ...

Now the nth degree Taylor polynomial of f(x) is defined by

Pn(x) =
n∑
i=0

f (i)(a)

i!
(x− a)i

This nth degree of the Taylor series is just the partial sum of the series.

Therefore the Taylor series can be written as

f(x) = Pn(x) + En(x)
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Where the Lagrange remainder or the error term En(x) is given by

En(x) =
f (n+1)(a)

(n+ 1)!
(x− a)n+1

The Lagrange remainder is naturally the error obtained from the partial

sum Pn(x) and the full Taylor series f(x).

Corollary 1: Taylor Theorem for f(x+ h)

If a function f possess continuous derivatives of order 0, 1, 2, 3, ..., (n + 1)

in a close interval I = [a, b] then for any x in I

f(x+ h) =
N∑
n=0

f (n)(a)

n!
(h)i +

f (n+1)(z)

(n+ 1)!
hn+1

where h is any value such that x+ h is in I and where

En+1 =
f (n+1)(z)

(n+ 1)!
hn+1

for some z between x and x+ h

Proof. F (a) = f(a) + f ′(a)(x− a) + f (2)a
2!

(x− a)2 + f (3)a
3!

(x− a)3

+ f (4)a
4!

(x− a)4 + ...+ f (n)a
n!
x− an +B(x− a)n+1

F ′(a) = f ′(a)+
[
f ′(a)(x− a)0(−1) + f (2)(a)(x− a) + f (2)(a)

2!
2(x− a)(−1)

]
+

[
f (3)(a)

2!
(x− a)2 + f (3)(a)

3!
3(x− a)2(−1) + f (4)(a)

3!
(x− a)3 + f (4)(a)

4!
4(x− a)3(−1)

]
+ ...+

[
f (n)(a)
(n−1)! (x− a)n(−1) + f (n)(a)

n!
n(x− a)n(−1)

]
+ f (n+1)(a)

n!
(x− a)n +B(n+ 1)(x− a)n(−1)

F ′(a) = f ′(a)− f ′(a) + f (2)(a)(x− a)− f (2)(a)(x− a) + f (3)(a)
2

(x− a)2

− f (3)(a)
2

(x− a)2 + f (4)(a)
3!

(x− a)3 − f (4)(a)
3!

(x− a)3 + ...+ f (n)(a)
(n−1)! (x− a)n−1 −

f (n)(a)
(n−1)! (x− a)n−1 + f (n+1)(a)

n!
(x− a)n +B(n+ 1)(x− a)n(−1)

f (n+1)(z)
n!

(x− a)n −B(n+ 1)(x− z)n = 0
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B(n+ 1)(x− z)n = f (n+1)(z)
n!

(x− z)n

B = f (n+1)(z)
n!(n+1)(x−z)n (x− z)n

B = f (n+1)(z)
(n+1)!

F (a) =
∑N

n=0
f (n)(a)
n!

(x− a)n + f (n+1)(z)
(n+1)!

(x− a)n+1

f(x+ h) =
∑N

n=0
f (n)(a)
n!

(x+ h− x)n + f (n+1)(z)
(n+1)!

(x+ h− x)n+1

f(x+ h) =
∑N

n=0
f (n)(a)
n!

(h)n + f (n+1)(z)
(n+1)!

(h)n+1

Newton - Raphson’s Method

The Newton’s method was developed by Sir Isaac Newton in 1669.

Newton applied his method to polynomials and computed a sequence of

polynomials. In the year 1690, Joseph Raphson modified the method.

Therefore this method is now known as Newton - Raphson’s method. The

Newton’s method has been the foundation for almost all other numerical

methods for solving nonlinear equations. It is a derivative based method.

Newton – Raphson’s method applicability extends to system of nonlinear

equations, differential equations and integral equations. In this work, it is

being applied to a single variable nonlinear equation of the form f(x) = 0.

The following conditions are very important in using the Newton’s method.

1) f(x) is continuous on the closed interval [a, b] which contains the root.

2) f ′(x) and f ′′(x) are also continuous on the closed interval [a, b].

3) f(a).f(b) < 0.

4) f ′(x) and f ′′(x) keep the same sign on [a, b].

The tangent line to the curve y = f(x) at x = x0 has the equation

y = f(x0) + f ′(x0)(x− x0).
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Given that the points (x1, 0) and (x2, 0) lie on the line f . For the

point (x1, 0)

0 = f(x0) + f ′(x0)(x1 − x0)

x1 − x0 = − f(x0)

f ′(x0)

⇒ x1 = x0 −
f(x0)

f ′(x0)
.

Also the point (x2, 0) lies on the tangent line so

0 = f(x1) + f ′(x1)(x2 − x1)

x2 − x1 = − f(x1)

f ′(x1)

⇒ x2 = x1 −
f(x1)

f ′(x1)
.

If Newton’s method is described in terms of a sequence x0, x1, x2, ... then

in general, the Newton’s method is given by

xn+1 = xn −
f(xn)

f ′(xn)
. (3.7)

Newton’s Algorithms

Step 1 : Choose x0 as the estimate of f(x) = 0.

Step 2 : Repeat for n = 0, 1, 2, 3, ...

Step 3 : Set xn+1 = xn − f ′(xn)
f ′′(xn)

.

Step 4 : Stop when the absolute value of the derivative of the function of

the new iterate is sufficiently small, that is |f ′(xn+1)| ≤ ε.
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Chapter Summary

This chapter starts with mathematical preliminaries which essentially

focuses on the concept of convergence analysis. Some forms of convergence

namely absolute convergence, conditional convergence and quadratic con-

vergence are also discussed. This chapter also touches on order and rate of

convergence. Adomian Decomposition Method (ADM) is one of the main

methods used in the study. This chapter has the detail highlight on this

method as well as the generation of some Adomian polynomials. Another

method used in this study is Taylor series. In this chapter, we have proved

the theorems for Taylor series for f(x) as well as f(x + h). The method

constructed in this study is a modification of Newton’s method. Therefore

the prove of the Newton’s method together with its algorithms are provided

in this chapter. This chapter is basically about discussion on the concept

of convergence and the methods used in this study.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

In this chapter, we present the theorem and proof of the proposed

modified iterative method for computing the approximate solution of non-

linear equations. The theorem for the convergence of the proposed modified

iterative method is proved and we have show that this proposed method

has quadratic convergence. Finally, we run up this chapter by discussing

numerical examples to illustrate the efficiency of the new algorithm and

compare the proposed method with other existing ones in literature.

Theorem 4. Consider a single nonlinear algebraic or transcendental func-

tions of the form f(x) = 0. If

1 f , f ′(x),and f ′′(x) are continuous and differentiable in the neighborhood

of the root r of the function f on the closed interval [a, b] and

2 f ′′(x) 6= 0 then, the iterative method

xn+1 = xn −
f ′(xn)

f ′′(xn)
−
f ′
[
xn − f ′(xn)

f ′′(xn)

]
f ′′(xn)

will converge to the root of the function quadratically

Proof of the Proposed Modified Method

We consider nonlinear problem

f(x) = 0, (4.1)

where f(x) is a function of a single real variable x. The Newton’s method

is applied to find the solution of equation (4.1) using both first and second
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derivatives. Let us now consider the function

p(x) = x− p(x)

p′(x)

where p(x) = f ′(x) and f(x) is the function to be evaluated. Using Taylor’s

series expansion about a gives

p(x) = p(a) + p′(a)(x− a) +
p(2)(a)

2!
(x− a)2+

p(3)(a)

3!
(x− a)3 +

p(4)(a)

4!
(x− a)4 + ... (4.2)

Now writing p(x+ h) in Taylor series expansion about x, we obtain

p(x+ h) = p(x) + p′(x)(x+ h− x) +
p(2)(x)

2!
(x+ h− x)2+

p(3)(x)

3!
(x+ h− x)3 +

p(4)(x)

4!
(x+ h− x)4 + ... (4.3)

= p(x) + hp′(x) +
p(2)(x)

2!
h2 +

p(3)(x)

3!
h3 +

p(4)(x)

4!
h4 + ...

Letφ(h) =
h2p(2))(x)

2!
+
h3p(3)(x)

3!
+
h4p(4)(x)

4!
+
h5p(5)(x)

5!
+ ... (4.4)

⇒ p(x+ h) = p(x) + hp′(x) + φ(h) (4.5)

⇒ φ(h) = p(x+ h)− p(x) + hp′(x) (4.6)

Given that p(x) = 0,⇒ p(x + h) = 0. We can search for a value of h

provided p′(x) 6= 0. Since from (4.5) p(x+ h) = 0, then

40

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



p(x) + hp′(x) + φ(h) = 0, (4.7)

hp′(x) = −p(x)− φ(h)

⇒ h = −
[
p(x) + φ(h)

p′(x)

]

∴ h = − p(x)

p′(x)
− φ(h)

p′(x)
(4.8)

So h can be simplified as

h = c+N(h) (4.9)

where

c = − p(x)

p′(x)
(4.10)

and

N(h) = −φ(h)

p′(x)
(4.11)

But from (4.6), φ(h) = p(x+ h)− p(x) + hp′(x)

⇒ N(h) = −
[
p(x+ h)− p(x) + hp′(x)

p′(x)

]
(4.12)

Now applying Adomian decomposition to (4.9) which can be written as
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h−N(h) = c.

where c is a constant and N(h) is a nonlinear function with h having the

series form

h =
∞∑
n=0

hn. (4.13)

The nonlinear function is decomposed as

N(h) = N(
∞∑
n=0

hn) =
∞∑
n=0

An, (4.14)

where An is the Adomian polynomial depending on h0, h1, h2, h3, ..., hn.

Thus,

An(h0, h1, h2, h3, ..., hn) =
1

n!

[
d(n)

dλn
N(

∞∑
n=0

λ(n)hn)

]
λ=0

, n = 0, 1, 2, 3, ...
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Some few polynomials are given by

A0 = N(h0)

A1 =
d

dλ
N

[
1∑

n=0

λ(n)hn)

]
λ=0

= h1N
′(h0)

A2 =
1

2!

d(2)

dλ(2)
N

[
2∑

n=0

λ(n)hn

]
λ=0

=
1

2!

d(2)

dλ(2)
N
[
h0 + λh1 + λ2h2

]
λ=0

= h2N
′(h0) +

h2
2!
N ′′(h0)

A3 =
1

3!

d(3)

dλ(3)
N

[
3∑

n=0

λ(n)hn)

]
λ=0

=
1

3!

d(3)

dλ(3)
N
[
h0 + λh1 + λ2h2 + λ3h3

]
λ=0

= h3N
′(h1) + h1h3N

′′(h0) +
1

3!
h3N

′′′(h0)

A4 =
1

4!

d(4)

dλ(4)
N

[
4∑

n=0

λ(n)hn)

]
λ=0

=
1

4!

d(4)

dλ(4)
N
[
h0 + λh1 + λ2h2 + λ3h3 + λ4h4

]
λ=0

= h4N
′(h0) + (h1h3 +

1

2
h2)N

(2)(h0) +
1

2
h1h2N

(3)(h0) +
1

4
h4N

(4)h0)

Substituting (4.13)and (4.14) into (4.9) gives

∞∑
n=0

hn = c+
∞∑
n=0

An (4.15)

It follows from (4.15) that h0 = c and hn+1 = c+An. From (4.9), c = − p(x)
p′(x)

and since h0 = c we have that

h0 = − p(x)

p′(x)
. (4.16)
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Adding x to both sides of equation (4.16) yields

x+ h0 = x− p(x)

p′(x)
. (4.17)

Given that y = (x+ h0), then equation (4.17) becomes

y = x− p(x)

p′(x)

which gives an iterative form

yn = xn −
p(xn)

p′(xn)
. (4.18)

From the generation of few Adomian polynomial, A0 = N(h0). From (4.12),

we obtain

A0 = N(h0) = − [p(x+ h0)− p(x)− h0p′(x)]

P ′(x)
(4.19)

Substituting y = (x+ h0) and h0 = − p(x)
p′(x)

into (4.19) gives

A0 = −
[p(y)− p(x) + p(x)

p′(x)
p′(x)]

P ′(x)

⇒ A0 = − p(y)

p′(x)
. (4.20)

From h0 = c and hn+1 = c+An. If n = 0 then h1 = c+A0 ⇒ h1 = h0 +A0

So h1 can be expressed as

h1 = h0 −
p(y)

p′(x)
(4.21)
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Substituting (4.16) into (4.21) gives

h1 = − p(x)

p′(x)
− p(y)

p′(x)
(4.22)

⇒ x+ h1 = x− p(x)

p′(x)
− p(y)

p′(x)

⇒ x+ h1 = xn −
p(xn)

p′(xn)
− p(yn)

p′(xn)
(4.23)

Comparing (4.23) to the Newton’s method, it is realised that, x+h1 = xn+1.

This implies that

xn+1 = xn −
p(xn)

p′(xn)
− p(yn)

p′(xn)
(4.24)

Substituting (4.18) into (4.24) we arrive at

xn+1 = xn −
p(xn)

p′(xn)
−
p
[
xn − p(xn)

p′(xn)

]
p′(xn)

. (4.25)

Taking p(x) = f ′(x) and substituting into (4.25) gives

xn+1 = xn −
f ′(xn)

f ′′(xn)
−
f ′
[
xn − f ′(xn)

f ′′(xn)

]
f ′′(xn)

(4.26)
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Convergence Analysis of the Proposed Method

Theorem 5. Let α ∈ I, be a zero of sufficiently differentiable function

p : I → R for an open interval I. If x0 is sufficiently close to α, then

xn+1 = xn −
f ′(xn)

f ′′(xn)
−
f ′
[
xn − f ′(xn)

f ′′(xn)

]
f ′′(xn)

has quadratic convergence

Proof. Since p is sufficiently differentiable, by expanding p(x) and p′(x)

about α we have

p(xn) = p′(α)
[
+c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)

]
(4.27)

p′(xn) = p′(α)
[
+2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)

]
, (4.28)

where en = xn − α, ck = p(k)(α)

k!p′(α)
, k = 2, 3, 4, ... Dividing equation (4.27) by

(4.28), that is

p(xn)

p′(xn)
=

p′(α) [+c2e
2
n + c3e

3
n + c4e

4
n +O(e5n)]

p′(α) [+2c2en + 3c3e2n + 4c4e3n +O(e4n)]

= en − c2e2n + 2(c22 − c3)e3n + (7c2c3 − 3c4 − 4c32)e
4
n +O(e5n) (4.29)

Substituting en = xn − α, equation (4.29) becomes

xn −
p(xn)

p′(xn)
= α + c2e

2
n + 2(c3 − c22)e3n+

(3c4 + 4c32 − 7c2c3)e
4
n +O(e5n) (4.30)
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From (4.18), we have yn = xn − p(xn)
p′(xn)

. Expanding p(yn) about α

(4.30) gives

p(yn) = p′(α)[c2e
2
n + 2(c3 − c22)e3n + (3c4 + 4c32 − 7c2c3)e

4
n +O(e5n)]

(4.31)

Dividing (4.31) by (4.28), we have

p(yn)

p′(xn)
=
p′(α) [c2e

2
n + 2(c3 − c22)e3n + (3c4 + 4c32 − 7c2c3)e

4
n +O(e5n)]

p′(α) [+2c2en + 3c3e2n + 4c4e3n +O(e4n)]

= c2e
2
n + 2(c3 − 2c22)e

3
n + (13c32 − 14c2c3 + 3c4)e

4
n +O(e5n) (4.32)

Subtracting equation (4.32) from (4.30), we obtain

xn+1 = α + c2e
2
n + 2(c3 − c22)e3n + ...

which implies that the modified iterative method has quadratic conver-

gence.

The Algorithm for the Modified Iterative Method

The modified iterative method constructed above is presented in the

following algorithm.

Step 1 : choose x0 as the estimate of the solution of f(x)

Step 2 : repeat for n = 0, 1, 2, 3, 4, ...

Step 3 : set yn = xn − f ′(xn)
f ′′(xn)

.

Step 4 : set xn+1 = xn − f ′(xn)
f ′′(xn)

−
f ′
[
xn− f ′(xn)

f ′′(xn)

]
f ′′(xn)

.
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Step 5 : stop when the absolute value of the first derivative of the function

at the new point is sufficiently small, that is |f ′(xn+1)| ≤ ε

Numerical Examples

The following nonlinear problems were solved by using four different

methods namely: Newton’s method, External Touch Algorithm, Karthikeyan’s

Method and the Proposed Modified Iterative Method using mathlab R2020a.

1) f1(x) = 2x + 3x− 2, x0 = 1.5

2) f2(x) = xcosx+ 2x2 + 3x− 2, x0 = 0.5

3) f3(x) = x2 − 2− exp(−x), x0 = 2

4) f4(x) = x2 − (1− x)5, x0 = 0.2

5) f5(x) = x5 − 4x4 − 7x3 + 14x2 − 44x+ 120, x0 = 1.5

Table of Results for the Solved Equations

The following are the meaning of the initials as used in the table

headings. NM = Newton - Raphson’s Method (1669), ETA = External

Touch Algorithm by Kanwar et.al (2003), KM = Karthikeyan’s method

(2010) and last initial PMIM is the Proposed Modified Iterative Method

which we have proposed in this study.

Table 1: Computational results for f1(x) = 2x−x2 + 3x− 2, x0 = 1.5

Iterations NM ETA KM PMIM

0 1 0.536333 0.852857 0.646055
1 1.577681 1.266454 1.601667 1.624554
2 1.493612 1.166399 1.494166 1.49472
3 1.491645 1.164039 1.491646 1.491646
4 1.491644 1.164038 1.491644 1.491644
5 1.491644 1.164038 0.345955 0.345955
6 1.491644 1.164038
7 0.345955 -0.42583
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Table 2: Computational results for
f2(x) = xcos(x) + 2x2 + 3x− 2, x0 = 0.5

Iterations NM ETA KM PMIM

0 0.5 -0.27202 0.186446 -0.55266
1 1.966844 1.713734 2.194971 2.093663
2 1.542506 1.224772 1.556745 1.57059
3 1.492343 1.164876 1.49254 1.492737
4 1.491644 1.164038 1.491644 1.491644
5 1.491644 1.164038 0.345955 0.345955
6 1.491644 1.164038
7 0.345955 -0.42583

Table 3: Computational results for f3(x) = x2 − 2− exp(−x), x0 = 2

Iterations NM ETA KM PMIM

0 2 1.750898 2.135206 2.241818
1 1.54909 1.232593 1.580729 1.56516
2 1.492533 1.165104 1.492783 1.493034
3 1.491644 1.164038 1.491644 1.491645
4 1.491644 1.164038 0.345945 0.345943
5 1.491644 1.164038 0.345955 0.345955
6 0.345955 -0.42583
7 0.345955 -0.42583

Discussions on the Numerical Results

The following observations can be deduced from the tables presented

above. From Table 1, the original Newton’s method and the External

Touch Algorithm converge at 7th iteration which is the last iteration while

the Karthikayen’s method and the Proposed Modified Iterative method

converge at the 5th iteration. The results from this table clearly showed

that, there is a more improved outcome at every stage of the iteration in the

Karthikeyan’s method (2010) and the Proposed Modified Iterative method.

However, the Proposed Iterative method approaches the approximate root

rapidly than the Karthikeyan’s method. This implies that, the Proposed

Modified Iterative method performs better than the Newton’s method, Ex-

ternal Touch Algorithms and the Karthikeyan’s method (2010).

49

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Table 4: Computational results for f4(x) = 1− (1− x)5, x0 = 0.2

Iterations NM ETA KM PMIM

0 1.5 1.1837 1.57902 1.65304
1 0.811321 0.054912 1.027831 0.930396
2 0.407385 -0.5167 0.392617 0.377382
3 0.342506 -0.42046 0.342972 0.343438
4 0.345941 -0.42581 0.345945 0.345943
5 0.345955 -0.42583 0.345955 0.345955
6 0.345955 -0.42583
7 0.345955 -0.42583

Table 5: Computational results for
f5(x) = x5 − 4x4 − 7x3 + 14x2 − 44x+ 120, x0 = 1.5

Iterations NM ETA KM PMIM

0 1.5 1.512832 1.504203 1.508364
1 2.131516 2.139122 2.130784 2.130051
2 2.005712 2.014011 2.00568 2.005647
3 2.000012 2.008345 2.000012 2.000012
4 2 2.008334 2 2
5 2 2.008334
6 2 2.008334

In Table 2, the Karthikeyan’s method and the Proposed Modified

Iterative method converge at the 5th iteration. The Newton’s method

converges at the 7th iteration, the External Touch Algorithms method

also converges at the 7th iteration just like the Newton’s method but the

convergence value is different form all the other methods. This may be

probably due to the nature of the iteration scheme constructed by Kanwar

et.al (2003). In spite of this, the External Touch Algorithm reults in this

case is an improvement over that of Newton’s method.

Also, a critical look at table 2 shows that, the Proposed Modified

Iterative Method outperformed the Karthikeyan’s method. It can be in-

ferred from table 3 that, the Proposed Modified Iterative method and the

Karthikeyan’s method have their convergence at the 5th iteration as com-

pared to the External Touch Algorithm and the Newton’s method which
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converge at the 7th iteration. The results from table 3 indicates that , apart

from the 3rd iteration, the Proposed Modified Iterative Method perform

better than the Karthikeyan’s Method, the External Touch Algorithm and

Newton’s method.This is because the rapidity of its convergence is faster

than the rest of the methods.

The results on the table 4 shows a similar trend as in table 3. From

table 4, the Newton’s method and the External Touch Algorithm con-

verge at the 7th iteration but the value that the External touch Algorithm

converged to is different from actual approximate value as seen from the

table. Once again the Proposed Iteration Method has shown its supremacy

over the Karthikeyan’s method, External Algorithms Method and the well

- known Newton’s method though it converges at the 5th iteration just

like the Karthikeyan’s method (2010). In table 5, the original Newton’s

and the External Touch Algorithm converge at the 6th iteration. Also, the

Karthikeyan’s method (2010) and the Proposed Modified Iterative method,

converge at the 4th iteration. A comparative analysis of the results from

this table shows that, the Newton’s method is better than the External

Touch Algorithm.

The Karthikeyan’s method (2010) is indeed an improvement over the

Newton’s method and the External Touch Algorithm. In the same vain,

the results vividly showed that, there is a more improved results at every

stage of iteration in the Proposed Modified Iterative method as compared

to that of the Karthikeyan’s method (2010). From the discussion so far, it

is clear that the Proposed Modified Iterative method has a higher rate of

convergence than the Newton’s method, the External Touch Algorithm and

the Karthikeyan’s method (2010) though they all have order of convergence

to be 2. Therefore the Proposed Modified Iterative method may be describe

as an improvement over the Newton’s method, the Kanwar et.al External

Touch Algorithm method (2003) and the Karthikeyan’s method (2010).
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Chapter Summary

In this chapter, we made use of the Adomian Decomposition Method

(ADM) and Taylor series to construct the Proposed Modified Iterative

method. The theorem and proof of this modified iterative method is given

in this chapter. The theorem for the convergence of the proposed method

is given and we have proved that, this method converges quadratically.

The algorithms for the proposed modified iterative method is presented.

We have given numerical examples by solving some nonlinear equations

using our proposed method and Matlab R2020a software. The results we

obtained are discussed thoroughly by comparing the performance of our

method with other existing methods used in this study which are the New-

ton’s method, the Karthikeyan’s method and the External Touch Algo-

rithm method. Detail discussion is done on the performance of the various

methods from the results of the numerical examples presented in the tables

above and conclusion is drawn.

52

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



CHAPTER FIVE

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

Overview

Numerical methods, and for that matter iterative methods have be-

come indispensable aspect of mathematics in recent times as mathemati-

cians in particular and researchers in general have resolved to solve complex

problems that can not be solved analytically.This aspect of mathematics

cuts across almost every field of mathematics. It also has vast applications

in engineering, computer science and science in general. The Proposed

Modified Iterative method is a two-step iterative method of which one

serves as the predictor and the other as a corrector. Even though, our

method is a two -step iterative method, it is different from those known in

literature due to the way it was constructed and the nature of the iterative

scheme. This method is proved to converge quadratically. In this chapter,

we summarize and draw a conclusion about the work done in this thesis.

Summary

To compute the approximate solutions of nonlinear equations and any

other equations require numerical methods which are iterative in nature.

A modified iterative scheme for solving single variable nonlinear equations

of the form f(x)=0 where, f(x) is a nonlinear function is presented in this

work. The proposed modified iterative algorithm was constructed using

Taylor series, Newton-Raphson’s Method and the Adomian Decomposition

Method (ADM). The developed modified scheme serves as an improvement

over Newton - Raphson’s method, the External Touch Algorithm proposed

by Kanwar et.al (2003), Karthikeyan’s method (2010) for solving nonlinear

equations. This method converges quadratically. Numerical solutions are
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presented in five different tables using five test functions. A comparison

analysis was done using matlab R2020a software. It is evident that, our

method is more efficient as compare to the well-known Newton-Raphson’s

method, the External Touch Algorithm method and the Karthikeyan’s

method (2010).

Conclusion

Nonlinear problems are one of the most solved problems Numerical

analysis and are often solved iteratively to obtain approximate solutions.

In this thesis we have been able to construct modified iterative method

for solving nonlinear equations based on the Newton’s method and have

prove that this method converges quadratically. By considering the results

obtained from the numerical examples, it implies that, the constructed

method produces better results than the other ones.

Recommendations

In this thesis we considered Taylor series expansion of the function

f(x + h) to the third term ignoring all the other terms and obtained

quadratic convergence. We therefore suggest a further research whereby

one will take the Taylor series expansion of the function f(x+ h) to a step

further by truncating the expansion at the fourth or five term in order to

obtain higher convergence for better approximations. Also, the constructed

algorithm in this thesis is meant to solve nonlinear equations in single vari-

able. Therefore we recommend a further research of developing an iterative

scheme based on the Newton’s method that can solve system of nonlinear

equations.
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APPENDICE

APPENDIX A: PROPOSED METHOD MATLAB PSEUDOCODE

Below is the Matlab codes used in this thesis to obtained the results dis-

played on the various tables.

The x0 value is the initial guess of each function which is used to obtained

the actual approximate solution of the functions.

syms x

myfun = 2x + 3x− 2; x0 = 1.5;

%myfun = xcosx+ 2x2 + 3x− 2; x0 = 0.5;

%myFun = x2 − 2− exp(−x); x0 = 2;

%myFun = x2 − (1− x)5;x0 = 0.2;

%myFun = x5 − 4x4 − 7x3 + 14x2 − 44x+ 120, x0 = 1.5

f = symfun(myfun,x);

f1 = symfun(diff(f),x);

f2 = symfun(diff(f1),x);

%f = @(x)exp(x)− 3 ∗ x;

%fp = @(x) diff(f);

x0 = 1.5;

N = 100;

tol = 1E − 10;

x(1) = x0; % Set initial guess n = 2;

nfinal = N + 1;

while (n <= N + 1)

fe = f(x(n− 1));

fpe = f1(x(n− 1));

fp2 = f1(x(n− 1));

x(n) = x(n− 1)− fe/fpe;

if (abs(fe) <= tol)
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nfinal = n;

break;

end

n = n+ 1;

end

y = 0:nfinal-1;

y1 = x(1:nfinal);

%y1 = double(abs(y1));

y9 = diff(y1, 1);

y10 = diff(y1, 2);

%f3 = y9(1:end-1);

f2 = subs((f2));

f2 = double(f2);

f4 = y10(1:end);

yK = y1(1:end−2)−f3./(2 ∗ f2(1:end−2)−f4)

yP = y1(1:end−2)−f3./f2(1:end−2)

f1 = double(subs(f1));

f = double((1));

x = double((x));

ETA = y1− 2. ∗ 1./(f1 + sqrt(1− f1.2));

ETA = real(ETA);

A =[yK ′ yP ′] % yK = Kathi , yP is the proposed

B = [y1′ ETA′] % y1 = Newton , ETA

xlswrite(′Myresults
′, A)

xlswrite(′Myresults1
′, B)
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