Show simple item record

dc.contributor.author Yankey, Abbiezieh John
dc.date.accessioned 2016-09-29T14:00:08Z
dc.date.available 2016-09-29T14:00:08Z
dc.date.issued 2009-11
dc.identifier.issn 23105496
dc.identifier.uri http://hdl.handle.net/123456789/2904
dc.description xvi,153p.:ill en_US
dc.description.abstract In this thesis, hot carrier relaxation dynamics in semiconductor quantum dots and quantum well structures have been investigated as the basis for improving on the efficiency of conventional solar cells to values between 40% and 60% beyond the Shockley and Queisser detailed balance limit of 30% hitherto. Two schemes have been employed to obtain the shift in efficiency: The first is multiple exciton generation which occurs in semiconductor quantum dots. The output current as a function of the photogenerated voltage and the material band gap, is computed from the difference between the photogenerated and the recombination currents. The output voltage is obtained from corrections made to the voltages used in the splitting of water by standard photochemical processes. The second is the formation of minibands in semiconductor quantum well structures which serve as the intermediate band required in the material bandgap in intermediate-band solar cell concept. Here, the output current is calculated from the difference between the photon flux absorbed by the cell and that emitted as a result of radiative recombination, all multiplied by a factor of the electronic charge. The output voltage is computed from the difference between the chemical potentials of the conduction and valence bands. en_US
dc.language.iso en en_US
dc.publisher University of Cape Coast en_US
dc.subject Solar cells en_US
dc.subject Semiconductors en_US
dc.subject Quantum dots en_US
dc.subject Relaxation dynamics en_US
dc.subject Photochemical processes en_US
dc.title Quantum dot solar cells en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UCC IR


Advanced Search

Browse

My Account