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ABSTRACT

 Multivariate methods such as principal component analysis and factor analysis

have  been  used  to  interpret  multivariate  data. However,  these  statistical

applications  are  not  able  to  determine  prior  to  their  application  whether  a

dimension exists within the multivariate data set since it is possible to have a

dimensionless multivariate dataset. In addition, these statistical applications are

method dependent, it is therefore imperative to propose an independent technique

for  detecting  dimensionality  using  automated  threshold  settings  which  are

thresholds generated based on the structure of the data and not by the judgement

of  the  researcher  so that  these  statistical  applications  will  be  for  purposes  of

interpretation or  giving  meaning to  the data  structure. Also,  the  formation of

dimensionality in the well-known multivariate techniques is not analytically or

computationally  presented.  They therefore offer a  leave-or-take result  with no

understanding of the formation of the dimensions. This study therefore filled this

gap by successfully  proposing an independent dimensionality detection method

using three automated threshold settings that generate data specific thresholds by

allowing  the  data  structure  to  generate  the  optimal  threshold  for  detecting

dimensionality of the multivariate data set for more accurate results. The study

also established the robustness of the method using Pearson’s correlation which

hinges  on  the  mean and  another  correlation  profile  that  does  not  hinge  on  a

statistic which is affected by extreme values, in this case order statistic which

hinges on the median. The algorithm converged in all cases. Confirmatory factor

analysis  are  carried  out  for  confirmation  of  results.  The  proposed  method

completely removes the challenge of subjectivity associated with dimensionality

detection, and hence is highly recommended.
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CHAPTER ONE

INTRODUCTION

               This chapter is made up of the background to the study, the 

statement of the problem, objectives of the study, outline of the thesis as well 

the limitation of the thesis.

Background to the Study

The dimensionality  of  a  dataset  is  mostly  defined  as  the  minimum

number  of  unobserved  traits  that  is  needed  to  describe  all  statistical

dependencies in the data (Lord & Novick, 1968; Zhang & Stout, 1999). From

a  practical  point  of  view,  the  determination  of  dimensionality  helps  to

understand the structure underlying the data. 

A number of statistical applications come in handy to determine the

number of  dimensions  underlying  a  multivariate  dataset.  However  these

techniques  are  not  designed  as  preliminary  techniques  for   dimensionality

detection which is required before the application of these statistical  methods

for purposes of interpretation. 

There  is  only  one  attempt  (Nkansah,  2018)  at  determining  an

independent technique for dimensionality detection. However, the procedure is

quite subjective as a key element of threshold setting is experimenter specific.

It may be necessary therefore to review the known statistical applications and

also attempt to propose an objective dimemsionality detection method that can

be used to determine whether a dimension exists within a multivariate dataset.

The idea that an instrument's test items all measure the same thing is

one of the most important assumptions in measurement theory. The underlying

latent variable of a composite score must be unidimensional in order to make
1
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psychological  sense  whether  sorting  people  on  an  attribute,  characterizing

individual differences, or grouping them by ability (Hattie, 1985).

One of the most significant goals of evaluating unidimensionality is to

summarize  the  patterns  of  correlations  between  the  observed  variables

(Tabachnick & Fidell, 2001). To account for the underlying phenomenon, this

is  frequently  accomplished  by reducing  variables  to  the  minimum number

possible.The underlying phenomena is thought to be the fundamental cause of

the observed variables' correlation in the first place.  One or more dimensions

may be reflected in the underlying phenomena. The structure of a phenomena

is  referred  to  as  dimensionality  (Pett,  Lackey,  &  Sullivan,  2003)  .One

dominant latent variable or phenomenon is referred to as unidimensionality. In

the  social  and  behavioral  sciences,  composite  scale  scores  are  frequently

employed  to  make  conclusions,  and  unidimensionality  is  assumed  when

employing these composite scores. A structural analysis of a set of observable

variables  can  be  performed  using  a  variety  of  statistical  approaches  (e.g.,

factor analysis or multidimensional scaling). Finally, these approaches should

produce a sufficient number of dimensions to support the usage of composite

scores and to explain the pattern of correlations between observed variables.

Dimensions (also known as latent  variables)  are  built  variables  that  appear

before the observed variables. That example, if two test items are correlated, it

is considered that they have something unseen in common.

Dimensionality Assessment Tools
2

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



There are a number of dimensionality assessment tools that have been

developed for multivariate data. Popular methods for assessing dimensionality

of multivariate  dataset  are  principal  components  analysis  (PCA) and factor

analysis (FA). Both methods are linear models that reduce the data on fewer

components  or  factors.  The  first  step  in  either  method  is  an

eigenvalue/eigenvector  decomposition  of  a  square,  symmetric  matrix.  One

major  difference  between  PCA  and  FA  lies  in  the  type  of  matrix  that  is

decomposed.  In  PCA,  the  matrix  that  is  traditionally  decomposed  is  a

correlation  matrix,  whereas  the  decomposed  matrix  in  FA  is  a  reduced

correlation  matrix  (i.e.,  it  contains  communality  estimates  along  the  main

diagonal  instead  of  ones).  Because  of  this  difference,  the  complete  set  of

principal components will account for the total amount of variance in the data,

while the full set of factors will account for the common variance in the data.

However, both sets (principal components and factors) will correspond to the

calculated  eigenvalues  from  their  respective  matrices,  and  will  be  in

decreasing  order.  The  first  principal  component  (or  factor)  will  have  a

corresponding eigenvector that indicates a direction in space that accounts for

the most variance (or common variance) in the data, the second will account

for  the next  largest  amount  of  variance  (or  common variance),  and so on.

These principal components and factors show the underlying structure of the

data. However, unlike FA, PCA is a mathematical identity, which orients the

data space such that each dimension corresponds to orthogonal directions that

account for the largest amount of variation in the data. Therefore,  it  is not

possible to rotate the PCA solution and maintain this identity, whereas rotation

of the solution is commonly seen in FA. 

3
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After the first step, one needs to decide on the number of dominant

dimensions  to  retain  by  examining  eigenvalues  that  correspond  to  each

principal component or factor to reduce the data.  The number of dominant

eigenvalues  that  underlie  a  set  of  data  indicates  the  dominant  dimensions

within  the  data.  The  idea  is  to  choose  the  smallest  number  of  dominant

dimensions that still  account for a significant amount of (total  or common)

variance in the data. Interestingly, determination of the number of dominant

dimensions has typically been based on a PCA solution regardless of whether

a FA solution is the ultimate goal. When choosing the dominant eigenvalues

that underlie a set of data, one must use some decision criteria to justify the

choice.  Consequently,  there  are  several  proposed  decision  criteria  used  in

PCA.  For  example,  one  could  use  Cattell’s  scree  test  (Cattell,  1996)  or

Kaiser’s rule (eigenvalues greater than one; Kaiser, 1960). 

One  of  the  better  performing  methods  is  a  bootstrapped  version  of

Horn’s parallel analysis procedure (Horn, 1965; Lambert et al., 1990). If only

one dominant eigenvalue is retained from any of these decision methods, the

data  are  assumed  to  be  unidimensional.  Any  larger  number  of  dominant

factors would indicate a multidimensional dataset. Although FA and PCA are

appropriate  in  many  analytic  situations,  the  two  procedures  do  have  their

limitations. The issues with factor analysis and principal components analysis

on dichotomous IRT response data have been well-documented (Bernstein &

Teng,  1989;  McDonald,  1981;  Reise,  1999).  One  such  problem  is  the

existence of what has been called “difficulty factors”. These difficulty factors

occur  because  binary  IRT  data  often  violate  the  primary  assumption  of

linearity  in  factor  analysis—the  assumption  that  there  exists  a  linear

4
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relationship  between  observed  variables  and  the  underlying  latent  trait(s).

When  assumptions  of  linearity  are  violated,  spurious  dominant  factors,  or

difficulty factors, can appear because items with similar difficulty tend to form

additional  factors  distinct  from the true dominant  underlying  dimension(s),

thus resulting in overestimation of the true dimensionality of the dataset.

It is important to remember that Principal Components Analysis (PCA)

and Factor Analysis (FA) are two independent approaches that are sometimes

confused.  In  other  words,  PCA  has  been  suggested  to  be  a  type  of  FA

(Fabrigar et al., 1999). Factor analysis (FA) is a statistical process that is used

to  discover  which  observable  variables  constitute  individual  subsets  that

eventually  combine  to  produce  dimensions  from a  set  of  latent  variables.

These variables are used to demonstrate the underlying phenomena that causes

the observed variables to correlate (Tabachnick & Fidell, 2001). Exploratory

factor analysis (EFA) is a technique for discovering the underlying unobserved

dimension of a set of test items in order to get a hypothetical understanding of

them (s). When only a minute or no prior knowledge on the data structure is

provided, EFA's main goal is to explain the correlation between a group of

observed variables (i.e., test items). As a result, EFA is viewed as a tool for

developing hypotheses. An EFA is frequently used as a preliminary evaluation

technique.  When  constructing  or  modifying  a  scale,  an  EFA  is  used  to

determine the validity of instruments in typical test development practice. For

example,  researchers  might  use  an  EFA  to  identify  an  instrument's

dimensionality,  then  utilize  that  information  to  create  merged  scores  for

hypothesis testing or statistical inferences.

5
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 Statement of the Problem

In  order  to  determine  the  number of  dimensions  underlying  a

multivariate  dataset,  statistical  techniques  such  as  principal  component

analysis,  factor  analysis  and  item  response  theory  modelling  have  been

utilized. However, these statistical techniques are not able to determine prior

to their application whether dimensions exist within the multivariate dataset,

as it  is  possible  to have a  dimensionless  multivariate  data.  Thus,  available

techniques  are  not  designed  as  preliminary  techniques  for  dimensionality

detection which is required before the application of these statiscal methods. It

appears therefore that there is no initial justification yet for the application of

the well-known dimensionality-reduction statistical applications.

Additionally,  for  the  same  dataset,  different  techniques  may  yield

different  dimensionality.  Even  though  the  relative  importance  of  the

dimensions  may  differ  from  technique  to  technique,  the  basic  number  of

dimensions should be the same, and the technique for finding this number is

what  appears  to  be  missing. It  may be neccesary  therefore  to  review these

applications and also attempt to propose a dimensionalty detection method that

can be used to determine whether dimensionality exists within a multivariate

dataset.

Studies on dimensionality detection are almost absent in literature. The

work which is specific to dimensionality detection is one by Nkansah (2018),

which observed some drawbacks. In particular, the study uses an exprimenter

specific threshold in KMO determination, a threshold based on the judgemnet

of the experimeter. This approach is quite subjective.  The goal of this research

is  to  avoid  the  subjectivity  that  generally  characterizes  dimensionality

6
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detection by proposing a-data specific threshold which is a threshold generated

from the  data  structure.  It  is  also  observed  that  the  procedure  outlined  in

Nkansah (2018) is computationally expensive since the duration involved in

calculating  KMO  using  the  original  correlation  structure  far  exceeds  the

duration for the computation based on a much smaller spanning set. This study

also  investigates the sensitivity and robustness of the method based on the

correlation profile. Unlike the literature, the study would be sensitive to the

likely presence of extreme values that may affect results by focusing on the

use of only the highest contributors to homogeneity within a dimension. This

approach will therefore be expected to save computational time and produce a

more reliable result. 

Also, the formulation of dimensionality in the well-known multivariate

techniques  is  not  analytically  or  computationally  presented.  They therefore

offer  a  leave-or-take  result  with  no  understanding  of  the  formation  of  the

dimensions.

This study therefore seeks to fill this knowledge gap by proposing a

dimensionality detection method that could be used to determine whether a

dimension exists within a multivariate dataset.

Purpose of the Study

The purpose of this study is to propose a robust automated threshold

dimentionality  detection  method  which  is  not  based  on  an  experimenter

specific threshold but on the structure of the data for more accurate results.

Also, it is anticipated that the robustness of the method to correlation profile

would lead to a computationally less expensive approach for calculating the

homogeneity of a dataset.  

7
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 Objectives of the Study

The main objective is  to  develop an automated threshold  method for

detecting  dimensionality  in  multivariate  datasets.  To  guide  the  study,  the

specific objectives are as follows:

1. Assess  the standard statistical  techniques  for  detecting the  number of

dimensions underlying a multivariate dataset. 

2. To propose a dimensionality detection method in a multivariate dataset

that would serve as a justification for the application of a dimensionality-

reduction technique.

3. To  determine  a  robust  dimensionality  detection  method  using   the

correlation profile of the multivariate data structure.

Significance of the Study

The study would serve as an independent well-structured methodology

that comes handy for dimensionality detection. Taking into consideration the

level of significance of the correlation coefficients, indicators that influence a

dimension are  identified  by  a  data  specific  cut-off  value  for  more  reliable

results. By data-specific cut-off value, the approach allows the data itself to

identify its own threshold suitable for dimensionality detection as opposed to a

threshold based on the judgment of the experimenter. By this cut-off value,

variables may be considered to belong together if their pair-wise correlation

coefficient  is  equal to or exceeds the cut-off.  A data specific  cut-off  value

could identify perhaps the exact dimensionality in the dataset prior to analysis

by identifying and excluding those subsets variables that are likely to reduce

the  true  measure  of  homogeneity  in  the  data.  In  determining  the  sets  of

indicators that constitute the various dimensions, there are some indicators that

8
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may not influence any of the dimensions. These indicators would constitute

the non-homogeneous sets.  In  addition,  it  is  possible  to  have a  number of

indicators  that  influence  multiple  dimensions.  It  is  also  observed  that

dimensionality could be affected by prevalence of negative correlations among

the indicators.  Unlike  existing procedures  that  are  clearly  unstructured,  the

proposed technique takes into consideration all the afore-mentioned cases that

are likely to influence the detection of the true dimensionlaity in a given data.

This  way,  a  good  justification  could  be  found  for  a  more  focused  further

application of dimensionality-reduction technique of the dataset.

 Delimitation  

The  study  considers  two  correlation  profiles  in  developing  the

dimensionality detection technique. The Pearson’s correlation which hinges on

the mean and Order statistics  which hinges on the median will  be used to

determine  the  robustness  of  the  method  to  other  correlation  profiles.  The

methods are applied to both simulated and existing datasets. The study also

compared the results  of  a  correlation  profile  generated  using the  k highest

contributors  after  controlling  for  outliers  as  opposed  to  the  results  of  a

correlation profile generated using all the variables in the original dataset.

Description of Datasets 

A  couple  of  datasets  have  been  employed  in  this  thesis  to  study

dimensionality detection. Here, we describe the source of these datasets and

comment on the reason for their  selection for this  research.  These datasets

have been numbered for easy identification in Chapter Four. 

 Dataset 1 (Performance of Sales Personnel) 

9
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The dataset contains evaluations on the performance of sales people

employed by a marketing firm. The company seeks to assess the value of its

sales people by devising a test, or a series of tests, that would reveal whether

or  not  they  have  a  productivity  for  high-quality  sales  performance.The

company chose an arbitrary sample of 50 salespeople and evaluated them on

three  performance  indicators:  sales  growth,  sales  profitability,  and  new

account sales. These metrics have been converted to a scale of one to 100,

with ten representing "average" performance.

Each of the 50 salespeople would take one of four tests, each of which

appears  to  measure creativity,  mechanical  reasoning,  abstract  thinking,  and

mathematical abilities. The table contains a sample of 50 observations on p =7

variables (Johnson & Wichern, 2007).

 Dataset 2 (Performance of High School Students in Nine Subjects) 

This encompasses an unpublished data which inclued marks graded out

of 100% earned by 72 students in a senior high school on nine subjects. These

modules include Information Communication Technology (ICT), Economics,

Elective  Mathematics,  English  Language,  Geography,  Integrated  Science,

Core Mathematics, Physical Education (PE), and Social Science. By design,

this  data  is  typically  suited  for  principal  components,  and  hence  factor

analysis.

Simulation of Datasets

The data is simulated on a seven-point polytomous scale with sample

size of 200 and dimensionality of three on thirty variables. The simulation is
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done using the mirt package in R software under the command: simdata(a, d,

N, itemtype)  (Chalmers, 2012), where argument  a denotes a vector/matrix of

discrimination  parameter  values,  d vector/matrix  of  difficulty  parameter

values, N sample size and itemtype the underlying IRT model. These opinions

are  outlined  to  produce  the  anticipated  dataset.  The  response  datasets  are

simulated using the generalized partial credit model (gpcm). The generation of

three-dimensional dataset necessitates a k×3 matrix of discrimination values

(a).  Regarding  response  format,  the  seven-point  scale  made  use  of  k ×  7

matrix of difficulty values (d). The idea of item response theory is reviewed in

the methodology in Chapter Three.

Limitation of the Study

As  indicated  in  the  objectives  of  the  study,  earlier  studies  on

dimensionality detection did not investigate the robustness of the method to

other correlation profiles as only Pearson’s correlation which hinges on the

mean was employed. Though our study considered a correlation profile which

hinges  on a  statistic  not  affected  affected  by extreme values  namely  order

staistics, the researcher desired to consider other additional correlation profles

but could not do this due to time constraints.

Definition of Terms

Correlation:  A  measure  of  the  strength  of  the  relationship  beween  two

variables. 

KMO: A measure of homogeneity among variables.

Multivariate Data: Data collected on two or more variables.

Partial  Correlation: Correlation  between  two  variables  controlling  for  the

effect of other(s).

11
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Organisation of the Study 

The first chapter covers the general introduction of the study. It first

considers the background to the study. In the background, the idea of using

well known statistical applications such factor analysis principal, component

analysis  and  IRT  for  dimensionality  detection  in  multivariate  data  is

introduced and the  associated challenge with the use of these technique have

been pointed out. This provides the motivation for the study which is provided

in the statement of the problem. It is then followed by the objectives of the

study. Finally in Chapter One, the description of the various datasets used in

the study have been provided.  

The review of relevant literature is done in Chapter Two. It focuses on

works  done  by  earlier  authors  on  dimensionality.  Chapter  Three  reviews

important concepts and methods employed. It reviews the concepts of factor

analysis, principal component analysis and Item Response Theory modelling

and KMO. Chapter Four deals with analysis and results. It uses a number of

datasets  to  generate  results  for  the  proposed  dimensionality  detection

technique.  In  Chapter  Five,  the  summary  of  the  entire  work  is  presented.

Conclusions based on the results are drawn and relevant recommendations are

made.  

 Chapter Summary 

This chapter focused on issues and preconceptions regarding the area

of study. It outlined a brief synopsis of the fundamentals of dimensionality and

also shed some light on unidimensionality and multidimemsionality. What the

study sought to achieve was also outlined. The gap identified by the research

and possible steps for filling this gap were also discussed. It was revealed that
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for a multivariate  Dataset,  the original number of variables are assumed to

constitute the number of dimensions underling the dataset. However not all

indicators  may  influence  the  phenomenon  under  study.  It  is  therefore

imperative  to  determine  the  minimum  number  of  latent  constructs

(dimensionality) that may underlie the data. Consequently, it is expected that a

dataset may have only one dimension or multiple dimensions underlying it.

Other areas the research would have considered but for time constraints is also

captured.

13
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CHAPTER TWO

LITERATURE REVIEW

 Introduction

This chapter reviews the works of researchers that are relevant to the 

study. It highlights mainly dimensionality studies by several authors and also 

points out the gaps in these studies. 

 Review of Studies on Dimensionality

Mengyao (2016) investigated the dimensionality of mixed-format test

scores.  They  discovered  that  dimensionality  assessment  improves  test

developers'  and consumers'  knowledge  of  how test  scores  translate  human

talents  into  numbers.  Dimensionality  assessment  addresses  a  variety  of

concerns, including (a) whether unidimensionality is true; (b) the number of

dimensions  that  influence  test  scores;  and  (c)  the  linkages  between  items,

underlying dimensions, and items and dimensions. Test developers and users

can carefully validate explicit understandings and applications of test scores

using the results of dimensionality assessments. The widespread use of mixed-

format  assessments  muddles  both  theoretically  and  procedurally

dimensionality assessment. The researchers initially suggested a methodology

designed  specifically  for  exploratory  dimensionality  assessment  in  mixed-

format  tests.  This  dissertation  examined  the  performance  of  a  number  of

widely used and promising dimensionality evaluation methods and approaches

using data from three large-scale mixed-format examinations. 

Alejandra  (2018)  investigated  factor  regression  for  dimensionality

reduction and data integration strategies using cancer data. He noted that two

major obstacles in modern statistical applications are the vast amount of data
14
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recorded per individual and the fact that such data are frequently collected in

batches  rather  than  all  at  once,  resulting  in  mean and variance  distortions.

They  solved  these  problems  by  developing  a  new  sparse  latent  factor

regression model  for integrating heterogeneous data.  The model provides a

tool  for  data  exploration  by  reducing  dimensionality,  correcting  so-called

batch  effects,  and  estimating  sparse  low-rank  covariance  matrices.  They

looked at how to learn the dimension of latent components using a variety of

sparse priors, both local and non-local. Our model is fitted in a deterministic

manner using an EM technique for which closed-form updates are derived;

this contributes a novel scalable algorithm for non-local priors, which is of

interest  outside  the scope of  this  thesis.  They also demonstrated  numerous

applications, with a focus on bioinformatics. The findings largely indicated an

improvement  in the accuracy of low-dimensional  data reconstructions,  with

non-local priors significantly enhancing factor cardinality and non-zero factor

loadings  inference.  Furthermore,  the  batch  effect  correction  significantly

improved  the  recovery  of  latent  variables.  Overall,  the  thesis  introduces  a

novel  technique  to  latent  factor  regression  that  balances  sparsity  and

sensitivity  while  still  being computationally  efficient,  and it  opens up new

paths for future study on dimension-reduction-based data integration

Statistical  inference  in  high-dimensional  matrix  models  was

investigated  by  (Löffler,  2020).  Matrix  models  suggested,  are  common  in

current statistics.  They’re used in finance to analyze asset interdependence,

genomics  to  impute  missing  data,  and  movie  recommender  systems  to

simulate  the  relationship  between  users  and  movie  ratings,  among  other

applications.  High-dimensional  models,  in which the number of parameters
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exceeds  the  number  of  data  points  by  many  orders  of  magnitudes,  or

nonparametric  models,  in  which  the  quantity  of  interest  is  an  infinite

dimensional operator, are common.

This leads to novel techniques as well as new theoretical phenomena

that can arise when estimating a parameter of interest  or its functionals,  or

when building confidence sets. In this thesis, we will look at three of these

matrix  models  as  examples  and  establish  statistical  theory  for  them:

Completion of matrices, Principal Component Analysis (PCA) with Gaussian

data,  and  Markov  chain  transition  operators.  In  the  'Bernoulli'  and  'trace-

regression'  models,  studies  started  with  matrix  completion  and  looked  for

adaptive confidence sets. When the variance of the errors is unknown, they

showed that adaptive confidence sets do not exist in the 'Bernoulli' model, but

they presented an explicit construction in the 'trace-regression' model. Finally,

based on a testing argument, they demonstrated that adaptive confidence sets

exist in the 'Bernoulli'  model in the situation of known variance. Then they

looked at PCA in a Gaussian observation model with complexity assessed by

the effective rank, which is the reciprocal of the first principal component's

percentage  of  variance  explained.  We  look  at  how  to  estimate  linear

eigenvector functionals and prove Berry-Essen type constraints. We uncover a

new phenomenon as a result of the problem's high dimensionality: The sample

eigenvector-based plug-in estimator may have non-negligible bias and hence

no longer be n-consistent. They demonstrated how to de-bias this estimator

and  provide  precise  matching  minimax  lower  bounds  by  obtaining  n

convergence rates. Finally, they looked at nonparametric estimate of a Markov

chain's  transition  operator  and  transition  density.  They  expected  that  the
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transition  operator's  unique  values  diminish  exponentially.  Discrete,  low

frequency  observations  of  periodised,  reversible  stochastic  differential

equations, for example,  satisfy this requirement.  We build a new algorithm

and demonstrate  improved convergence  rates  using  penalization  techniques

from low rank matrix estimation. Assessed Distributional Properties of High-

Dimensional Data. 

 Mansoor (2013), a multivariate statistical analysis of high-dimensional

data was the subject of this PhD. Hessonite Carlo simulations were used to

study the  increasing  dimension asymptotic  (IDA) qualities  of  a  number  of

multivariate  non-normality  tests  when the dimension grows proportionately

with  the  amount  of  data.  For  circumstances  when  p/n→ c,  a  novel  non-

normality test based on principal components is proposed. Meaning the power

and size of the test are examined through Monte Carlo Simulations. Monte

Carlo  simulations  with  various  combinations  of  n  and p  are  performed  to

investigate the test's power and size. The study looked into the relationship

between a distribution's second central moment and its initial raw moment. To

infer  the  systematic  relationship  between  mean  and  standard  deviation,  a

model with a slope parameter is proposed, and three different estimators of

this  parameter  are  developed,  and  their  consistency  demonstrated  in  the

context of increasing the number of variables proportionally to the number of

observations. To model the link between the mean and standard deviation of

the  excess  return  and  test  hypotheses  about  the  parameter,  a  Bayesian

regression approach was used. The data from the Stockholm exchange market

were used in an empirical  case.  Finally,  three novel approaches for testing
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panel cointegration of high-dimensional data were incorporated in the error

correction framework.

Zupluoglu (2013) used imperfect models to analyze the dimensionality

of latent structures underlying dichotomous item response data by using both

real  and  simulated  data.  The  study  explored  the  impact  of  model

misspecification due to minor latent components on a range of dimensionality

evaluation approaches described in the literature. The study took into account

a  variety  of  dimensionality  evaluation  processes  based  on  eigenvalue

inspection (i.e., parallel analysis), conditional covariances (i.e., DETECT), and

model  selection  approaches  (e.g.,  NOHARM  and  Mplus  based  chi-square

statistics, RMSEA, GFI, AIC). Two studies were carried out. Using sample

datasets chosen from a very large real item response dataset considered as the

population,  the  average,  standard  deviation,  and  range  of  the  number  of

dimensions  indicated  by  different  techniques  were  explored.  Also  a  full

simulation  study was  conducted,  and the  analytical  methods'  performances

were  assessed  using  the  number  of  key  dimensions  in  the  true  generating

model  as  a  benchmark.  The  current  research  yielded  some  intriguing  and

thought-provoking findings about the performance of some well-known and

widely  employed  procedures  under  various  conditions.  The  current  study's

findings  suggest  that  most  of  the  methods  proposed  in  the  literature  and

available  to  practitioners  are  not  always  useful  tools  in  dimensionality

assessment,  especially  when  the  goal  of  dimensionality  assessment  is  to

identify latent traits with major influences when the underlying factor structure

is complex and minor factors are present. When the underlying latent structure

was factorially complicated, the current investigation gave some insight into
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the performance of alternative dimensionality evaluation methodologies with

mis specified models.

 Tian  (2009)  investigated  dimensionality  reduction  for  high-

dimensional data categorization. The study looked at dimensionality reduction

issues  in  classification  for  both  multivariate  and functional  data  with  high

dimensionality. High-dimensional data, according to the study, refers to data

having a large number of variables, which is often greater than the number of

observations.  Engineering,  biometrics,  psychometrics,  and neuroimaging are

just a few of the fields that deal with high-dimensional data. Classifying these

data is a tough task due to the large number of variables, which complicates

traditional  classification  algorithms  and makes  many traditional  procedures

unfeasible.  Adding  a  dimensionality  reduction  step  before  applying  a

classification  approach  is  a  natural  solution.  Two  ways  are  proposed  for

dealing with multivariate data. The first is based on simulated annealing (SA),

and the second is based on multivariate adaptive stochastic search (MASS).In

each cycle, they both use stochastic search methods to select a small number

of  optimal  transformation  directions  from  a  huge  number  of  random

possibilities.  The proposed approaches have the advantage of being able to

accurately project data onto very low-dimensional non-linear as well as linear

domains.  These methods are  meant  to  resemble  variable  selection  methods

like the Lasso, or variable combination methods like PCA, or a method that

combines  the two.  MASS, in  particular,  can modify the model  complexity

level  adaptively,  and so performs well  when variable  selection  or  variable

combination  methods fail.  We compare the strengths  of  SA and MASS to

various  classical  and  modern  categorization  approaches  in  a  variety  of
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simulated  and  real-world  investigations.  Problems  with  classification  of

functional  data  are  also  addressed.  We  present  a  functional  adaptive

classification  (FAC)  method  that  considers  the  functional  response  and

generates  extremely  accurate  and  understandable  results.  FAC is  similarly

based  on  a  stochastic  search  technique  that  is  directed  by  the  model

complexity evaluation. This frequently leads to a straightforward link between

functional  variables  and  the  reduced  data,  making  the  model  more

understandable.  To  demonstrate  the  efficiency  of  the  suggested  strategy,

simulation studies and an fMRI time course study are included.

 Thinesh (2018) used a variety of generalized hyperbolic distributions

to  investigate  dimension  reduction  and grouping  of  high-dimensional  data.

Model-based clustering, according to the study, is a probabilistic strategy in

which each cluster is viewed as a component in an appropriate mixture model.

One  of  the  most  extensively  used  model-based  strategies  is  the  Gaussian

mixture model. However, due to the over-parametrized solutions that develop

in high-dimensional spaces, this model performs badly when clustering high-

dimensional  data.  Instead,  this  study looked at  how to combine  dimension

reduction approaches with clustering using a variety of generalized hyperbolic

distributions.  The  techniques  of  dimension  reduction,  principal  component

analysis, and factor analysis, as well as their extensions, were examined. Then,

using  both  simulated  and  real  data  sets,  the  aforementioned  dimension

reduction strategies  were separately  matched with a  mixture of generalized

hyperbolic  distributions  to  demonstrate  the  clustering  performance  attained

under  each  strategy.  The  clustering  method  based  on principal  component
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analysis produced superior classification results for the majority of the data

sets than the clustering method based on extending the factor analysis mode.

 Janecek  (2009)  investigated  efficient  feature  reduction  and

classification methods, as well as their applicability in drug discovery and E-

mail  Categorization.  They claimed that as the dimensionality of the feature

space  grows,  many  types  of  data  analysis  and  classification  become

significantly more difficult, and that data also become increasingly sparse in

the space it occupies,  posing significant challenges for both supervised and

unsupervised  learning.  The  curse  of  dimensionality  is  a  phenomenon  that

arises from the fact that high-dimensional data is sometimes difficult to work

with.  When  there  are  few observations  (i.e.,  data  samples)  relative  to  the

number of features, a large number of features can increase the noise in the

data  and  hence  the  error  of  a  learning  system.  Feature  selection  and

dimensionality  reduction  methods  (often  referred  to  as  feature  reduction

methods) are two strategies for addressing these issues by reducing the amount

of features and consequently the data's dimensionality. Several studies have

been  conducted  in  recent  years  to  improve  feature  selection  and

dimensionality reduction strategies, and significant progress has been made in

terms of picking, extracting, and creating effective feature sets. However, due

to  the  significant  impact  of  different  feature  reduction  approaches  on

classification accuracy, there are still a number of unanswered concerns in this

subject. 

Furthermore, as the number of possible features for diverse application

areas grows, additional concerns arise. This thesis looked into some of these
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unanswered  concerns,  such  as  the  relationship  between  different  feature

reduction techniques and classification accuracy. The goal is to find a set of

features that best mimic the original data while maintaining a high level of

classification  accuracy.  The  computational  cost  of  feature  reduction

techniques is the basis for other difficulties. Due to the large amount of data, it

is necessary to design computationally efficient feature reduction approaches

that  can  be  used  in  parallel.  To  solve  this  issue,  the  thesis  investigated

numerous ways for leveraging task and/or data parallelism in NMF, as well as

introducing computationally efficient adaptations of current NMF algorithms.

They researched innovative initialization strategies for NMF based on feature

selection, as well as fast and effective classification methods based on NMF,

to speed up the runtime of NMF even further. Furthermore, there are a number

of  issues  to  consider  when  evaluating  the  interpretability  of  dimension

reduction  strategies.  The  information  about  how  much  an  original  feature

contributes is often lost when a linear combination of dimensionality reduction

algorithms is used.

In this thesis, we look at how the improved interpretability of NMF

factors due to non-negativity requirements may be used to keep the original

data  interpretable.  Experiments  are  carried  out  on  datasets  from two  very

distinct application fields, each with its own set of research challenges: email

categorization and in silico drug discovery screening.

Timmerman & Lorenzo-Seva (2011) used parallel analysis to measure

the  dimensionality  of  ordered  polytomous  elements.  They  discovered  that

parallel  analysis  (PA)  is  an  often  suggested  method  for  determining  the
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dimensionality of a set of variables.PA comes in a variety of forms, each of

which  can  produce  different  dimensionality  indicators.  To  determine  the

number  of  common  components  underlying  ordered  polytomously  scored

variables, the authors used the most applicable PA technique.

Instead of the currently used principal component analysis (PCA) and

primary axes factoring, they proposed minimal rank factor analysis (MRFA)

as  an  extraction  approach.  Based  on  data  containing  major  and  minor

components, simulation research revealed that all processes consistently point

to the number of major common elements. Although a polychoric-based PA

outperformed a Pearson-based PA by a small margin, convergence issues may

limit its empirical application.

PA-MRFA with a 95% threshold based on polychoric correlations or,

in  the  case  of  nonconvergence,  Pearson correlations  with  mean  thresholds

appear to be a good choice for identifying the number of common variables in

practical applications. The PA-MRFA technique, which is based on common

factors, fared best in the simulation experiment. Second best is PA based on

PCA with a 95% threshold, as this method performed well in the simulation

experiment's empirically applicable conditions.

Kim  (1994)  investigated  new  methods  for  determining  the

dimensionality  of  standardized  test  data.  The researchers  discovered  that  a

novel dimensionality index based on the conditional covariance of item scores

given a latent variable is defined and studied in educational and psychological

test  data.  By  using  cluster  analysis,  this  index  accurately  detects  the  test

dimensionality in terms of both identifying the number of dimensions present
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in  the  test  and  identifying  the  items  contributing  to  each  dimension.

Furthermore,  this  index  accurately  measures  the  test  data's  lack  of

unidimensionality, and its asymptotic behavior under unidimensionality gives

theoretical support. To detect dimensional disagreement of item pairs, a new

significance  test  based  on  a  kernel  smoothing  technique  is  devised.  A

simulated evaluation of this method demonstrates a reasonable type 1 error

rate in relation to its  nominal  level  of significance,  as well  as great power

performance,  when  compared  to  existing  procedures.  When  data  is  not

unidimensional,  the  unidimensional  parametric  item  and  ability  calibration

processes BILOG and LOGIST are checked to see what is truly being assessed

as unidimensional ability. The accuracy of ability estimation is also examined

in terms of average standard error.  As their  claimed unidimensional  ability

estimate,  both  BILOG  and  LOGIST  appear  to  present  a  composite  of

underlying latent qualities. The average standard errors are relatively invariant

to the degree of lack of unidimensionality as a result of this, but the direction

of the composite being assessed best changes routinely and by a substantial

amount with various degrees of multidimensionality.

 Under nonparametric IRT models, Alexander et al. (2004) conducted a

comparative evaluation of test data dimensionality assessment methodologies.

The  dimensionality  of  item  response  data  can  be  determined  using  non-

parametric item response theory approaches. MSP, DETECT, HCA/CCPROX,

and DIMTEST were all considered. The methods were first compared on a

theoretical  level.  Second,  using  the  default  parameters  of  each  program,

simulation  research  was  conducted  to  examine  the  performance  of  MSP,

DETECT, and HCA/CCPROX in detecting a simulated dimensional structure
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of a matrix of item response data.  The approaches that employ conditional

covariances on the latent trait (DETECT and HCA/CCPROX) were superior in

discovering the simulated structure in various design cells versus the method

that used normed unconditional covariances (MSP). Third, based on the data

used in DETECT and DIMTEST, the accuracy of the decision to accept or

deny unidimensionality was examined. This decision did not always reflect the

item pool's true dimensionality. 

With small  sample sizes and short test lengths,  (Andre et  al.,  1998)

evaluated the dimensionality of Item Response Matrices. To apply standard

item  response  theory  models  legally,  the  assumption  of  unidimensionality

must  be  met,  according  to  the  researchers.  The  extent  to  which  it  can  be

proven that the dimensional structure underlying a test is consistent with the

blueprint  determines  the  validity  of  score-based  conclusions.  In  settings

similar  to  those  observed  in  small-volume administrations,  little  study has

been done to examine the behavior of dimensionality assessment algorithms.

The  goal  of  this  research  was  to  look  into  empirical  data.  With  data  sets

constructed to  reflect  brief  tests  and small  samples,  Type I  error rates  and

rejection  rates  for  3-dimensionality  evaluation  techniques  were  calculated.

With  unidimensional  data  sets,  the  G2;  difference  test  from  TESTFACT

(Wilson, Wood, & Gibbons, 1991) and the LISREL8 (Jöreskog & Sörbom,

1993a)  chi-square  statistic  had  an  inflated  Type  I  error  rate,  whereas  the

approximate  chi-square  statistic  from  a  NOHARM  (Fraser  &  McDonald,

1988) analysis did not. All procedures have significant rejection rates when

using  simulated  2-dimensional  data  sets.  The  independent  factors  changed

strongly altered the behavior of the G2; difference test, which was not the case
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for  the  approximation  chi-square  statistic.  These  findings  are  examined  in

terms of their relevance for small-volume administrations.

Bayesian dimensionality assessment for the multidimensional nominal

response  model  was  investigated  by  (Javier  et  al.,  2017).  For  the

multidimensional  nominal  response  model,  the  work  introduced  Bayesian

estimation  and  assessment  methodologies.  This  paradigm  is  useful  for

performing nominal factor analysis on items with a finite number of unordered

response categories. In contrast to standard factorial models, the key feature of

this model is that each response category on the latent dimensions has a slope,

rather  than  having  slopes  connected  with  the  items.  For  estimation,  the

multidimensional  nominal  response  model's  extensive  parameterization

necessitates large samples. When the sample size is moderate or small, some

of these factors may be difficult to empirically identify, causing the estimation

process  to  fail.  To  estimate  the  parameters  and  number  of  dimensions

underlying  the  multidimensional  nominal  response  model,  we  present  a

Bayesian MCMC inferential approach. 

The  standardized  generalized  discrepancy  measure,  which  needs

resampling data  and is computationally  more demanding,  was compared to

two  Bayesian  techniques  to  model  evaluation:  discrepancy  statistics  (DIC,

WAICC,  and  LOO),  which  provide  an  indication  of  the  relative  value  of

different models. The findings of a simulation research comparing these two

approaches reveal that the standardized generalized discrepancy measure may

be  used  to  correctly  predict  the  model's  dimensionality,  whereas  the

discrepancy  statistics  are  suspect.  The  study  also  contains  a  real-world
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example in which the model is used to perform an exploratory factor analysis

of nominal data in the context of learning styles. In the disciplines of ability

measurement,  attitude  scales,  sample  surveys,  market  research,  and  so  on,

nominal  variables  are  commonly collected  from a variety  of item response

formats. Multiple-choice questions, for example, have one correct answer and

several  distractors.  When  the  data  comes  from  multiple-choice  items,  the

factorial  analysis  of  nominal  variables  is  frequently  carried  out  by

dichotomizing the data into correct and incorrect responses and then running

the dichotomous data matrix through a categorical factor analysis technique.

In some cases, however, dichotomization is not an option because the focus is

on the relationship  between latent  dimensions  and answer categories.  Each

category in  a  market  research item,  for example,  could represent  a  buying

choice, and there is no natural way to dichotomize the data.

The study discovered that the factorial analysis of responses with an

implicit ordering, as well as their estimation and testing methodologies, have

long  been  discussed  in  the  psychometric  literature  (Christoffersson,  1975;

Bartholomew, 1980; Reckase, 2009). These models are based on a normal or

logistic function that uses a vector of slopes to link observed responses and

dimensions.  Furthermore,  the  distribution  of  responses  across  the  item's

categories  is  determined  by a  set  of  intercept  parameters  (Mislevy,  1986).

Because of the inherent challenges of the underlying psychometric paradigm,

nominal  variable  component  analysis  is  a  more  recent  development.  This

model is a multidimensional expansion of (Bock's, 1972) nominal response

model,  which  assumes  things  load  in  one  dimension.  The  slopes  of  the

nominal  response  model  are  parameters  of  the  categories  rather  than
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parameters of the items. The ordinal model has two thresholds and two slopes

for an item with three response categories and measures two dimensions (say),

whereas the nominal model has two thresholds and four slopes (one category

has  no  parameters  and  the  other  categories  have  one  slope  in  each

dimension).In the psychometric literature, applications of constrained versions

of  the  multidimensional  nominal  response  model  (MNRM)  have  been

published.  Hoskens  etal.  (2001),  for  example,  used  a  restricted  MNRM to

assess  cognitive  components  involved  in  item  solving;  in  this  model,

parameter limitations are imposed to represent the components tested by the

categories.

Another  version  of  the  MNRM created  by  (Johnson & Bolt,  2010)

targeted at separating a general dimension of ability from subsidiary variables

that describe test taking strategy. The MNRM will be used in its entirety in

this article to undertake an exploratory factor analysis of nominal variables.

Except when essential  to identify the model,  none of the parameters in the

exploratory analysis  are  fixed  to a  constant  value.  The MNRM's extensive

parameterization  causes  complications  in  parameter  interpretation  and

estimation.  (Thissen  et  al.,  2010;  Falk  &  Cai,  2016)  introduced  many

parameterizations  aiming  at  providing  parameters  with  a  clear  meaning  in

terms of parameter interpretation. This paper focuses on the inferential parts of

the problem,  specifically  the  estimation  of  the number  of  dimensions.  The

MNRM's  estimate  issues  arise  because  the  response  patterns'  contingency

table is often excessively sparse due to the vast number of response categories

that  must  be  modeled.  Using  computer  algorithms  like  Latent  GOLD,
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maximum  likelihood  estimates  can  be  generated  (Vermunt  &  Magidson,

2016). 

When  the  sample  size  is  approximately  a  few  hundred  people,

however,  the  maximum-likelihood  estimation  process  may  run  into

difficulties,  resulting  in  significant  standard  errors.  Convergence  issues  are

most common for parameters in categories  with a low response frequency,

which can occur even when the sample size is rather large. For example, with

a sample of 500 or more people, it's not uncommon to encounter categories

with frequencies of less than 10, which means that reliable estimates for the

many parameters that describe the category are impossible to come by. Apart

from the issues of estimating, measuring the fit of the nominal model in the

frequentist framework is problematic since goodness-of-fit statistics are based

on  asymptotic  reasoning  that  rarely  adhere  to  genuine  model  application

conditions. By defining prior distributions for the parameters and shifting the

inference to a Bayesian setting, the statistical difficulties of the nominal model

can be solved. Bayesian inference combines information from the sample with

information  from  prior  distributions,  resulting  in  estimates  that  are  more

stable,  alleviate  problems of lack of convergence for some parameters,  and

provide a method for simulating the posterior distribution of model evaluation

statistics. The study presented a Bayesian inferential approach for determining

the MNRM's latent dimensionality.

The  suggested  approach  is  based  on  Markov  chain  Monte  Carlo

(MCMC) procedures  that  use  basic  Bayesian  estimating  algorithms.  In the

framework  of  item response  theory,  Bayesian  estimation  has  already  been
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applied  to  ordinal  answers  (Kieftenbeld  &  Natesan,  2012)  and

multidimensional models (Levy et al., 2009). By replicating the distribution of

evaluation  statistics,  Bayesian  processes  have  been  successfully  applied  to

testing model fit (Sinharay et al.,  2006).The definition of model evaluation

statistics for a nominal model, on the other hand, is a relatively new subject of

study.We used two model evaluation statistics that were recently proposed in a

Bayesian  statistical  context,  the  widely  applicable  information  criterion

(WAIC)  and  the  leave-one-out  cross-validation  (LOO),  both  of  which  are

based on information theory (Gelman et al.,  2014) and have never been used

in a psychometric context to our knowledge.The article also covers Levy et

al’s  adaptation   of  the standardized  generalized  dimensionality  discrepancy

measure (SGDDM) to the nominal case . The SGDDM was created to evaluate

the dichotomous item response model,  but it was later expanded to ordinal

factorial models. 

The SGDDM gives useful information for dimensionality assessment

of the nominal model,  as demonstrated in this paper. The remainder of the

article  is  divided  into  the  sections  below.  The  MNRM,  as  well  as  the

restrictions for parameter identification and the rotation problem, are described

in Section Multidimensional Nominal Response Model. The MCMC Bayesian

estimation  algorithm  is  described  in  the  section’s  Bayesian  Parameter

Estimation, while the model evaluation statistics are described in the Section’s

Bayesian  Model  Evaluation.  The  simulation  study  in  section’s  simulation

study analyzes the Bayesian inferential procedure under actual situations. A

real data research is presented in the context of a questionnaire of learning
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styles, in which the response categories indicate several learning styles and

there is no implicit order among them. 

The effect of distributional differences on dimensionality assessment

using DIMTEST was investigated by (Walker et al., 2006). Some people feel

that most exams are multidimensional, meaning that they examine more than

one underlying construct, according to the study. The fundamental goal of this

research is to show how differences in the secondary ability distribution affect

statistical dimensionality detection and to distinguish between substantive and

statistical  dimensionality.  This  study  shows  how  altering  the  ability

distributions influences the results generated from DIMTEST, a nonparametric

statistical  process based on the notion of essential  unidimensionality,  given

dichotomous  data  simulated  as  multidimensional.  As  the  mean  of  the

secondary  ability  distribution  approached  the  extremes  and/or  the  standard

deviation of the secondary ability distribution approached zero, the power of

DIMTEST dropped.  This  has  crucial  ramifications  for  both  academics  and

practitioners  because,  while  a  test  may  measure  extra  dimensions  from  a

substantive standpoint, statistically, these dimensions may not be discovered.

Heating  et  al.  (2010)  investigated  the  optimization  and  uncertainty

assessment of severely nonlinear groundwater models with a large number of

parameters. Highly parameterized and CPU-intensive groundwater models are

increasingly being utilized to explain and predict flow and transport through

aquifers, according to the findings. Despite their widespread use, these models

pose considerable hurdles to parameter estimation and predictive uncertainty

analysis algorithms, especially global techniques that typically require a high
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number of forward runs. In this paper, we provide a general methodology for

parameter  estimation  and  uncertainty  analysis  that  can  be  used  in  these

circumstances.  Following  the  derivation  of  a  surrogate  model  that  mimics

essential properties of a full process model, we evaluate and apply nullspace

Monte Carlo (NSMC), a pragmatic uncertainty analysis tool that combines the

capabilities of gradient-based search with parameter dimensionality reduction.

The results of NSMC are contrasted with a formal Bayesian approach

employing the differential evolution adaptive metropolis algorithm as part of

the  surrogate  model  study.  This  kind  of  comparison  has  never  been  done

before,  especially  with  such  high  parameter  dimensionality.  Despite  the

inversion  problem's  highly  nonlinear  nature,  the  presence  of  several  local

minima,  and the relatively  large  parameter  dimensionality,  both techniques

performed well, and the results are comparable. The knowledge collected from

the  surrogate  model  study  is  then  used  to  calibrate  the  full,  highly

parameterized, and CPU heavy groundwater model, as well as to investigate

the  predictive  uncertainty  of  the  model's  predictions.  The  methodology

described here can be used to any highly parameterized and CPU-intensive

environmental  model  in  which  efficient  methods  like  NSMC are  the  only

viable way to do predictive uncertainty analysis.

The Bayesian assessment of dimensionality in reduced rank regression

was  investigated  by  (Jukka  et  al.,  2010).  In  the  multivariate  reduced rank

regression  framework,  which  incorporates  numerous  models  such  as

MANOVA, factor analysis, and cointegration models for multiple time series,

the research investigated a Bayesian inference about dimensionality. A closed
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form  approximation  to  the  posterior  distribution  of  the  dimensionality  is

derived using the fractional Bayes approach, and some asymptotic features of

the  approximation  are  established.  Simulation  is  used  to  investigate  finite

sample  properties,  and  the  method  is  applied  to  growth  curve  data  and

cointegrated multivariate  time series. According to the findings,  a common

scenario in multivariate analysis is the examination of relationships between

sets of variables using explicit parametric models or descriptive methods like

principal components and canonical correlations. 

Although  it  was  long  recognized  that  these  instances  could  be

represented jointly  in  terms  of  multivariate  regression with a  reduced rank

structure for certain parameters (see, for example, Anderson's pioneering work

in 1951), the general statistical community has only recently fully appreciated

this approach. The generality of the reduced rank regression (RRR) framework

is one of its strongest features, as it incorporates various well-known models

for  multiple  time  series,  including  MANOVA,  factor  analysis,  linear

simultaneous  equations  models,  and  many  others.In  conventional  full  rank

multivariate regression, the most common source of model uncertainty is the

selection  of  suitable  predictor  variables.  For  the  latter  model  selection

problem, there are several plausible methods available (Brown et al.,  1998;

George  &  Foster,  2000).  Producing  reasonable  conclusions  on  the

dimensionality  of the subspace of regression coefficients  for a  fixed set  of

predictor  variables  has  been  more  difficult.  To  estimate  dimensionality  in

RRR,  (Geweke,  1996)  suggests  a  computationally  intensive  approach,  and

(Kleibergen & Paap, 2002) employ extensive Monte Carlo simulation schemes

to obtain the posterior distribution of the dimensionality. 
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The conveniently computable one-formula solutions without subjective

input  from the  user,  such as  information  theoretic  criteria  (Akaike,  1974),

approximation logarithmic Bayes factor (Schwarz, 1978), or sequential tests,

are the methods that tend to be employed in applications (Anderson, 1951;

Izenman,  1980;  Jo-hansen,  1995).  Some recommendations  within  a narrow

class of reduced rank models have also been made; see, for example, (Chao

and Phillips, 1999) for a criterion adapted to cointegration models. Only the

approach of (Schwarz, 1978) seeks to approximate the posterior distribution of

dimensionality among these methods. This is significant because the posterior

distribution  is  an appealing  representation  of  the  dimensionality  inference's

uncertainty. However, the Schwarz approximation is known to be a bit sloppy,

and it  frequently  underestimates  the  underlying  model  dimension  (Kass  &

Raftery, 1995). The approximate posterior distribution of the dimension of the

parameter  structure  was  calculated  using  O'Hagan's  fractional  marginal

likelihood (FML) technique (O'Hagan, 1995, 1997). Their method produced

an analytically tractable answer that may be used without the user's subjective

input. Its qualities are studied both theoretically and by application to a variety

of real and simulated data sets.

 Mares  (2016) investigated  variable  selection  in  the  dimensionality.

The  researcher  discovered  that  today's  high-throughput  technologies  are

resulting in a vast amount of data to be studied. The goal of the research was

to  develop  mathematical  and  statistical  approaches  for  extracting  as  much

information  as  possible  from  the  available  data.  However,  the  high

dimensionality of the data, both in terms of sample size and the number of

features or variables, creates significant obstacles. Increased computer power
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and the usage of distributed computation technologies make it easier to deal

with  the  enormous  number  of  samples.  The  huge  number  of  features  or

variables  increases  the  risk  of  using  the  improper  explanatory  factors  to

explain variance in both noise and signal. One approach to overcoming this

challenge is to select a smaller set of features from the original set that are

most important given an assumed prediction model from the initial set. This

method is known as variable or feature selection, and it entails making a bias

or statistical assumption about which attributes are more important. Different

statistical assumptions about the mathematical relationship between predicted

and explanatory  factors,  as  well  as  which  explanatory  variables  should  be

deemed  more  relevant,  are  used  in  different  feature  selections.  The  initial

contribution of the researcher is to combine the strength of several variable

selection approaches based on various statistical assumptions. The researchers

began  by  categorizing  existing  feature  selection  methods  based  on  their

assumptions and evaluating their scaling capacity for high-dimensional data,

especially when the number of samples is substantially fewer than the number

of features. The study introduced a new algorithm that combines the findings

of many feature selection methods based on distinct assumptions about the

function  that  generated  the  data,  and  we  show  that  our  method  is  more

sensitive than using each method alone.

One of the most common simplifying assumptions is that the predicted

variable and the explanatory variables have a linear relationship. The second

contribution is to show that, even though the underlying function that created

the data is not always linear, at least one feature selection procedure based on

the linearity assumption is consistent. The study developed a new technique
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based  on  these  theoretical  discoveries  that  offer  superior  results  when  the

underlying  function  that  created  the  data  is  at  most  partially  linear.  When

given  enough  training  data,  neural  networks,  particularly  deep  learning

architectures, have been found to fit very non-linear prediction models. They

do  not,  however,  include  feature  selecting  tools.  The  study  made  a

contribution  by  evaluating  the  performance  of  these  models  when given  a

large number of features and fewer samples, proposing a method for feature

selection, and demonstrating that combining this feature selection method with

deep learning architectures outperforms not using feature selection in certain

situations. Several feature selection strategies, including the ones suggested in

this thesis, rely on resampling techniques or the use of several algorithms for

the same dataset. Their benefit is derived in part from the use of additional

computational capacity. As a result, our final contribution is an efficient data

distribution  and  load-balanced  parallel  calculation  for  re-sampling-based

algorithms.

Measurement Scale and Sample Size for Determination of Dimensionality

One of the key findings of (Nkansah, Zakaria, & Howard, 2019) is the

optimal size of data for detecting factors in IRT generated data. It is found in

that study that a sample size of 150 is optimal for various types of scales with

varying underlying dimensionality. However, it is also found that sample size

of 200 could perform quite close to that of 150. Likert scale with more points

are  also  found  to  perform  much  better  allowing  higher  underlying

dimensionality to be captured in factor analysis. Under optimal sample size,

likert scale of five-points or higher is perferred. Particularly, seven-point scale

is identified to be suitable for data with high underlying dimensions. 
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 Exploratory versus Confirmatory Assessment 

Both exploratory and confirmatory methods could be used to assess

dimensionality (Reckase, 2009; Svetina & Levy, 2014). When there is no clear

hypothesis  or  evidence  on  the  dimensional  structure  of  the  given  data,

exploratory dimensionality assessment, which is the focus of this dissertation,

is frequently used. It has been used in operational testing programs to check

the alignment of real dimensionality with the desired dimensionality,  either

alone or in combination with confirmatory dimensionality  assessment (e.g.,

Fu,  Chung,  & Wise,  2013;  Jang  & Roussos,  2007;  Wilson,  2000;  Zwick,

1987).

Before  examining  other  psychometric  processes,  exploratory

dimensionality  evaluation  is  frequently  used  as  part  of  a  preliminary

investigation (e.g., MIRT equating, see Brossman & Lee, 2013). In this thesis,

more exploratory  dimensionality  evaluation  methods  are  studied,  while  the

insights  from these  methods  may  also  be  beneficial  in  some confirmatory

cases. Dimensionality could also be described within the framework of IRT.

IRT, according to proponents, enables for a clear and exact understanding of

the  ideas  of  unidimensionality  and  multidimensionality  (Hattie,  1985;

Nandakumar, 1991; Stout, 1987; Stout et al.,  1996; Zhang & Stout, 1999a,

1999b). Stout (1990) proposed a classic IRT definition of dimensionality as

the smallest number of latent features required for a locally independent and

monotone model,  which was further  expanded on by (Nandakumar,  1991),

(Stout et al., 1996), and (Zhang and Stout, 2000, 1999a, 1999b).
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Local  independence  specifies  whether  item  answers  are  mutually

independent  or  pairwise  uncorrelated  after  adjusting  for  underlying  latent

qualities, depending on whether strong local independence (SLI; Lord, 1980)

or  weak  local  independence  (WLI);  McDonald,  1981)  is  evaluated.  The

likelihood  of  properly  answering  an  item  change  monotonically  with  the

values  of  latent  features,  according  to  monotonicity.  The  data  are  called

unidimensional when a single latent attribute is sufficient to generate such a

model.  The  number  of  latent  qualities  necessary  defines  the  number  of

dimensions if the data is not unidimensional. (Stout, 1987) defined essential

dimensionality as the number of main or dominant latent features based on

IRT,  which  has  proven  to  be  one  of  the  most  important  notions  in  the

development of nonparametric dimensionality evaluation processes.

Review of Dimensionality Assessment Methods

 Factor Analysis

Factor  analysis  has  long been used  to  investigate  dimensionality  in

multivariate  data.  For  an  overview  of  the  application  of  factor  analytic

approaches to dimensionality evaluation, see (Hattie, 1985), (Reckase, 2009),

(Stone & Yeh, 2006), and (Velicer,  Eaton, & Fava, 2000). EFA refers to a

group of statistical approaches that are used to explain observed variances and

covariances in a broad sense (Kline, 2010). EFA does not need the use of a

theorized  dimensional  structure,  unlike confirmatory  factor  analysis  (CFA),

which  appears  to  be  favorable  for  exploratory  purposes.  The  number  of

dimensions equals the number of components or factors to keep, according to

EFA. When only one component or element is preserved, the data is deemed

unidimensional;  otherwise, some degree of multidimensionality  appears.The
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data's dimensional structure correlates to a specific factor solution created by

EFA.

 Considerations That Could Influence Results of Factor Analysis

There are a number of considerations that could influence the result of

factor  analysis.  (van der  Eijka & Rose,  2015) found that,  generally,  factor

analysis  conducted  on  ordered  categorical  survey  data  is  prone  to  over

dimensionalisation,  irrespective of the mode of analysis.  However,  the risk

when using some extraction methods such as the eigenvalue-greater-than-one

rule  (or  K1  rule),  are  reduced  for  polychoric,  rather  than  Pearson’s

correlations. The focus on data generated on categorical variables primarily

violates  the  assumption  of  interval-level  measurement  and  questions  keep

being  raised  regarding  the  circumstances  under  which  this  leads  to

substantially misleading results. The literature is not clear on the matter, and

this is also the opinion of (van der Eijk and Rose, 2015).  Their attempt in this

regard estimated the risk of over-dimensionalisation when factor analysis is

used on data generated on Likert-type data. They specifically stress that the

data that may be factor suitable could be affected in some five main ways: (1)

the nature of the underlying distribution; (2) the number of items; (3) the level

of random noise; (4) the range of positions of the items on the underlying

dimension; and (5) the skewness of the items.  Based on their study, van der

Eijk and Rose therefore recommend, among others, that the K1 should not be

used, given available alternatives; and that the polychoric correlations are to

be preferred to Pearson’s correlations within the condition of smaller number

of items.  

The consequences of violating the assumptions are evident in inflated
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probability chi-square tests of fit, lowered standard errors, and inflated error

variances in confirmatory factor analysis (Finch & West, 1997). When item

response scales have more scale points or categories,  the repercussions are

less severe. An item with an ordered seven-point response scale, for example,

is more likely than a dichotomous item to nearly satisfy the assumption of

factor analysis. When categorical variables approach a normal distribution, the

number of categories has no effect on the chi-square test of fit between the

model and the data, according to (Byrne ,2001).

Furthermore, factor loadings and factor coefficients are only slightly

underestimated under these conditions.  When responses to items follow an

approximate  normal  distribution,  research  suggests  that  items  with  five  or

more ordered response categories  do relatively  well  in  confirmatory  factor

analysis (Byrne, 2001). (De Bruin, 2004) employed two ways to deal with the

problem of non-normality and nonlinearity of items.These include (a) using

item response theory measurement models and (b) using item parcels rather

than individual items as the primary units of factor analysis.

Factor analysis is based on the correlations among items on which the

data is generated. For Pearson‟s product-moment correlations to adequately

reflect  the  relationships  among  the  variables,  observed  variables  must  be

measured on interval  scale  (e.g.,  MacCallum,  2009;  Tompson,  2004).  This

condition  is  also  required  for  the  assumption  of  linearity  of  relationships

among latent variables. However, Likert scale items, which are categorical in

nature violate this condition. This has been the main concern in the literature.

It is observed, for example, that the correlation between assumed underlying

continuous variables in a Likert scale items is attenuated by the categorisation
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(Olsson,  1979),  though  the  extent  of  the  attenuation  is  not  uniform.  The

smaller  the  number  of  categorisation,  the  larger  the  attenuation,  ceteris

paribus. In addition, attenuation depends on the (observed) distribution of the

scores:  it is minimal when responses are approximately normally distributed

with approximately equal means and is maximal for variable pairs that are

skewed  in  opposite  directions.  Thus,  (Flora,  LaBrish  &  Chalmers,  2012)

report a true population correlation coefficient of 0.75 observed as 0.25 when

the continuous variables are categorised into five-point items; however, for

other item pairs, the attenuation was much less severe.

These observations imply that observed product-moment correlations

may be quite different from their underlying true values, and so is also the

factor structure derived from the observed correlations. This would likely lead

to over-dimensionalisation with factors discriminating between left and right

skewed  items  (for  example,  in  Gorsuch,  1983;  and  Van  Schuur,  2003).

Moreover, categorisation of true continua leads necessarily to violations of the

linearity,  adding  to  the  inadequacy  of  the  product-moment  correlation  to

represent  the  relationship  between  items  (Flora  et  al.,  2012).  For  factor

analysis  of  ordinal  data,  polychoric  correlations  are  often  recommended.

Extensive discussion on polychoric correlation can be found in a number of

texts (Uebersax, 2006)

 Illustrative Dataset and Cut-off Values in Dimensionality Detection

As noted in Chapter One, the illustrative Dataset 1 on the performance

of sales personnel is contained in several texts (Johnson & Wichern,  2007;

Anderson, 2003; Mardia, Kent & Bibby, 1979). In these presentations, the data

were  used  to  illustrate  some  multivariate  techniques,  particularly  factor
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analysis. The data are one of several datasets that have been used in studies of

problems associated with factor analysis by (Benyi, 2018) and on the Kaiser-

Meier-Olkin’s measure of sampling adequacy (Nkansah, 2018). These studies

have found that although the data is suitable for factor analysis, it surprisingly

does not yield a reasonable factor solution. A study of dimensionality in the

data made use of a cut-off  value of 0.5 and identified only one dimension

underlying the data. The factor analysis reveals challenges of interpretation of

factors.  Thus,  there  is  theoretically  one  dimension  and  hence  the  data  is

suitable  for  factor  extraction.  However,  it  statistically  has  no  ‘significant’

dimension. This implies that a factor model is not suitable for the data. The

problems identified with this data cover contrasting factors and one-indicator

factor  solutions,  which  are  inconsistent  with  the  features  of  the  variance-

covariance  matrix  of  the  data.  It  is  apparent  therefore  that  the  variance-

covariance  structure  of  this  data  makes  it  difficult  for  determination  of  its

dimenionality.

The data is therefore very suitable as a test data for the implementation

of the methodology developed in this thesis. The study will therefore explain

more clearly  the nature  of  the  data  structure that  makes  its  dimensionality

difficult to detect. 

Dataset  1  has  also  been  studied  (Apanyin,  2021)  with  canonical

correlation  analysis  technique.  It  has been demonstrated  that  the first  three

columns of the data on seven variables could constitute one subset variables

whilst  the  remaining  four  constitutes  the  second  subset  vector.  This  way,

canonical correlations could be found for pairs of canonical variables from the

two sets. 
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Dataset 2 on student performance on nine subjects has also been studied

in Benyi (2018) using a cut-off value of 0.5. Two homogeneous sets have been

identified in this data indicating a dimensionality of two. A cut-off value as

low as 0.2 has been identified by subjective choice to support identification of

homogeneous  groupings  in  data.  The  choice  of  a  cut-off  value  is  clearly

dependent on the data structure and a good choice of cut-off value is required

to identify appropriate dimensionality.

 Chapter Summary

The literature has focused on the relevance of the the data used, the cut

off  value,  some  methods  that  were  used  in  dimensionality  detection  in  a

multivariate  dataset.  A  multivariate  dataset  is  either  characterised  as

unidimensional  or  multidimensional.  It  is  clear  from the  literature  that  no

specific  study  has  focused  on  a  structured  and  rigorous  presentation  of

dimensionality detection in multivariate data. Our study therefore seeks to fill

this  gap  by  developing  an  objective  and  robust  dimentionalty  detection

method.
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CHAPTER THREE

RESEARCH METHODS

 Introduction

As noted in the introductory chaper, this work is mainly motivated by

the work of Nkansah (2018) on the computation of the KMO. We review the

generalized  rule  as  presented  for  determining  the  expected  dimensions  in

multivariate data and point out in Remark (3.1) the main point of contention in

the rule that motivates this study. The underlying concepts of the KMO are

orders zero and one correlation coefficients. The chapter will examine these

concepts and point out the perspectives taken on them by the study. It will

review  relevant  multivariate  techniques  that  have  dimensionality  detection

embedded in them and which will be applied in the study. 

 Generalized Rule for Determining Expected Dimensions of Datasets

Suppose  a  multivariate  dataset  is  generated  on  a  set  of  p  variables

( x1 , x2 , … , x p )  with correlation coefficients that are generally significant. On

the basis of the level of correlation coefficients, a cut-off value of τ  is fixed

for which variables may be considered to belong together if their pair-wise

correlation  coefficient  exceeds  τ .  First,  take  the  pair

(X i , X j ) , i , j ∈ I=(1 , 2 , …, p )
 with  the  highest  correlation  coefficient.  Let

this  pair  be  (xu , xv ) ,  and  label  the  set  as  
S1=(xu , xv )  and  the  index  set

I1=(u , v ) .  If the correlation coefficients  
r xk , xi

> τ , ∀ k ∈ I1 , i∈ I ¿1 ,  then

x i∈ S1 , otherwise, x i∉ S1 . The sets S1  and I1  are updated each time. Now,
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if  
r xk , xi

< τ ,
for some  k ∈ I 1  and some  i∈ I ¿1 , then we obtain a final first

homogeneous  set  S1=¿¿  with  index  set

I1={i1 , i2 , … , ig 1}⊂ I .

We will  form a  new set  S2  from the  elements  x i∉ S1 ,  i∈ I ¿1 .  Denote

T1=I ¿1 . Consider  the  pair  (x i , x j) , i , j ∈ I ¿1 with  the  highest  correlation

coefficient that meets the cut-off value  τ .  This pair is  (x l1
, x l2) . Thus, we

obtain the second set 
S2={xl1

, x l2} , and an index set I2= {l1 , l2 } . Now, if the

correlation coefficients  
r xk , xi

> τ , ∀ k∈ I 2, i∈ I ¿2 , then 1Sxi  , otherwise,

1Sxi  . The sets S2  and I2  are updated each time. Now, if  
r xk , xi

< τ ,
for some

k ∈ I 2 and some  i∈ I ¿2  then we obtain a final  second homogeneous set

S2={x l1
, x l2

, …, x lg2}  with index set I2={i1 , i2 , … , ig 2}⊂ I .

Consider  all  elements  xi∉ ( S1∪S2 ) ,   i∈ I ¿¿¿  Denote

T 2=I ¿¿¿ . To form the new set, take the pair (x i , x j ) , i , j ∈ T 2 with the

highest correlation coefficient that meets the cut-off value τ .  Let the pair be

( x t1
, x t2

)
.  Thus,  we  obtain  the  third  set  S3=¿¿ ,  and  an  index  set

I3={t1 , t2} .  

If the correlation coefficients 
r xk , xi

> τ , ∀ k∈ I3 , i∈ I ¿3 , then x i∈ S3 ,

otherwise,  xi∉ S3 .  The  set  S3  and  I3  are  updated  each  time.  Now,  if
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r xk , xi
< τ ,

for some  k ∈ I 3 and some  i∈ I ¿3  then we obtain the final third

homogeneous set 
S3={x t1

, xt 2
, …, x t g 2}  with index set I3={t 1 , t2 , … , tg 3}⊂ I .

We  attempt  to  form  the  qth  set  Sq from  the  elements
x i∉ ( ¿k=1

q−1
Sk)

,

i∈ I ¿
k=1

q−1
I k

. Denote  
T q−1= I ¿

k=1

q−1
I k

. Take the pair (x i , x j) , i , j ∈ T q−1 with the

highest correlation coefficient that meets the cut-off value . Thus, we obtain

Sq=¿¿ , and the index set  I q={d1 , d2} .  Now, if  
r xk , xi

< τ ,
for some

k ∈ I q and  some i∈ I ¿q  then  we  obtain  the  final  qth  homogeneous  set

Sq={xd1
, xd 2

, … , xdgq }  with index set I q={d1 , d2 , …, dgq}⊂ I .

If for some set 
S l+1

 and index set 
Il+1

, and for 

x i∉ ( ¿k=1

l
Sk)

, , 
r xi , xi

< τ ,
for all

i , j∈ I ¿
k=1

l
I k

, then  
S l+1

 is the last set of variables in the original set of  p

variables  and  there  are  a  total  of  l dimensions  underlining  the  correlation

matrix.

Remarks 3.1

It  can  be  observed  that  the  procedure  described  for  identifying

homogeneous sets is obviously influenced by a fixed cut-off value of  τ  for

which  variables  may  be  considered  to  belong  together  if  their  pair-wise

correlation  coefficient  exceeds  τ .  Since  the  value  of  τ  is  set  by  the

experimentor,  it  is  highly  subjective  even though it  is  based  on a  general

assessment of the size of correlations coefficients among the variables.
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It is already acknowledged (Nkansah, 2018) that there are some variables

which are likely to contaminate the measure of homogeneity of the data. These

are elements identified in the indexed set T l  of elements that are not found in

any  of  the  homogeneous  sets.  An  automated  procedure  would  therefore

include  a  process  that  screens  the  variables  to  include  only  those  that  are

identified with a particular homogeneous group. 

 Dimensionality of a Dataset

As they choose one or more techniques to examine their  own data,

researchers make a hazy decision on how they interpret dimensionality. In the

extant literature, the term dimensionality has been employed in a variety of

ways,  both  as  a  property  of  a  test  and  as  a  characteristic  of  test  scores

(Reckase, 2009).  For the purpose of this research, dimensionality of a dataset

may  be  described  broadly  in  two  ways:  unidimensionality  and

multidimensionality.

A  given  multivariate  dataset  could  be  of  unidimensionality  and

multidimensionality. We attempt to establish working definitions of the two

types of dimensionlity in relation to two statistical applications that deal with

dimensionality of dataset. These are Item Response Theory (IRT) and Factor

Analysis (FA). A unidimensional test is one that has one latent trait underlying

the data (Hattie, 1985). In relation to IRT, a multivariate dataset is said to be

unidimensional if it is possible to find a vector of values φ=(φi) such that the

probability  of  correctly  answering  an  item  g is  π ig=  f g(φ i)  and  local

dependence holds for each value of  φ. In factor analysis, if only one factor

explains  a  phenomenon,  then  the  data  is  essentially  unidimensional.  A
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multidimensional test however has two or more distinct latent traits underlying

the data. These two concepts will be discussed in detail later in relation to the

dimensionality assessment methods.

In factor analysis, latent variables represent unobserved constructs and

are referred to as factors or dimensions. In this thesis, only the Confirmatory

Factor Analysis (CFA) would be relevant and is therefore reviewed briefly.

 Confirmatory Factor Analysis

Suppose that an exploratory factor analysis of data on the indicators

X1 , X2 , …, X p     yields an m-factor solution given by     

x i=∑
j=1

m

lij f j+εi
,              i=1 , 2 , … , p                 (3.1)

In Equation  (3.1),  m≤ p  and  f j are  the factors  specific  to  the individual

indicator x i with loading  lij  on the jth factor. Usually, indicator variables with

loading  higher  than  0.5  are  considered  influential  in  the  formation  of  the

factor. The m factors model in Equation (3.1) could also be represented as

X=ΛF+Ε         (3.2)

where  Λ  is the matrix of loadings and F is the vector of specific factors. The

correlation matrix R could then be approximated as

R=Λ Λ '+Ψ         (3.3)

The matrices Λ Λ'
 and Ψ  are respectively, the reproduced correlation matrix

based on the  m-factor  model  and diagonal  matrix  of   specific   variances

whose elements are given by 
ψ i=1−∑

j=1

m

lij
2

,  i=1 , 2, …, p . Equation (3.3) is

the  fundamental  factor  analysis  equation  that  provides  the  principle  of
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hypothesis in Confirmatory Factor Analysis (CFA).

In factor analysis, the number of factors that can be extracted is the

same as the number of variables. Each factor  ¿¿)  explains a certain amount

( λ j )  of overall variance in the observed variables, and the factors are always

listed  in  the  order  of  how  much  variation  they  explain.  Thus,

λ1> λ2>…> λp . 

The test of adequacy of the m-factor model is equivalent to the test of

the hypothesis

Ho : ρ
p×p

= Λ
p×m

Λ'

m× p
+ Ψ

p×p    against   
Ha : ρ

p× p
≠ Λ

p×m
Λ'

m×p
+ Ψ

p× p

The null hypothesis means that the  m factors are adequate in approximating

the original correlation matrix.  If  Ho  is  rejected,  it  means that the factor

model  does  not  significantly  represent  the  underlying  dimensions  of  the

correlation matrix. Thus, the alternative hypothesis means that ρ  is any other

positive definite matrix that cannot be factorized as under  Ho . Under  Ho ,

the maximum of the likelihood function, with μ̂= x̄ and Σ̂= Λ̂ Λ̂'+Ψ̂ , where

Λ̂  and Ψ̂  are the maximum respective likelihood estimates of Λ  and  Ψ , is

proportional to 

¿¿
where  

Sn=
1
n∑j=1

n

( x j−x )( x j−x )'
. 

By the general likelihood method, 
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−2 ln Λ=−2 ln(max
θ ∈Θ o

L(θ )

max
θ ∈Θ

L(θ ) )
− n

2

=−2 ln (|Σ̂||Sn|)
− n

2 + n [tr( Σ̂−1 Sn)−p ]

with degrees of freedom υ−υo=
1
2 [( p−m)2−p−m] . 

Under  a  maximum  likelihood  estimate  of  the  parameters  in  oH ,

tr( R̂−1 Rn )−p=0 . Thus, the statistic becomes

−2 ln Λ=n ln( |Σ̂||Sn|)
− n

2

        (3.4)

Bartlett  (1954)  shows  that  the  chi-square  approximation  to  the  sampling

distribution of  −2 ln Λ  may be improved by replacing  n  in Equation (3.4)

with the multiplicative factor [n−1− 1
6 (2 p+4 m+5 )] . The hypothesis Ho  is

thus rejected at α  level of significance if

[n−1− 1
6
(2 p+4 m+5 )] ln |Λ̂ Λ̂'+ψ̂|

|Sn|
> χ 1

2 [( p−m )2−p−m ]
2 (α )

        (3.5)

provided n  and  (n− p )  are large.

Remarks 3.2

In this study, it  will be observed that several factor models may be

significant (i.e., Ho  will not be rejected) for a number of values of m. In this

case, it will be sufficient to use the smallest value of m.  On the other hand, it

is also possible that there will be no value of  m at which the  Ho would be
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rejected.  This  means  that  there  are  no  significant  underlying  factors,  even

though exploratory techniques are able to identify factor. 

  Item Response Theory

The  item  response  theory  (IRT),  also  known  as  the  unobserved

response theory, is a collection of mathematical models that attempt to explain

the  relationship  between  latent  constructs  (unobservable  characteristics  or

attributes)  and  their  results  (i.e.  observed  outcomes,  responses  or

performance). They create a link between the characteristics of items on an

instrument,  the responses  of  individuals  to  these items,  and the underlying

property being measured. The unobserved construct (e.g. stress, knowledge,

attitudes) and measure items are organized in a latent continuum, according to

IRT.

As a result, its primary application is to determine an individual's place

on that continuum. The label item response theory refers to the theory's focus

on the item, as opposed to conventional test theory's test-level focus. Meaning,

IRT simulates each examinee's response to each test item for a given ability.

The term item is broad, encompassing a wide range of instructive materials.

Multiple  choice  questions  with  correct  and  incorrect  answers,  popular

statements on questionnaires that allow respondents to express their level of

agreement  (a  rating  or  Likert  scale),  patient  symptoms rated  as  present  or

absent,  and diagnostic information in complicated systems are examples  of

these. The premise behind IRT is that the chance of a correct/keyed response

to an item is a mathematical function of the individual and item factors. A

single  unobserved  concept  or  dimension  is  understood  as  the  person

parameter.
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The difficulty of an item (known as "location" for its location on the

difficulty range); discrimination (slope or correlation), which represents how

steeply an individual's rate of success changes with their ability; and a pseudo

guessing parameter, which represents the asymptote at which even the least

able persons will score due to guessing (for instance, 25 percent probability on

a multiple choice item with four possible responses).

In addition, the goal of IRT is to provide a framework for evaluating

how effectively exams and particular items on assessments work. IRT is most

commonly employed in education, where psychometricians use it to conceive

and design examinations,  manage groupings of items for examinations, and

link item problems for subsequent editions of examinations. Unobserved trait

models are another name for IRT models. The word "unobserved" is used to

stress that item responses that do not allow fractions are considered observable

displays of hypothesized traits or attributes that cannot be tested directly but

must be inferred from the visible replies.

 Dimensionality in IRT 

The IRT viewpoint is important in research because it provides clear

stipulations  of  the  correlation  between  item  score  variable  X j and  the

unobserved  constructθ=[θ1 …….θd]
T .  When   d=1 ,  the  dataset  is

unidimensional;  on  the  other  hand,  when  d>1 ,  the  dataset  is

multidimensional.  Both  parametric  and  non-parametric  methods  have  been

developed  to  determine  dimensionality-inherent  item  clusters  and  evaluate

relationships inter and intra these clusters.  
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 Generalized Partial Credit Model (GPCM)

In the context of IRT, parametric dimensionality assessment methods

depend on certain  Unidimensional  IRT models  and Multideimensional  IRT

models  for  dichotomously  scored  MC items  and  polytomously  scored  CR

items.  We  attempt  to  describe  the  models  studied  in  this  research.   For

dichotomous item score variables, the most generic UIRT model in prevalent

operative use is the three-parameter logistic (3PL) model (Lord, 1980), whose

Item Response Function  is given by  

  p j=Pr ( X j=1|θ )=c j+(1−c ) exp ⁡¿¿                           (3.6)

In the equation 3.6,  θ  is the single unobserved trait;  a j,  b j,  and  c j

denote the item discrimination, difficulty, and pseudo-guessing parameters for

item  j,  respectively.  The  3  -Parameter  model  becomes  the  two-parameter

logistic (2PL) model by setting c j= 0, and further becomes the one-parameter

logistic  (1PL)  model  by  setting  a j=  1  and  c j=  0.   A  multidimensional

modification of the 3PL (M3PL) model (Reckase, 2009) is given by   

p j=Pr ( X j=1|θ )=c j+(1−c )
exp ⁡(a jθ+d j)

1+exp ⁡(a j θ+d j)
'                           (3.7)

 where multiple unobserved constructs contained in θtogether determine how

probable  a  randomly  chosen  examinee  answers  item  j  correctly,a j is  a

transposed vector of slope parameters , d jis the intercept, and c j is the pseudo-

guessing  parameter.  According  to  Reckase  (2009),  the  multidimensional

discrimination (MDISC) for item j is defined as  

MDISC J=√a j a j
'                    (3.8)

 which is equivalnet to  a j in Equation (3.6). The multidimensional difficulty

(MDIFF), which is analogous to b j in Equation (3.6), is given by   
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MDIFF J=
−d j

MDISC J
=

−d j

√a j a j
'                              (3.9)

[

Equation (3.7) further highlights the model's compensatory nature: a

low value on one unseen construct could be offset by high value(s) on at least

one other unobserved construct. Compensatory models have been frequently

employed in the dimensionality assessment field because they appear to better

mimic  the  genuine  intellectual  processes  observed  in  many  educational

examinations  and  do  not  provide  significant  theoretical  or  computational

challenges (e.g., Hattie, 1984; Mroch & Bolt, 2006; Nandakumar, 1994; van

Abswoude et al., 2004). The graded response (GR) model (Samejima, 1969)

for the unidimensional case begins with the outline of the cumulative category

response functions for polytomous item score variables.

                  p jo
¿=Pr ( X j ≫0|θ )=¿      p jk

¿=Pr ( X j ≫k|θ )=¿exp ⁡¿¿¿ , k =

1…….K j−1         (3.91)

                    

 The parameters in Equation (3.9.1)) are like those in the 2PL model,

the only difference being the difficulty parameter  b jk is assigned to response

categories from 1 to (  K j−1¿  . The IRF of the GR model is defined as the

disparity amongst cumulative category response functions:  

                 p jk
❑=Pr (X j=k|θ )=¿ p jk

¿−p j( k+1 )
¿ , k=0 , ……… .. K j−2¿     

               p j(K j−1 )=Pr ( X j=K j−1|θ )=p j (K j−1)
¿ ,                          (3.92)
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 Essential Dimensionality

In this study, the non-parametric IRT approach was used in accordance

with  the  concept  of  essential  dimensionality.  The  definition  of  critical

dimensionality for dichotomous variables was discussed informally by Stout

(1987).  In  Stout,  this  was  formalized  (1990).  Junker  (1991)  expanded  the

notion  to  include  polytomous  variables.  Similar  ideas  have  been presented

discreetly from an EFA perspective; for example, factors responsible for the

majority  of  the  observed  association  are  preserved  while  the  other  minor

factors  are  ignored  (Stout,  1990)."A  construct  vector  is  dominating  if  the

residual covariances among the items are minimal in anticipated value after

conditioning on," to put it another way (Junker, 1991, p. 258). The number of

dominating dimensions is the emphasis of essential dimensionality. If only one

dominant  dimension  is  visible,  data  is  believed  to  be  essentially

unidimensional.

 Methods Using the IRT Definition of Dimensionality 

 Poly-DIMTEST  (Nandakumar  et  al.,  1998)  is  an  extention  of

DIMTEST  (Stout,  1987;  Nandakumar  &  Stout,  1993)  to  study

unidimensionality of polytomous data. This approach tests H 0 of the essential

unidimensionality, given by  

                          H 0 :dE=1 versus H1 : dE>1                                                        

where  d Eis the number of dominant dimensions defined in Stout (1987, 1990).

Because it assumes the IRT notion of dimensionality (Stout, 1987, 1990) as

mentioned  previously,  the  Poly-DIMTEST approach  was  recognized  as  an

IRT approach in this investigation.

55

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Poly  DIMTEST  captures  numerous  phases  and  is  quite  similar  to

DIMTEST  with  a  few  minor  differences  (for  technical  details,  refer  to

Nandakumar et al., 1998). Examinees are given a test of items based on the

notation described earlier. AT1, AT2, and PT are the three categories that the

initial test is broken into. M items are found in both AT1 and AT2, while the

remaining (J-2M) items cover PT, where M is a tiny number.According to

Nandakumar and Stout (1993)'s  DIMTEST recommendations,  four or more

AT components are required for reliable estimations, however it is better when

it goes below J/4.

To give adequate power, the number of PT pieces should be at least 15.

(Stout et al., 1996). AT1 items are expected to measure the same unobserved

construct as AT2 items, and AT2 items are expected to have an item difficulty

distribution similar to AT1 items. AT1 items could be identified at random or

using  EFA,  indicating  two  Poly-DIMTEST  modes:  confirmatory  and

exploratory.Items measuring the same content subdomain or having the same

item format could be designated as AT1 items in a confirmatory mode.An

algorithm proposed by Nandakumar and Stout (1993) could be used to choose

AT1 items in an exploratory mode.They suggested that on the second factor,

items with substantial absolute loadings (e.g., more than 0.15) be used. When

running a Poly-DIMTEST exploratory model, it is also a good idea to divide

the initial sample into two categories. EFA is conducted in the first category,

and the Stout's T statistic is computed in the second. The first category should

have a minimum of 500 people (Nandakumar, 1994). When computing the T

statistic,  the  examinees'  category  may  be  divided  into  many  subcategories

based on their  PT item scores.  Under  H 0,  the T statistic  approximates  the
56

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



conventional  normal  distribution  (Nandakumar  et  al.,  1998).  If  the P-value

falls  below  a  predetermined  significant  level,  the  basic  unidimensionality

assumption is invalidated.

Proposed  Method  on  the  Kaiser-Meier-Olkin’s  Measure  of  Sampling

Adequacy

In  this  thesis,  we  offer  a  computationally  robust  methodology  for

employing Kaiser-Meier Olkin's Measure of Sampling Adequacy (KMO) as a

dimensionality  identification  method  in  a  multivariate  dataset.  It  first

investigates  a  systematic  strategy  for  determining  the  dataset's  initial

dimensionality. It then divides the variables into two groups: those that do not

contribute to any dimension (non-homogenuous sets) and those that contribute

to many dimensions  (multidimensional  sets).  According to  the  literature,  a

KMO value of 0.6–1.0 is a natural good measure (Rencher, 2002; Nkansah,

2018).

KMO values  less  than  0.6,  on  the  other  hand,  indicate  that  the  sample  is

unsuitable, and that corrective action should be performed. The suitability of a

sample is traditionally determined by four factors.

1. The sample's representativeness

2. Sample size

3. Variability in the population

4. Estimation precision that is desired
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KMO, which is a measure of similarity between variables, is used to

determine the acceptability of a sample rather than looking into each of the

features  individually.  To  determine  the  suitability  of  a  dataset  for

dimensionality detection, a number of approaches are used. The Kaiser-Meier-

Measure Olkin's of Sampling Adequacy (abbreviated KMO) is a commonly

used method. It's  a detection metric  for determining the degree to which a

dimension's indicators are homogeneous.

A  low  KMO  score  indicates  that  the  connection  between  the  two

variables  cannot  be  explained  by  a  well-defined  unseen  factor,  and  hence

dimensionality detection may not be appropriate.

Table 1: A Guide for Interpreting KMO Measure

KMO Measure Recommendation
≥ 0.90 Marvellous

0.80+ Meritorious

0.70+ Meddling

0.60+ Mediocre

0.50+ Miserable

≤ 0.50 Unacceptable

Source: Nkansah (2018)

According to the criterion in Table 1, the overall KMO measure should

be 0.8 or higher to achieve acceptable results. Although a value of greater than

0.6  is  permissible,  this  rule  of  thumb  appears  to  have  gained  widespread

acceptance (Rencher, 2002). The index allows for a comparison of the size of

observed correlation  coefficients  versus partial  correlation  coefficients.  The

KMO can be calculated using the following equation.
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KMO = 
∑
i< j

rij
2

∑
i< j

rij
2+∑

i< j
pr ij

2                                                      (3.93)

where rij
2 is the square of the correlation coefficient between anypairs 

of variables ( x i, x j) and is an element of the correlation matrix R. The 

corresponding value prij
2 is the square of the partial correlation 

coefficient

 Order Statistics Correlation Coefficient

 Definition and Properties 

Let   ( xij , xkj ) , j=1 , 2 , …, n ; i , k=1 , 2, …, p  be  n  observations  on any two

variables  from  the  set  (X1 , X2 , …. X p ) .  By  rearranging  pairwisely  the

observations on the two variables with respect to the magnitudes of  x i , we

obtain two new sets of data  ( xi( j) , xk [ j ])  where   
x i(1)≤x i(2 )≤⋯ xi (n )  are the

order-statistics of x i  and  
xk [ 1 ] , xk [2 ] , …, xk [ n ]  are the associated concomitants

of xk . Re-versing the roles of xand y, we also define the order statistics of y

and the corresponding concomitants which are denoted by y1… , yNand x1 …, x N

respectively. The order statistics correlation coefficient can be defined as 

r x ( x , y )≜∑
i=1

N

¿¿¿        (3.94)

The  order  statistics  correlation  coefficient  has  the  basic  properties  of  a

correlation coefficient, as follows

1. −1 ≤r X ≤1
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2. r X ( x , y ) attains  +1(-1)  ,  where  x∧ yare  in  strict  increasing(decreasing)

relationship

3.r X (x ' , y ' )=r X ( x , y ) for x '=k x x+const x∧ y '=k y y+const y, k x>0∧k y>0

4. If  x and  y are mutually  independent  and each is  independent  identically

distributed (IID), the expectation E [r X ( x' , y ' ) ]=0as N → ∞

 Chapter Summary

In this chapter, we reviewed the known statistical techniques that are

used  to  interpret  multivariate  data.  Notably,  factor  analysis,  Principal

Component  Analysis  and  Item  Response  theory  Modelling.  The  general

orthogonal  factor  model  and  underlying  basic  conditions  and  assumptions

were discussed. 

The methods of principal components and maximum likelihood have

been discussed and their relative desirable properties have been pointed out.

The 3-parmeter IRT model has been critically examined. Confirmatory factor

analysis  which  uses  the  Chi  square  statistic  to  assess  model  fit  has  been

discussed with the purpose of  using it  to assess model  fit  in  chapter  four.

Unidimensionality  and  multidimensionality  have  also  been  discussed.  The

generalisation  of  the  dimensionality  detection  algorithm and  a  measure  of

homogeneity, KMO have been thoroughly explored.
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CHAPTER FOUR

RESULTS AND DISCUSSION 

 Introduction 

This  chapter  presents  the  development  and  implementation  of  the

algorithms  based  on  methodology  for  addressing  the  detection  of

dimensionality  in  data.  Implementationm  is  carried  out  on  two  existing

datasets  described  in  Chapter  One  and  one  simulated  data.  The  proposed

dimensionality  detection  methods  are  similarity  measures  which  hinges  on

correlation profiles. The study employs the Pearson’s correlation and Order

statistic profiles. In the implementation, attention is focused on identifying two

sets of indicators that could create distortions in assessing factor-suitability:

variables  that  do  not  influence  any  dimension;  and  those  that  influence

multiple dimensions. A brief preview of the structure and key findings for each

of Datasets 1 and 2 obtained in Nkansah (2018) is presented as follows:

Table 2: Correlation Matrix for Dataset 1

                    x1 x2 x3 x4 x5 x6

x2                0.926

x3                0.844   0.843

x4                0.572    0.542   0.700

x5                0.708    0.746    0.637    0.591

x6                0.674     0.465   0.641    0.147   0.386

x7               0.927       0.944   0.853    0.413   0.575   0.566

Source: Nkansah (2018)
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Using an experimenter specific threshold of 0.5, only one dimension is

detected  to  underlie  the  dataset  since  only  one  homogenous  set  is  found

constituted by five variables given by s1= {x1 , x2 , x3 , x5 , x7 }. The KMO values

for  Dataset  1  based  on  the  methodology  described  in  Chapter  Three  are

summarised in Table 3.

Table 3: KMO for Dataset 1 Based on Subgroupings

SN Groupings KMO Value

1 All 0.6161

2 S1only 0.6413

Source: Nkansah (2018)

Table 4: Correlation Matrix for Dataset 2

x1 x2 x3 x4 x5 x6 x7 x8

x2 0.135

x3 0.160 0.637

x4 -0.085 0.549 0.402

x5 0.180 0.431 0.318 0.407

x6 0.126 0.693 0.616 0.381 0.289

x7 0.020 0.627 0.746 0.447 0.317 0.604

x8 -0.113 0.010 -0.018 -0.029 -0.028 -0.011 -0.019

x9 0.045 0.692 0.464 0.504 0.386 0.395   0.422 0.067

Source: Nkansah (2018)

The study detected dimensionality for this data set using an 

experimenter specific threshold. It identified that two dimensions underlie the 

data set since there were two homogenous sets given by
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 s1= {x3 , x7 , x6, }∧s2= {x2 , x9, x4 , } .  The KMO values for dataset 2 are 

summarised in the table below.

Table 5: KMO Values for Dataset 2 from Literature

SN Groupings KMO

1 All 0.8222

2 S1 only 0.8503

3 S2 only 0.8365

Source: Nkansah (2018)

Remarks 4.1 

The drawbacks in the study described above are specified as follows:

1. Calculation of KMO dwelling on the original correlation structure and not

a spanning set may lead to abuse of information and misleading results

since KMO depends on the original correlation structure.

2. KMO determination is based on experimenter specific thresholds and not

thresholds based on the data structure.

3. Computation is expensive since the duration involved in calculating KMO

using  the  original  correlation  structure  far  outweighs  the  duration

regarding the computation based on a spanning set.

4. The method does not investigate the sensitivity and robustness based on

the correlation profile as only the Pearson’s correlation is used.

63

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



In this study, the proposal to address the drawbacks identified above are as

follows: 

1. Develop  an  approach  to  determine  KMO  based  on  a  threshold  not

influenced by the choice of the experimenter but by the structure of the

data

2. Develop an approach for calculating KMO based on a spanning set, not

the original correlation structure, to provide reliable results.

3. Develop an approach that is robust to correlation structure

It is anticipated that the implementation of these proposals would lead to

a  computationally  less  expensive  approach  for  calculating  a  measure  of

homogeneity of a dataset.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy based on Pearson’s

Correlation Profile

Pearson's correlation coefficient is the covariance of the two variables

divided by the product of their  standard deviations. Given a pair of random

variables (X, Y) , the Pearson correlation coefficient, ρ , is given by

ρX ,Y=
Cov ( X , Y )

σ X . σY

Pearson's  correlation  coefficient,  when  applied  to  a  sample,  is  commonly

represented by r xy .

 For a given paired data (x1 , y1 ¿ ,………(xn , yn) ,   
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r xy=
∑ (xi−x)( y i− y)

√∑ (x i−x )2∑ ( yi− y )2
   

(4.1)
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The Kaiser-Meyer-Olkin Measure of Sampling Adequacy ( or simply

KMO)  is a diagnostic measure for assessing the extent to which the indicators

of a dimension belong together. The KMO is given by

KMO =  
∑
i< j

r ij
2

∑
i< j

rij
2+∑

i< j
pr ij

2            (4.2) 

where  rij
2 is  the  square  of  the  correlation  coefficient  between  any  pair  of

variables  (x i,x j)  and  is  an  element  of  the  correlation  matrix  R.  The

corresponding value pr ij
2 is the square of the partial correlation coefficient.

For the purpose of the approach adopted in this study, the KMO may 

be expressed in the form

         KMO = 

1

1+
∑
i< j

pr ij
2

∑
i< j

rij
2

                                                                            (4.3)

In  an  attempt  to  examine  the  ratio  of  the  partial  correlation  to  zero  order

correlation. For KMO to be large, the ratio of partial correlation to zero order

correlation must be small. We need to form the homogeneous set in such a

way that the variables in a set correlate highly with each other but not with

members of the other set. For this homogenous set we expect the ratio to be

small for any pair of elements controlling for all others

 An Automated Dimensionality Detection

In this section, an updated version of the generalized rule (Nkansah,

2018) is described that is based on an automated threshold. Subsequently, a

description of methods for determining the threshold is provided.
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 Generalization of the Modified Rule for Determining Expected 

Dimensions of Datasets

Suppose the dataset is generated on a set of p variables  y1 , y2 , … , y p

with correlation coefficients that are generally significant. We generate a data

specific threshold δ 0 using an automated threshold setting for which variables

may be considered to belong together if their pairwise correlation coefficients

exceed  δ 0.  First  take  the  pair  ¿)  ,i , j∈ I=(1,2 , .. , p) with  the  highest

correlation  coefficient.  Let  this  pair  be  ( ym , yn) and  label  the  set  as

S1=( ym , yn) and the index as I 1=(m, n). If the correlation coefficient ryk,yi ≥

δ0  ,  ∀ k ∈ I 1 ,i ∈ I {I ¿1 , then y i ∈ S1 , otherwise y i∉ S1 . The setsS1 and  I 1 are

updated each time. Now if  ryk,yi ¿ δ0  for some k ∈ I 1 and some i∈ I {I ¿1,

then we obtain the first homogenuous set  S1= ( y i 1 , y i 2 ,…, y ig 1)  with index I 1

= (i1 , i2 ,…, ig 1) ⊂ I

We would form a new set  S2 from the elements  y i ∉ S1,  i∈ I {I ¿1 .

Denote  T 1 =I {I ¿1 .  Consider  the  pair  ¿),i , j∈ I {I ¿1 with  the  highest

correlation that meets the cut off value  δ 0.  This pair  is( y i 1 , y i 2) . Thus we

obtain the second pair S2=( y i 1, y i2) and an index set I 2 =(I 1, I 2¿. Now if the

correlation  coefficient   r yk , y f ≥ δ0  ∀ k ∈ I 2,  i∈ I {I ¿2

, then y i ∈ S1 , otherwise y i ∉ S1 The setsS2 and I 2 are updated each time. Now

if r yk , y f ¿ δ0  for some k ∈ I 2 and some i∈ I {I ¿2then we obtain a final  second

homogeneous set  S1= (y i 1 , y i 2 ,…, y ig 2)  with index I 1 =(i1 , i2 ,…, ig 2) ⊂ I

Consider  all  elements  y i ∉ (S1 ∪ S2 ) , i∈ I ¿( I 1 ∪ I 2¿).  Denote  T 2=

I ¿ (I1 ∪ I 2¿).  To form a new set,  takethe pair ¿)  ,i , j∈ T2 with the highest
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correlation coefficient  that meets the cut off, δ 0. Let the pair be  ¿) . Thus, we

obtain the third set S3=¿) and an index I 3={t 1 , t 2 }

If  the  correlation  coefficie r yk , y f
≥ δ0  ,

∀ k ∈ I 3 , i∈ I {I ¿3 , then y i ∈ S3 , otherwise y i ∉ S3 The  setsS3 and  I 3 are

updated each time. Now if r yk , y f ¿ δ0   for some k ∈ I 3 and some i∈ I {I ¿3then

we obtain the third  homogenuous set  S3= (y t 1 , y t 2 , …, y tg 3)  with index I 3 =(

i1, i2 ,…, ig3) ⊂ I .

We  attempt  to  form  the  qth set Sq from  the  elements

y i ∉(¿k=1¿q−1 Sk ),  i∈ I ¿k=1¿q−1 I k .   Denote  T q−1 =¿k=1¿ q−1 I k .

Take the pair ¿),i , j∈ T q−1 with the highest correlation coefficient that meets

the threshold value δ0 

Thus, we obtain Sq=( y d 1 , yd 2) and an index set I q = (d1 , d2¿. Now if

 r yk , y f ¿ δ0      for some k  ∈ I q and some  i∈ I {I ¿qthen we obtain the qth

homogenuous set  Sq= ( yd 1 , yd 2 , …, ydgq)  with index I q =(d1 , d2 , …,dgq) ⊂ I   .

If for some set Si+ 1 and index set I i+1 and for y i ∉(¿k=1¿l Sk ) ,

 r yk , y f
<¿ δ0    for all i,j ∈ I ¿k=1¿ l I k  then Si+1 is the last set of variables in the

original set of p variables and there are a total of l dimensions underlying the

correlation  matrix.

Similarity Based Dimensionality Detector

Consider a p variate random variable, Y  = 
Y 1 ,Y 2 , …,Y P

 
on which an

n × p data set is observed on a given multivariate system. Let CY denote a p×

p matrix of pairwise similarity measure based on Y. We assume that without

knowledge  of  the  appropriate  number  of  dimensions  underlying  the  data
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under consideration, an appropriate guess of the number of dimensions will

be at most the number of variables defining the data. It is also possible that

the  variables  are  inter-related  in  some  sense  which  may  be  simple  or

complex. This relationship may be informative about the intrinsic dimension

underlying the data and thus,  an appealing source for building a

dimensionality detection scheme for detecting dimension in such data. The

similarity-based algorithm for detecting dimension is outlined in algorithm1,

with  the  following  conversion  for  notation.  N(x)  denotes  the  number  of

variables in x. and Y\ Yi denotes the remaining variables without Yi, i = 1, . . .

p.

Algorithm 2: Similarity-based Dimensionality Detector

Initialization: Data: Y  = Y 1 ,Y 2 ,…, Y P. Set threshold, δ = δ0

Compute similarity matrix, CY = τ (Y ) = τ (Y1, . . . , Yp).

Compute lower triangular matrix of CY ,  DY

Compute fundamental spanning set, Sf  = {(Y i , Y J) : D  = max (DY ) , i ≠ j }.

Set mf = N(Sf), κ=0.

Compute reduced dataset,

Y ∗ = Y \ Sf = Y \ (Yi, Yj), i ≠ j

Set n∗ = p − mf , Hs = Sf and Hns = NULL

Do while n∗ > 2

1. DYk,Sf   = 
.
DYk,Yi,  DYk,Yj , Yk ∈ Y ∗
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2. if DYk,Sf ≥ δ0

• Sf = {(Yi, Yj, Yk)}

• mf = N (Sf )

• Hs = Sf

• Y ∗ = Y ∗ \ Yk

• n∗ = p − mf

3. else

• Hns = Yk

• Y ∗ = Y ∗ \ Yk

• n∗ = N (Y ∗)

4.  Go to step 1 . Otherwise return Hs, Hns, CY

 Explanation of Dimensionality Detection Algorithm Procedure

The algorithm initializes by generating the variance-covariance matrix

for p variables. Since Pearson’s correlation is symmetric, the lower triangular

matrix  is  used.  The highest  pairwise correlation  in  the variance-covariance

matrix is selected and the associated variables constitute the spanning set  sf .

All variables in the reduced matrix whose pairwise correlations are at least the

threshold  δ 0 are  used  to  update  the  spanning  set  giving  us  the  first

homogeneous set  s1. The process is repeated until  all possible homogenous
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sets are formed. The algorithm terminates when the number of variables in the

reduced dataset n∗ is at most two. The number of homogeneous sets gives us

the number of dimensions underlying the dataset for each threshold.

 Automated Threshold Setting

The use of threshold is primal in dimensionality detection as the

generation as well as the detection of homogeneous sets from a given

multivariate dataset is threshold driven. It is important to note that not

all thresholds  will yield homogeneous set. Also, it is highly likely

that a single threshold may generate multiple homogeneous sets.

 Mathematical Background

δ 1=¿, …, an]

δ 2=¿,…,an]

δ 3=[δ1 ≥~δ 1]

α 2=
an−a1

kδ

where α 1=0.01 , α2=
an−a1

kδ
       a1=min ⁡(DY )

an=max ⁡(DY ) 

~δ 1=median of δ 1

We set kδ=12

 Automated Threshold Setting Algorithm Procedures

 Automated Threshold Setting 1 (δ 1)

The algorithm picks the lowest pairwise correlation in the variance -

covariance matrix, generates series of thresholds using a step value of 0.01

until all thresholds in the variance -covariance matrix are accommodated. This
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generates a total of 80 thresholds. The dimensionality detection algorithm is

then used to generate homogeneous sets for each of these thresholds. Since

multidimensionality is expected, some thresholds could yield more than one

homogeneous set. The KMO values are then calculated for each homogeneous

set  for  each  threshold.  Sensitivity  analysis  is  then  carried  out  for  these

thresholds  in  an  attempt  to  pick  the  optimal  threshold  suitable  for

dimensionality detection for the dataset.

 Automated Threshold Setting Two (δ 2)

The  correlation  profile  used  is  the  Pearson’s  correlation  which  is

normally distributed. Statistically majority (about 97%) of the data points lie 3

standard deviations about the mean. This gives us 6 standard deviations; we

add an allowance of 2 standard deviations  to  cater  for the rest  of the data

points. The algorithm then uses a step value of the ratio of the range for the

variance  -covariance  matrix  to  the  resultant  standard  deviation  to  generate

series  of  thresholds.  This  generated  38  thresholds.  The  dimensionality

detection  algorithm is  then used to generate  homogeneous sets  for each of

these  thresholds.  Since  multidimensionality  is  expected  some  thresholds

yielded more than one homogeneous set. The KMO values are then calculated

for  each  homogeneous  set  that  corresponds  to  each  threshold.  Sensitivity

analysis  is  then  carried  out  for  these  thresholds  in  an  attempt  to  pick  the

optimal threshold suitable for dimensionality detection for the data set.

Automated Threshold Setting Three (δ 3)

This  procedure  is  based  on  Threshold  Setting  1.  Statistically  the

variance-covariance  matrix  used  which  hinges  on  Pearson’s  correlation  is
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symmetric. This makes the data points normally distributed. In view of this the

algorithm determines  the  median  for  thresholds  generated  using  automated

threshold setting 1 and selects those thresholds that are at least the median.

This  is  similar  to  the usage of  the lower triangular  matrix  of the variance

covariance  matrix.  The  dimensionality  detection  algorithm  is  then  used  to

generate  homogeneous  sets  for  each  of  these  thresholds.  Since

multidimensionality  is  expected,  some  thresholds  yield  more  than  one

homogeneous set. The KMO values are then calculated for each homogeneous

set that corresponds to each threshold. Sensitivity analysis is then carried out

for these thresholds in an attempt to pick the optimal threshold suitable for

dimensionality detection for the dataset.

Table 6: Dimensionality Detection for Dataset 1

SN/Threshold No of hom. Sets SN/KMO

[1] 0.15
[2] 0.16
[3] 0.17
[4] 0.18
[5] 0.19
[6] 0.20
[7] 0.21
[8] 0.22
[9] 0.23
[10] 0.24
[11] 0.25
[12] 0.26
[13] 0.27

1
1
1
1
1
1
1
1
1
1
1
1
1

[1]  0.6995
[[2]] 0.6995
[[3]] 0.6995
[[4]] 0.6995
[[5]] 0.6995
[[6]] 0.6995
[[7]]  0.6995
[[8]] 0.6995
[[9]] 0.6995
[[10]]0.6995
[[11]] 0.6995
[[12]] 0.6995
[[13]] 0.6995

[14] 0.28
[15] 0.29
[16] 0.30
[17] 0.31

1
1
1
1

[[14]] 0.6995
[[15]]] 0.6995
[[16]] 0.6995
[[17]]0.6995
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[18] 0.32
[19] 0.33
[20] 0.34
[21] 0.35
[22] 0.36
[23] 0.37
[24] 0.38
[25] 0.39
[26] 0.40
[27] 0.41

1
1
1
1
1
1
1
1
1
1

[[18]] 0.6995
[[19]] 0.6995
[[20]] 0.6995
[[21]] 0.6995
[[22]] 0.6995
[[23]] 0.6995
[[24]] 0.6995
[[25]] 0.6995
[[26]] 0.6995
[[27]] 0.6995

[28] 0.42

[29] 0.43

[30] 0.44

[31] 0.45

[32] 0.46

[33] 0.47

[34] 0.48

[35] 0.49

[36] 0.50

[37] 0.51

[38] 0.52

[39] 0.53

[40] 0.54

[41] 0.55

[42] 0.56

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[[28]]] 0.7571

[[29]] 0.7571

[[30]] 0.7571

[[31]] 0.7571

[[32]] 0.7571

[[33]] 0.7571

[[34]]0.7571

[[35]] 0.7571

[[36]] 0.7571

[[37]] 0.7571

[[38]] 0.7571

[[39]] 0.7571

[[40]] 0.7571

[[41]] 0.7571

[[42]] 0.7571
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75

[43] 0.57

[44] 0.58

[45] 0.59

[46] 0.60

[47] 0.61

[48] 0.62

[49,] 0.63

[50] 0.64

[51] 0.65

[52] 0.66

[53] 0.67

[54] 0.68

[55] 0.69

[56] 0.70

1

2

2

2

2

2

2

2

2

2

2

2

2

2

[[43]] 0.7571

[[44]] 0.8587       0.5000

[[45]] 0.8587       0.5000

[[46]] 0.8587       0.5000

[[47]] 0.8587       0.5000

[[48]] 0.8587       0.5000

[[49]] 0.8587       0.5000

[[50]]0.8587        0.5000

[[51]] 0.8587       0.5000

[[52]] 0.8587       0.5000

[[53]] 0.8587       0.5000

[[54]] 0.8587       0.5000

[[55]] 0.8587       0.5000

[[56]] 0.8587       0.5000

[57] 0.71

[58] 0.72

[59] 0.73

[60] 0.74

[61] 0.75

[62] 0.76

[63] 0.77

[64] 0.78

[65] 0.79

[66] 0.80

[67] 0.81

[68] 0.82

[69] 0.83

[70] 0.84

2

2

2

2

2

2

2

2

2

2

2

2

2

2

[[57]] 0.8587      0.5000

[[58]] 0.8587      0.5000

[[59]] 0.8587      0.5000

[[60]] 0.8587      0.5000

[[61]] 0.8587      0.5000

[[62]]0.8587       0.5000

[[63]]] 0.8587     0.5000

[[64]] 0.8587      0.5000

[[65]] 0.8587      0.5000

[[66]] 0.8587      0.5000

[[67]] 0.8587      0.5000

[[68]]0.8587       0.5000

[[69]] 0.8587      0.5000

[[70]] 0.8587      0.5000
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Source: Author’s Construct (2022)

From Table 6, it is observed that the automated threshold setting which

allows the dataset to generate its own threshold is used to generate series of

thresholds, thus 80 in this case. Though some thresholds may appear small, it

is not in our power to determine the thresholds generated by the algorithm.

Our mandate  is  to  allow the algorithm detect  the optimal  threshold that  is

suitable  for  dimensionality  detection  for  this  dataset.  Subsequently  the

dimensionality  detection  algorithm  generates  homogenous  set(s)  for  each

threshold. It is possible to have either a single homogeneous set giving one

dimension, two homogeneous sets giving us two dimensions and so on as we

outlined early on in Chapter One that it is possible for a multivariate dataset to

be unidimensional meaning we have only one latent construct underlying the

data and also multidimensional  meaning we have two or more latent  traits

explaining  the phenomenon being studied .  The modified  automated  KMO

algorithm is then used to calculate the KMO for each homogeneous set. It is

observed that if there are multiple homogenous sets for a particular threshold,

the algorithm calculates the KMO for each homogenous set. For instance, for

threshold 0.92, resulting in two homogeneous sets, the algorithm calculates the

KMO for each homogeneous set namely 0.7848 and 0.5 respectively. Since

KMO is a measure of homogeneity the higher it is the better. So in a case

where we have multiple KMO we pick the highest .We then graph the KMO

against  the  thresholds  to  determine  either  a  unique  optimal  threshold  or  a

saturation point if any.
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Figure 1: Sensitivity Analysis for Dataset 1

The graphs in Figure 1 depict the plot of KMOs against the various

thresholds. Though we have a couple of saturation points, our interest is the

one  that  corresponds  to  the  highest  KMO.  It  could  be  observed  that  the

saturation points for all three graphs corresponding to the highest KMO lie

within 0.6 and 0.85 inclusive.  This  means  any threshold  within  this  range

could be the optimal threshold for dimensionality detection for this dataset. 

 Selecting an Optimal Threshold from the Saturation Point

A resultant  saturation  point  indicates  that  any  threshold  within  this

range is suitable for dimensionality detection for the given dataset. However,

each threshold within this range could give different factor solutions when the
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multivariate dataset is subjected to factor analysis. Consequently we should be

able  to  select  a  threshold  that  generates  the  optimal  factor  solution.  The

dimensionality detection outlined in this research hinges on KMO which is

calculated for each homogeneous set. We observed that the larger the number

of variables in a homogeneous set, the higher the KMO. This suggests that the

threshold within the saturation point which accounts for the homogeneous set

with  the  highest  number  of  variables  and  a  corresponding  highest  KMO

should be the threshold that generates the optimal factor solution. We attempt

to investigate this in the next table.
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Table 7: Threshold Selection for Optimal Factor Solution

SN/Threshold No. of 
hom. Sets

No.  of variables 
in hom. Set

KMO

[1] 0.15

[2] 0.16

[3] 0.17

[4] 0.18

[5] 0.19

[6] 0.20

[7] 0.21

[8] 0.22

[9] 0.23

[10] 0.24

[11] 0.25

[12] 0.26

[13] 0.27

[14] 0.28

[15] 0.29

[16] 0.30

[17] 0.31

[18] 0.32

[19] 0.33

[20] 0.34

[21] 0.35

[22] 0.36

[23] 0.37

[24] 0.38

[25] 0.39

[26] 0.40

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

[1]    0.6995

[[2]] 0.6995

[[3]] 0.6995

[[4]] 0.6995

[[5]] 0.6995

[[6]] 0.6995

[[7]] 0.6995

[[8]] 0.6995

[[9]] 0.6995

[[10]]0.6995

[[11]] 0.6995

[[12]] 0.6995

[[13]] 0.6995

[[14]] 0.6995

[[15]]] 0.6995

[[16]] 0.6995

[[17]]0.6995

[[18]] 0.6995

[[19]] 0.6995

[[20]] 0.6995

[[21]] 0.6995

[[22]] 0.6995

[[23]] 0.6995

[[24]] 0.6995

[[25]] 0.6995

[[26]] 0.6995
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[27] 0.41

[28] 0.42

[29] 0.43

[30] 0.44

[31] 0.45

[32] 0.46

[33] 0.47

[34] 0.48

[35] 0.49

[36] 0.50

[37] 0.51

[38] 0.52

[39] 0.53

[40] 0.54

[41] 0.55

[42] 0.56

[43] 0.57

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

[[27]] 0.6995

[[28]]] 0.7571

[[29]] 0.7571

[[30]] 0.7571

[[31]] 0.7571

[[32]] 0.7571

[[33]] 0.7571

[[34]]0.7571

[[35]] 0.7571

[[36]] 0.7571

[[37]] 0.7571

[[38]] 0.7571

[[39]] 0.7571

[[40]] 0.7571

[[41]] 0.7571

[[42]] 0.7571

[[43]] 0.7571

80
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81

[44] 0.58

[45] 0.59

[46] 0.60

[47] 0.61

[48] 0.62

[49,] 0.63

[50] 0.64

[51] 0.65

[52] 0.66

[53] 0.67

[54] 0.68

[55] 0.69

[56] 0.70

[57] 0.71

[58] 0.72

[59] 0.73

[60] 0.74

[61] 0.75

[62] 0.76

[63] 0.77

[64] 0.78

[65] 0.79

[66] 0.80

[67] 0.81

[68] 0.82

[69] 0.83

[70] 0.84

[71] 0.85

[72] 0.86

[73] 0.87

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

4, 2

3, 2

3, 2

3, 2

3, 2

[[44]] 0.8587     0.5000

[[45]] 0.8587     0.5000

[[46]] 0.8587     0.5000

[[47]] 0.8587     0.5000

[[48]] 0.8587     0.5000

[[49]] 0.8587     0.5000

[[50]]0.8587      0.5000

[[51]] 0.8587     0.5000

[[52]] 0.8587     0.5000

[[53]] 0.8587     0.5000

[[54]] 0.8587     0.5000

[[55]] 0.8587     0.5000

[[56]] 0.8587     0.5000

[[57]] 0.8587     0.5000

[[58]] 0.8587     0.5000

[[59]] 0.8587     0.5000

[[60]] 0.8587     0.5000

[[61]] 0.8587     0.5000

[[62]]0.8587      0.5000

[[63]]] 0.8587    0.5000

[[64]] 0.8587     0.5000

[[65]] 0.8587     0.5000

[[66]] 0.8587     0.5000

[[67]] 0.8587     0.5000

[[68]]0.8587      0.5000

[[69]] 0.8587     0.5000

[[70]] 0.8587     0.5000

[[71]] 0.7848     0.5000

[[72]] 0.7848     0.5000

[[73]] 0.7848     0.5000
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Source: Author’s Construct (2022)

As opposed to the earlier assertion that the threshold that accounts for

the optimal factor solution should be the threshold with the homogenuous set

that has the highest number of variables and a corresponding highest KMO,

from the Table 7, it could be observed that all thresholds within the saturation

point have homogeneous sets with the same number of variables but not a

unique  highest  KMO.  This  suggests  that  it  is  possible  that  none  of  these

thresholds  could  generate  an  optimal  factor  solution.  An  attempt  is

subsequently  made  to  show  whether  it  is  possible  to  use  any  of  these

thresholds to generate an optimal factor solution for these data by carrying out

a confirmatory factor analysis.
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 Confirmatory Test of Model Adequacy for Dataset 1 

In this dataset, we first test the adequacy of the one-, two- and three

factor models equivalent to one, two and three dimensions to determine which

is the most suitable. As indicated earlier by our assessment, we suspect that

each  threshold  within  the  saturation  point  could  yield  different  factor

solutions. Our aim here is to conduct a confirmatory factor analysis to justify

our assertions.

Table 8: Significance test of Factor Solutions for Dataset 1

Model Chi-Square Df Sig.

1 162.715 14 0.000

2 117.114 8 0.000

3 61.651 3 0.000

Source: Author’s Construct (2022)

Since our highest number of dimensions for the data does not exceed

three,  it  suggests  a  3-factor  solution.  The  confirmatory  factor  analysis  is

therefore carried out for a maximum of three factors. In Table 8, no specific

factor solution is seen to fit the model due to the small p-values. This confirms

that  there  is  no  unique  homogeneous  set  that  has  the  highest  number  of

variables and hence no unique highest KMO. It implies that these data may not

be practically suitable for factor extraction.
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Table 9: Dimensionality Detection for Dataset 2

Threshold No. of hom. Sets KMOS

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

[[1]] 0.8242  0.5000

[[2]] 0.7942  0.5000

[[3]] 0.7942  0.5000

[[4]] 0.8058  0.5000  0.5000

[[5]] 0.8058  0.5000  0.5000

[[6]] 0.8058  0.5000  0.5000

[[7]] 0.8058  0.5000  0.5000

[[8]] 0.8058  0.5000  0.5000

[[9]] 0.8058  0.5000  0.5000

[[10]] 0.8058  0.5000  0.5000

[[11]] 0.8058  0.5000  0.5000

[[12]] 0.8058 0.5000  0.5000

[[13]] 0.8058  0.5000  0.5000

[[14]] 0.8058  0.5000  0.5000

[[15]] 0.8058  0.5000  0.5000

[[16]] 0.8058  0.5000  0.5000

[[17]] 0.8058 0.5000  0.5000

[[18]] 0.8058  0.5000  0.5000

[[19]] 0.8058  0.5000  0.5000

[[20]] 0.8058  0.5000  0.5000

[[21]] 0.8058  0.5000  0.5000
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0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

[[22]] 0.8058  0.5000  0.5000

[[23]] 0.8058  0.5000  0.5000

[[24]] 0.7202  0.5000  0.5000

[[25]] 0.7202  0.5000 0.5000

[[26]] 0.5 0.5 0.5 0.5

[[27]] 0.5 0.5 0.5 0.5

[[28]] 0.5 0.5 0.5 0.5

[[29]] 0.5 0.5 0.5 0.5

[[30]] 0.5 0.5 0.5 0.5

[[31]] 0.5 0.5 0.5 0.5

[[32]] 0.5 0.5 0.5 0.5

[[33]] 0.5 0.5 0.5 0.5

[[34]] 0.5 0.5 0.5 0.5

[[35]] 0.5 0.5 0.5 0.5

[[36]] 0.5 0.5 0.5 0.5

[[37]] 0.5 0.5 0.5 0.5

[[38]] 0.5 0.5 0.5 0.5

     

       Author’s Contruct (2022)

From  Table  9  it  is  observed  that  the  automated  threshold  setting

generates  series  of  thresholds,  38  in  this  case.   The  task  is  to  allow  the

algorithm to detect the optimal threshold that is suitable  for dimensionality

detection  for  this  dataset.  Subsequently,  the  dimensionality  detection

algorithm  generates  homogenous  set(s)  for  each  threshold.  The  modified
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automated  KMO  algorithm  is  then  used  to  calculate  the  KMO  for  each

homogeneous set. It is observed that if there are multiple homogenous sets for

a particular threshold, the algorithm calculates the KMO for each homogenous

set. For instance, for threshold 0.62, resulting in three homogeneous sets the

algorithm calculates the KMO for each homogeneous set, namely, 0.7202, 0.5

and 0.5, respectively. Since KMO is a measure of homogeneity the higher it is

the better. So in a case where we have multiple KMOs, we pick the highest.

We  then  generate  a  graph  of  the  KMOs  against  the  thresholds  to

determine either a unique optimal threshold or a saturation point, if any. 

 Figure 2: Sensitivity Analysis of Implementation Based on Dataset 2

The graph in Figure 2 shows that there is a saturation point between

0.42  and  0.63.  However,  the  range  does  not  contain  the  highest  KMO

(0.8242). It could therefore be observed that a threshold of 0.38 is the unique

optimal  threshold  for  dimensionality  detection  for  this  dataset  since  it

corresponds to the highest KMO (0.8242). 
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 Threshold Selection for Optimal Factor Solution

If there is a unique optimal threshold for dimensionality detection for a

dataset as demonstrated in Dataset 2, then this threshold should automatically

give the optimal factor solution. We proceed to confirm this and also perform

a confirmatory factor analysis.  We attempt to show that the highest KMO is

the one that corresponds to the homogeneous set with the highest number of

variables and that the threshold for this particular homogeneous set should be

the  threshold  that  generates  the  optimal  factor  solution.  In  Table  10,  the

specific number of variables in each homogenuous set is provided along with

the respective KMO. 

Table 10: Threshold Selection for Optimal Factor Solution Based on 

           Dataset 2

Threshold No. of hom. Sets No. of variables 
in hom.  Sets

KMO

0.38
2

6

2

0.8242

0.5000

0.39
2

5

2

0.7942

0.5000

0.40
2

5

2

0.7942

0.5000

0.41

3

4

2

2

0.8058

0.5000

0.5000

0.42

3

4

2

2

0.8058

0.5000

 0.5000

0.43 3 4

2

0.8058

0.5000 
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2 0.5000

0.44

3

4

2

2

0.8058

0.5000

 0.5000

0.45

3

4

2

2

0.8058

0.5000

0.5000

0.46

3

4

2

2

0.8058

0.5000

0.5000

0.47

3

4

2

2

0.8058

0.5000

0.5000

0.48

3

4

2

2

0.8058

0.5000

0.5000

0.49

3

4

2

2

0.8058

0.5000

0.5000

0.50

3

4

2

2

0.8058

0.5000

0.5000

0.51

3

4

2

2

0.8058

0.5000

0.5000

0.52

3

4

2

2

0.8058

0.5000

0.5000

0.53

3

4

2

2

0.8058

0.5000

0.5000
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0.54

3

4

2

2

0.8058

0.5000

0.5000

0.55

3

4

2

2

0.8058

0.5000

0.5000

0.56

3

4

2

2

0.8058

0.5000

0.5000

0.57

3

4

2

2

0.8058

0.5000

0.5000

0.58

3

4

2

2

  0.8058

  0.5000

  0.5000

0.59

3

4

2

2

  0.8058

  0.5000

  0.5000

0.60

3

4

2

2

  0.8058

  0.5000

  0.5000

0.61

3

3

2

2

  0.7202

  0.5000

  0.5000

0.62

3

3

2

2

  0.7202

  0.5000

  0.5000

0.63 4 2

2

  0.5000

  0.5000
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2

2

0.5000

0.5000

0.64

4

2

2

2

2

0.5000

0.5000

0.5000

0.5000

0.65 4 2

2

2

2

0.5

0.5

0.5

0.5

0.66 4 2

2

2

2

0.5

0.5

0.5

0.5

0.67 4 2

2

2

2

0.5

0.5

0.5

0.5

0.68 4 2

2

2

2

0.5

0.5

0.5

0.5

0.69 4 2

2

2

2

0.5

0.5

0.5

0.5

0.70 4 2

2

2

2

0.5

0.5

0.5

0.5
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0.71 4 2

2

2

2

0.5

0.5

0.5

0.5

0.72 4 2

2

2

2

0.5

0.5

0.5

0.5

0.73 4 2

2

2

2

0.5

0.5

0.5

0.5

0.74 4 2

2

2

2

0.5

0.5

0.5

0.5

0.75 4 2

2

2

2

0.5

0.5

0.5

0.5

Source: Author’s Construct (2022)

Table  10  displays  the  various  thresholds,  their  corresponding

homogeneous  sets,  number  of  variables  in  each  homogenous  set  and

corresponding KMOs. 

From  Table  10  it  could  be  observed  that  a  threshold  of  0.38,

corresponding to a homogenous set with the highest number of variables (6)

has the highest KMO making it the threshold that generates the optimal factor

solution for Dataset 2 as suspected earlier. Though the two homogeneous sets
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both have the same threshold, the KMO for the entire data set (0.822) shows

that  the  required  homogeneous  set  is  the  one  whose  KMO is  equal  to  or

greater than the full KMO.

 Confirmatory Test of Model Adequacy for Dataset 2

It is indicated earlier that the second confirmatory test to verify our

assertion that if a dataset generates an optimal threshold for dimensionality

detection,  then  this  threshold  should  automatically  yield  an  optimal  factor

solution based on a confirmatory factor analysis test.

In this dataset, we first test the adequacy of the one-, two, three and

four  factor  models  equivalent  to  one,  two,  three  and  four  dimensions  to

determine which is the most suitable. 

Table 11: Significance Test of Factor Solutions for Dataset 2

Model      Chi-Square        Df Sig.

1 41.949 27 0.033

2 18.505 19 0.489

3 10.144 12 0.603

4 2.584 6 0.859

Source: Author’s Construct (2022)

Table 11 shows the best possible fitting factor solutions that can be

obtained for Dataset 2. Model 2 is the least-fitting factor solution since the p-

value begins to get greater than 0.05 with a two-factor solution model. It also

shows that factor solutions containing two factors or more are all suitable. The

question now is: which factor solution is optimal?  The results based on our

algorithm (Table 10) indicates that the two factor solution would be the best
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since it contains a homogenous set with the highest number of variables. This

is in line with our earlier results.

  Dimensionality Detection based on Order Statistics 

It is intimated in our objective that works done in earlier research do

not investigate the robustness of their method to other correlation profiles as

only Pearson’s Correlation is used. Statistically the variance-covariance matrix

of the Pearson’s correlation hinges on the mean which is affected by extreme

values. So, an attempt is made to test the robustness of the algorithm using

another correlation profile which hinges on a statistic which is not affected by

extreme values. In this study we make use of the order statistic, which hinges

on the median. Here the values of the  p variables are ordered. A correlation

matrix is then generated for these ordered variables.

 Order Statistics Algorithm Procedure

The  algorithm  generates  the  correlation  matrix  for  p  variables,  x1,

x2, x3 ,…, xp and  returns  the  order  statistics  for  the  variables   x(1),

x(2) , x(3) , …, x(p ).  Meaning the  sample  values  placed  in  ascending order.x(1),

x(2) , x(3) , …, x(p ) is the set of ordered values form the original sample values.

The  correlation  matrix  is  then  generated  for  these  ordered  variables.  The

dimensionality detection algorithm is then applied to detect dimensionality for

the dataset.
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Table 12: Order Statistic Implementation
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95

SN/Threshold No. of hom. 
Sets

KMO

[1] 0.31
[2] 0.32
[3] 0.33
[4] 0.34
[5] 0.35
[6] 0.36
[7] 0.37
[8] 0.38
[9] 0.39
[10] 0.40
[11] 0.41
[12] 0.42
[13] 0.43
[14] 0.44
[15] 0.45
[16] 0.46
[17] 0.47
[18] 0.48
[19] 0.49
[20] 0.50
[21] 0.51
[22] 0.52
[23] 0.53
[24] 0.54
[25] 0.55
[26] 0.56
[27] 0.57
[28] 0.58
[29] 0.59
[30] 0.60
[31] 0.61
[32] 0.62
[33] 0.63
[34] 0.64
[35] 0.65
[36] 0.66
[37] 0.67
[38] 0.68
[39] 0.69
[40] 0.70

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

[1]   0.6995
[[2] 0.6995
[[3] 0.6995
[4] 0.6995
[[5] 0.6995
[[6] 0.6995
[[7]] 0.6995
[8]] 0.6995
[9]] 0.6995
[10] 0.6995
[11] 0.6995
[12] 0.6995
[13] 0.6995
[14] 0.6995
[15] 0.7614
[16] 0.7614
[17] 0.7614
[18] 0.7571
[19] 0.7571
[[20]] 0.7571
[[21]] 0.8587  0.5000
[[22]  0.8587  0.5000
[[23]  0.8587  0.5000
[[24]] 0.8587  0.5000
[[25]] 0.8587  0.5000
[[26]] 0.8587  0.5000
[[27]] 0.8587  0.5000
[[28]] 0.8587  0.5000
[[29]] 0.8587  0.5000
[30]   0.8587  0.5000
[31]   0.8587  0.5000
[32]   0.8587  0.5000
[33]   0.8587  0.5000
[34]   0.8587  0.5000
[35]   0.8587  0.5000
[36]   0.8587  0.5000
[37]   0.8587  0.5000
[38]   0.8587  0.5000
[39]   0.8587  0.5000
[40]   0.8587  0.5000

[41] 0.71
[42] 0.72
[43] 0.73
[44] 0.74
[45] 0.75
[46] 0.76
[47] 0.77
[48] 0.78
[49] 0.79

2
2
2
2
2
2
2
2
2

[41] 0.8587  0.5000
[42] 0.8587  0.5000
[43] 0.8587  0.5000
[44] 0.8587  0.5000
[45] 0.8587  0.5000
[46] 0.8587  0.5000
[47] 0.8587  0.5000
[48] 0.8587  0.5000
[49] 0.8587  0.5000
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Source: Author’s Construct (2022)

Table  12  shows  series  of  threshold  generated  using  the  automated

threshold setting outlined early on.  The Dimensionality  detection algorithm

generates  homogeneous  set(s)  for  each  threshold.  The  KMO  algorithm

calculates the KMO for each homogeneous set. In case a threshold generates

multiple homogeneous sets and corresponding multiple KMOs we choose the

highest.  This is because KMO is measure of homogeneity so the higher it is

the better it is. We graph the KMO’S against the thresholds to determine either

a unique optimal threshold or the saturation point if any.
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Figure 3: Sensitivity Analysis for Dataset 1 Based on Order Statistic profile

The graphs in Figure 3 show a plot of KMOs against the correspond

thresholds. It could be observed that the saturation point for all three graphs lie

within 0.6 and 0.85 inclusive meaning any threshold within this range could be

the optimal threshold for dimensionality detection for this dataset. This is also

supported by the highest KMOs.

Since  similar  results  were  obtained  for  Pearson’s  corelation,  this

establishes the robustness of the method to other correlation profiles that hinge

on the median. It is also observed that the results show that the same number

of variables in each homogenous set for each cut-off for both the Pearson’s

correlation and order statistics.  This also establishes that the method is not

sensitive to the correlation profile used.

 Robustness of Method using a Reduced Dataset

The  dimensionality  detection  method  outlined  early  on  used  a

correlation profile which hinges on all  the original  variables in the dataset.

Meaning we generated  the  corelation  matrix  using  all  the  variables  in  the

original dataset. For a dataset with extreme values, some extreme values may

not contribute prominently towards explaining the phenomenon under study.

So it is important to control for those extreme values by selecting the k highest

contributors. We then generate a correlation matrix for this reduced dataset for

dimensionality  detection.  The  idea  is  to  compare  the  results  for  using  a

correlation profile that hinges on all the original variables in the dataset to the

results of a correlation profile that hinges on the k highest contributors after

controlling for extreme values.
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Original Data Layout

Consider a set of  p -variables and  n observations. The data layout is

given below.

Table 13: Original Data Layout on p Variables

y1 y2 y p

y11 y21 y p 1

y12

            .

y22

            .

y p 2

           .
             .             .            .
           y1 n y2 n y pn

To determine the contributions of each of the p variables, we extract a

feature from these variables that automatically controls for outliers based on

probability distributions since this automatically controls for outlier. 

Figure 4: A Plot of Probability Distribution Function Values against the 

   Variables

Statistically,  whenever  we  plot  the  probability  distribution  function

values against the observations, we get the density plot as shown in Figure 4.

Regardless  of  the  nature  of  the  distribution,  the  variables  are  ordered

automatically  so  the  mode is  always  found at  the  peak.  Also,  the  median
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would divide the density in two equal halves. This means that values close to

the tail of the distribution have smaller weights. From this, the variable that

happens to be the median assumes the highest probability distribution value, in

this case the highest probability density function value.  Now it  is observed

from the diagram that  y11 f ( y11) , y12 f ( y12) ,…,  y1n f ( y1 n ) denote the mean of

y11 , y12,…y1 n which  is  their  individual  contributions  towards  the  common

center. Reason being statistically the kth moment about the origin is given by 

E (Y k )={∫ yk f ( y )dy , y continuous

∑
y

yk f ( y ) , ydiscrete                                         (4.4)

We set k =1 to get the first moment about the origin given by 

           E (Y )=∫ y f ( y ) dy , for y continuous                                     (4.5)

This gives the mean of the distribution which gives information about

the center of the distribution. Thus,  yf ( y ) indicates the contribution of each

variable towards the center. Also, the closer a variable is to the center,  the

higher  its  contribution  towards  the  common  center  E(Y).  It  is  therefore

possible  to  identify  the  variables  that  contribute  more  based  on  their

probability  distribution  values  and then  use these variables  to  generate  the

correlation profile as opposed to the use of all the original  p variables. The

Kernel Smoothing package in R is used to generate the probability distribution

values.  

It is clear from Figure 4 that each y has its own density value. We also

observe that when the y is closer to the tail of the distribution, its density value

is smaller but as it tends towards the center its density value increases. Based
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on  these  arguments  we  extract  a  feature  T(y)  = y f ( y ) where  T(y)  is  the

statistics and y f ( y ) is the contribution of each y towards the common center.

The T(y) extracted is shown in Table14.
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Table14: Data Layout of Extracted Feature T(y)

         T (y1)        T (y2) …           T (y p)

t ( y11) t ( y21) t ( y p 1)

t ( y12) t ( y22) t ¿

                 ⋮ ⋮                  ⋮

          t( y1 n¿ t ( y2 n) t ( y pn)

Source: Author’s Construct (2022)

where t ( y¿¿ ij)= y ij f ( y¿¿ ij)¿¿     , i = 1,…,p;  j = 1,…,n

Now we order the columns of T(y)  in  order to select  the  k highest

contributors  based  on  the  strength  of  their  contribution  and  use  the  70%

training  rule  in  Machine  learning  to  select  the  k highest  contributors.

Mahanatesh (2020),  intimated  that  in Machine learning 70% of the dataset

should  be  used for  training  (to  model)  and 30% for  testing  (assessing  the

predictive performance of the model). Thus, the value of  k is 0.7 times the

size  of  the  data.  We then  compute  the  correlation  matrix  for  the  reduced

dataset,  detect  dimensionality  for  this  reduced  dataset  and compare  results

with that of the full dataset.
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Table 15: Correlation Matrix for Reduced Dataset 1

                    x1 x2 x3 x4 x5 x6

x2                0.921

x3                0.881   0.834

x4                0.594    0.541   0.702

x5                0.774    0.767    0.695    0.595

x6                0.669     0.456   0.673    0.217   0.508

x7               0.917      0.957   0.848    0.429   0.650   0.533

Source: Author’s Construct (2022)

Comparing  the  pairwise  correlations  in  the  reduced  data  set  after

controlling for extreme values to  the correlation matrix  for all  the original

variables in  Table 15 it  observed that  some pairwise correlations increased

whiles  others  decreased.  For  example  in  the  original  correlation  matrix   (

x2 , x1¿¿=0.921 , whiles  in  the  reduced  dataset,  correlation  matrix  ¿.  We

suspect these changes may be due to the control for outliers. The benefits may

not be evident here but rather in the final results for dimensionality detection

using this  reduced correlation  matrix.  We proceed to  detect  dimensionality

using the ‘reduced correlation matrix’.
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Table 16: Dimensionality Detection for Reduced Dataset 1

SN/Threshold No. of hom. Sets SN/KMO

[1,] 0.22

[2,] 0.23

[3,] 0.24

[4,] 0.25

[5,] 0.26

[6,] 0.27

[7,] 0.28

[8,] 0.29

[9,] 0.30

[10,] 0.31

[11,] 0.32

[12,] 0.33

[13,] 0.34

1

1

1

1

1

1

1

1

1

1

1

1

1

[[1]] 0.7045

[[2]] 0.7045

[[3]] 0.7045

[[4]] 0.7045

[[5]] 0.7045

[[6]] 0.7045

[[7]] 0.7045

[[8]] 0.7045

[[9]] 0.7045

[[10]]0.7045

[[11]] 0.7045

[[12]] 0.7045

[[13]] 0.7045

[14,] 0.35

[15,] 0.36

[16,] 0.37

[17,] 0.38

[18,] 0.39

[19,] 0.40

[20,] 0.41

[21,] 0.42

[22,] 0.43

[23,] 0.44

[24,] 0.45

[25,] 0.46

1

1

1

1

1

1

1

1

1

1

1

1

[[14]] 0.7045

[[15]] 0.7045

[[16]] 0.7045

[[17]] 0.7045

[[18]] 0.7045

[[19]] 0.7045

[[20]] 0.7045

[[21] 0.7045

[[22]] 0.7712

[[23]] 0.7712

[[24]] 0.7712

[[25]] 0.7826

103

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



[26,] 0.47

[27,] 0.48

1

1

[[26]] 0.7826

[[27]] 0.7826

[28,] 0.49

[29,] 0.50

[30,] 0.51

[31,] 0.52

[32,] 0.53

[33,] 0.54

[34,] 0.55

[35,] 0.56

[36,] 0.57

[37,] 0.58

[38,] 0.59

[39,] 0.60

[40,] 0.61

[41,] 0.62

[42,] 0.63

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[[28]] 0.7571

[[29]] 0.7571

[[30]]0.7571

[[31]] 0.7571

[[32]] 0.7571

[[33]] 0.7571

[[34]] 0.7571

[[35]] 0.7571

[[36]] 0.7571

[[37]] 0.7571

[[38]] 0.7571

[[39]] 0.7571

[[40]] 0.7571

[[41]] 0.7571

[[42]] 0.7571

[43,] 0.64

[44,] 0.65

[45,] 0.66

[46,] 0.67

[47,] 0.68

[48,] 0.69

1

1

2

2

2

2

[[43]] 0.7826

[[44]] 0.7826

[[45]]0.8360 0.5000

[[46]] 0.8360 0.5000

[[47]] 0.8360 0.5000

[[48]] 0.8360 0.5000
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[49,] 0.70

[50,] 0.71

[51,] 0.72

[52,] 0.73

[53,] 0.74

[54,] 0.75

[55,] 0.76

[56,] 0.77

2

2

2

2

2

2

2

2

[[49]] 0.8360 0.5000

[[50]] 0.8360 0.5000

[[51]] 0.8360 0.5000

[[52]] 0.8360 0.5000

[[53]] 0.8360 0.5000

[[54]] 0.8360 0.5000

[[55]] 0.8360 0.5000

[[56]] 0.8360 0.5000

[57,] 0.78

[58,] 0.79

[59,] 0.80

[60,] 0.81

[61,] 0.82

[62,] 0.83

[63,] 0.84

[64,] 0.85

[65,] 0.86

[66,] 0.87

[67,] 0.88

[68,] 0.89

[69,] 0.90

2

2

2

2

2

2

2

2

2

2

2

2

2

[[57]] 0.8360 0.5000

[[58]] 0.8360 0.5000

[[59]] 0.8360 0.5000

[[60]] 0.8360 0.5000

[[61]] 0.8360 0.5000

[[62]] 0.8360 0.5000

[[63] 0.7731 0.5000

[[64]] 0.7731 0.5000

[[65]] 0.7731 0.5000

[[66]] 0.7731 0.5000

[[67] 0.7731 0.5000

[[68]] 0.7731 0.5000

[[69]] 0.7731 0.5000
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[70,] 0.91

[71,] 0.92

[72,] 0.93

[73,] 0.94

[74,] 0.95

[75,] 0.96

2

3

3

3

3

3

[[70]] 0.7731 0.5000

[[71]] 0.5 0.5 0.5

[[72]]0.5 0.5 0.5

[[73]] 0.5 0.5 0.5

[[74]] 0.5 0.5 0.5

[[75]] 0.5 0.5 0.5

Source: Author’s Construct (2022)

Table  16  shows series  of  thresholds  generated  using  the  automated

threshold setting outlined early on. Now comparing the KMOs for the reduced

dataset in Table 16 to that of the full dataset in Table 6 indicate higher KMOs

for the reduced dataset. For instance, a threshold of 0.22 in the full data set has

a KMO of 0.6995 whiles the same threshold of 0.22 for the reduced dataset

has a KMO of 0.7045. Similar patterns are observed for other thresholds. This

gives a glimpse of a more superior result ahead.  We graph the KMO against

the thresholds to determine either a unique optimal threshold or the saturation

point, if any.
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Figure 5: Sensitivity Analysis of Implementation Based on Reduced Dataset 1

The  graph  to  the  right  shows  the  plot  of  KMOs  against  the

corresponding thresholds for the reduced dataset. It could be observed that the

saturation  points  for  all  three  graphs  lie  within  0.65  and  0.85  inclusive

meaning any threshold within this range could be the optimal threshold for

dimensionality detection for this dataset. This is also supported by the highest

KMOs.  Though  the  number  of  dimensions  generated  by  these  thresholds

remain the same for both the reduced and the full datasets, the interval of 0.65

and 0.85 for the reduced dataset (Graph to the right in Fig.5) is  shorter as

opposed to 0.6 and 0.85 (Graph to the left in Figure 5) inclusive for the full

dataset. This makes the use of reduced dataset after controlling for extreme
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values  when  detecting  dimensionality  computationally  less  expensive  as

opposed to the full dataset since it takes a shorter time to arrive at a shorter

interval. We attempt to summarise the thresholds and highest KMO for both

the full  and reduced datasets  in  Table  17 to  paint  a  clearer  picture  of  the

assertion.

Table  17:  Summary  of  Thresholds  and  Highest  KMOs  for  Full  and

Reduced Datasets.

Threshold for
Full Dataset

Threshold for
Reduced Dataset

Highest KMOs
for Full Dataset

Highest KMOs for
Reduced Dataset

[1] 0.15

[2] 0.16

 [3] 0.17

 [4] 0.18

 [5] 0.19

 [6] 0.20

 [7] 0.21

 [8] 0.22

 [9] 0.23

[10] 0.24

[11] 0.25

[12] 0.26

[13] 0.27

[14] 0.28

[15] 0.29

[1] 0.22

 [2] 0.23

 [3] 0.24

 [4] 0.25

 [5] 0.26

 [6] 0.27

 [7] 0.28

 [8] 0.29

 [9] 0.30

[10] 0.31

[11] 0.32

[12] 0.33

[13] 0.34

[14] 0.35

[15] 0.36

[1] 0.6995

[2] 0.6995

 [3] 0.6995

 [4] 0.6995

 [5] 0.6995

 [6] 0.6995

 [7] 0.6995

 [8] 0.6995

 [9] 0.6995

[10] 0.6995

[11] 0.6995

[12] 0.6995

[13] 0.6995

[14] 0.6995

[15] 0.6995

[1] 0.7045

 [2] 0.7045

 [3] 0.7045

 [4] 0.7045

 [5] 0.7045

 [6] 0.7045

 [7] 0.7045

 [8] 0.7045

 [9] 0.7045

[10] 0.7045

[11] 0.7045

[12] 0.7045

[13] 0.7045

[14] 0.7045

[15,] 0.7045
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[16] 0.30

[17] 0.31

[18] 0.32

[19] 0.33

[20] 0.34

[21] 0.35

[22] 0.36

[23] 0.37

[24] 0.38

[25] 0.39

[26] 0.40

[27] 0.41

[28] 0.42

[29] 0.43

[30] 0.44

[31] 0.45

[32] 0.46

[33] 0.47

[34] 0.48

[35] 0.49

[36] 0.50

[37] 0.51

[38] 0.52

[39] 0.53

[16] 0.37

[17] 0.38

[18] 0.39

[19] 0.40

[20] 0.41

[21] 0.42

[22] 0.43

[23] 0.44

[24] 0.45

[25] 0.46

[26] 0.47

[27] 0.48

[28] 0.49

[29] 0.50

[30] 0.51

[31] 0.52

[32] 0.53

[33] 0.54

[34] 0.55

[35] 0.56

[36] 0.57

[37] 0.58

[38] 0.59

[39] 0.60

[16] 0.6995

[17] 0.6995

[18] 0.6995

[19] 0.6995

[20] 0.6995

[21] 0.6995

[22] 0.6995

[23] 0.6995

[24] 0.6995

[25] 0.6995

[26] 0.6995

[27] 0.6995

[28] 0.7571

[29] 0.7571

[30] 0.7571

[31] 0.7571

[32] 0.7571

[33] 0.7571

[34] 0.7571

[35] 0.7571

[36] 0.7571

[37] 0.7571

[38] 0.7571

[39] 0.7571

[16] 0.7045

[17] 0.7045

[18] 0.7045

[19] 0.7045

[20] 0.7045

[21] 0.7045

[22] 0.7712

[23] 0.7712

[24] 0.7712

[25] 0.7826

[26] 0.7826

[27] 0.7826

[28] 0.7826

[29] 0.7826

[30] 0.7826

[31] 0.7826

[32] 0.7826

[33] 0.7826

[34] 0.7826

[35] 0.7826

[36] 0.7826

[37] 0.7826

[38] 0.7826

[39] 0.7826
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[40] 0.54

[41] 0.55

[42] 0.56

[43] 0.57

[44] 0.58

[45] 0.59

[46] 0.60

[47] 0.61

[48] 0.62

[49,] 0.63

[50] 0.64

[51] 0.65

[52] 0.66

[53] 0.67

[54] 0.68

[55] 0.69

[56] 0.70

[57] 0.71

[58] 0.72

[59] 0.73

[60] 0.74

[61] 0.75

[62] 0.76

[63] 0.77

[40] 0.61

[41] 0.62

[42] 0.63

[43] 0.64

[44] 0.65

[45] 0.66

[46] 0.67

[47] 0.68

[48] 0.69

[49] 0.70

[50] 0.71

[51,] 0.72

[52,] 0.73

[53] 0.74

[54] 0.75

[55] 0.76

[56] 0.77

[57] 0.78

[58] 0.79

[59] 0.80

[60] 0.81

[61] 0.82

[62] 0.83

[63] 0.84

[40] 0.7571

[41] 0.7571

[42] 0.7571

[43] 0.7571

[44] 0.8587

[45] 0.8587

[46] 0.8587

[47] 0.8587

[48] 0.8587

[49] 0.8587

[50] 0.8587

[51] 0.8587

[52] 0.8587

[53] 0.8587

[54] 0.8587

[55] 0.8587

[56] 0.8587

[57] 0.8587

[58] 0.8587

[59] 0.8587

[60] 0.8587

[61] 0.8587

[62] 0.8587

[63] 0.8587

[40] 0.7826

[41] 0.7826

[42] 0.7826

[43] 0.7826

[44] 0.7826

[45] 0.8360

[46] 0.8360

[47] 0.8360

[48] 0.8360

[49] 0.8360

[50] 0.8360

[51] 0.8360

[52] 0.8360

[53] 0.8360

[54] 0.8360

[55] 0.8360

[56] 0.8360

[57] 0.8360

[58] 0.8360

[59] 0.8360

[60] 0.8360

[61] 0.8360

[62] 0.8360

[63] 0.7731
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[64] 0.78

[65] 0.79

[66] 0.80

[67] 0.81

[68] 0.82

[69] 0.83

[70] 0.84

[71] 0.85

[72] 0.86

[73] 0.87

[74] 0.88

[75] 0.89

[76] 0.90

[77] 0.91

[78] 0.92

[79] 0.93

[80] 0.94

[64] 0.85

[65] 0.86

[66] 0.87

[67] 0.88

[68] 0.89

[69] 0.90

[70] 0.91

[71] 0.92

[72] 0.93

[73] 0.94

[74] 0.95

[75] 0.96

[64] 0.8587

[65] 0.8587

[66] 0.8587

[67] 0.8587

[68] 0.8587

[69] 0.8587

[70] 0.8587

[71] 0.7848

[72,] 0.7848

[73] 0.7848

[74] 0.7848

[75] 0.7848

[76] 0.7848

[77] 0.7848

[78] 0.7848

[79] 0.5000

[80] 0.5000

[64] 0.7731

[65] 0.7731

[66] 0.7731

[67] 0.7731

[68] 0.7731

[69] 0.7731

[70] 0.7731

[71] 0.5000

[72] 0.5000

[73] 0.5000

[74] 0.5000

[75] 0.5000

Source: Author’s Construct (2022)

It could be observed from the table that the reduced dataset generated a

smaller number of thresholds that is 75 as opposed to 80 thresholds for the full

dataset.  Also,  the  reduced  dataset  has  higher  KMOs  than  that  of  the  full

dataset. This is as a result of the selection of the k highest contributors rather

than all variables in the full dataset.  These observations resulted in a shorter

saturation point for the reduced data set as opposed to a longer saturation point
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for a full dataset owing mainly to the control of extreme values in the reduced

dataset.

 Implementation (for simulated data)

Table 18 gives the result of the implementation of the procedure in the

simulated  data  using Threshold Setting 1.  The results  show that  there is  a

highest KMO of 0.9643 corresponding to thresholds of 0.03 and 0.04. This

shows that a highest KMO value is obtained at a very small cut-off value. It is

however not clear the uniqueness of the highest KMO value. It requires an

examination of the actual number of variables in the two homogeneous sets. In

a large dataset such as this, this is quite cumbersome to present. It is quite

clear that since multiple thresholds yield the same KMO value, the uniqueness

of the value is not clearly determined. 
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Table 18: Dimensionality Detection for Simulated data

Sn/Threshold No. of hom. Sets KMO

[1] 0.01

[2] 0.02

[3] 0.03

[4] 0.04

[5] 0.05

[6] 0.06

[7] 0.07

[8] 0.08

[9] 0.09

[10] 0.10

[11] 0.11

[12] 0.12

[13] 0.13

[14] 0.14

[15] 0.15

[16] 0.16

[17] 0.17

[18] 0.18

[19] 0.19

[20] 0.20

[21] 0.21

[22] 0.22

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

[1]   0.9582671

[2]   0.9618571

[3]   0.9642579

[4]   0.9642579

[5]   0.9627946

[6]   0.9627946

[7]   0.9627946

[8]   0.9627946

[9]   0.9619099

[10] 0.9615578

[11] 0.9604512

[12] 0.9604512

[13] 0.9603667

[14] 0.9591313

[15] 0.9582347

[16] 0.9582347

[17] 0.9582347

[18] 0.9565589

[19] 0.9565589

[20] 0.9565589

[21] 0.9505914

[22] 0.9518408
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[23] 0.23

[24] 0.24

[25] 0.25

[26] 0.26

[27] 0.27

[28] 0.28

[29] 0.29

[30] 0.38

[31] 0.39

[32] 0.40

[33] 0.41

[34] 0.42

[35] 0.43

[36] 0.44

[37] 0.45

[38] 0.46

[39] 0.47

[40] 0.48

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

[23] 0.9518408

[24] 0.9405952

[25] 0.9408441

[26] 0.9408441

[27] 0.9408441

[28] 0.9408441

[29] 0.9324921

[30]  0.9132894

[31]  0.9132894

[32]   0.9132894

[33]   0.9132894

[34]   0.9132894

[35]   0.9132894

[36]   0.9132894

[37]   0.9132894

[38]   0.9132894

[39]   0.9132894

[40]   0.9132894

[41]   0.49

[42]   0.50

[43]    0.51

[44]   0.52

[45]   0.53

[46]   0.60

5

2

2

2

2

5

[41] 0.9132894

[42] 0.9132894

[43] 0.9132894

[44]  0.9132894

[45]  0.9132894

[46]  0.9132894
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[47]   0.61

[48]   0.62

[49]   0.63

[50]   0.64

[51]   0.65

[52]   0.66

[53]   0.67

[54]   0.68

[55]   0.69

[56]   0.70

[57]   0.71

[58]   0.72

[59]   0.73

[60]   0.74

[61]   0.75

[62]   0.76

[63]   0.77

[64]   0.78

[65]   0.79

[66]   0.80

[67]   0.81

[68]   0.82

[69]   0.83

[70]   0.84

5

5

5

5

5

5

5

5

5

2

2

2

2

3

6

6

6

6

7

8

10

12

12

13

[47]  0.9132894

[48]  0.9132894

[49]  0.9132894

[50]  0.9132894

[51]  0.9132894

[52]  0.9132894

[53]  0.9132894

[54]  0.9132894

[55]  0.9132894

[56]  0.9132894

[57]  0.9132894

[58]  0.9132894

[59]  0.9132894

[60]  0.9132894

[61]  0.9617736

[62]  0.9607194

[63]  0.9607194

[64]  0.9607194

[65]  0.9607194

[66]  0.9607194

[67]  0.9536611

[68]  0.8691330

[69]  0.8691330

[70]  0.7693248

115

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



[71]   0.85 9 [71]  0.5000000

Source: Author’s Construct (2022)

Figure 6: Sensitivity Analysis of Implementation Based on Simulated data

Figure 6 shows that there is a saturation point between 0.75 and 0.80

thresholds for all three threshold settings. However, it also clear that for the

first  two settings,  there is  another  interval  of much smaller  thresholds that

could also be examined for the highest KMO value. 

As  anticipated,  the  simulated  data  present  some  complexity  in  the

identification of the optimal threshold. It is therefore necessary to observe the

number of variables in each of the homogenous sets for each threshold.  In
116
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Table 18, it is observed that thresholds of 0.03 and 0.04 have the highest KMO

of 0.9643 and given by Threshold Setting 1. This is a threshold that produces

only  two  homogeneous  sets.   For  Threshold  Setting  3,  the  highest  KMO

(0.9618) corresponds to threshold value of 0.75 and produces six homogeeous

sets.  A  plot  of  thresholds  for  the  three  settings  against  the  number  of

homogeneous sets is given in Figure 7. 

Figure 7: Plot of thresholds against number of homogeneous sets

Since the data involve large number of variables (30), it is clumsy to

generate the actual number of variables for each homogeneous set. The result

from these data reveals that an optimal threshold could be as small as 0.03, a
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value  that  may be  practically  impossible  to  be  thought  of  by  a  subjective

consideration.  

Remarks 4.2

It is observed with the simulation that there are some threshold values

from the settings that could not be used for the implementation as those values

run into errors with the generation of the KMO from the associated correlation

matrices.  For  example,  with  Threshold Setting  1,  the  following values  has

issues associated with correlation matrix: 0.30, 0.31, 0.32, 0.33, 0.34 ,0.35,

0.36, 0.37, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59; with Threshold Setting 2, the

following values have issues with the correlation matrix: 0.32, 0.56; and with

Threshold Setting 3, the following values have issues: 0.54, 0.55, 0.56,  0.57,

0.58,  0.59.

Remarks 4.3

The  simulated  dataset  is  obtained  9by  Item  Response  Theory  with

underlying dimension of three. The approach presented here rather identifies

two  dimensions.  This  is  not  surprising  as  homogeneity  of  groupings  in  a

simulated data may not be very well-defined as in real data. The difiiculty in

constructing  clear  homogenous  sets  in  such  data  might  account  for  some

thresholds that could not yield homogenous sets. 

Discussion

The findings of this study shed light on some results in the literature. In

the study (Benyi, 2018; Nkansah, 2018) of dimensionality on the Dataset 1

and that carried out in this study, it is found that there is actually no significant

dimension  underlying  the  correlation  matrix,  even  though  the  dataset  is
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presented (Johnson & Wichern, 2009) apparently to demonstrate the concept

of factor analysis. This result  is initially observed from confirmatory factor

analysis.  In  this  study,  it  is  further  explained  that  the  lack  of  significant

dimension in the data is as a result of the fact that there is no homogeneous set

with  a  unique  highest  KMO. Even  though the  use  of  KMO is  not  a  new

concept, it is only by a structured approach such as the one presented in this

study that could unravel the detailed effect of the data structure on its true

dimensionality.  

The study on the simulated data has made interesting findings. It is

observed that some threshold values may not generate homogeneous sets. This

is an observation that is not noted in the literature. This means that it could be

quite impractical to set a subjective cut-off value for certain datasets for the

purpose of detecting dimensions.  The study therefore affirms that  to detect

dimension in multivariate data, the way to go is to allow the data structure

itself to determine its own threshold. 

 Chapter Summary

  The  chapter  has  focused  on  the  implementation  of  the  proposed

dimensionality detection approach. It outlines a procedure for identifying the

initial dimensionality in the data. The study of the formation of homogeneous

groups in the dataset enables us to obtain preliminary understanding of the

correlation structure of the data. The method starts with the determination of a

data specific threshold as opposed to an experimenter-specific one, and then

identifies a pair of indicators with the highest correlation that is at least equal

to the threshold. This pair of variables forms the spanning set. All variables in

the  reduced  dataset  whose  pairwise  correlations  with  the  variables  in  the
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spanning set are at least the thresholds are used to update the spanning set until

there is left no such variable. This forms the first homogeneous set. We begin

another  grouping by identifying  a  pair  of  indicators  with  highest  pairwise

correlation that is at least the threshold that is not found in the previous group.

Any variable is added to this set in a manner described earlier. We continue

this way until no such grouping can be formed. The groupings so formed are

expected to be homogeneous within each group. The number of homogeneous

sets then constitute the expected minimum number of dimensions that underlie

the data.

Dimensionality  detection  is  threshold  sensitive,  in  view  of  this  the

study identifies three major threshold settings which allow the data to call its

optimal threshold suitable for dimensionality detection.

The  study  proposes  three  automated  threshold  settings  using  an

automated algorithm that generates a data-specific threshold by allowing the

data structure to generate the optimal threshold for detecting dimensionality of

the multivariate data for more accurate results. 

For  automated  threshold  setting  1,  the algorithm  picks  the  lowest

pairwise correlation  in  the variance  -covariance  matrix,  generates  series  of

thresholds  using a  step  value of  0.01 until  all  thresholds  in  the variance  -

covariance matrix  are accommodated. The dimensionality detection algorithm

is then used to generate homogeneous sets for each of these thresholds. Since

multidimensionality  is  expected  some  thresholds  yielded  more  than  one

homogeneous set. The KMO values are then calculated for each homogeneous

set that corresponds to each threshold. Sensitivity analysis is then carried out
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for these thresholds in an attempt to pick the optimal threshold suitable for

dimensionality detection for the data set.

Also, for automated threshold setting two, the correlation profile used

is  the  Pearson’s  correlation  which  is  normally  distributed.  Statistically

majority (about 97%) of the data points lie 3 standard deviations about the

mean. This gives us 6 standard deviations, we add an allowance of 2 standard

deviations to cater for the rest of the data points. The algorithm then uses a

step value of the ratio of the range for the variance -covariance matrix to the

resultant standard deviation to generate series of thresholds. This generated 38

thresholds. The dimensionality  detection algorithm is then used to generate

homogeneous sets for each of these thresholds. Since multidimensionality is

expected some thresholds yielded more than one homogeneous set. The KMO

values are then calculated for each homogeneous set that corresponds to each

threshold. Sensitivity analysis is then carried out for these thresholds in an

attempt to pick the optimal threshold suitable for dimensionality detection for

the data set.

In  addition,  for  automated  threshold  setting  three,  the  procedure  is

based on Threshold  setting  1.  Statistically  the  variance-  covariance  matrix

used which hinges on Pearson’s correlation is symmetric. This makes the data

points  normally  distributed.  In  view  of  this  the  algorithm  determines  the

median  for  thresholds  generated  using  automated  Threshold  Setting  1  and

selects those thresholds that are at least the median. This is similar to the use

of  the  lower  triangular  matrix  of  the  variance-covariance  matrix.  The

dimensionality detection algorithm is then used to generate homogeneous sets

for  each  of  these  thresholds.  Since  multidimensionality  is  expected,  some

121

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



thresholds yield more than one homogeneous set. The KMO values are then

calculated  for  each  homogeneous  set  that  corresponds  to  each  threshold.

Sensitivity analysis is then carried out for these thresholds in an attempt to

pick the optimal threshold suitable for dimensionality detection for the data.

The study discovers that for Dataset 1, any threshold between 0.6 and

0.85  could  be  used  to  detect  dimensionality  for  this  data  since  there  is  a

resultant saturation point. Also, for Dataset 2, a unique threshold of 0.38 is

discovered as being the optimal threshold for dimensionality detection for this

data set.  

The study establishes that for data set 1, there were two homogeneous

sets indicating that two dimensions underlie the data. Also, for data set two,

there were two homogeneous sets indicating that two dimensions underlie the

data.  The  study  also  established  that  Data  set  1  could  not  be  practically

suitable  for factor  extraction since the confirmatory factor analysis  test  for

Model  adequacy  did  not  indicate  any  model  fit  for  up  to  three  factors

equivalent  to  three  dimensions.  These  findings  were  based  on  Pearson’s

correlation.

The  study  observed  that  for  any  dataset  with  an  optimal  unique

threshold  suitable  for  dimensionality  detection,  this  threshold  generates  a

unique homogeneous set with the highest number of indicators and the highest

KMO. This is demonstrated using dataset 2. On the other hand, if the dataset is

not able to generate a unique homogeneous set with the highest KMO and the

highest  number  of  indicators,  it  is  likely  that  the  determination  of  the

dimensionality of this dataset could be a challenge. This is demonstrated in

dataset 1.
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Also, for a dataset with extreme values, some extreme values may not

contribute prominently towards explaining the phenomenon under study. So, it

is  important  to  control  for those extreme values  by selecting the k highest

contributors.  Kernel  smoothing  package  in  R  is  used  to  exclude  extreme

values in the dataset before dimensionality detection.  The density function in

R  computes  the  values  of  the  kernel  density  estimate,  in  our  case  the

probability density values. Applying the plot function to an object created by

density, in our case the observations will plot the estimate. This generates the

probability distribution curve that reveals outliers.

From the arguments above, the dimensionality detection results for the

reduced  data  set  generated  a  smaller  number  of  thresholds  that  is  75  as

opposed to 80 thresholds for the full dataset.  Also, the reduced dataset has

higher KMOs than that of the full. This is as a result of the selection of the k

highest  contributors  rather  than  all  variables  in  the  full  dataset.  These

observations resulted in a shorter saturation point of 0.65 and 0.85 inclusive

for the reduced data set as opposed to a longer saturation point of about 0.6

and 0.85 for the full dataset owing mainly to the control of extreme values in a

reduced dataset. This renders the use of reduced dataset after controlling for

extreme values when detecting dimensionality computationally less expensive

as opposed to the use of the full dataset since it takes a shorter time to arrive at

a shorter interval.

The study investigated the robustness of the proposed dimensionality

detection method by using order statistic correlation profile which hinges on

the median as opposed to Pearson’s correlation which hinges on the mean. The
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algorithm  converged  in  both  cases  since  similar  results  for  Pearson’s

correlation were obtained.
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CHAPTER FIVE

SUMMARY CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the summary of the entire work. It highlights the

main findings in all the preceeding chapters. It then presents the conclusion to

the study and prescribes recommendations based on the key findings of the

study.  

 Summary 

The purpose of this study is to propose an automated threshold method

for detecting dimensionality in a multivariate dataset which would serve as the

basis for the application of the well-known statistical  tools for purposes of

interpreting a multivariate dataset. The underlisted are the major findings from

the study. 

 Automated Threshold Setting for Dimensionality Detection

Earlier  researchers  conducted  research  that  explored  a  systematic

approach that determines the initial dimensionality of the dataset. However,

these researchers used an experimenter specific threshold which is a threshold

based on the judgement of the experimenter for their studies which may lead

to misleading results. Our study proposed three automated threshold setting

using  an  automated  algorithm  that  generates  a  data  specific  threshold  by

allowing  the  data  structure  to  generate  the  optimal  threshold  for  detecting

dimensionality of the multivariate data set for more accurate results. 

For  automated  threshold  setting  1,  the algorithm  picks  the  lowest

pairwise  correlation  in  the  variance  covariance  matrix,  generates  series  of

thresholds  using  a  step  value  of  0.01  until  all  thresholds  in  the  variance
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covariance matrix are accommodated.  The dimensionality detection algorithm

is then used to generate homogeneous sets for each of these thresholds. Since

multidimensionality  is  expected  some  thresholds  yielded  more  than  one

homogeneous set. The KMO values are then calculated for each homogeneous

set that corresponds to each threshold. Sensitivity analysis is then carried out

for these thresholds in an attempt to pick the optimal threshold suitable for

dimensionality detection for the data set.

Also, for automated threshold setting two, the correlation profile used

is  the  Pearson’s  correlation  which  is  normally  distributed.  Statistically

majority (about 97%) of the data points lie 3 standard deviations about the

mean. This gives us 6 standard deviations, we add an allowance of 2 standard

deviations to cater for the rest of the data points. The algorithm then uses a

step value of the ratio of the range for the variance -covariance matrix to the

resultant standard deviation to generate series of thresholds. This generated 38

thresholds. The dimensionality  detection algorithm is then used to generate

homogeneous sets for each of these thresholds. Since multidimensionality is

expected some thresholds yielded more than one homogeneous set. The KMO

values are then calculated for each homogeneous set that corresponds to each

threshold. Sensitivity analysis is then carried out for these thresholds in an

attempt to pick the optimal threshold suitable for dimensionality detection for

the data set.

In  addition,  for  automated  threshold  setting  three,  the  procedure  is

based on Threshold  setting  1.  Statistically  the  variance-  covariance  matrix

used which hinges on Pearson’s correlation is symmetric. This makes the data

points  normally  distributed.  In  view  of  this  the  algorithm  determines  the
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median  for  thresholds  generated  using  automated  threshold  setting  1  and

selects those thresholds that are at least the median. This is similar to the usage

of  the  lower  triangular  matrix  of  the  variance  covariance  matrix.  The

dimensionality detection algorithm is then used to generate homogeneous sets

for  each  of  these  thresholds.  Since  multidimensionality  is  expected  some

thresholds yielded more than one homogeneous set. The KMO values are then

calculated  for  each  homogeneous  set  that  corresponds  to  each  threshold.

Sensitivity analysis is then carried out for these thresholds in an attempt to

pick the optimal threshold suitable for dimensionality detection for the data

set.

The study discovered that for data set 1, any threshold between 0.6 and

0.85 could be used to detect dimensionality for this data set since there was a

resultant saturation point. Also, for data set two, a unique threshold of 0.38

was discovered as being the optimal threshold for dimensionality detection for

this data set.  

 Dimensionality Detection Method

Statistical  applications  such  as  factor  analysis,  principal  component

analysis are method dependent applications used by statisticians to interpret

multivariate  data.  However,  these  applications  are  not  able  to  determine

whether  data  is  dimensionless  or  not  prior  to  their  application.  Our  study

proposed  an  automated  method  independent  dimensionality  detection

approach that could be used by statisticians to have a prior knowledge of the

dimensionality of a dataset before subsequent applications of these statistical

tools  for  interpretation.  Our approach also helps  the researcher  to  generate

multiple  homogeneous  sets  for  a  threshold  that  results  in  multiple
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homogeneous  making  it  suitable  for  both  unidimensional  and

multidimensional multivariate data.

The study established that for Dataset 1, there were two homogeneous

sets indicating that two dimensions underlie the  data. Also, for dataset two,

there were two homogeneous sets indicating that two dimensions underlie the

data. The study also established that Dataset 1 could not be practically suitable

for  factor  extraction  since  the  confirmatory  factor  analysis  test  for  Model

adequacy did not indicate any model fit for up to three factors equivalent to

three dimensions.

 Robustness of the Dimensionality Detection method to other Correlation

Profiles

Previous researchers who attempted dimensionality detection did not

investigate  the robustness  of  the method to  other  correlation  profiles  since

only Pearson’s correlation which hinges on the mean was employed. Our study

filled  this  gap  by applying the  Algorithm to other  correlation  profiles  that

hinge on the median specifically order statistic. The Algorithm converged in

all cases indicating the robustness of the method to another correlation profile

that hinges on the median specifically order statistic. 

The study discovered that for dataset 1, any threshold between 0.6 and

0.85 could be used to detect dimensionality for this data set since there was a

resultant saturation point. Also, for dataset two, a unique threshold of 0.38 was

discovered as being the optimal threshold for dimensionality detection for this

dataset.  
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Robustness  of  the  Dimensionality  Detection  method  using  a  reduced

Dataset

Previous results of the implementation of the dimensionality detection

method used a correlation profile which hinges on all the original variables in

the data set. Meaning the corelation matrix generated used all the variables in

the original dataset. For a dataset with extreme values, some extreme values

may not  contribute  prominently  towards  explaining  the  phenomenon under

study. So, it is important to control for those extreme values by selecting the k

highest contributors, then generate a correlation matrix for this reduced dataset

for dimensionality detection.  The idea is to compare the results for using a

correlation profile that hinges on all the original variables in the data set to the

results of a correlation profile that hinges on the k highest contributors after

controlling  for  extreme  values.  For  our  work,  using,  the  dimensionality

detection  results  for  the  reduced  dataset  generated  a  smaller  number  of

thresholds that is 75 as opposed to 80 thresholds for the full dataset. Also, the

reduced dataset has higher KMOs than that of the full. This is as a result of the

selection  of  the  k  highest  contributors  rather  than  all  variables  in  the  full

dataset These observations resulted in a shorter saturation point of 0.65 and

0.85 inclusive for the reduced data set as opposed to a longer saturation point

of  about  0.6  and 0.85  for  the  full  dataset  owing mainly  to  the  control  of

extreme values in a reduced data set. 

This renders the use of reduced dataset after controlling for extreme

values  when  detecting  dimensionality  computationally  less  expensive  as

opposed to the use of the full dataset since it takes a shorter time to arrive at a

shorter interval.
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Automated Modified KMO Algorithm

Our study modified and automated the KMO algorithm that allows the

researcher  to  examine  the  ratio  of  partial  correlations  to  zero  order

correlations. This algorithm also has the capacity to calculate the KMO for

multiple homogeneous sets. This comes in handy for statisticians who wish to

examine these relations. Also, our technique allows the researcher to resolve a

KMO value outside the stipulated range by examining the features of those

variables  in  the  homogenous  set  whose  KMO returned  values  outside  the

range.

 Conclusions

 Multivariate methods such as principal component analysis and factor

Analysis  have  been  used  to  interpret  multivariate  data. However,  these

statistical  applications  are  not  able  to  determine  prior  to  their  application

whether a dimension exist within the multivariate data set since it is possible

to  have  a  dimensionless  multivariate  dataset.  In  addition,  these  statistical

applications  are  method  dependent,  so  it  imperative  to  propose  a  method

independent technique for detecting dimensionality using automated threshold

settings which are thresholds generated based on the structure of the data and

not the judgement of the researcher so that these statistical applications will be

for purposes of interpretation or giving meaning to the data structure. Also, the

formation of dimensionality in the well-known multivariate techniques is not

analytically or computationally presented. They therefore offer a leave-or-take

result with no understanding of the formation of the dimensions. This study

therefore  filled  this  gap  by  successfully  proposing  a  method  independent
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dimensionality detection method using three automated threshold settings that

generate data specific thresholds by allowing the data structure to generate the

optimal threshold for detecting dimensionality of the multivariate data set for

more accurate results. The study also established the robustness of the method

using Pearson’s correlation which hinges on the mean and another correlation

profile that does not hinge on a statistic which is affected by extreme values,

in  this  case  order  statistic  which  hinges  on  the  median.  The  algorithm

converged  in  all  cases.  Confirmatory  factor  analysis  are  carried  out  for

confirmation of results. 

 Recommendations

The  proposed  approach  for  dimensionality  detection  shows  it  is

threshold sensitive.  It  is  therefore reasonable to allow the data structure to

generate its own optimal threshold suitable for dimensionality detection. This

will guide a reasonable application of relevant multivariate techniques on the

data.

Also,  the  proposed  method  completely  removes  the  challenge  of

subjectivity  associated  with  dimensionality  detection,  and  hence  is  highly

recommended.
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APPENDICES

APPENDIX A

DIMENSIONALITY DETECTION CODES – PEARSON’S

CORRELATION APPROACH

#===============================

#Dimension detection in 

#Multivariate datasets 

#=========================

library(mvtnorm)

library(MASS)

library(pscl)

library(Matrix)

library(foreign)

Dim_Detector<-function(Mdata,thold=0.5){

#Function to compute correlation matrix

Corrv<-function(mdata){

Cormat<-matrix(0,dim(mdata)[2],dim(mdata)[2])

for(i in 1: dim(Cormat)[1]){

for(j in 1:dim(Cormat)[2]){

Cormat[i,j]<-cor(mdata[,i],mdata[,j])

163

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



   }

}

Cormat

}

#============================

#Function to select first

#Spanning set based on

#Correlation Coefficient

#============================

Span_set<-function(xmat){

max_val<-max(xmat)

stvl<-function(x,max_v){

ifelse(x==max_v,1,0)

  }

  

Rid<-lapply(seq_len(dim(xmat)[1]),function(i){

stv<-stvl(xmat[i,],max_val)

ld<-which(stv==1)

c(i,ld)

})

#Sr<-NULL

ls_len<-unlist(lapply(seq_len(length(Rid)),function(j){

Vecx<-as.vector(Rid[[j]])
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sl<-length(Vecx)

sl}))

#if(any(ls_len==2)){

S<-Rid[[which(ls_len==2)]]

S<-c(S[2],S[1])

  #}else{

  #break

  #}

   

S}

#--------------------------

Vbind<-function(X,y){

#==================================

#Function to combine vectors of 

#different lengths

#================================

mbind<-function(x,y){

slab<-NULL

a<-dim(x)[1];b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))

    } 
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slab

 }

 

 

#==================================

#Function to combine vectors of 

#different lengths

#================================

sbind<-function(x,y){

slab<-NULL

a<-length(x);b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))

    } 

if(a<b){slab<-cbind(y, x=c(x, rep(NA,(b-a))))

     } 

slab

 }

 

sfit<-NULL 

 

if(length(X)==0){sfit<-sbind(X,y)}else{

if(length(X)>1 & is.matrix(X)=="TRUE"){

sfit<-mbind(X,y)
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  }

}

sfit }

 

Foutput<-function(rmat){

Dresult<-sapply(seq_len(dim(rmat)[2]),function(i){

rmat[,i]})

Dresult}

#===================================

#Updating spanning function

#Based on pairwise Correlation

#====================================

CompwS<-function(S_index,Cor_Mat,thold){

Sxupdator<-function(Sx_set,x_dex,Cor_mat,thold){

pwcr<-unlist(lapply(seq_len(length(Sx_set)),function(i){

Crr<-c(Cor_mat[Sx_set[i],x_dex],Cor_mat[x_dex,Sx_set[i]])

rr<-which(Crr==0)

Drr<-Crr[-rr]

Drr

}))

if( all(pwcr>=thold)=="TRUE"){

Sx_set<-c(Sx_set,x_dex)}else{Sx_set<-Sx_set}
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Sx_set}

N<-dim(Cor_Mat)[2]

m<-seq_len(N)[-S_index]

New_set<-S_index

for(i in 1:length(m)){

NS<-Sxupdator(New_set,m[i],Cor_Mat,thold)

New_set<-NS

}

Hset<-New_set;Nhset<-seq_len(N)[-Hset]

list(Hset=Hset,Nhset=Nhset)}

#Start sequential updating

tol<-2

clab<-colnames(data.frame(Mdata))

Srecord<-NULL

count<-0

Cmat<-Corrv(Mdata)

if(any(Cmat<0)=="TRUE"){

Cmat<-abs(Cmat)}else{

Cmat<-Cmat}

crmat<-as.matrix(tril(Cmat));diag(crmat)<-0

d<-dim(crmat)[2]

lnhset<-d

Nlab<-seq_len(d)

S<-Span_set(crmat)
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while(lnhset>tol){

count<-count+1

fit<-CompwS(S,crmat,thold)

hset<-fit$Hset

nhset<-fit$Nhset

mlab<-clab[hset]

rlab<-clab[-hset]

Srecord<-Vbind(Srecord,mlab)

Rcrmat<-crmat[-hset,-hset]

NHset<-rlab

if(is.matrix(Rcrmat)=="FALSE"){

   break

   } 

S_new<-Span_set(Rcrmat)

S<-S_new;crmat<-Rcrmat

clab<-rlab

lnhset<-length(nhset)

cat(count,lnhset,S,mlab,"\n")

 }

   

if(count>1 & lnhset<tol){

cat("Algorithm failed to converge","\n")

return(NULL)

}else{cat("Algorithm coverged","\n")

list(Srecord=Srecord,NHset=NHset)}
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 }

#-----------------------------------

Screen_result<-function(mat_result){

#=======================

#Comment

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix.

#======================

RemovNA<-function(x){

x[!is.na(x)]

}

Replace<-function(x){

ifelse( is.na(x)=="TRUE",0,x)

 }

Zero_rm<-function(x){

x[-which(x==0)]

}

MatRed<-function(mat){
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fx<-function(x){

ifelse(all(x==0)=="TRUE",1,0)}

nd<-as.vector(apply(mat,2,fx))

Nmat<-mat[,-which(nd==1)]

Nmat}

Rlist<-function(Mmat){

Ttf<-function(ylist){

vv<-NULL

if(any(ylist==0)){vv<-Zero_rm(ylist)}else{vv<-ylist[]}

vv

}

if(is.matrix(Mmat)=="TRUE"){

rlist<-apply(Mmat,2,list)

fresult<-lapply(seq_len(length(rlist)),function(j){

vv<-NULL

tts<-unlist(rlist[[j]])

if(any(tts==0)){vv<-Zero_rm(tts)}else{vv<-tts[]}

})

  }

 

if(is.vector(Mmat)=="TRUE"){

fresult<-Ttf(Mmat)
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}

fresult}

#==============================

#Call

#------

smat<-Replace(mat_result)

mmat<-MatRed(smat)

Fresult<-Rlist(mmat)

Fresult}

#----------------------------

Data.names<-function(Data_frame,rlist){

Data_frame<-if(is.data.frame(Data_frame)=="FALSE"){

Data_frame<-data.frame(Data_frame)

}else{Data_frame<-Data_frame}

n.set<-names(Data_frame)

xsame<-function(x,y){

which(x==y)}

smvec<-function(xdata,ystand){

ufit<-unlist(lapply(seq_len(length(xdata)),function(i){
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xsame(ystand,xdata[i])

}))

ufit

}

data_var<-lapply(seq_len(length(rlist)),function(j){

smvec(rlist[[j]],n.set)}

)

Hdata<-sapply(seq_len(length(data_var)),function(t){

Data_frame[,data_var[[t]]]

})

list(data_var=data_var,Hdata=Hdata)}

#-----------------------------------------------------

#Algorithm to compute KMO  of a Multivariate dataset

#----------------------------------------------------

KMO_Val<-function(mdata){

#=========================

#Comments:

#This function computes 

#the KMO of a multivariate 

#data

#------------------------
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R<-cor(as.matrix(mdata))

Qmat<-function(Rm){

RI<-solve(Rm)

Dm<-(sqrt(diag(diag(RI))))

Dr<-solve(Dm)

Q<-(Dr%*%RI)%*%Dr

Q}

Q<-do.call(Qmat,list(R))

#Function to compute

Sr_sq<-function(CMat){

rsq<-NULL

for(i in 1:dim(CMat)[1]){

for(j in 1:dim(CMat)[2]){

if(i<j){

rsq<-cbind(rsq,CMat[i,j])

 }

 }}

Rsq<-sum(as.vector(rsq)^2) 

Rsq

 }
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Sum_Rsq<-Sr_sq(R)

Sum_Pr_sq<-Sr_sq(Q)

KMO<-1/(1+(Sum_Pr_sq/Sum_Rsq))

KMO}

#list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum_Pr_sq=Sum_Pr_sq,Q=Q,R=R

)}

#==================END OF ALGORITHM=================

VData_KMO<-function(Mdata,result_list){

kmo_oneH<-function(xdata){

km<-KMO_Val(xdata)

km}

kmo_twomore<-function(hdata_list){

lapply(hdata_list,KMO_Val)

 }

dkmo<-lapply(seq_len(length(result_list)),function(i){

Rmat<-Screen_result(result_list[[i]]$Srecord)

HData_set<-Data.names(Mdata,Rmat)

if(is.list(Rmat)=="TRUE"){kmos<-kmo_twomore(HData_set$Hdata)

  }else{kmos<-kmo_oneH(HData_set$Hdata)

   }
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kmos

})

dkmo

}

#Sensitivity analysis

#========================

SenAnalysis<-function(Mdata,set_thold){

m<-length(set_thold)

Sresult<-lapply(seq_len(m),function(i){

Dim_Detector(Mdata,set_thold[i])

})

Sresult}

#==============================

#Data driven threshold setting

#================================

strehod<-function(Mdata){

CMat<-Corrv(Mdata)

Lmat<-as.matrix(tril(CMat));diag(Lmat)<-0

Nmat<-as.vector(Lmat)

NCrmat<-Nmat[-which(Nmat==0)]

crange<-round(range(NCrmat),2)
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sth<-seq(crange[1],crange[2],0.01)

a<-((crange[2]-crange[1])/12)

b<-round(a,2)

st2<-seq(crange[1],crange[2],b)

st3<-sth[which(sth>=median(sth))]

list(crange=crange,sth=sth,a=a,st2=st2,st3=st3)}

#Example 

#Import data into R

Datta<-read.spss("Speformance.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)[,-c(8,9)]

colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

Result<-Dim_Detector(mdata,thold=0.5)

Rmat<-Screen_result(Result$Srecord)

HData_set<-Data.names(mdata,Rmat)

kmo_data<-KMO_Val(mdata)

kmo_Hset1<-KMO_Val(HData_set$Hdata[[1]])

kmo_Hset2<-KMO_Val(HData_set$Hdata[[2]])

#Example 2

#Import data into R

Datta<-read.spss("concreteStrength.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)       
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colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

Result<-Dim_Detector(mdata,thold=0.)

#Example 2: Dataset 3

#Import data into R

Datta<-read.spss("FATHERdata2.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)[,c(5:24)]

colnames(mdata)<-

c("X1","X2","X3","X4","X5","X6","X7","X8","9","X10","X11","X12","X

13","X14","X15","X16","X17","X18","X19","X20")

Result<-Dim_Detector(mdata,thold=0.34)

#Sensitivity analysis

#========================

#Example 

#Import data into R

Datta<-read.spss("Speformance.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)[,-c(8,9)]

colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

sthod1<-strehod(mdata)$sth

sthod2<-strehod(mdata)$st2

sthod3<-strehod(mdata)$st3
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Sfit<-SenAnalysis(mdata,sthod)

Sfit2<-SenAnalysis(mdata,sthod2)

Sfit3<-SenAnalysis(mdata,sthod3)

kmo_val<-VData_KMO(mdata,Sfit3)

KMO_LS<-unlist(lapply(seq_len(length(kmo_val)),function(i){

lc<-length(kmo_val[i])

kkmo<-ifelse(lc>1,max(unlist(kmo_val[i])),unlist(kmo_val[i]))

kkmo}))

Dimensionality Detection Codes: Order Statistics Approach

 Algorithm 3: Order statistics correlation approach

#===========================================

#Order Statistic correlation approach to

#Dimensionality Detection

#===============================

#Dimension detection in 

#Multivariate datasets 

#========================

library(mvtnorm)

library(MASS)

library(pscl)

library(Matrix)

library(foreign)

library(corrplot)  # For correlation plot (Correlogram) 
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#===============================

#Dimension detection in 

#Multivariate datasets 

#=========================

library(mvtnorm)

library(MASS)

library(pscl)

library(Matrix)

library(foreign)

Dim_Detector<-function(Mdata,thold=0.5){

#------------------------------

#Order statistics correlation

#====Function================

OStat_Cor<-function(mydata){

mat <- as.matrix(mydata)

n <- ncol(mat)

cor.mat<- matrix(NA, n, n)

corr.c<-function(x,y){

Dnum.x<-Num.x<-numeric(length(x))

x.new<-x[order(x,decreasing=FALSE)]

y.new<-y[order(y,decreasing=FALSE)]

for(j in 1:length(x.new)){

Num.x[j]<-(x.new[j]-x[length(x.new)-j+1])*y[order(x,decreasing=FALSE)][j]

Dnum.x[j]<-(x.new[j]-x[length(x.new)-j+1])*y.new[j]}

cr.x<-sum(Num.x)/sum(Dnum.x)
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rx<-round(cr.x,5)

return(rx)}

Cvmat<-function(n,mat,cor.mat){

for (i in 1:n) {

        for (j in 1:n) {

          cor.mat[i, j] <-corr.c(mat[,i],mat[,j])                  

        }

    }

return(cor.mat)}

cormat<-Cvmat(n,mat,cor.mat)

#colnames(cormat)<-rownames(cormat) <-colnames(mydata) 

return(cormat)}

#============================

#Function to select first

#Spanning set based on

#Correlation Coefficient

#============================

Span_set<-function(xmat){

max_val<-max(xmat)

stvl<-function(x,max_v){

ifelse(x==max_v,1,0)

  }
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Rid<-lapply(seq_len(dim(xmat)[1]),function(i){

stv<-stvl(xmat[i,],max_val)

ld<-which(stv==1)

c(i,ld)

})

#Sr<-NULL

ls_len<-unlist(lapply(seq_len(length(Rid)),function(j){

Vecx<-as.vector(Rid[[j]])

sl<-length(Vecx)

sl}))

#if(any(ls_len==2)){

S<-Rid[[which(ls_len==2)]]

S<-c(S[2],S[1])

  #}else{

  #break

  #}

S}

#--------------------------

Vbind<-function(X,y){

#==================================

#Function to combine vectors of 

#different lengths

#================================

mbind<-function(x,y){

slab<-NULL

182

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



a<-dim(x)[1];b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))

    } 

slab

 }

 #==================================

#Function to combine vectors of 

#different lengths

#================================

sbind<-function(x,y){

slab<-NULL

a<-length(x);b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))

    } 

if(a<b){slab<-cbind(y, x=c(x, rep(NA,(b-a))))

     } 

slab

 }

sfit<-NULL 

if(length(X)==0){sfit<-sbind(X,y)}else{

if(length(X)>1 & is.matrix(X)=="TRUE"){
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sfit<-mbind(X,y)

  }

}

sfit }

Foutput<-function(rmat){

Dresult<-sapply(seq_len(dim(rmat)[2]),function(i){

rmat[,i]})

Dresult}

#===================================

#Updating spanning function

#Based on pairwise Correlation

#====================================

CompwS<-function(S_index,Cor_Mat,thold){

Sxupdator<-function(Sx_set,x_dex,Cor_mat,thold){

pwcr<-unlist(lapply(seq_len(length(Sx_set)),function(i){

Crr<-c(Cor_mat[Sx_set[i],x_dex],Cor_mat[x_dex,Sx_set[i]])

rr<-which(Crr==0)
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Drr<-Crr[-rr]

Drr

}))

if( all(pwcr>=thold)=="TRUE"){

Sx_set<-c(Sx_set,x_dex)}else{Sx_set<-Sx_set}

Sx_set}

N<-dim(Cor_Mat)[2]

m<-seq_len(N)[-S_index]

New_set<-S_index

for(i in 1:length(m)){

NS<-Sxupdator(New_set,m[i],Cor_Mat,thold)

New_set<-NS

}

Hset<-New_set;Nhset<-seq_len(N)[-Hset]

list(Hset=Hset,Nhset=Nhset)}

#Start sequential updating

tol<-2

clab<-colnames(data.frame(Mdata))

Srecord<-NULL
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count<-0

Cmat<-OStat_Cor(Mdata)

if(any(Cmat<0)=="TRUE"){

Cmat<-abs(Cmat)}else{

Cmat<-Cmat}

crmat<-as.matrix(tril(Cmat));diag(crmat)<-0

d<-dim(crmat)[2]

lnhset<-d

Nlab<-seq_len(d)

S<-Span_set(crmat)

while(lnhset>tol){

count<-count+1

fit<-CompwS(S,crmat,thold)

hset<-fit$Hset

nhset<-fit$Nhset

mlab<-clab[hset]

rlab<-clab[-hset]

Srecord<-Vbind(Srecord,mlab)

Rcrmat<-crmat[-hset,-hset]

NHset<-rlab

if(is.matrix(Rcrmat)=="FALSE"){

   break

   } 

S_new<-Span_set(Rcrmat)

S<-S_new;crmat<-Rcrmat
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clab<-rlab

lnhset<-length(nhset)

cat(count,lnhset,S,mlab,"\n")

 }

 if(count>1 & lnhset<tol){

cat("Algorithm failed to converge","\n")

return(NULL)

}else{cat("Algorithm coverged","\n")

list(Srecord=Srecord,NHset=NHset)}

 }

#-----------------------------------

Screen_result<-function(mat_result){

#=======================

#Comment

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix.

#======================

RemovNA<-function(x){

x[!is.na(x)]

}

Replace<-function(x){
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ifelse( is.na(x)=="TRUE",0,x)

 }

Zero_rm<-function(x){

x[-which(x==0)]

}

MatRed<-function(mat){

fx<-function(x){

ifelse(all(x==0)=="TRUE",1,0)}

nd<-as.vector(apply(mat,2,fx))

Nmat<-mat[,-which(nd==1)]

Nmat}

Rlist<-function(Mmat){

Ttf<-function(ylist){

vv<-NULL

if(any(ylist==0)){vv<-Zero_rm(ylist)}else{vv<-ylist[]}

vv

}
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if(is.matrix(Mmat)=="TRUE"){

rlist<-apply(Mmat,2,list)

fresult<-lapply(seq_len(length(rlist)),function(j){

vv<-NULL

tts<-unlist(rlist[[j]])

if(any(tts==0)){vv<-Zero_rm(tts)}else{vv<-tts[]}

})

  }

 if(is.vector(Mmat)=="TRUE"){

fresult<-Ttf(Mmat)

}

fresult}

#==============================

#Call

#------

smat<-Replace(mat_result)

mmat<-MatRed(smat)

189

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Fresult<-Rlist(mmat)

Fresult}

#----------------------------

Data.names<-function(Data_frame,rlist){

Data_frame<-if(is.data.frame(Data_frame)=="FALSE"){

Data_frame<-data.frame(Data_frame)

}else{Data_frame<-Data_frame}

n.set<-names(Data_frame)

xsame<-function(x,y){

which(x==y)}

smvec<-function(xdata,ystand){

ufit<-unlist(lapply(seq_len(length(xdata)),function(i){

xsame(ystand,xdata[i])

}))

ufit

}

data_var<-lapply(seq_len(length(rlist)),function(j){

smvec(rlist[[j]],n.set)}

)

Hdata<-sapply(seq_len(length(data_var)),function(t){

Data_frame[,data_var[[t]]]
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})

list(data_var=data_var,Hdata=Hdata)}

#-----------------------------------------------------

#Algorithm to compute KMO  of a Multivariate dataset

#----------------------------------------------------

KMO_Val<-function(mdata){

#=========================

#Comments:

#This function computes 

#the KMO of a multivariate 

#data

#------------------------

R<-cor(as.matrix(mdata))

Qmat<-function(Rm){

RI<-solve(Rm)

Dm<-(sqrt(diag(diag(RI))))

Dr<-solve(Dm)
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Q<-(Dr%*%RI)%*%Dr

Q}

Q<-do.call(Qmat,list(R))

#Function to compute

Sr_sq<-function(CMat){

rsq<-NULL

for(i in 1:dim(CMat)[1]){

for(j in 1:dim(CMat)[2]){

if(i<j){

rsq<-cbind(rsq,CMat[i,j])

 }

 }}

Rsq<-sum(as.vector(rsq)^2) 

Rsq

 }

Sum_Rsq<-Sr_sq(R)

Sum_Pr_sq<-Sr_sq(Q)
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KMO<-1/(1+(Sum_Pr_sq/Sum_Rsq))

KMO}

#list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum_Pr_sq=Sum_Pr_sq,Q=Q,R=R)}

#==================END OF ALGORITHM===================

VData_KMO<-function(Mdata,result_list){

kmo_oneH<-function(xdata){

km<-KMO_Val(xdata)

km}

kmo_twomore<-function(hdata_list){

lapply(hdata_list,KMO_Val)

 }

dkmo<-lapply(seq_len(length(result_list)),function(i){

Rmat<-Screen_result(result_list[[i]]$Srecord)

HData_set<-Data.names(Mdata,Rmat)

if(is.list(Rmat)=="TRUE"){kmos<-kmo_twomore(HData_set$Hdata)
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  }else{kmos<-kmo_oneH(HData_set$Hdata)

   }

kmos

})

dkmo

}

#Sensitivity analysis

#========================

SenAnalysis<-function(Mdata,set_thold){

m<-length(set_thold)

Sresult<-lapply(seq_len(m),function(i){

Dim_Detector(Mdata,set_thold[i])

})

Sresult}

Correlogram<-function(mydata){

invisible(Ttr<-order_stat_cor(mydata)) 

mcol<- colorRampPalette(c("red", "white", "blue"))(20)
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corrplot(Ttr,method="square",order="hclust",tl.col="black",tl.srt=45,bg="light

blue",col=mcol)

invisible(return(Ttr))}

#=============================

#----------------------------------------

#Example

#------------------------------ 

#Import data into R

Datta<-read.spss("Speformance.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)[,-c(8,9)]

colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

Result<-Dim_Detector(mdata,thold=0.7)

Rmat<-Screen_result(Result$Srecord)

HData_set<-Data.names(mdata,Rmat)

kmo_data<-KMO_Val(mdata)

kmo_Hset1<-KMO_Val(HData_set$Hdata[[1]])

kmo_Hset2<-KMO_Val(HData_set$Hdata[[2]])

#----------------------------------
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#Example 2

#-------------------------

#Import data into R

#---------------------------

Datta<-read.spss("concreteStrength.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)       

colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

Result<-Dim_Detector(mdata,thold=0.)

#Sensitivity analysis

#========================

sthod<-seq(0.2,0.9,by=0.01)

Sfit<-SenAnalysis(mdata,sthod)

kmo_val<-VData_KMO(mdata,Sfit)

KMO_LS<-unlist(lapply(seq_len(length(kmo_val)),function(i){

lc<-length(kmo_val[i])

kkmo<-ifelse(lc>1,max(unlist(kmo_val[i])),unlist(kmo_val[i]))
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kkmo}))

max(kkmo)

KMO  Algorithm

Modified Algorithm to Compute KMO of a Multivariate dataset

KMOD<-function(cvMat,Sx){

#=========================

#Comments:

#This function computes 

#the KMO of a multivariate 

#data

#------------------------

Qmat<-function(Rm){

RI<-solve(Rm)

Dm<-(sqrt(diag(diag(RI))))

Dr<-solve(Dm)

Q<-(Dr%*%RI)%*%Dr

Q}

#Function to compute
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Sr_sq<-function(CMat){

rsq<-NULL

for(i in 1:dim(CMat)[1]){

for(j in 1:dim(CMat)[2]){

if(i<j){

rsq<-cbind(rsq,CMat[i,j])

 }

 }}

Rsq<-sum(as.vector(rsq)^2) 

Rsq

 }

R<-cvMat

Rs<-R[c(Sx),c(Sx)]

Q<-do.call(Qmat,list(Rs))

Qr<-Q;diag(Qr)<-0

Sum_Rsq<-Sr_sq(R)

Sum_Pr_sq<-Sr_sq(Qr)

KMO<-1/(1+(Sum_Pr_sq/Sum_Rsq))
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list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum_Pr_sq=Sum_Pr_sq,Q=Q,R=R,Qr

=Qr)}

#==================END OF ALGORITHM==================

Dimensionality Detection Codes: Reduced Dataset Approach

#===============================

#Dimension detection in 

#Multivariate datasets 

#=========================

library(mvtnorm)

library(MASS)

library(pscl)

library(Matrix)

library(foreign)

#=================================================

#Data-based tuning schemes

#================================================

#Load library ks for kernel density estimation

#================================================

 

library(ks)#For kernel density estimation
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library(latex2exp)         

#Package for hi, hc

#hcl<-hlscv(mdata) # Not applicable because data contain duplicated values

hi<-hpi(mdata)     #plug in estimator

hc1<-hscv(mdata)   #Smoothed Cross validation

hn<-hns(mdata) 

#==============================

#Euclidean distance metric

#==========================  

Dxx<-function(x1,x2){

sqrt(sum((x1-x2)^2))} 

#================= 

  

#===============================

#S2 and S1 statistic functions

#===============================  

S2x<-function(W2xstat){

s2x<-unlist(lapply(seq_len(length(W2xstat)),function(i){

Dxx(W2xstat[i],W2xstat[-i])

}))
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s2x} 

#------------------

S1x<-function(W1xstat){

dxabs<-function(x1,x2){

sqrt(sum(abs(x1-x2)))

}

s1x<-unlist(lapply(seq_len(length(W1xstat)),function(i){

dxabs(W1xstat[i],W1xstat[-i])

}))

s1x} 

#------------------

  

#============================

#Function to compute

#W2i statistic in h2 and h2i

#==============================

W2stat<-function(y,a0=2){

m<-length(y)

Dxx<-function(x1,x2){sum((x1-x2)^a0)}

sim_vec<-unlist(lapply(seq_len(length(y)),function(j){
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(1/(m-1))*Dxx(y[-j],y[j])

}))

sim_vec}

#=======================

#Function to compute 

#Average KNN distances

#of observations

#======================

KNNy<-function(y,K=10){

Edist<-function(x1,x2){

sqrt(sum((x1-x2)^2))}

uspar<-function(X,K){

SDmat<-function(x){

Evec<-function(x1,x){

unlist(lapply(seq_len(length(x)),function(j){

Edist(x1,x[j])

  }))

}

Emat<-t(sapply(seq_len(length(x)),function(j){
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Evec(x[j],x[-j])}))

Emat[which(Emat<0)]<-0

Emat

}

Smat<-SDmat(X)

MNN<-(1/K)*rowSums(t(apply(Smat,1,function(x){

x[order(x,decreasing=TRUE)[1:K] ]

   })))

MNN} 

knn_dist<-uspar(y,K)   

knn_dist}

#-------------------  

   

#=============================

#Observation level delta

#based on Expected value

#Information

#==========================

delt_ExptVi<-function(xdata){

hr<-(range(xdata)[2]-range(xdata)[1])/6
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Fit<-kde(xdata,eval.points=xdata,hr)

fx<-Fit$estimate

Wx=fx*xdata

list(fx=fx,Wx=Wx)}

#---------------------

#-----------------------------

#Common weight proposals

#--------------------------

#===========================

#delta_g function

#===========================

delt_g<-function(a,b,stepp=0.01){

x_int<-seq(a,b,by=stepp)

x_int

}

#---------------------------------

#=================================

#Function for delta 1

#================================

delt1_fun<-function(S2stat,alpht){
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Sm2<-min(S2stat)

1/sqrt((alpht*Sm2))

}

#====================

#================================

#Delta 2 function

#===============================

delt2_fun<-function(S2stat,alpht){

Sm2<-min(S2stat)

1/(alpht*sqrt(Sm2))

}

#---------------------

#==============================

#Delta 3 function

#==========================

delt3_fun<-function(S1stat){

S1m<-min(S1stat)

1/S1m

}
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#---------------

#============================

#Delta 4 function

#==========================

delt4_fun<-function(S2stat){

hs<-XOGK(S2stat)

dl4<-1/sqrt(hs)

dl4}

#--------------------

#============================

#Turning parameter function

#Median based tuning

#====================

delta5<-function(y){

med<-median(y)

d<-length(which(y>med))/length(y)

d}

#============================

#Full training data-based 
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#tuning function

#--------------------------

delta6<-function(y){

muy<-median(y)

ymax<-max(y)

m1<-(muy/ymax)-1

m2<-1-(muy/ymax)

d<-ifelse(muy>ymax,m1,m2)

}

#-------------

#============================

#Train data range based

#delta

#--------------------------

delta7<-function(y){

drange<-range(y)

eps<-(drange[2]-drange[1])/6

deltd7=1/sqrt(eps)

deltd7}
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#-------------

#============================

#Common weight based Expected

#===delta 8

#=============================

delta8<-function(xdata){

dfit<-delt_ExptVi(xdata)

Wx<-dfit$Wx

umx=median(Wx)

mx=max(Wx)

mcx<-c(umx,mx)

delt_rat<-min(mcx)/max(mcx)

delt_rat}

#---------------

#============================

#Common weight based Expected

#=== delta 9
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#=============================

delta9<-function(xdata){

dfit<-delt_ExptVi(xdata)

Wx<-dfit$Wx

mxni<-min(Wx)

mx=max(Wx)

delts<-1/sqrt((mx-mxni))

delts}

#-------------------------------

#===== End of common weight=====

 

 #============================

#Varying deltas

#========================

delt1i<-function(delt,S2stat){

m<-length(S2stat)-1

dm2<-sapply(seq_len(length(delt)),function(i){

1/sqrt((m*delt[i]*S2stat))

})

dm2}
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delta2i<-function(delt,S2stat){

m<-length(S2stat)-1

dm1<-sapply(seq_len(length(delt)),function(i){

1/(delt[i]*sqrt((m*S2stat)))

})

dm1}

delta3i<-function(S1_W2istat,delt){

m<-length(S1_W2istat)-1

dmx<-sapply(seq_len(length(delt)),function(i){

1/(delt[i]*sqrt((m*S1_W2istat)))

})

dmx}

delta4i<-function(S1_W2istat,delt){

m<-length(S1_W2istat)-1

dmn<-sapply(seq_len(length(delt)),function(i){

1/sqrt((m*delt[i]*S1_W2istat))

})

dmn}
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delt5i<-function(S2_W1istat){

1/(S2_W1istat)

}

delt6i<-function(S2_W1istat){

1/sqrt(S2_W1istat)

}

delt7i<-function(S2stat){

1/sqrt(S2stat)

}

delt8i<-function(y){

rnum<-unlist(lapply(seq_len(length(y)),function(i){

length(which(y[-i]>y[i]))

}))

deltr=1-(rnum/length(y))    

deltr

}     

delt9i<-function(y){

lnum<-unlist(lapply(seq_len(length(y)),function(i){
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length(which(y[-i]<y[i]))

     }))        

deltl<-1-(lnum/length(y))

deltl}

delt10i<-function(y){

deltr<-delt6i(y)

deltl<-delt7i(y)

deltm<-0.5*(deltl+deltr)

deltm}

#-------------------

#========================

#delta 11i function

#=========================

delt11i<-function(Cx){

d9<-Cx/max(Cx)

d9}

#-----------------

#========================
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# delta 12i function

#=========================

delt12i<-function(Cx,W2val){

uct<-median(Cx)

drat<-W2val/uct

d11=1/sqrt(drat)

d11}

#-----------------

 #============================

#delta 13i function

#============================

delt13i<-function(Cx,alphs){

m<-length(Cx)

delts<-sapply(seq_len(length(alphs)),function(i){

1/sqrt(m*alphs[i]*Cx)

})

delts}

#------------------

        

#============================
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#delta 14i function

#============================

delt14i<-function(S2Cx_stat,alphs){

m<-length(S2Cx_stat)

delts<-sapply(seq_len(length(alphs)),function(i){

1/sqrt(m*alphs[i]*S2Cx_stat)

})

delts}

#------------------

                        

#=================================

#=====hc1 function

#=====================

hc1_func<-function(smdist,deltn){ 

hc1<-sqrt(mean(deltn*smdist))

hc1}

#-----------------------

#================================

#=== hc2 function

#================
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hc2_func<-function(W2stat,deltn){

Vt<-mean(W2stat*deltn)

hc2<-sqrt(sum(Vt))

hc2}

#-------------------

#=================================

#======hc3 function

#==================

hc3_func<-function(Sim_KNN,deltn){

result<-Sim_KNN

hc3<-sqrt(XOGK(deltn*result))

hc3}

#--------------------

#==============================

#===== hc4 function

#=======

hc4_func<-function(W2stat,deltn){

Vt<-W2stat*deltn

hc4<-sqrt(round(XOGK(Vt)))

hc4}
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#--------------------

#=================================

#======h1v function

#=====================

h1v<-function(Sim_KNN,deltv){

result<-Sim_KNN

hw<-deltv*(result)

h1v<-mean(hw)

h1v}

#-----------------

#===============================

#=== hv2 function

#====================

hv2<-function(W2stat,deltv){

Vt<-deltv*W2stat

hv2<-sqrt(sum(Vt))

hv2}

#--------------------

#=============================

#======hv3 function

#====================
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hv3<-function(S1_W2istat,deltv){

result<-S1_W2istat

lambda<-sqrt(deltv)

hx<-lambda*result

h3v<-sqrt(mean(hx))

h3v}

#-----------------

#==============================

#===== hv5 function

#======================

hv4<-function(S2stat,deltv3){

Vt<-deltv3*S2stat

h4<-sqrt(XOGK(Vt))

h4}

#--------------------

#Function to compute correlation matrix

Corrv<-function(mdata){

Cormat<-matrix(0,dim(mdata)[2],dim(mdata)[2])

for(i in 1: dim(Cormat)[1]){

for(j in 1:dim(Cormat)[2]){

Cormat[i,j]<-cor(mdata[,i],mdata[,j])

   }

}
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Cormat

}

PDF_Dim_Detector<-function(Mdata,thold=0.5){

#============================

#Function to select first

#Spanning set based on

#Correlation Coefficient

#============================

Span_set<-function(xmat){ 

max_val<-max(xmat)

stvl<-function(x,max_v){

ifelse(x==max_v,1,0)

  }

  

Rid<-lapply(seq_len(dim(xmat)[1]),function(i){

stv<-stvl(xmat[i,],max_val)

ld<-which(stv==1)

c(i,ld)

})

#Sr<-NULL

ls_len<-unlist(lapply(seq_len(length(Rid)),function(j){
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Vecx<-as.vector(Rid[[j]])

sl<-length(Vecx)

sl}))

#if(any(ls_len==2)){

S<-Rid[[which(ls_len==2)]]

S<-c(S[2],S[1])

  #}else{

  #break

  #}

   

S}

#--------------------------

Vbind<-function(X,y){

#==================================

#Function to combine vectors of 

#different lengths

#================================

mbind<-function(x,y){

slab<-NULL

a<-dim(x)[1];b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))
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    } 

slab

 }

 

#==================================

#Function to combine vectors of 

#different lengths

#================================

sbind<-function(x,y){

slab<-NULL

a<-length(x);b<-length(y)

if(a==b){slab<-cbind(x,y)}

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b))))

    } 

if(a<b){slab<-cbind(y, x=c(x, rep(NA,(b-a))))

     } 

slab

 }

sfit<-NULL 

if(length(X)==0){sfit<-sbind(X,y)}else{

if(length(X)>1 & is.matrix(X)=="TRUE"){

sfit<-mbind(X,y)

  }
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}

sfit }

Foutput<-function(rmat){

Dresult<-sapply(seq_len(dim(rmat)[2]),function(i){

  rmat[,i]})

Dresult}

#===================================

#Updating spanning function

#Based on pairwise Correlation

#====================================

CompwS<-function(S_index,Cor_Mat,thold){

Sxupdator<-function(Sx_set,x_dex,Cor_mat,thold){

pwcr<-unlist(lapply(seq_len(length(Sx_set)),function(i){

Crr<-c(Cor_mat[Sx_set[i],x_dex],Cor_mat[x_dex,Sx_set[i]])

rr<-which(Crr==0)

Drr<-Crr[-rr]

Drr

}))

if( all(pwcr>=thold)=="TRUE"){

Sx_set<-c(Sx_set,x_dex)}else{Sx_set<-Sx_set}

Sx_set}

N<-dim(Cor_Mat)[2]
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m<-seq_len(N)[-S_index]

New_set<-S_index

for(i in 1:length(m)){

NS<-Sxupdator(New_set,m[i],Cor_Mat,thold)

New_set<-NS

}

Hset<-New_set;Nhset<-seq_len(N)[-Hset]

list(Hset=Hset,Nhset=Nhset)}

#Start sequential updating

tol<-2

clab<-colnames(data.frame(Mdata))

Srecord<-NULL

count<-0

Cmat<-Corrv(Mdata)

if(any(Cmat<0)=="TRUE"){

Cmat<-abs(Cmat)}else{

Cmat<-Cmat}

crmat<-as.matrix(tril(Cmat));diag(crmat)<-0

d<-dim(crmat)[2]

lnhset<-d
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Nlab<-seq_len(d)

S<-Span_set(crmat)

while(lnhset>tol){

count<-count+1

fit<-CompwS(S,crmat,thold)

hset<-fit$Hset

nhset<-fit$Nhset

mlab<-clab[hset]

rlab<-clab[-hset]

Srecord<-Vbind(Srecord,mlab)

Rcrmat<-crmat[-hset,-hset]

NHset<-rlab

if(is.matrix(Rcrmat)=="FALSE"){

   break

   } 

S_new<-Span_set(Rcrmat)

S<-S_new;crmat<-Rcrmat

clab<-rlab

lnhset<-length(nhset)

cat(count,lnhset,S,mlab,"\n")
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 }

if(count>1 & lnhset<tol){

cat("Algorithm failed to converge","\n")

return(NULL)

}else{cat("Algorithm coverged","\n")

list(Srecord=Srecord,NHset=NHset)}

 }

#-----------------------------------

Screen_result<-function(mat_result){

#=======================

#Comment

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix.

#======================

RemovNA<-function(x){

x[!is.na(x)]

}

Replace<-function(x){
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ifelse( is.na(x)=="TRUE",0,x)

 }

Zero_rm<-function(x){

x[-which(x==0)]

}

MatRed<-function(mat){

fx<-function(x){

ifelse(all(x==0)=="TRUE",1,0)}

nd<-as.vector(apply(mat,2,fx))

Nmat<-mat[,-which(nd==1)]

Nmat}

Rlist<-function(Mmat){

Ttf<-function(ylist){

vv<-NULL

if(any(ylist==0)){vv<-Zero_rm(ylist)}else{vv<-ylist[]}

vv

}

if(is.matrix(Mmat)=="TRUE"){

rlist<-apply(Mmat,2,list)

fresult<-lapply(seq_len(length(rlist)),function(j){

vv<-NULL
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tts<-unlist(rlist[[j]])

if(any(tts==0)){vv<-Zero_rm(tts)}else{vv<-tts[]}

})

  }

 

if(is.vector(Mmat)=="TRUE"){

fresult<-Ttf(Mmat)

}

fresult}

#==============================

#Call

#------

smat<-Replace(mat_result)

mmat<-MatRed(smat)

Fresult<-Rlist(mmat)

Fresult}

#----------------------------

Data.names<-function(Data_frame,rlist){

Data_frame<-if(is.data.frame(Data_frame)=="FALSE"){

Data_frame<-data.frame(Data_frame)

}else{Data_frame<-Data_frame}
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n.set<-names(Data_frame)

xsame<-function(x,y){

which(x==y)}

smvec<-function(xdata,ystand){

ufit<-unlist(lapply(seq_len(length(xdata)),function(i){

xsame(ystand,xdata[i])

}))

ufit

}

data_var<-lapply(seq_len(length(rlist)),function(j){

smvec(rlist[[j]],n.set)}

)

Hdata<-sapply(seq_len(length(data_var)),function(t){

Data_frame[,data_var[[t]]]

})

list(data_var=data_var,Hdata=Hdata)}

#-----------------------------------------------------

#Algorithm to compute KMO  of a Multivariate dataset

#----------------------------------------------------

KMO_Val<-function(mdata){
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#=========================

#Comments:

#This function computes 

#the KMO of a multivariate 

#data

#------------------------

R<-cor(as.matrix(mdata))

Qmat<-function(Rm){

RI<-solve(Rm)

Dm<-(sqrt(diag(diag(RI))))

Dr<-solve(Dm)

Q<-(Dr%*%RI)%*%Dr

Q}

Q<-do.call(Qmat,list(R))

#Function to compute

Sr_sq<-function(CMat){

rsq<-NULL

for(i in 1:dim(CMat)[1]){

for(j in 1:dim(CMat)[2]){

if(i<j){

rsq<-cbind(rsq,CMat[i,j])
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 }

 }}

Rsq<-sum(as.vector(rsq)^2) 

Rsq

 }

Sum_Rsq<-Sr_sq(R)

Sum_Pr_sq<-Sr_sq(Q)

KMO<-1/(1+(Sum_Pr_sq/Sum_Rsq))

KMO}

#list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum_Pr_sq=Sum_Pr_sq,Q=Q,R=R)}

#==================END OF ALGORITHM==================

VData_KMO<-function(Mdata,result_list){

Muti_Homoset<-function(Datta,rmat){

if(is.list(rmat)=="TRUE"){

Udata<-lapply(seq_len(length(rmat)),function(j){

Data.names(Datta,rmat[[j]])$Hdata

})}else{

Udata<-Data.names(Datta,rmat)$Hdata

 }

Udata}
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kmo_oneH<-function(xdata){

km<-KMO_Val(xdata)

km}

kmo_twomore<-function(hdata_list){

m1<-length(hdata_list)

ut<-unlist(lapply(seq_len(m1),function(i){

KMO_Val(hdata_list[[i]])

}))

ut }

dkmo<-lapply(seq_len(length(result_list)),function(i){

Rmat<-Screen_result(result_list[[i]]$Srecord)

HData_set<-Muti_Homoset(Mdata,Rmat)

if(is.list(Rmat)=="TRUE"){kmos<-kmo_twomore(HData_set)

  }else{kmos<-kmo_oneH(HData_set)

   }

kmos

})

dkmo

}

#============================
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#Sensitivity analysis

#========================

SenAnalysis<-function(Mdata,set_thold){

m<-length(set_thold)

Sresult<-lapply(seq_len(m),function(i){

PDF_Dim_Detector(Mdata,set_thold[i])

})

Sresult}

#==============================

#Data driven threshold setting

#================================

strehod<-function(Mdata){

CMat<-Corrv(Mdata)

Lmat<-as.matrix(tril(CMat));diag(Lmat)<-0

Nmat<-abs(as.vector(Lmat))

NCrmat<-Nmat[-which(Nmat==0)]

crange<-round(range(NCrmat),2)

sth<-seq(crange[1],crange[2],0.01)

a<-((crange[2]-crange[1])/12)

b<-round(a,2)

st2<-seq(crange[1],crange[2],b)
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st3<-sth[which(sth>=median(sth))]

list(crange=crange,sth=sth,a=a,st2=st2,st3=st3)}

#==============================================

#Alternative approaches to threshold setting

#==============================================

#----------------------------------

EDSim<-function(Tdata,k=2){

Edist<-function(x1,x2){

sqrt(sum((x1-x2)^2))}

Sim<-function(xdata,x){

sm<-apply(xdata,2,function(x1){

Edist(x1,x)

  })

bdist<-sm[order(sm,decreasing=F)][1:k]

bdist}

  

smat<-t(sapply(seq_len(dim(Tdata)[2]),function(i){

Sim(Tdata[,-i],Tdata[,i])

}))
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smat}

KMO_Set<-function(kmo_set){

kkm<-unlist(lapply(seq_len(length(kmo_set)),function(i){

lc<-length(kmo_set[i])

kkmo<-ifelse(lc>1,max(unlist(kmo_set[i])),unlist(kmo_set[i]))

kkmo}))

kkm}

#================ End of list of functions===================

KMO_Val<-function(mdata){

#=========================

#Comments:

#This function computes 

#the KMO of a multivariate 

#data

#------------------------

R<-cor(as.matrix(mdata))

Qmat<-function(Rm){

RI<-solve(Rm)
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Dm<-(sqrt(diag(diag(RI))))

Dr<-solve(Dm)

Q<-(Dr%*%RI)%*%Dr

Q}

Q<-do.call(Qmat,list(R))

#Function to compute

Sr_sq<-function(CMat){

rsq<-NULL

for(i in 1:dim(CMat)[1]){

for(j in 1:dim(CMat)[2]){

if(i<j){

rsq<-cbind(rsq,CMat[i,j])

 }

 }}

Rsq<-sum(as.vector(rsq)^2) 

Rsq

 }

Sum_Rsq<-Sr_sq(R)

Sum_Pr_sq<-Sr_sq(Q)

KMO<-1/(1+(Sum_Pr_sq/Sum_Rsq))
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KMO}

#====================================

#====Probability density function

#====based features

#===================================

DensFeat<-function(Datta,sm_par,dprop=0.7){

dens_feat<-function(ydatta,smooth_par,dat_prop=0.7){

Fit<-kde(ydatta,h=smooth_par,eval.points=ydatta)

fy<-Fit$estimate

Ty=fy*ydatta

Uy=mean(Ty)

Zstat<-(Ty-mean(Ty))/sqrt(var(Ty))

zr<-order(Ty,decreasing=T)

K=round(length(ydatta)*dat_prop,0)

y_select<-ydatta[1:K]

sprob=Ty/max(Ty)

list(fy=fy,Ty=Ty,Uy=Uy,Zstat=Zstat,y_select=y_select,sprob=sprob)}

Dfit<-lapply(seq_len(dim(Datta)[2]),function(j){
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dens_feat(Datta[,j],sm_par[j],dprop)

})

fymat<-sapply(seq_len(length(Dfit)),function(i){

Dfit[[i]]$fy

})

Tymat<-sapply(seq_len(length(Dfit)),function(i){

Dfit[[i]]$Ty

})

Zystat<-sapply(seq_len(length(Dfit)),function(i){

Dfit[[i]]$Zstat

})

fymat<-sapply(seq_len(length(Dfit)),function(i){

Dfit[[i]]$fy

})

yselect<-sapply(seq_len(length(Dfit)),function(i){

Dfit[[i]]$y_select

})

list(Dfit=Dfit,fymat=fymat,Tymat=Tymat,Zystat=Zystat,yselect=yselect)}

#Import data into R
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Datta<-read.spss("Speformance.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

mdata<-data.matrix(Datta)[,-c(8,9)]

colnames(mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

sm_par<-unlist(lapply(seq_len(dim(mdata)[2]),function(i){

hscv(mdata[,i])

}))

perfom_data_fit<-DensFeat(mdata,sm_par,dprop=0.7)

yselect<-perfom_data_fit$yselect

fymat<-perfom_data_fit$fymat

Tymat<-perfom_data_fit$Tymat

Zymat<-perfom_data_fit$Zymat

CVMatP<-Corrv(mdata)

CVMatP_rdata<-Corrv(yselect)

CVMatP_Tymat<-Corrv(Tymat)

#CVMatO<-OStat_Cor(mdata)

sthod1_rdata<-strehod(yselect)$sth

sthod2_rdata<-strehod(yselect)$st2

sthod3_rdata<-strehod(yselect)$st3

Ffit1_rdata<-SenAnalysis(yselect,sthod1_rdata)
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Ffit2_rdata<-SenAnalysis(yselect,sthod2_rdata)

Ffit3_rdata<-SenAnalysis(yselect,sthod3_rdata)

kmo_val3_rdata<-VData_KMO(yselect,Ffit3_rdata)

kmo_val2_rdata<-VData_KMO(yselect,Ffit2_rdata)

kmo_val1_rdata<-VData_KMO(yselect,Ffit1_rdata)

KMO1_rdata<-KMO_Set(kmo_val1_rdata)

KMO2_rdata<-KMO_Set(kmo_val2_rdata)

KMO3_rdata<-KMO_Set(kmo_val3_rdata)

par(mfrow=c(3,2))

plot(mdata[,1],fymat[,1],xlab=expression(y[1]),ylab=expression(f(y[1])))

plot(mdata[,2],fymat[,2],xlab=expression(y[2]),ylab=expression(f(y[2])))

plot(mdata[,3],fymat[,3],xlab=expression(y[3]),ylab=expression(f(y[3])))

plot(mdata[,4],fymat[,4],xlab=expression(y[4]),ylab=expression(f(y[4])))

plot(mdata[,5],fymat[,2],xlab=expression(y[5]),ylab=expression(f(y[5])))

par(mfrow=c(3,2))

plot(fymat[,1],Tymat[,1],xlab=expression(f(y[1])),ylab=expression(T(y[1])))

plot(fymat[,2],Tymat[,2],xlab=expression(f(y[2])),ylab=expression(T(y[2])))

plot(fymat[,3],Tymat[,3],xlab=expression(f(y[3])),ylab=expression(T(y[3])))

plot(fymat[,4],Tymat[,4],xlab=expression(f(y[4])),ylab=expression(T(y[4])))

plot(fymat[,5],Tymat[,2],xlab=expression(f(y[5])),ylab=expression(T(y[5])))
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#==================================

#Using Original data

#===================================

sthod1<-strehod(mdata)$sth

sthod2<-strehod(mdata)$st2

sthod3<-strehod(mdata)$st3

Ffit1<-SenAnalysis(mdata,sthod1)

Ffit2<-SenAnalysis(mdata,sthod2)

Ffit3<-SenAnalysis(mdata,sthod3)

kmo_val3<-VData_KMO(mdata,Ffit3)

kmo_val2<-VData_KMO(mdata,Ffit2)

kmo_val1<-VData_KMO(mdata,Ffit1)

KMO1<-KMO_Set(kmo_val1)

KMO2<-KMO_Set(kmo_val2)

KMO3<-KMO_Set(kmo_val3)

par(mfrow=c(3,2))

plot(sthod1,KMO1,type="o",xlab=expression(delta[1]),ylab="KMO",col=1)

plot(sthod1_rdata,KMO1_rdata,type="o",xlab=expression(delta[1]),ylab="K

MO",col=2)

plot(sthod2,KMO2,type="o",xlab=expression(delta[2]),ylab="KMO",col=1)
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plot(sthod2_rdata,KMO2_rdata,type="o",xlab=expression(delta[2]),ylab="K

MO",col=2)

plot(sthod3,KMO3,type="o",xlab=expression(delta[3]),ylab="KMO",col=1)

plot(sthod3_rdata,KMO3_rdata,type="o",xlab=expression(delta[3]),ylab="K

MO",col=2)

#Example 2

#Import data into R

#Dataset3 : Concrete strength

#============================

Datta<-read.spss("concreteStrength.sav",  use.value.label=TRUE,

to.data.frame=TRUE)

Mdata<-data.matrix(Datta)[,-c(8,9)]       

colnames(Mdata)<-c("X1","X2","X3","X4","X5","X6","X7")

#hi<-hpi(mdata)

     

smooth_par<-unlist(lapply(seq_len(dim(Mdata)[2]),function(i){

hscv(Mdata[,i])

}))
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#hn<-hns(mdata)

Fitd<-DensFeat(Mdata,sm_par,dprop=0.7)

CVMat<-Corrv(mdata2)

sthod1<-strehod(mdata2)$sth

sthod2<-strehod(mdata2)$st2

sthod3<-strehod(mdata2)$st3

Sfit1<-SenAnalysis(mdata2,sthod1)

Sfit2<-SenAnalysis(mdata2,sthod2)

Sfit3<-SenAnalysis(mdata2,sthod3)

kmo_val3<-VData_KMO(mdata2,Sfit3)

kmo_val2<-VData_KMO(mdata2,Sfit2)

kmo_val1<-VData_KMO(mdata2,Sfit1)

time1<-system.time(kmo_val1<-VData_KMO(mdata2,Sfit1))

time2<-system.time(kmo_val2<-VData_KMO(mdata2,Sfit2))

time3<-system.time(kmo_val3<-VData_KMO(mdata2,Sfit3))

KMO1<-KMO_Set(kmo_val1)

KMO2<-KMO_Set(kmo_val2)

KMO3<-KMO_Set(kmo_val3)
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par(mfrow=c(2,2))

plot(sthod1,KMO1,type="o",xlab=expression(delta[1]),ylab="KMO")

plot(sthod2,KMO2,type="o",xlab=expression(delta[2]),ylab="KMO")

plot(sthod3,KMO3,type="o",xlab=expression(delta[3]),ylab="KMO")

APPENDIX B

CODES FOR SIMULATING DATA BASED ON

ITEM RESPONSE THEORY

SIMULATION ON SEVEN-POINT SCALE

library(mirt)

library(ltm)

library(psych)

library(polycor)

d=matrix(c(

  0.357,0.714,1.071,1.428,1.785,2.142,2.5,

  0.331,0.662,0.993,1.324,1.655,1.986,2.32,

  0.283,0.566,0.849,1.132,1.415,1.698,1.98,

  -3.0,-2.574,-2.145,-1.716,-1.289,-0.858,-0.429,

  -2.5,-2.142,-1.785,-1.428,-1.071,-0.714,0.357,

  -2.0,-1.716,-1.430,-1.144,-0.858,-0.572,-0.286,

  0.300,0.600,0.900,1.200,1.500,1.800,1.830,2.1,

  -2.5,-2.142,-1.785,-1.428,-1.071,-0.714,0.357,

  0.286,0.572,0.858,1.144,1.430,1.716,2.0,
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  0.376,0.752,1.128,1.504,1.880,2.256,2.63,

  0.321,0.642,0.963,1.284,1.605,1.926,2.25,

  -1.7,-1.458,-1.215,-0.972,-0.729,-0.486,-0.243,

  -2.30,-1.974,-1.645,-1.316,-0.987,-0.658,-0.329,

  0.357,0.714,1.071,1.428,1.785,2.142,2.5,

  -2.7,-2.316,-1.930,-1.544,-1.158,-0.772,-0.386,

  0.283,0.566,0.849,1.132,1.415,1.698,1.98,

  -2.30,-1.974,-1.645,-1.316,-0.987,-0.658,-0.329,

  0.343,0.686,1.029,1.379,1.715,2.058,2.400,

  0.450,0.900,1.350,1.800,2.250,2.700,3.15,

  -3.18,-2.724,-2.270,-1.816,-1.362,-0.908,-0.454,

  0.557,1.114,1.671,2.228,2.785,3.342,3.9,

  0.386,0.772,1.158,1.544,1.930,2.316,2.7,

  0.304,0.608,0.912,1.216,1.520,1.824,2.13,

  0.286,0.572,0.858,1.144,1.430,1.716,2.0,

  0.367,0.734,1.101,1.468,1.835,2.202,2.57,

  -0.84,-0.72,-0.600,-0.480,-0.360,-0.240,-0.120,

  -0.20,-0.174,-0.145,-0.116,-0.087,-0.058,-0.029,

  -0.36,-0.306,-0.255,-0.204,-0.153,-0.102,-0.051,

  -0.63,-0.540,-0.450,-0.360,-0.270,-0.180,-0.090,

  0.059,0.118,0.117,0.236,0.295,0.354,0.41,

  0.029,0.058,0.087,0.116,0.145,0.174,0.20,

  0.100,0.200,0.300,0.400,0.500,0.600,0.70,

  0.101,0.202,0.303,0.404,0.505,0.606,0.71,

  -0.51,-0.365,-0.292,-0.219,-0.146,-0.073,
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  0.127,0.254,0.381,0.508,0.635,0.762,0.89,

  -0.95,-0.816,-0.680,-0.544,-0.408,-0.272,-0.163,

  -0.65,-0.558,-0.465,-0.372,-0.279,-0.186,-0.093,

  -0.4,-0.342,-0.285,-0.228,-0.171,-0.114,-0.057,

  0.071,0.142,0.213,0.284,0.355,0.426,0.5,

  -0.60,-0.516,-0.430,-0.344,-0.258,-0.172,-0.086,

  0.129,0.258,0.387,0.516,0.645,0.774,0.900,

  0.086,0.172,0.258,0.344,0.430,0.516,0.600,

  0.057,0.114,0.171,0.228,0.285,0.342,0.400,

  0.021,0.042,0.063,0.084,0.105,0.126,0.15,

  0.043,0.086,0.129,0.172,0.215,0.258,0.300,

  0.026,0.052,0.078,0.104,0.130,0.156,0.180,

  -0.76,-0.654,-0.545,-0.436,-0.327,-0.218,-0.109,

  0.033,0.066,0.099,0.132,0.165,0.198,0.230,

  -0.19,-0.162,-0.135,-0.108,-0.081,-0.054,-0.027,

  -0.4,-0.342,-0.285,-0.228,-0.171,-0.114,-0.057),ncol=7,byrow=TRUE) 

#Difficulty parameter

d40=matrix(c(

  d[c(1:20,26:45),1],d[c(1:20,26:45),2],d[c(1:20,26:45),3],

  d[c(1:20,26:45),4],d[c(1:20,26:45),5],d[c(1:20,26:45),6],

  d[c(1:20,26:45),7]),ncol=7,byrow=FALSE) #40 Variables

d30=matrix(c(

  d[c(1:15,26:40),1],d[c(1:15,26:40),2],d[c(1:15,26:40),3],
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  d[c(1:15,26:40),4],d[c(1:15,26:40),5],d[c(1:15,26:40),6],

  d[c(1:15,26:40),7]),ncol=7,byrow=FALSE) #30 Variables

#Two-dimensional Dataset

a2=matrix(c(

  2.00,0.54,

  2.00,0.25,

  1.80,0.30,

  2.50,0.01,

  2.13,0.33,

  1.79,0.05,

  2.05,0.59,

  1.88,0.31,

  1.95,0.60,

  2.33,0.46,

  1.80,0.56,

  1.30,0.90,

  1.75,0.11,

  2.03,0.35,

  3.50,0.40,

  1.50,0.24,

  2.06,0.15,

  1.95,0.05,

  2.65,0.19,

  2.93,0.13,
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  3.15,0.25,

  2.17,0.20,

  1.95,0.16,

  2.15,0.09,

  1.89,0.18,

  0.54,2.00,

  0.25,2.00,

  0.30,1.80,

  0.01,2.50,

  0.33,2.13,

  0.05,1.79,

  0.59,2.05,

  0.31,1.88,

  0.60,1.95,

  0.46,2.33,

  0.56,1.80,

  0.90,1.30,

  0.11,1.75,

  0.35,2.03,

  0.40,3.50,

  0.24,0.50,

  0.15,2.06,

  0.05,1.95,

  0.19,2.65,

  0.13,2.93,
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  0.25,3.15,

  0.20,2.17,

  0.16,1.95,

  0.09,2.15,

  0.18,1.89

),ncol=2,byrow=TRUE) #Discrimination parameter

a2.40=matrix(c(

  a2[c(1:20),1],a2[c(1:20),2],

  a2[c(26:45),1],a2[c(26:45),2]),ncol=2,byrow=FALSE)

set.seed(2001);data1=simdata(a=a2.40,d=d40,N=200,itemtype="gpcm") 

#Data simulation

#Factor Analyses

FA40<-fa(r=data1,nfactors = 2,n.obs = 200,rotate = "varimax",fm="pa",cor = 

"poly")

r=FA40$r

print(r,digits=3,max=2000)

print(FA40$loadings,digits = 3)

print(FA40$fit)

#=======================================================

==================

#Three-dimensional Datasets

a3.40=matrix(c(
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  2.00,0.54,0.56,

  2.00,0.25,0.90,

  1.80,0.63,0.11,

  2.50,0.41,0.35,

  2.13,0.33,0.40,

  1.79,0.05,0.24,

  2.05,0.59,0.15,

  1.88,0.31,0.05,

  1.95,0.60,0.19,

  2.33,0.46,0.13,

  1.80,0.56,0.25,

  1.30,0.90,0.20,

  1.75,0.11,0.16,

  2.03,0.35,0.09,

  3.50,0.40,0.18,

  1.50,0.24,0.54,

  2.06,0.15,0.25,

  1.95,0.05,0.30,

  2.65,0.19,0.01,

  2.93,0.13,0.33,

  0.54,2.00,0.56,

  0.25,2.00,0.90,

  0.30,1.80,0.11,

  0.01,2.50,0.35,

  0.33,2.13,0.40,
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  0.05,1.79,0.24,

  0.59,2.05,0.15,

  0.31,1.88,0.05,

  0.60,1.95,0.19,

  0.46,2.33,0.13,

  0.56,1.80,0.25,

  0.90,1.30,0.20,

  0.11,1.75,0.16,

  0.15,0.54,2.00,

  0.05,0.25,2.00,

  0.19,0.30,1.80,

  0.13,0.01,2.50,

  0.25,0.05,2.13,

  0.20,0.59,1.79,

  0.16,0.31,2.05

),ncol=3,byrow=TRUE) #40 Variables

a3.30=matrix(c(

  2.00,0.54,0.56,

  2.00,0.25,0.90,

  1.80,0.63,0.11,

  2.50,0.41,0.35,

  2.13,0.33,0.40,

  1.79,0.05,0.24,

  2.05,0.59,0.15,
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  1.88,0.31,0.05,

  1.95,0.60,0.19,

  2.33,0.46,0.13,

  1.80,0.56,0.25,

  1.30,0.90,0.20,

  1.75,0.11,0.16,

  2.03,0.35,0.09,

  3.50,0.40,0.18,

  0.54,2.00,0.56,

  0.25,2.00,0.90,

  0.30,1.80,0.11,

  0.01,2.50,0.35,

  0.33,2.13,0.40,

  0.05,1.79,0.24,

  0.59,2.05,0.15,

  0.31,1.88,0.05,

  0.60,1.95,0.19,

  0.46,2.33,0.13,

  0.15,0.54,2.00,

  0.05,0.25,2.00,

  0.19,0.30,1.80,

  0.13,0.01,2.50,

  0.25,0.05,2.13

),ncol=3,byrow=TRUE) #30 Variables
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set.seed(2001);data2=simdata(a=a3.30,d=d30,N=200,itemtype="gpcm") 

#Data simulation

set.seed(2001);data3=simdata(a=a3.40,d=d40,N=200,itemtype="gpcm")

#Factor Analyses

FA30<-fa(r=data2,nfactors = 3,n.obs = 200,rotate = "varimax",fm="pa",cor = 

"poly")

r=FA30$r

print(r,digits=3,max=2000)

print(FA30$loadings,digits = 3)

print(FA30$fit)

FA40<-fa(r=data3,nfactors = 3,n.obs = 200,rotate = "varimax",fm="pa",cor = 

"poly")

r=FA40$r

print(r,digits=3,max=2000)

print(FA40$loadings,digits = 3)

print(FA40$fit)
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