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ABSTRACT

This thesis considered a flexible two-stage statistical approach to multi-task

modeling of multivariate physiological vital signs using GP regression, in which

the joint use of nonparametric and Bayesian GP regression methods are ex-

plored. In the first stage, nonparametric schemes based on expected value con-

tribution statistics for fusing multiple physiological vital signs observed over

common time-stamps into a composite vital sign are developed. In the second

stage, an appropriate Bayesian Gaussian process regression model is developed

for the fused vital sign trajectory in relation to the common observation time-

stamps. The relationship existing among the multiple vital signs and available

non-time-dependent covariates is modeled with the aid of OGK statistics via

the covariance function of the assumed GP. Both Variational Bayes and MCMC

methods are developed for parameter inference. The coupling of density-based

data fusing methods and GP modeling allowed automated extreme value control

within both the response and predictor spaces; response dimension reduction;

data reduction in the response space and principled modeling of smoothness of

the physiological trend. Using both simulation and real data application, the

utility of the proposals is illustrated. In terms of fusing of multivariate vital

signs, results show that the probability distribution-based features provide a rich

source of appealing functional features with the natural ability to ensure that ex-

treme observations are utilized with their effects controlled automatically. For

the GP modeling of fused vital signs, the results show that both VB and MCMC

algorithms exhibit better fitting performance in terms of MSFE, MAFE, and

SMAFE. Thus, the double-stage modeling approach exhibits a great potential

for handling multi-task GP regression within the single-task GP framework.
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CHAPTER ONE

INTRODUCTION

Stochastic modeling of physiological vital signs via Bayesian Gaussian

process regression (BGPR) has gained attention within the functional data anal-

ysis community recently due to the flexibility with which available information

can be utilized in model specification to encode assumed modeling assump-

tions in BGPR. This has motivated the application of BGPR to physiologi-

cal vital signs with varying time-stamps datasets within both the single-task

and multi-task modeling framework, see for example, Evans, Hodgkinson, and

Berry (2001), Gardner-Thorpe, Love, Wrightson, Walsh, and Keeling (2006),

Dürichen, Pimentel, Clifton, Schweikard, and Clifton (2014), and Ghassemi et

al. (2015).

For multivariate physiological vital sign datasets with common time-stamps

and associated with covariates information involving both time-dependent and

non-time dependent covariates, the application of BGPR is nontrivial. In par-

ticular, how to incorporate the non-time dependent covariate information in the

BGPR modeling. The single-task BGPR models a univariate functional dataset

with a GP in the Bayesian paradigm whiles the multi-task BGPR extends the

BGPR to multiple functional datasets jointly using composite covariance de-

rived from all tasks.

Background to the Study

The modeling of multi-physiological vital signs is gaining attention within

the functional data modeling framework based on Gaussian processes regression

recently. This is due partly first to the recent spate of pandemics, for example,

COVID 19, since pandemics affect human physiology in a way that is not fully

understood by scientists. Second, partly due to the availability of physiologi-

cal vital signs datasets in several scientific fields such as public health, etc. A

pandemic that affects human physiology has the potential to render destructive

effects on the natural immunity of the human body. When this happens, the hu-

1
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man system becomes prone to several unforeseen issues since immunity can be

viewed as a priceless natural building block of the defense system of the human

body.

Physiological vital signs, functional readings of the vital organs of the

human body, are key elements in health monitoring worldwide (Buist, Burton,

Bernard, Waxman, & Anderson, 1999; Evans et al., 2001). These defining fea-

tures of human physiology can provide insights on early signs of health deteri-

oration if appropriately tracked and monitored. This has led to their wide use in

the identification of deterioration in health, in many modeling settings (Gao et

al., 2007; Khalid, Clifton, & Tarassenko, 2013). An empirical examination of

physiological vital signs using a numerical measure termed Early Warning (EW)

scores obtained as a composite score of the associated vital signs have been

extensively employed for assessing health deterioration of intensive care unit

(ICU) and surgical patients (Evans et al., 2001; Gardner-Thorpe et al., 2006).

Quite a number of vital signs-based health monitoring work in the non-

parametric modeling, particularly, kernel density approach has also been regis-

tered in the literature. See, for example, Pimentel, Clifton, Clifton, Watkinson,

and Tarassenko (2013), who considered modeling multivariate vital signs of

upper-gastrointestinal surgery patients in order to identify deterioration. They

utilized kernel density estimation (KDE) (Silverman, 1986) approach to build-

ing probability density function (pdf)-based monitors for each vital sign charac-

terizing normal and abnormal groups. The grouping was motivated by available

patient admission information. Informed decision-making was based on com-

parison of pdf-based novelty scores with a common threshold computed from

the normal group. Velardo et al. (2014) also prioritized chronic obstructive pul-

monary patients for clinical review using KDE-based vital sign deterioration

detectors in both the univariate and multivariate dimensions.

Nonparametric modeling of clinical data using Gaussian process regres-

sion has attracted much attention in the literature. A Gaussian process can sim-

ply be viewed as a generalization of the multivariate normal distribution in infi-

2
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nite dimension (Rasmussen & Williams, 2006). Khalid et al. (2013) considered

the detection of deterioration in physiological vital signs in the univariate di-

mension, based on the Gaussian process regression modeling. In comparison

with an appropriate empirical approach using the Parzen Window KDE, their

proposal reported better performance in terms of lowering the false alarm rate.

Gaussian processes provide natural flexibility that allows easy encoding of as-

sumptions about an unknown function that modeling wants to learn via either

its mean function or the covariance function (Rasmussen & Williams, 2006).

The above flexibility has resulted in the increasing application of Gaussian

processing regression (GPR) and its multi-task extension (MGPR) in physiolog-

ical vital signs modeling within the modeling functional clinical data analysis

field. The multi-task Gaussian process regression extends the usual GPR to

modeling multiple vital signs co-currently based on composite covariance ob-

tained from related tasks. It considers the union of all time-stamps of the mul-

tivariate vital signs but modeling is fitted for each vital sign separately leading

to appropriate joint modeling and estimation for unified inference. With the

application of the standard GP formulation and technique, exact inference for

MTGPR modeling is achievable. For comprehensive details on the exact in-

ference for MTGPR modeling, see, for example, (Williams, Bonilla, & Chai,

2007). Dürichen et al. (2014) and Ghassemi et al. (2015) adopted the multi-task

GP approach to modeling and forecasting clinical multivariate time series data.

In particular, Ghassemi et al. (2015) classified intensive care unit (ICU) patients

based on the acuity of illness using multi-task GPR. The severity of illness as-

sessment was done using the estimated hyperparameters of the fitted MTGPR

modeling with heterogeneous and irregularly sampled clinical multivariate time

series from ICU patients.

The authors reported improved performance of their method over an ap-

propriate single-task GPR modeling. Other existing work on the application of

MTGPR to clinical time series can be found in Marlin, Kale, Khemani, and

3
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Wetzel (2012), Lasko (2014), Schulam, Wigley, and Saria (2015), Lichman

and Smyth (2014), and Clifton, Clifton, Pimentel, Watkinson, and Tarassenko

(2013). In each of the above works, it has been observed by Liu and Hauskrecht

(2016) that, it seems the dependencies among the different time series were not

captured due to the use of forecasting modeling for each time series separately.

To address the above drawback, Liu and Hauskrecht (2016) considered

a two-stage modeling perspective using linear dynamical system modeling and

multi-task Gaussian process regression modeling for clinical multivariate time

series dataset. The authors first applied a linear dynamical system to model

the population trend and secondly, employed MTGPR to capture the individual-

specific short-term variability. As a result, the interactions among all variables

and their dynamics were modeled. With the above two-stage modeling frame-

work, the work of Liu and Hauskrecht (2016) exhibited the potential to learn

the population trend from a set of time series from past patients, capture the

subject-specific short-term multivariate variability and ensure automatic adap-

tation of predictions by adjustment using new observations.

The predictive performance of their modeling was better than their ap-

propriate population-based and patient-specific time series counterparts. It is

straightforward to observe that the problem of interest in the above works re-

viewed is centered on joint modeling of multivariate clinical time-series data

from varying sources. Despite the attractiveness of the proposals by the authors

outlined above, no clinical covariate information was considered or modeled

in relation to the multivariate responses. Omitting available clinical covariate

information in statistical modeling constitutes a loss of vital information that

might aid in the detection and identification of important indicators of the con-

dition of health or otherwise.

Handling of non-time dependent covariates within the Gaussian process

regression framework is non-trivial due to the underlying challenges associ-

ated with the principled incorporation of such information into the modeling.

Although, the GPs have appealing flexibility regarding parameters such as the

4
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mean and covariance functions that can be adapted to encode modeling assump-

tions, inappropriate modeling of parameters may introduce some intractability

into the modeling. Mensah, Nott, Tan, and Marshall (2016) proposed proba-

bilistic modeling of non-time dependent subject-specific covariate information

within the GPR framework via the smoothing parameter of covariance of the

assumed subject-specific GP modeling. The approach was developed for fitting

Bayesian GPR modeling for grouped functional longitudinal data. However, due

to the subject-wise modeling of covariate information, the challenges associated

with the incorporation of such information were not fully encountered.

Based on the work of Mensah et al. (2016), Ofori (2020) proposed a novel

approach for modeling non-time dependent via extraction of robust statistics

termed Orthogonalized Gnanadesikan-Kettering (OGK) statistics (Maronna, Mar-

tin, Yohai, & Salibián-Barrera, 2019) from the matrix of covariate information.

This reduces the non-time dependent covariate designed matrix to a designed

vector for easy modeling using either the mean function or the covariance func-

tion. This approach is appealing to the best of our knowledge because it has

the potential to ensure computational speed-ups in Variational Bayes inference

algorithms Mensah, Ofori, and Howard (2021). This approach to covariate mod-

eling is adopted and adapted in this thesis.

Data on physiological vital signs can be univariate or multivariate in na-

ture depending on their source and the sort of generation process. Focusing

on multivariate vital sign data type and considering the generating processes

within a common medium such as the human system in public health. The

generation of multivariate physiological vital signs data usually occurs within

the same time-space for some scientific phenomenons. In such situations, it

is often of interest to examine the dynamics of these multi-variable vital signs

with their relationship with some available health covariates within the common

time domain to reduce or circumvent the challenges, for example, modeling and

computational burdens, associated with examining them individually using the

common time domain.

5
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The above interest calls for a novel modeling perspective in which a two-

stage modeling formalism is utilized in a formal way. In such a modeling per-

spective, first, the multi-vital signs must be fused into a single variate appropri-

ately preserving the intrinsic features as well as borrowing information across

the various vital signs for better estimation of free parameters of the correspond-

ing modeling. Secondly, the modeling of composite vital signs data should be

flexible enough to be able to incorporate available non-time dependent covari-

ates for informed decision-making. Nevertheless, non-functional (time) depen-

dent covariates generated are generally complex leading to complex design ma-

trices in modeling. Thus, introducing a myriad of challenges in modeling for-

mulation, and, subsequently, fitting and inference.

Interestingly, physiological vital signs are known to exhibit some inter-

relationships and this information has aided the conventional approach to health-

care provision in public health where medical doctors make health status deci-

sions based on some baseline standard performance measurements of the vital

signs observations obtained from vital organs of the human system. This fun-

damental information allows health monitoring to be executed via simple mon-

itoring of indicators of health with major components being the physiological

vital signs. In this thesis, we propose a novel two-stage approach for model-

ing multivariate vital signs data with common time stamps and endowed with

non-time dependent covariates. In particular, in the first stage of the above two-

stage modeling framework, nonparametric methods are explored adopting the

expected value contribution approach of Mensah, Eyiah., and Assabil (2021) to

develop appropriate feature-based schemes for fusing multivariate physiological

vitals signs.

The second stage, an exploration of the Gaussian process regression was

adopted to develop appropriate single talks Bayesian GPR for the fused data via

the features, allowing incorporation of vital sign-specific covariate information.

The covariate modeling considered here will be based on the novel approach

proposed by Mensah, Ofori, and Howard (2021).

6
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Statement of the Problem

The increasing availability of multivariate clinical datasets in pubic health

due partly to the recent outbreak of pandemic and partly, to technological ad-

vancements has revived an increasing interest in fast inferential methods for

informed decision within the computational statistics community. This has

resulted in an extensive application of Bayesian Gaussian process regression

(GPR) modeling techniques and its multi-tasks extension (MTGPR) to such

datasets, see, for example, Clifton et al. (2013); Dürichen et al. (2014); Ghas-

semi et al. (2015); Khalid et al. (2013); Lasko (2014); Lichman and Smyth

(2014); Liu and Hauskrecht (2016); Marlin et al. (2012); Mensah, Ofori, and

Howard (2021); Schulam et al. (2015). GPs generalized multivariate Gaussian

random vectors to infinite dimensions (Rasmussen & Williams, 2006). Whiles

a GPR is used for a single task (univariate modeling), an MTGPR considers

multiple tasks modeling jointly borrowing information across the various tasks.

That is, an MTGPR can be viewed as an extension of the GPR for mod-

eling multiple tasks simultaneously using learned covariance between related

tasks. The MTGPR was adopted by Dürichen et al. (2014) for a biomedi-

cal application in terms of multiple vital signs monitoring and Ghassemi et al.

(2015) for intensive care unit (ICU) patients classification using acuity of illness.

Clifton et al. (2013). Liu and Hauskrecht (2016) observed that the dependencies

among the different tasks were not fully captured in the above works and they

proposed the joint use of the linear dynamical system and multi-task Gaussian

process regression modeling framework for modeling clinical multivariate time

series dataset.

Also, for a multivariate dataset with p variables, the application of GPR

in a multi-task approach without any approximation to the covariance function

may increase the above computation and memory scalings. In addition, for

multivariate vital signs data with common time stamps, the use of MTGPR may

7
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lead to repeated use of the common timestamp since the MTGPR considers the

union of all timestamps associated with different tasks. Another obvious issue is

the integration of available covariates especially, the non-time dependent ones.

Although the Bayesian approach to inference was considered in the proposals

suggested by the authors mentioned above, no clinical covariate information

was modelled in relation to the multivariate responses. Omitting available clin-

ical covariate information may lead to loss of information that may affect the

performance of fitted statistical modeling.

Though Ofori (2020) considered resolving the issue of incorporation of

non-time dependent covariates in the Variational Bayes GPR using the idea of

robust statistics (Orthogonalized Gnanadesikan-Kettering (OGK)) (Maronna et

al., 2019), it was in the one-dimension direction, just for traumatic systolic blood

pressure response. Modeling non-time dependent covariates in the multi-task

GPR has not been being addressed in the literature. This thesis aims to develop

novel flexible statistical methods for handling multi-tasks GPR problems with

common task-specific predictors within the single task GPR modeling frame-

work.

Objectives of the Study

The main objective of this research is to develop inferential methods for

reducing multi-task Bayesian Gaussian process regression (MTBGPR) to single-

task BGPR. The research is designed based on the following specific objectives.

1. To develop automatic extreme value controlled nonparametric schemes

for fusing multivariate physiological vital signs into a single variate vital

sign

2. To develop appropriate feature-based Gaussian process regression model

for the composite vital sign

3. To develop appropriate inference methods in the context of Variational

Bayes and MCMC methods

8
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Significance of the Study

Multivariate physiological vital signs observed over the same time domain

require separate models for each vital sign against the common time. The ap-

plication of multi-task modeling within the Gaussian process framework poses

a challenge due to the construction of common covariance functions as well as

the computational burden associated with such models. This study offers some

significant benefits in the following ways. Firstly, it provides a simple but princi-

pled way to transform multi-task GPR problems into single-task GPR problems

for physiological vital signs. This transformation leads to significant computa-

tional savings allowing easy application to the monitoring of physiological vital

signs in practice.

Delimitation

The study was conducted in Ghana but use a data from Biofourmis Private

Company Limited, a Health Data Analytic Company in Singapore.

Another delimitation is, the study was conducted in relation to physiolocal vital

signs

Limitation

This study was conducted mainly using key variables in the physiological

vital signs. The result of the reaserch cannot be generalized in Ghana to reflect

the health status of all. Other challenges include time limitation. Since this

study has a short duration to be completed.

Also the technical limitation is a major drawback since the researcher do not

have high specification computer to run the analysis and have to relied on other

departmental labs.

• Kernel Density Estimation: A non-parametric approach for modeling the

joint distribution of multiple random variables empirically.

9
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• Gaussian Process: A generalization of the multivariate normal distribution

in infinite dimension (Rasmussen & Williams, 2006).

• Gaussian Process Regression: An application of GP in functional regres-

sion gives the GPR (single task GPR).

• Multi-Task Gaussain Process Regression: An extension of the GPR for

modeling multiple tasks simultaneously using learned covariance between

related tasks.

Organization of the Study

This thesis is divided into five chapters under the headings: Introduc-

tion, Literature Review, Methodology, Analysis and Summary, Conclusions,

and Recommendations. Chapter one is the introduction of the thesis. It presents

the background of the study, statement of the problem, objectives, and the out-

line of the study. Chapter two reviews literature related to the study. It performs

an extensive review of existing literature on the Gaussian process and its appli-

cation in regression in the Bayesian paradigm.

Chapter three deals with methodological development. In particular, the

fundamental theoretical aspects of the statistical and computational methods are

developed. This entails the modeling framework, inferential methods, technique

for data collection, data collection instrument or tool, population and sampling,

and data analysis.

Chapter four focuses on the implementation of the developed computa-

tional methods in simulation and real data application. Also, exposition on the

data analysis and its implication. Finally, Chapter five summarizes the work,

presents the conclusions and recommendations.

Chapter Summary

The study aims at developing flexible statistical methods within the Bayesian

Gaussian process regression framework for fusing multivariate physiological vi-
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tal signs dataset into a composite univariate vital sign and modeling the resul-

tant vital sign trajectory using Gaussian process regression. In other words,

transforming multivariate time-space into univariate time-space and applying

the Bayesian Gaussian process regression model was the focus of this thesis.

This chapter provides the fundamental elements required for gaining insights

into the big picture proposed in terms of the major statistical problem of inter-

est intended to find a solution via research. The chapter does it in a structured

manner, providing the basic information for easy navigation.

The chapter begins with a general introduction, in brief, followed by a

scientific background. The major problem identified is formally stated scien-

tifically next, providing the appropriate perspective for a better understanding

of the problem. With the problem formally stated, the objectives of the study

become apparently clear and they are formally outlined next.

Existing work in the literature with an appreciable relationship with the

current work is outlined and captured into related work. Also, the novelty and

contribution to literature are clearly outlined and captured into a state of con-

tribution. Finally, the chapter ends with a road map for the rest of the thesis

captured as the organization of the study.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

Attention has been given to the fact that, the ill-health of every individual

has a direct link to the deterioration in physiological vital signs and that adverse

consequences can be avoided by detecting this deterioration early and providing

pragmatic treatment (McQuillan et al., 1998). In the early 1990s, it was rec-

ognized that the frequent changes in the breathing patterns of individuals, for

example, with the aid of other parameters, help to diagnose patients with car-

diac arrest which is about 38% accuracy (Bedell, Deitz, Leeman, & Delbanco,

1991; Fieselmann, Hendryx, Helms, & Wakefield, 1993).

The first nationwide survey study (Kause et al., 2004), shows that fre-

quent changes in physiological patterns of individuals have prior consequences

on events as cardiac arrest. Kause et al. (2004), are of the view that patients

will be admitted to the ICU and the associated death rate which was conducted

within three countries such as UK, New Zealand and Australia with 90 hospi-

tals. It was noticed that in three days while these patients were been observed,

60% of the patient’s severity was also having this effect in the vital signs just

24 hours of occurrence. This involved 79.4% of the cardiac cases, 54.5% of

patients within the ICU and, 11.7% of deaths recorded.

In 2011 - 2012, almost 35% of admissions cases within the UK were

grouped as emergency cases (Blunt, Bardsley, & Dixon, 2010). According

to a study conducted by (Renton et al., 2011), out of 27 studies on the issues

of adverse events before admission to the ICU shows that 37.2% will be admit-

ted to the ICU and 18.3% of these cases will be re-admitted to the ICU. These

researchers are of the view that, it should be a priority of medical practition-

ers to have a system that monitors patients, which will help physicians to make

good diagnosis and also aid in the early detection of deterioration of these vital

signs in patients. It will also help individual with chronic conditions such as
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high blood presure to seek medical care early in case of any change in their vital

signs.

Vital Signs

Thran (2018), describes vital signs as the individual’s health status within

a particular point in time. These vital signs are measured and recorded to aid

in the assessment of the general well-being of individuals, with the possibil-

ity of detecting any diseases, and taking track of healing progress Lockwood,

Conroy-Hiller, and Page (2004). Edmonds, Mower, Lovato, and Lomeli (2002)

considers heart rate (HR), respiratory rate (RR), blood pressure (BP), and tem-

perature and oxygen saturation (SpO2) as the essential health status measuring

sign for a person’s wellbeing. Even though there are international standards in

the interpretation of these vital sign figures, there are a few assumptions as to the

best practice of the caring facilities with its protocols involved. Schulman and

Staul (2010) gave their opinion on how vital signs are measured and recorded.

They are also with the view that accepting the baseline from the international

community should not be encouraged since various factors affect an individual’s

health.

The health experts from these facilities are to spearhead the establishment

of their own standard based on the individual needs. The authors also suggested

that, the rate at which these vital signs are accessed, some vital signs are to be

checked in everyone one hour or even below the hourly rate depending on the pa-

tients’ stability. In view of this, the framework of assessment can be considered

from Hardin and Kaplow (2005), based on stability, complexity, predictabil-

ity, vulnerability, and resiliency. McGhee, Weaver, Solo, and Hobbs (2016),

expressed their opinion on the frequency at which emergency departments are

prone to missing records on vital signs for patients. Even though these may

serve as a major guide in deteriorating patients.
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Heart Rate

Heart rate is measured in beats per minute (beats per min). Its normal

range, at rest, varies with age from 110 - 160 beats per min at birth to approx-

imately 60 - 100 beats per min by late adolescence (Malik & Camm, 1990).

During adulthood, heart rate varies widely between individuals depending on

several factors such as physical activity, body composition, stress levels, or dis-

ease. An unusual high heart rate (known as tachycardia) or low rate (known as

bradycardia) may indicate an underlying clinical problem.

The electrocardiogram (ECG) is the global standard method for measuring

heart rate. It records the electrical activity of the heart with electrodes placed in

contact with the patient’s skin. Typical configurations for recording the ECG,

depending on the clinical information desired, are either 3 electrodes on the

chest or 10 to 12 electrodes placed at various locations on the patient’s upper

body (Clifford, Azuaje, McSharry, et al., 2006).

It is also possible to measure heart rate by using a pulse oximeter, a non-

invasive optical sensor usually positioned on the fingers, toes, or ear lobes. Pulse

oximeter has made significant contributions to the non-invasive monitoring of

physiological signals in a wide variety of clinical situations. Pulse oximeters

are regularly used in primary care, the emergency department and at home (Ed-

monds et al., 2002).

Manual measurement of heart rate is common in clinical practice during

the initial assessment, either by using a stethoscope or by palpating the wrist (ra-

dial artery) or the neck (carotid artery) (Tarassenko & Fleming, 2010). These

manual measurements have been shown to underestimate the true heart rate dur-

ing a clinical competency assessment in a simulated environment, only 25% of

nurses could palpate the heart rate (Suter et al., 2014).
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Respiratory Rate

The respiratory system is a complex biological structure composed of

multiple organs that enable us to breathe. It filters and transports air into the

lungs, where gas exchange occurs through a process called diffusion, allowing

the movement of oxygen into the lungs and the release of carbon dioxide. The

complete process of gas exchange between the atmosphere and body cells is

called respiration. The actions responsible for these air movements are called

inspiration and expiration. Respiratory rate is measured in breaths per minute

(breaths/min). Similar to heart rate, the normal respiratory rate varies with age,

with 30-40 breaths/min at birth, reducing to 15-20 breaths/min by late adoles-

cence.

Inspiration and expiration movements cause changes in thoracic pressure,

leading to variations in the air volume within the lungs, which in turn cause ex-

pansion and contraction of the thorax that can easily be seen by the eye. This ef-

fect is used in hospital settings such as general wards or emergency departments,

where the respiratory rate is typically measured by the clinical staff counting

chest wall movements. Although this method is simple and does not interfere

with the breathing mechanisms, human observation of respiratory rate is time-

consuming and the result is not always accurate, with errors reported up to 34%

(McQuillan et al., 1998).

To obtain reasonably accurate results, Simoes (2003) discussed the need

to count chest wall movements for at least 60 seconds; in clinical practice, how-

ever, counting periods of just 15 seconds or at most 30 seconds are more com-

mon. The training of clinical staff to adequately measure respiratory rate is also

an issue. Pearson and Duncan (2011) reported that only 67% of nurses were

able to measure respiratory rate to within 10 breaths/min during an investigation

in a simulated environment.

The variation in thorax volume when a patient is breathing can also be measured

using a strain-gauge transducer typically held by elastic bands around the chest.
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The respiratory movements result in resistance changes of the strain gauge that

correspond to the respiratory activity. However, the accuracy of measurements

can be affected by body position, variability in the signal recorded among pa-

tients, and even in measurements of the same patient at different times (Baird &

Neuman, 1991). In addition to measuring the changes in the circumference of

the thoracic cavity, there are a number of other methods that estimate respiratory

rate from variations in the airflow during expiration.

These methods typically use a face mask, a nasal cannula, or a mouth-

piece to collect the air. During expiration, airflow can be detected because the

expired air is warmer, has higher humidity, and contains more carbon dioxide

than inspired air. However, measuring airflow can affect the respiratory rate. A

possible reason for its popularity in a hospital setting is that it can be measured

simultaneously with the ECG, using the same electrodes, thereby eliminating

the need to attach extra transducers.

Oxygen Saturation (SpO2)

Oxygen is a chemical substance essential to the functioning of the cells

in the human body and, therefore, necessary to sustain life. It is important to

monitor if all organs are receiving a sufficient supply of oxygen as it is being

delivered to the body. The measurement of blood oxygenation, also known as

oxygen saturation, is an important indicator of a patient’s health. A prolonged

lack of oxygen can rapidly cause permanent damage to cell tissue, leaving pa-

tients with devastating neurological handicaps, and has the potential to be life-

threatening if cells have a high metabolic rate in organs such as the brain, heart,

or the central nervous system is damaged.

Several methods have been developed to analyze oxygen delivery. In prin-

ciple, oxygen saturation can be measured in vitro such as in haemolysed blood

samples in a cuvette or in vivo measurements taken directly from the human

body (Van Overmeire, Van de Broek, Van Laer, Weyler, & Vanhaesebrouck,
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2001). In-vitro chemical methods were developed during the second half of the

twentieth century and are still in use for blood gas analysis as gold standards for

oxygen content measurement. Chemically-based methods determine the oxy-

gen content of blood from a sample by using chemical reactions to remove the

oxygen from the blood. One of the disadvantages of these methods is that they

can be slow and, therefore, measurements are performed infrequently, usually

only once or twice a day in the intensive care unit (ICU).

The advent of oximetry as an optical method for measuring the oxygen

content in the blood developed rapidly during the 1930s and 1940s. Based on

spectrophotometry, oximetry measures the amount of light absorbed by the var-

ious molecules that bind to oxygen in the blood (Burris et al., 1997). Early

oximeters were calibrated empirically and achieved an acceptable accuracy, but

they were too cumbersome and expensive to use in a clinical environment. Pulse

oximetry revolutionizes clinical practice, making it possible to measure, non-

invasively and continuously, arterial oxygen saturation in the peripheral arteries.

Peripheral oxygen saturation gives a measure of the amount of oxygen carried

by the arterial blood.

It is given by the percentage of hemoglobin that is bound to oxygen with

respect to the total hemoglobin. Unlike heart rate and respiratory rate, SpO2

does not vary with age and a value between 95% and 100% is considered normal

in both children and adults (DeVita et al., 2010). The common measurement

sites for pulse oximetry are the finger, toe, and ear lobe. Non-invasive and

continuous monitoring of oxygen delivery is an invaluable aid to the physician

as an indicator of the patient’s health (De Kock & Tarassenko, 1993). Pulse

oximeters are small, cheap, portable, non-invasive, and do not require any prior

training for their use.

Blood Pressure

Blood pressure is when blood is forced to move into the artery walls dur-

ing contraction and relaxation in the heart. Any time the heart moves, blood
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flows into the arteries, which leads to maximum blood pressure while the mo-

ment as heart slim back to its position. The pressure drops any time the heart

calms (Magder, 2018).

In determining the blood pressure of individuals, there are two main num-

bers that are considered. The numerator or the high figure is known as the

systolic pressure, which comes by as a result of the artery as at when the heart

contract and push blood through the body. The denominator or the lower figure

is called the diastolic pressure, which is an indication of the force within when

the heart slims back. These two figures have a unit of measurement as ”mm Hg”

(millimeters of mercury). According to Elliott and Coventry (2012), there are

two main ways of checking the blood pressure of patients. That is, the manual

system which is called a mercury manometer or sphygmomanometer, and the

digital or dial.

There are some key disease conditions that are associated or notably with

high blood pressure. Among them are stroke, heart attack, and heart failure.

When the pressure reaches its peak, this forces the arteries to exhibit a resistance

with the flow of blood which makes the heart to push harder for the flowing of

blood in the body. Blood pressure is grouped as normal, elevated, or stage 1 or

stage 2 high blood pressure.

Normal: the normal blood pressure is within the range of 120 to 80. Which

is, systolic of 120 and diastolic of 80. Elevated: is within the range of 129 to

80. While stage 1: ranges from 139 to 89 and stage 2: is classified as 140 to 90

or higher. (Taylor, Wilt, & Welch, 2011).

When blood pressure is measured for the first time, and it seems to be

more than the normal range, it does not make the individual a hypertensive

patient or that they should be in a panic situation. A physician may require to get

a blood pressure profile, which is a record of blood pressure taken consistently

for some days minimum of seven days or a few weeks to be diagnosed with

blood pressure and with its treatment (Ramsey III, Medero, & Hood Jr, 1991).
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Kernel Density Estimation

The kernel density estimation (KDE) initially proposed by Parzen (1962)

provides a non-parametric approach for estimating the underlying distribution of

observed datasets either on the univariate or multivariate scale. For patient mon-

itoring, the KDE approach has beens utilized extensively. In particular, the joint

distribution of key vital signs, such as heart rate, respiratory rate, SpO2, and

blood pressure from a cohort of ”healthy” patients are estimated using KDE.

Thresholds are set using the estimated probability density function for which

predictions are based. Particularly, new thresholds are generated using new pa-

tients’ vital signs and then compared with the normal threshold and alarm on

low-likelihood values reported.

In essence, KDE methods replace an absolute threshold with a probabilis-

tic threshold that can account for the correlation between vital signs. Patient

risk, though, is still assessed at a single point in time, thereby losing infor-

mation from previous measurements, and making the unrealistic assumption of

independent and identically distributed (i.i.d.) observations. In addition to dete-

rioration detection, KDE methods have been used to identify artificial anomalies

in vital sign data.

Gaussian Processes for Vital Sign Modeling

In this section, we exposit in brief the relationship this project has with

existing works in the literature. We point out the similarities and differences

in modeling, computational methodology, inferential method, and application.

First, we identify existing papers in the same direction as the current work be-

fore outlining their features in terms of the above thematic aspects of interest.

GPs are a flexible and principled way to model a variety of functions,

including regression, classification, time-series, and Spatio-temporal modeling

tasks. It is, therefore, unsurprising that there exists an ever-growing body of

19

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



literature describing the use of GPs to model and predict vital signs.

The probabilistic framework of GPs assists in the modeling of vital signs,

which are typically recorded using wearable sensors, which induce various noise

components, such as sensor noise, quantization, and artifact arising from patient

movement or signal processing errors.

The GP’s flexibility allows it to handle a variety of modeling tasks. For

example, as a regressor, the GP can perform forecasting, interpolation, and

missing-value-imputation tasks with measures of uncertainty in its prediction.

This allows GPs to serve both as a modeling approach in their own right, as well

as serve as a pre-processing step to subsequent analytical steps. As a classifier,

GPs can circumvent unnecessary and inaccurate assumptions of linear relation-

ships between predictors and outcomes (Knaus et al., 1991; J. M. Wang, Fleet,

& Hertzmann, 2007).

Dürichen et al. (2014) applied multi-task GP regression to assess the inter-

correlations existing between physiological vital signs using vital signs data set

from a cohort of cancer patients recovering from surgery in the Oxford Hospi-

tal NHS Trust. The vital signs spanned heart rate, respiratory rate and systolic

blood pressure. The MTGP developed considered convoluted kernels for its

covariance function in order to allow different hyperparameters for each vital

sign. The utility of their approach was evaluated in comparison with appropri-

ate single-task GP models for each vital sign, for which improved performance

was obtained in favor of the MTGP. Clifton, Clifton, Pimentel, Watkinson, and

Tarassenko (2012) illustrated the potential of GP regression-based Early Warn-

ing Scores (EWS) to improve the efficacy of the well-known manual EWS sys-

tems using physiological vital signs data collected manually. They adopted the

single-task GP modeling approach.

W. Wang, Feng, Liu, and Chen (2008) used Gaussian processes to impute

missing vital sign values as well. By providing a complete set of vital signs, the

values could be fed into a patient status index, such as in the KDE-based method

from Hann (2008), without resorting to a heuristic imputation at the population
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mean. Furthermore, the posterior distribution of the Gaussian process allowed

for probabilistic reasoning over both the missing vital sign value and the patient

status index which results from those vital sign values.

In Pimentel et al. (2013), multi-task GPs are used to provide an estimate

of heart rate and respiratory rate trajectories, which were subsequently clustered

via a metric of local likelihood into four template trajectories. These templates

were then used to distinguish between deteriorating and non-deteriorating tra-

jectories in a held-out set of test patients. The value of GPR for modeling the

trajectories was severalfold, including:

• Imputation of vital sign values at arbitrary and constituent time intervals

• the principled estimation of those values

• a representation of uncertainty at any point (thereby accommodating greater

weight for trajectories with greater certainty).

In Lasko (2014), GPs were used to pre-process time-series of uric acid

measurements. GPs were used to transform “noisy, irregular, and sparse ob-

servations to a longitudinal probability distribution”. The timestamps of these

posterior GPs were then heuristically time-warped and fed as inputs into an

autoencoder with the aim to distinguish between the uric acid measurement fea-

tures of patients with gout and leukemia. The auto-encoder-learned features

were compared to features designed by clinical experts.

Stegle, Fallert, MacKay, and Brage (2008), examined the use of GPs for

free-living HR monitoring with 40 adult subjects. modeling-fitting and fore-

casting were improved by the use of clustering based on ”auxiliary” ECG-

waveform summary data (for example, the variety of inter-beat intervals, the

extrema within these intervals, and the fraction of time these extrema fell out-

side a credible range). The latter was used to identify noisy periods in the data.

The auxiliary variables were used to generate clusters of variables with

different levels of noise. The noise modeling was then a mixture of the different
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classes with varying noise. After clustering, the kernel accounted for two ad-

ditive components of HR variance: a discontinuous short-term variable compo-

nent and a periodic component for diurnal patterns. modeling parameters were

found using expectation maximization to approximate the posterior distribution

and then choosing values that maximized log-likelihood. In almost all the above

methods, the approach to parameter inference was based on full Bayesian with

fitting algorithms constructed via marginal likelihood optimization.

Another related works are the works of Ofori (2020), Mensah, Ofori, and

Howard (2021), and Mensah et al. (2016). Mensah et al. (2016) considered

functional model for longitudinal data with covariate-dependent smoothness.

In their work, functional terms describing subject-specific and group-specific

trends were modelled with Gaussian processes.

Allowing the smoothness of specific trends to relate to available subject-

specific covariates, a smoothness parameter was assumed and modelled hierar-

chically through the covariance function of the Gaussian describing the subject-

specific trajectory. Variational Bayes inference methods based on sparse spec-

tral approximations were developed for parameter inference. Modeling of co-

variate information was pretty much simply due to the use of subject-specific

models allowing the extension of the Variational Bayes to complex functional

models. The utility of the developed methods was illustrated in hydrology with

grouped longitudinal streamflow dataset. Mensah, Ofori, and Howard (2021) on

the other hand, provided a modification of subject-specific covariate modeling

concept to sample-specific covariate modeling within the BGPR framework to

assess the relationship trauma-specific covariates have with systolic blood pres-

sure observed during traumatic events.

They proposed the use of OGK statistics (Maronna et al., 2019) for ex-

tracting vectorized covariate information for easy modeling via the Gaussian

process hyperparameters. In this thesis, the focus is on reducing multiple vital

signs data with common time-stamps into a univariate vital sign and modeling

the resultant vital sign using Gaussian process regression with sparse spectral
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approximation treatment for the GP terms in the Bayesian paradigm. Thus,

this project is similar to all the above work in terms of the use of the Bayesian

Gaussian process regression modeling. In particular, computational framework

is similar to Ofori (2020), Mensah, Ofori, and Howard (2021), and Mensah et

al. (2016) in terms of the use of sparse approximation, and the incorporation of

non-dependent covariates using OGK statistics. Nevertheless, there exist vast

structural differences in models and algorithmic development.

However, the major difference is seen in the modeling. While, single

Gaussian process term was employed in modeling the unknown smooth func-

tional observation in Ofori (2020), and Mensah, Ofori, and Howard (2021), two

Gaussian process terms are used in this thesis. Also, the response modelled

here is a composite functional response obtained via fusing of the multiple vital

signs while single functional responses were considered in the papers identified

above.

Chapter Summary

This chapter of the thesis provides a brief review of key aspects of the

projects in relation to the identified research topic. In particular, fundamental

aspects of the research topic that will enable easy understanding of the thesis

as well as motivate readers’ interest. The chapter gives a general introduction,

followed by a brief exposition on the concept of physiological vital signs. In

particular, physiological vital signs are clearly defined in relation to the interest

of the project with its components briefly introduced. In addition, Gaussian

processes are formally defined and their application in functional regression is

reviewed in brief. Finally, a brief introduction to the kernel approach to the

estimation of the probability density function of a given dataset is provided to

end the chapter.
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CHAPTER THREE

METHODOLOGY

Introduction

This section of the thesis presents exposition on the appropriate statisti-

cal approaches adopted for extracting vital sign specific features from the mul-

tivariate vital sign data, a fusion of the extracted multivariate features into a

univariate feature, development of functional regression models in the Gaussian

process framework, and the development of inferential methods in the Bayesian

computational framework. This chapter is structured as follows.

First, an introduction to vital sign data fusion is provided in brief. Sec-

ond, novel approaches for extracting composite single variate vital signs output

from multi-vital signs dataset based on information contained in the probability

density function (pdf) and computation of pdf-based statistics is outlined.

Third, the appropriate pdf-based statistics for deriving composite func-

tional vital sign trends and corresponding fusing schemes are outlined. Func-

tional modeling of the derived composite vital sign data via the Gaussian process

regression framework is developed with which robust approaches for handling

non-functional physiology-specific covariates are introduced next. Appropriate

computational methods for parameter inference in the Bayesian formalism are

considered next.

In particular, tractable approximations for complex Gaussian process like-

lihoods in the Variational Bayes perspective are introduced in brief and Varia-

tional Bayes inference for unknown parameters is giving a brief exposition and

its application made to develop appropriate Variational inference method for the

developed Gaussian process model are outlined under this section.

Furthermore, a discussion of an appropriate exact inference method in the

advanced Markov Chain Monte Carlo (MCMC) framework is considered. Next,

the adopted statistical performance measures are introduced and the outline for

implementation of the proposed methods described. Finally, the chapter ends
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with a summary.

Vital Signs Data Fusion

Human physiology can be viewed as a complex system consisting of nu-

merous vital signs which work together in a complex manner to define the over-

all health of an individual. These vital signs are related in some sense to health

status in a fashion that is not fully understood by scientists. Nevertheless, medi-

cal doctors through convectional ways are able to determine whether a person is

sick or otherwise using these physiological vital signs coupled with other factors

such as diet, activity, etc.

This suggests that the composite of all vital signs is pivotal in making

an informed and precise decision on the health condition of a given individual.

However, the question of how to derive an appropriate composite measure of

vital signs via fusing the individual vital signs together in an unbiased manner

whiles preserving the underlying associations existing among these vital signs

becomes clearly apparent. This is because of the challenges associated with the

data in terms of its complexity in a unit of measure, auto-correlation, etc.

Particularly, for physiological vital signs, autocorrelations can be informa-

tive on the underlying vital sign specific dynamics, thus, can serve as a source of

evidence for early signs of health-related issues if detected on time. However,

a manifestation of subtle changes in physiological vital signs usually reflects in

the deterioration of health condition which when tracked and detected on time

could prevent many unforeseen emergencies.

Detection of such subtle changes in vital signs requires the use of appro-

priate flexible statistical models with the ability to borrow information from the

various vital signs to aid better estimation of model parameters. One such novel

model framework is fusing of multi-vital signs into a composite single variate

vital sign, followed by modeling for a simplistic assessment of the overall effect

of the vital signs. In this regard, the essence of fusing multivariate vital signs

can easily be underscored.
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The fusing of multi-physiological vital signs generated by systems oper-

ating under the same conditions into the univariate vital signs is important in

many ways. Firstly, it facilitates easy modeling and fitting of complex statis-

tical models in that the un-fused data may require multiple models as well as

estimation of unknowing parameters, compounding the computational expenses

associated with such datasets.

The combined effect of multiple vital signs can be very informative on

some hidden physiological threat or issue that may require urgent attention.

Failure or untimely detection of such issues may lead to the overall adverse

health issue that may eventually give birth to premature deaths. In the following

subsection, methods for extracting composite univariate vital signs from multi-

vital signs are considered.

Data Fusion with Automated Outlier Control

Consider multivariate data, yt =
[
y1, y2, . . . , yp

]
, yj =

[
yj1, yj2, . . . , yjn

]′

observed over common time stamps xt =
(
x1, x2, . . . , xn

)
. Suppose these vari-

ables combine in someway to yield trend Z(y) as shown in Figure 3. Further,

suppose it is of interest to understand the dynamics of the Z(y) over xt and its

relationship with some set of covariates, ω =
[
ω1, ω2, . . . , ωp

]
. To understand

the nature of the univariate process, Z(y), in terms of the underlying covariates,

requires knowing the fusion process before modeling its with some probability

models. In this regard, we consider fusing yt into a univariate data, Z(y) and

then model it with the covariates ω and xt. We propose the use of the probabil-

ity density function for extracting unique features that can be fused easily into a

single-variate trend.

The probability distribution of a given data set conveys several vital infor-

mation, for example, the nature of the data, measures of center, skewness, etc.

In addition, the existence of an outlying observation can also be discovered via

the distribution of the data. As a result, it can serve as an appealing source of

feature extraction for the development of appropriate feature-based models for
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learning the important content of the data.

Though, it may be relatively straightforward for univariate feature-based

modeling, some complexities exist for multivariate features in that the intrin-

sic inter-relationships existing among the variables constituting the multivariate

data ought to be preserved. In the light of this, extraction of univariate features

from multivariate data requires some particular attention and treatment.

We propose the use of probability density function-based data fusion ap-

proaches for extracting vital features from multivariate data set. The proposals

considered here are based on the contribution of each candidate observation in

the common center generated by all the observations (data points). For clar-

ity, consider the empirical estimator of the measure of center, say, the mean, µ

for a random, Y, following the probability distribution with probability density

function, f(y),

ϖ
(
Y
)
= E

[
Y
]
=

∫
yf(y)dy. (3.1)

It is easily observed that, the integrand, yf(y), in (3.1), serves as a measure

of contribution from the random samples. Based on the likelihood, f(y), as

weights, the elements of the random sample contribute differently to the center,

with candidates close to the center having more impact than those which are at

some appreciable distance from the center.
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Figure 1: Probability Density Function of the Random Variable y.

Figure 2: Nature of the Problem.

Probability density-based data fusion using (3.1), is appealing because, it

automatically handles outlying observations in an appropriate way through the

weight, f(y). Outlying observations are those with a deviant pattern from the

common pattern suggested by the data.

They usually appear at the tails of the probability distribution that best

defines the data. As a result, they have a low likelihood, f(y), and will yield
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relatively lower values, yf(y). If the presence of outlying observation(s) is (are)

unknown, then it is clearly seen that the use of features based on (3.1) can offer

some level of control over such observations. Furthermore, if those observa-

tions are known, it will serve a good purpose not to delete them since deletion

constitute loss of information.

Fusion of Multivariate Data into Univariate Data

For multivariate data set in which the likelihood for outlying observations

may be high, for example, each defining variable may contribute some of such

observations, it will be more beneficial to consider density-based feature ex-

traction for efficient modeling of such data. We consider the following density-

based fusion statistics for multivariate physiological vital signs data.

T (yj) = yjf(yj) (3.2)

S(yj) =
T (yj)− u(yj)

δj
, δj > 0 (3.3)

V (yj) = S2(yj) (3.4)

S1(yj) = αjS(yj), 0 < αj ≤ 1, (3.5)

where u(yj) is a measure of center based on T (yj). The parameter αj can be

viewed as a data tuning parameter. The choice of it introduces model selection

problem which can lead to many interesting learning schemes. However, in this

thesis, a data-driven approach was considered.

The probability density function utilized in (3.2), f(yj), needs to be esti-

mated from the data before it is used. This can be achieved via the nonparamet-
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ric density approach. In particular, the kernel density approach to probability

density function estimation provides a data-driven approach for understanding

the underlying structures in a given dataset through its kernel density. The kernel

density estimator of f(yj) is defined as

f̂(yj) =
1

n

n∑
i=1

Kγj (yj − yi) , Kγj(yj − yi) =
1

γj
K

(
yj − yi
γj

)
(3.6)

for a symmetric kernel function Kγj(·) and smoothing parameter, γj.

For an introduction to kernel density estimation, its implementation, and prac-

tical applications see for example (Scott, 2015) and (Silverman, 1986). With

the above statistics, more than one possibilities exist for combining multivariate

vital sign data into univariate vital sign data for further modeling. The rationale

is to extract common features from the vital sign-specific data that constitute the

multivariate system and then fuse the features based on an appropriate method.

Based on the varied proposals above the following fusion schemes were consid-

ered. First, fusing the T (yj) statistics in (3.2) yields

Zsi = ρ
′

iT (yi), i = 1, . . . , n. (3.7)

Zmi = T̄ (yi) (3.8)

Zoi = T̃ (yi) (3.9)

Second, fusing the S1(yj) statistics in (3.5) yields

Zsi = ρ
′

iS1(yi) (3.10)
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Zmi = S̄1(yi) (3.11)

Zoi = S̃1(yi), (3.12)

where ρi is a vector of constants, S̄(yi) denotes vector of row means and S̃(yi) is

a vector of row OGK statistics (3.19). Alternatively, any of the other statistics

derived from T (yj) can provide a simple way to fuse the multivariate data into

univariate data. In particular, applying (3.2), (3.4), (3.3) and (3.5) to yt, will

be appropriate for the fused data, Z(y). A robust consideration for ρj based on

the moment contribution statistics, T (yj) is pursued in this thesis and it is of the

form

ρj =
T (yj)

η̃j
, (3.13)

where η̃j denotes the maximum value of T (yj). That is, ñj = max [T (yj)] . In

this thesis, the kernel density approach was adopted for the data fusion schemes

and coupled with the Gaussian process regression. That is joint use of the non-

parametric density estimation and Gaussian process regression principles were

explored.

Gaussian Process Model for Fused Vital Signs Data

Given a sample of a single variate vital sign features vectorZ(y) = (Z1, . . . , Zn)

extracted appropriately from a multivariate vital signs, data observed over time

stamps x = (x1, . . . , xn). Suppose further that there exists a set of covariates

v computed appropriately from the matrix covariate information that are asso-

ciated with the Z(y). A detailed exposition on the choice of candidate statistics

for v will be provided later. We consider a Bayesian Gaussian process data

generative model
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Z(y) = f(x) + g(x) + ϵ (3.14)

based on Gaussian measurement errors,

ϵ ∼ N
(
0, σ2

ϵ In
)

with the following system of prior distribution

f(x) | µf (x), κf (x, x
′
) ∼ GP

(
µf (x), κf (x, x

′
)
)

(3.15)

g(x) | µg(x), τg(x, x
′
) ∼ GP

(
µg(x), τg(x, x

′
)
)

(3.16)

τg

(
x, x

′
)
= σ2

τ exp
(
−β2|x− x′ |2

)
(3.17)

κf

(
x, x

′
)
= σ2

κ exp
(
−θ2|x− x′ |2

)
(3.18)

θ | λ, σ2
θ ∼ N

(
v

′
λ, σ2

θ

)
, λ ∼ N (µ0

λ,Σ
0
λ)

β ∼ N
(
µβ0 , σ

2
β0

)
, σ2

θ ∼ IG(αθ, γθ), σ
2
ϵ ∼ IG (αϵ, γϵ)

σ2
κ ∼ IG (ακ, γκ) , σ

2
τ ∼ IG (ατ , γτ ) ,

where IG (a, b) is an inverse gamma probability model with shape and scale pa-

rameters a and b. Also, GP
(
µ(x), δ(x, x′)

)
denotes a Gaussian process charac-

terized with a mean function µ and process covariance function δ(x, x′) (Scott,

2015). Available covariate information is incorporated into the model via the use
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of out-of-sample specific covariate statistic v = (v1, . . . , vr). In what follows,

we give a brief exposition on the robust choice for v in terms of Orthogonalized

Gnanadesikan-Ketterning (OGK) statistics (Maronna et al., 2019).

Let ω be a single variate with probability density function h(ω). Then, statistics

based on a sample of size n

µ̂ = n1

n∑
i=1

m(zi)ωi, σ̂
2 = n0

n∑
i=1

c
(
zi

(
ωi, µ̂, σ̃0

))
, n0 =

σ̃2
0

n
, n1 =

n∑
i=1

m(zi)

(3.19)

where zi
(
ωi, µ̃0, σ̃0

)
= ωi−µ̃0

σ̃0
, m(zi) =

[
1 − s2(ω, a1)

]2
I(|ω|≤a1), s(ω, a1) =

ω
a1
, c(b) = min (a2, b

2) ,

a1 = 4.5, a2 = 3, are termed OGK estimators of the mean and variance of ω.

Bayesian Gaussian Process Approximation

Let g(x) follow a Gaussian process, g(x) ∼ GP
(
m(x), κξ(x, x

′)
)
. Let the

mean m(x) and covariance function κξ(x, x′) be defined as follows, m(x) = 0

and κξ(x, x′) = x− x′
, where ξ denotes the hyperparameters of the covariance

function. Based on Bochner theorem Bochner et al. (1959), κξ(x, x′) can be

defined in terms of a Fourier transform of the form

κξ(x, x
′) =

∫
fg(r)

[
cos

(
2π(x− x′

)r
)
+ i sin

(
2π(x− x′

)r
)]
dr,

(3.20)

fg(r) denotes the probability density function of the covariance function if it

exists.

There exist a Fourier duality between κξ(x, x′) and fg(r) by the the Wiener-

Khintchine theorem (Chatfield, 2013)
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κξ(x, x
′
) =

∫
fg(r)

[
cos

(
2πτr

)
+ i sin

(
2πτr

)]
dr (3.21)

fg(r) =

∫
κξ(τ)

[
cos

(
2πτr

)
− i sin

(
2πτr

)]
dτ, (3.22)

where τ = x − x
′
. Model (3.22) defines the power spectrum or the spectral

density of the associated covariance function. Since the g(x) is a zero mean

Gaussian process, most of its properties will be completely defined by the co-

variance function, κξ(x, x′). In that sense, it is straight forward to see that the

properties of the stationary Gaussian process will be automatically controlled by

the spectral density defined by the covariance function such as (3.22) (Yang, Li,

Rana, Gupta, & Venkatesh, 2019). The expectation in (3.21) can be computed

using m Monte Carlo simulation methods based on the set of spectral samples

, {ωk,−ωk}mk=1, randomly sampled from fg(r) (Gal & Turner, 2015)

κξ(x, x
′
) ≈ 1

m

m∑
k=1

cos
(
2πωk

(
(x− νk)− (x

′ − νk)
))

= κ̃ξ(x, x
′
).

(3.23)

where ν denotes an inducing variable given an appropriate deterministic treat-

ment and ωk, νk and x are of the same length. Using the approximated covari-

ance function κ̃ξ(x, x
′
), the stationary GP can be written as g(x) ∼ GP

(
0, κ̃ξ(x, x

′
)
)
.

For the covaraince functions defined in (3.17), the following approxima-

tion results upon the use of (3.23)

τ̃g

(
x, x

′
, στ , β

)
=
σ2
τ

m

m∑
k=1

cos
(
2πβωk

(
δx,νk − δx′ ,νk

))
(3.24)
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and

κ̃f

(
x, x

′
, σκ, θ

)
=
σ2
κ

m

m∑
k=1

cos
(
2πθωk

(
δx,νk − δx′ ,νk

))
(3.25)

In what follows, the relationship between the approximate covariance func-

tions in (3.24) and (3.25) and the Bayesian trigonometric models (3.26) and

(3.27) is established.

fτ (x) =
m∑
k=1

[
aτk cos

(
2πβωkδx,νk

)
+ bτk sin

(
2πβωkδx,νk

)]
(3.26)

and

fκ(x) =
m∑
k=1

[
aκk

cos
(
2πθωkδx,νk

)
+ bκk

sin
(
2πθωkδx,νk

)]
, (3.27)

where

δx,ν = (x− ν), aτk , bτk ∼ N
(
0,

σ2
τ

m

)
, aκk

, bκk
∼ N

(
0,

σ2
κ

m

)
ωk = G−1

(µk

2

)
, νk = F−1

(µk

2

)
, µk =

[
1 +

( k

m+ 1

)]
,

G(z) and F (z) are the distribution functions of a uniform random variable on

the interval [0, 1] Mensah et al. (2016). By the definition of covariance function,

the following results are true.

E
[
fτ (x)

]
=

m∑
k=1

E
[
aτk cos

(
2πβωkδx,νk

)
+ bτk sin

(
2πβωkδx,νk

)]
= 0

Cov
[
fτ (x)fτ (x

′
)
]
=
σ2
τ

m

m∑
i=1

cos
(
2πβωk

(
δx,νk − δx′ ,νk

))
(3.28)

and
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E
[
fκ(x)

]
=

m∑
k=1

E
[
aκk

cos
(
2πωkδx,νk

)
+ bκk

sin
(
2πθωkδx,νk

)]
= 0

Cov
[
fκ(x)fκ(x

′
)
]
=
σ2
κ

m

m∑
i=1

cos
(
2πθωk

(
δx,νk − δx′ ,νk

))
(3.29)

Using equations (3.24), (3.25), (3.28) and (3.29), it is easily observed that fτ (x)

defined in equation (3.28) and g(x) defined in (3.16) and fκ(x) in (3.29) and

f(x) in (3.15) share the same mean and covariance functions respectively. Thus,

in terms of tractable alternative forms for easy development of inference meth-

ods in the framework of Bayesian spectral approximations, fτ (x) and fκ(x) may

serve as building blocks.

The spectral approximation framework for Bayesian inference has attracted

much attention in the literature recently and myriad of computational friendly

methods have been developed from several Gaussian process applications. For

details on current applications, readers are referred to Tan, Ong, Nott, and Jasra

(2016) and Mensah et al. (2016). Using equations (3.28) and (3.29), writing Sθc

for f(x) and Wβa for g(x), model (3.14), can be redefined as

Z(y) = Sθc+Wβa+ ϵ, (3.30)

where

c =
(
aκ1 , . . . , aκm , bκ1 , . . . , bκm

)
∼ N

(
0,

σ2
κ

m
I2m

)
a =

(
aτ1 , . . . , aτm , bτ1 , . . . , bτm

)
, ∼ N

(
0,

σ2
τ

m
I2m

)

and Sθ and Wβ are n× 2m design matrices

Sθ =
[
cos

(
2πωkθδxl,νk

)
, sin

(
2πωkθδxk,νk

)]
Wβ =

[
cos

(
2πωkβδxl,νk

)
, sin

(
2πωkβδxl,νk

)]
,
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for k = 1, . . . ,m, l = 1, . . . , n.

Variational Inference for Gaussian Pocess Model

Given an intractable posterior distribution, say, p(ξ | y) defined by sample

likelihood, f(y | ξ), and an appropriate prior distribution, g(ξ)

p(ξ | y) = f(y | ξ)g(ξ)∫
f(y|ξ)g(ξ)dξ

, (3.31)

Variational Bayes learning is centered on directly approximating, p(ξ | y) by

a variational distribution, say, q(ξ | y), so that parameter inference is simply

made via the q densities depending on an appropriate adopted restriction on the

variational posteriors. An iterative algorithm for obtaining parameter estimates

is constructed via optimizing a measure of divergence between the two densi-

ties termed Kullback-Leibler divergence Attias (2000). The Kullback-Leibler

divergence is defined as

KL
[
q(ξ | y)|p(ξ | y)

]
= Eq

[
log

{
q(ξ | y)
p(ξ | y)

}]
. (3.32)

From (3.31), the following decomposition is true

log

[∫
f(y|ξ)g(ξ)

]
= Eq

[
log

{
f(y|ξ)g(ξ)
q(ξ | y)

}]
+Eq

(
log

{
q(ξ | y)
p(ξ|y)

})
.

(3.33)

Dropping the second term, (3.32) can be written in the form

log

[∫
f(y|ξ)g(ξ)

]
≥ Eq

[
log

{
f(y|ξ)g(ξ)
q(ξ | y)

}]
(3.34)

with

Eq

(
log

{
q(ξ | y)
p(ξ|y)

})
> 0.
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It is clearly seen thatEq

[
log

{
f(y|ξ)g(ξ)
q(ξ|y)

}]
is the lower bound of log

[∫
f(y|ξ)g(ξ)

]
.

Let

L(q) = log

[∫
f(y|ξ)g(ξ)

]
= Eq

(
log

{
f(y|ξ)g(ξ)

q(ξ)

})
(3.35)

Minimizing L(q) yield an iterative algorithm termed variational Bayes

algorithm for obtaining optimal variational densities for posterior parameter in-

ference. See for example, Bishop (2006); Ormerod and Wand (2010), for more

detailed background on variatonal Bayes and its adaptations. Applying the vari-

ational Bayes technique, we make the following variational distributional as-

sumptions. Let ξ = (θ, β, λ, a, c, σ2
λ, σ

2
τ , σ

2
κ, σ

2
ϵ ) , denotes the set of parameters

involved in our model. Then, we consider a fully separable q densities of the

form

q(ξ) = q(a)q(c)q(θ)q(β)q(λ)q(σ2
θ)q(σ

2
ϵ )q(σ

2
τ )q(σ

2
κ), (3.36)

where

q(a) ∼ N
(
µq
a,Σ

q
a

)
, q(c) ∼ N

(
µq
c,Σ

q
c

)
, q(λ) ∼ N

(
µq
λ,Σ

q
λ

)
q(β) ∼ N

(
µq
β,Σ

q
β

)
, q(θ) ∼ N

(
µq
θ, σ

q
θ
2
)
, q(σ2

ϵ ) ∼ IG(αq
ϵ , γ

q
ϵ )

q(σ2
κ) ∼ IG

(
αq
κ, γ

q
κ

)
, q(σ2

θ) ∼ IG
(
αq
θ, γ

q
θ

)
, q(σ2

τ ) ∼ IG
(
αq
τ , γ

q
τ

)

is adopted for the variational approximation of the true joint posterior.

The following notations were considered for the spectral matrices involved in

the computation of the variational updating equations utilized for the variational
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optimization function.

S = Eq [Sθ] ,W = Eq [Wβ] , S
∗ = Eq

[
S

′

θSθ

]
,W ∗ = Eq

[
W

′

βWβ

]
M =

∂W

∂σq
β
2 , D =

∂S

∂σq
θ
2 , B =

∂W

∂µq
β

, A =
∂S

∂µq
θ

, Z∗ =
∂S∗

∂µq
θ

Q =
∂S∗

∂σq
θ
2 , N =

∂W ∗

∂µq
β

, U =
∂W ∗

∂σq
β
2

Detailed exposition on the derivations and computation of expectations

associated with the above notation is outlined in the Appendix. With the above

convention for notation, optimal parameter values for the assumed variational

distributions are obtained using an iterative algorithm outlined in algorithm 1

presented in Appendix I on page 116.

MCMC Inference for Gaussian Process Model

In this section, a standard approach for making posterior inference for

complex Bayesian models via Markov Monte Carlo (MCMC) methods is con-

sidered. Bayesian Gaussian process regression models in which some sparse

approximation is adopted for computational simplicity usually generate com-

plex joint posterior distributions.

As a result, marginal posterior distributions for some of the parameters

cannot be computed in closed form, leading to the blending of two or more

MCMC samplers. The GPR model (3.30) considered in the thesis is such that

all parameters except β and θ generate marginal posterior condition distributions

which have identifiable standard forms.

For such parameters, the usual Gibbs sampler is adopted for sampling

from their corresponding full posterior conditionals. However, the nature of

the resulting marginal posterior distributions for β and θ inform the use of

Metropolis- Hasting Sampler (MHS) for making inference for such parameters

(Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

Now, joint use or coupling of the above two standard MCMC samplers by
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embedding the MHS within the Gibbs sampler yields another standard method

for posterior inference. The resulting MCMC method is usually termed the

Hybrid MCMC (HMCMC) and is one of the advanced MCMC methods. See

for example Givens and Hoeting (2013), Gelman et al. (2013),and Andrieu and

Thoms (2008) for detailed exposition on the advanced MCMC methods and

their practical implementation guidelines. The version of the hybrid MCMC

considered is presented in Algorithm 2 can be found in Appendix J on page

115.

Measures of Performance for Assessment of Proposed Methods

This section is focused on the assessment measures considered for ana-

lyzing the performance of the developed methods. Several models, as well as

parameter estimation performance measures, exist in the literature. These mea-

sures can be put into two main accuracy categories namely, fitting and prediction

accuracy measures. The prime focus of this thesis was in the direction of the first

arm of the above accuracy measures. The rationale is that predictive modeling

was not considered, thus not pursued. However, proposals for fitting functional

data with non-functional predictors were pursued.

In terms of the modeling principle, a multi-stage modeling framework

was adopted. In particular, a two-stage modeling concept was developed in the

following direction.

• One-dimensional functional data fusion of a multi-dimensional functional

data, with at most one common predictor among several covariates

• Appropriate modeling of the fussed one-dimensional data, incorporating

intrinsic relationships with covariates

As a result, the approach for assessment adopted followed the above prin-

ciple. That is, varied performance assessment perspectives were utilized for the

data fusion approaches and the Gaussian process regression modeling. The data
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fusion schemes are assessed empirically, based on the underlying pattern, fea-

tures, and dynamics of the original data both in the individual dimension as well

as in the fussed dimension.

The main defining principle for an appropriate statistic as a unidimen-

sional data fusser with input being multi-dimensional data is that it must ex-

hibit an order, pattern, and covariate relationship preserving capabilities in line

with the original data. Of importance, is the pattern and covariate preserving

features, since the distortion of such features may covey different information

which may be so variant from that contained in the original data, eventually lead-

ing to model misspecification coupled with inappropriate practical implications.

The observations made above are very critical and thus, serve as a benchmark

for the assessment undertaken here. Finally, the adopted empirical performance

evaluation for the data fusion proposal was based on the following.

• Ability to preserve the original order individually (variable-wise)

• Ability to preserve the original data pattern and its relationship with ex-

isting covariates

• Computational savings associated with the scheme.

On the other hand, the assessment for the GP model was based on some

specific model fitting measures. However, the focus in the assessment stems

from the recovery of underlying trends, in terms of parameter estimation, the

choice of spectral approximation scheme, etc. The numerical measures of per-

formance considered are the Mean Squared Fitted Error (MSFE), the Standard-

ized Mean Absolute Fitted Error (MAFE), and the Mean Absolute Fitted Error
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(SMAFPE) defined as follows.

MSFE =
1

n

n∑
i=1

(
Z(y)i

− ˆZ(y)i

)2

MAFE =
1

n

n∑
i=1

|Z(y)i
− ˆZ(y)i

|

SMAFE =
1

n

n∑
i=1

|Z̃i|, Z̃i =
Z(y)i

− ˆZ(y)i

Z(y)i

where Z(y)i
, and ˆZ(y)i

, are the ith true and fitted fussed observations re-

spectively. It is important to note that the performance assessment conducted

for the simulation study followed a different trend. In particular, the mode of

assessment followed that of the functional regression modeling via the Gaus-

sian process regression because the simulation was conducted on the developed

model using the fussed functional data.

Implementation of Methods

The implementation of the proposed methods and algorithms were con-

ducted using the R statistical software. For the probability density-based fusing

methods, the kernel density estimation was done using the kernel smoothing

package,” ks” in R (Duong et al., 2007). The smoothing parameter γ in (3.6)

was set to the smoothed cross-validation estimator implemented in the R pack-

age ”ks”. For comprehensive details on kernel density estimation and its appli-

cations in many scientific fields, readers are referred to (Silverman, 1986) and

(Scott, 2015).

All the codes were written in R statistical software and run on an Intel

(R) Core (TM) i7, 6700 processor Windows PC 3.40 GHz workstation. The

algorithmic convergence of the variational Bayes method was based on relative

convergence criteria. The relative convergence criteria is defined for a generic

optimization algorithm based on an optimization function g
(
ϑ
)

where ϑ is ei-

ther a parameter or set of parameters of interest as follows.
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A
(∆ϑ)
t∗ =

|g(ϑ(t+1))− g
(
ϑ(t))|

|g(ϑ(t+1))|
, (3.37)

where g(ϑ(t+1)) and g(ϑ(t)) are the current and previous updates. This crite-

rion mandates stopping when A(∆ϑ)
t < tol, where tol is an experimenter defined

tolerance. Applying this to the variational Bayes optimization function, the vari-

ational lower bound L(q(ξ)), (3.37) can be expressed as

A
(∆ξ)
t∗ =

|L(ξ(t+1))− L(ξ(t))|
|L(ξ(t+1))|

. (3.38)

Using (3.38), the Variational Bayes algorithms were considered converged

at any iteration when A(∆ξ)
t∗ < 10−4 for both simulation and real data applica-

tions. In the case of the hybrid Gibbs (HGS) algorithm, the initialization fol-

lowed the following setting.

β[0] = 0.9, λ[0] = v, θ[0] =
∑
i

vi + 0.5
√

varZya[0] = 0,

c[0] = 0, σ2
ϵ [0] = 1, σ2

τ [0] = 1, σ2
θ [0] = 1, σ2

κ[0] = 2.

Chapter Summary

The chapter focused on the development of the appropriate statistical mod-

eling framework for the project based on the innovation of the existing frame-

works. Basically, two modeling and two inferential frameworks were devel-

oped. The first framework focused on a nonparametric framework for fusing

multivariate or multi-vital signs data measured in the same time domain and

thus share a common functional predictor into a single variate vital sign data for

flexible modeling in the functional regression context.

Here, the probability density function of a continuous random variable

43

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



and its utility in the computation of some statistics were explored to develop

novel schemes for deriving composite vital sign feature data for further model-

ing. In particular, the contributions of candidate data points were explored and

employed as fundamental statistics for the development of the fusing schemes.

It was observed that the fusing statistics exhibited the ability of handling

data points which show patterns quite different from the underlying pattern ex-

hibited by the majority of the functional data points when the variable is con-

sidered at the univariate level. This was realized to have been adopted naturally

from the underlying probability density functions of vital sign variables.

In the second framework, the focus was on modeling the fused vital sign

in the functional regression domain. For this arm, an appropriate Gaussian pro-

cess regression framework was developed. The fused vital signs observations

were assumed to have been generated by a composite Gaussian process (GP)

model (sum of two Gaussian processes) corrupted with some random Gaussian

error terms. Non-time dependent (non-functional) vital sign-specific covariates

that generate design matrix originally were first transformed to designed vector

via the use of robust statistic termed Orthogonalized Gnanadesikan-Kettering

(OGK) statistics (Maronna et al., 2019).

The extracted designed covariate vector was then modeled hierarchically

through the smoothing parameter of one of the Gaussian process terms leading

to flexible GPR model.

Regarding the inferential framework, both approximate and exact inference meth-

ods were developed. The approximate inferential framework employed the Vari-

ational Bayes method while the exact inference was based on advanced MCMC,

in particular, hybrid MCMC. Corresponding model fitting algorithms were de-

veloped for fitting and inference for the developed GP models.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This section of the thesis focuses on the application of the proposed meth-

ods to some examples. The first example was tailored towards simulation studies

in which appropriate synthetic data was generated from the assumed Gaussian

process model (3.14) given some fixed true parameter values. In the second ex-

ample, real data application was considered in which public health data from

collaborators in Singapore was utilized. Details of the application are presented

in the subsection below.

Simulation

In this section, empirical assessment of the developed methods through

simulation is considered. The simulation is based directly on the model (3.14).

Functional features of size n = 400 over equally spaced time stamp x ∈

[−10, 10] are simulated from the feature Gaussian process (3.14) with the fol-

lowing specifications. First, β, σ2
τ , σ

2
κ and σ2

ϵ are set as 0.8, 0.05, 0.0252, 0.0052

respectively. Then, λ is randomly generated from normal,

λj ∼ N
(
0.85, 0.05

)
, j = 1, . . . , r.

and r = 4. The set of covariates, Vi was allowed to be of the form Vi =

[vi1, vi2, vi3, vi4] ,where vi1 ∼ N
(
0.5, 0.02

)
, vi2 ∼ N

(
0.8, 0.05

)
, vi3 ∼ Unif [0, 1]

and vi4 ∼ N
(
0, 1

)
.With which a vector of statistics (median), V = [v1, v2, v3, v4]

were extracted and an intercept term was added for the hierarchical linear model

for the parameter λ.

Given λ, θ is generated from normal, θ ∼ N
(
V

′
λ, 0.05

)
. The smooth

functions, f(x) and g(x) are generated from the corresponding Gaussian process

models, f(x) ∼ GP
(
µf (x), κf (x, x

′
)
)
, g(x) ∼ GP

(
µg(x), τg(x, x

′
)
)
. Finally,
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the features Z(y) were generated from model (3.14) with the above settings for

parameters. For prior setting, the following were considered, λ ∼ N (0.82, 0.10)

independently for r = 1, . . . , 4 and β ∼ N (0.82, 0.10). The remaining prior

hyperparameters are set as follows. αθ = 3, γθ = 2, ατ = 3, γτ = 2, ακ =

2, γκ = 0.1, αϵ = 2, γϵ = 0.01.

The nature of the simulated Gaussian processes, f(x), g(x) and Z(y) is

shown in Figure 3. The varying frequencies underlying the features are clearly

evident. We fit model (3.14) based on the developed algorithms with the set of

spectral points m ∈ {10, 20, 30, . . . , 80, 100}. Posterior analysis for the ad-

vanced MCMC methods was based on chains of length 5000 with a burnin of

size 2000. The MCMC algorithms were assessed for convergence by examining

representative samples to ensure that the comparison with the corresponding

variational Bayes algorithm is fair.

Figure 3: Nature of Simulated Feature, Z(y) and the Gaussian Processes, f(x)
and g(x)
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Figure 4: Plot of Lower Bound Attained at Convergence for VBFBGPR with
m = 25, 30, 35, 40.

Figure 5: Plot of Lower Bound Attained at Convergence for VBFBGPR with
m = 45, 55, 65, 75.
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Figure 6: Plot of Lower Bound Attained at Convergence for VBFBGPR with
m = 85, 95, 100.

First, the nature of the Variational Bayes algorithm is assessed in terms

of doing what is expected. A typical Bayesian fitting algorithm constructed in

the Variational Bayes framework is expected to exhibit an increasing trend, ev-

idenced by the lower bound as the optimization progresses until convergence.

This is because the parameter estimation problem is expressed as a maximiza-

tion problem via the use of Variational distributions. Figures 4, 5, and 6 show

the lower bound pattern exhibited by the VBFBGPR over set of spectral samples

m = {25, 30, 35, 40},m = {45, 55, 65, 75} and m = {85, 95, 100} for the sim-

ulated dataset. It is clearly obvious that the developed algorithm is conforming

to the expected fitting pattern.

Next, the relationship underlying the spectral sample size m and the evi-

dence provided by the model expressed in terms of the lower bound as well as

the number of iteration required for convergence are shown in Figure 7. The

graph on the left presents the nature of the lower bound attained at convergence

against the number of spectral points m. It can be observed that the model evi-

dence decreases with increased spectral sample size ,m, for the range of values
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considered. The plot on the left illustrates the intrinsic pattern existing among

the spectral sample size m and the corresponding number of iterations required

for convergence. In general, fewer iterations are required for small spectral sam-

ples.

However, a short decreasing and increasing trend is evident between m =

25 and 35 whiles a slow change in pattern (gradual decrease) is seen after

m = 80, suggesting that larger spectral samples (m > 85) can yield a vari-

ant trend in terms of the number of iterations required for convergence.

Figure 7: Convergence Features of VBFBGPR Based on Synthetic Data. Plot of
Lower Bound Attained at Convergence Against Spectral Sample Size
(m) (left). Plot of Number of Iterations Against Number of Spectral
Sample Size (m) (right).
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Figure 8: Nature of Fitted Trends for VBFBGPR and HGS with m =
25, 30, 35, 40.
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Figure 9: Nature of Fitted Trends for VBFBGPR and HGS with m =
45, 55, 65, 75.
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Figure 10: Nature of Fitted Trends for VBFBGPR and HGS with m =
85, 95, 100.
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Figure 11: Plot of Average Squared Fitted Error for VBFBGPR and HGS over
m.
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Figure 12: Plot of Spectral Sample Size m Against Computational Time for
VBFBGPR and HGS

The fitting performance of the Variational Bayes algorithm and its hybrid MCMC

counterparts are shown in Figure 8, Figure 9 and Figure 10, for small, m =

{25, 30, 35, 40} , medium, m = {45, 55, 65, 75} and large, m = {85, 95, 100}

spectral samples respectively. The blue lines are the VBFBGPR fit and the red

lines represent the HGS fit. Both algorithms exhibit the ability to recover the

underlying functional trend existing in the simulated functional data reasonably

well. However, it can be observed that the point-wise fitting performance im-

prove with increasing spectral sample size m.

Figure 11 gives the overall fitting performance of VBFBGPR and HGS,

quantified in the average squared error of fit, MSFE, MAFE, and SMAFE for

the range of spectral sample sizes considered. The fitting errors are generally

small with a similar pattern over m, for both algorithms. This suggests that both

algorithms are able to yield better inference for the simulated fused functional

data. Although errors decrease with an increasing number of spectral samples,
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the decrease is relatively high for HGS than VBFBGPR.

Table 1: Comparison of Variational Bayes (VBSBPM), and its MCMC Coun-
terpart for θ for the Simulated Data Set. Columns 2 and 3 give the
Parameter Estimates for VBFBGPR and HGS Respectively. The
generated true θ value was 2.91. The last two colunms give their
corresponding 95% Bayesian credible intervals (BCIs).

θ = 2.91 VBFBGPR HGS

m θ̂VBFBGPR θ̂HGS 95% BCI 95% BCI

25 2.77 2.73 [2.764, 2.777] [2.477, 2.897]

30 2.94 4.68 [2.937, 2.949] [4.436, 4.956]

35 2.83 2.94 [2.820, 2.832] [2.540, 3.603]

40 2.98 3.44 [2.975, 2.985] [3.077, 3.753]

45 2.88 2.89 [2.878, 2.889] [2.637, 3.052]

55 2.89 3.92 [2.887, 2.898] [3.669, 4.412]

65 2.79 4.09 [2.886, 2.898] [3.679, 4.527]

75 2.93 3.82 [2.787, 2.798] [3.336, 4.347]

85 2.86 4.25 [2.923, 2.934] [3.997, 4.555]

90 2.97 3.77 [2.860, 2.870] [3.355, 4.209]

100 2.94 2.99 [2.960, 2.971] [2.838, 3.125]

Source: Researcher’s Computations (2021)
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Figure 13: Marginal Posterior Densities of θ Corresponding to m for VBF-
BGPR.

The computational expenditure associated with the VB algorithm and its exact

inference counterpart (HGS) is shown in Figure 12. It is clearly evident that

VBFBGPR is faster than HGS by magnitude.

Table 1 reports the posterior estimates for the hierarchical regression pa-

rameter, θ together with their corresponding 95% Bayesian credible intervals

(BCIs) for VBFBGPR and HGS over a range of spectral sample sizes m. It can

be seen that both algorithms yield posterior estimates that are quite compara-

ble for m = 25, 35, 45 and 100. However, for m = 55, 65, 75, 90 the estimates

exhibit some appreciable differences.

That is the marginal difference are quite significant. Furthermore, it can

be observed that for posterior estimates of θ that are similar, 95% BCIs of VBF-

BGPR are subsets of BCIs of HGS. On the other hand, for the estimates for

which the marginal differences are somewhat large, the 95% BCIs generated by

VBFBGPR overlap with those of HGS.

Figure 13 presents the marginal variational posterior densities of θ for the range

of spectral sample sizes m considered in the simulation. The vertical lines are
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the corresponding posterior estimates reported in Table 1. The differences in the

posterior densities in relation to m are evident.

Health Data Application

In this section, a typical application of the developed methods was con-

sidered in solving a public health issue. In particular, the issue of health moni-

toring through monitoring of the indicators of health. In this practical example,

the focus was on the physiological factors that define the health status of human

beings and are considered as the standard measures for health assessment in the

medical field or public health.

The application starts with an examination of the underlying data struc-

ture, variable identification and convection for notations. An exploration of the

data via preliminary analysis was also considered to allow us to understand in

brief what direction does the data present in terms of the analysis pipeline.

Data Description

This section focuses on a brief exposition on the source as well as the na-

ture of the data. Real data made up of observations on physiological vital signs

from a group of patients considered in a structured Singapore Heart Foundation

(SINGHEART), Singapore project was considered. This dataset was collected

for Biofourmis Private Company Limited, a Health Data Analytic Company

in Singapore as a result of the partnership they have with the Singapore Heart

Foundation. The acquisition of the data was based on the defined international

standard by Biofourmis in relation to the data agreement existing between the

two companies and the Government of Singapore.

The datasets were released for this research through the main supervisor

based on the research relationship existing between the two parties. Documen-

tation on the use of data and publication of output of the research is fully func-
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tional. The dataset in context was a complex time series data of size 848× 5, on

the vital signs, namely Systolic blood pressure (SBP), Diastolic blood pressure

(DBP), Mean arterial pressure (MAP), Pulse Rate (PP), and Heart Rate (HR).

In addition, patient-specific covariate information associated with the data

was also made available in their complex form. The defining covariate variables

were Gender, Age, Height, Weight, and Race. According to the documenta-

tion on the data, a group of adult Asians enrolled in a SingHeart study, were

continuously monitored over a period based on varied physiological states cor-

responding to different activities, for example, sleeping, walking, exercising,

sitting, etc. It is important to note that all the datasets utilized were de-identified

in order to address the issue of sensitivity associated with medical data.

Data Pre-processing

The datasets required for the experimentation were pre-processed by choos-

ing appropriate variable names, re-labeling, and coding the adopted variables.

All Categorical variables involved were coded appropriately to suit the model

assumptions. Some additional covariates were created where necessary and as

guided by the existing ones, to expand the covariate space. Particularly, in the

case of continuous covariates, Body Mass Index (BMI) was generated from Age,

Height, and Weight using the standard definition of BMI.

The entire dataset was transformed into a common space by subjecting to

standardization within variables such that all the random variables generating

the dataset follow a common distribution, standard normal. This was to ensure

that the variability in a unit of the measure was addressed to provide a unified

or common space for the fusion of the multivariate dataset.

Preliminary Data Analysis for Health Data

Exploratory data analysis can be considered as one of the best data anal-

ysis procedures in any data analysis problem since it offers the potential to dis-
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cover interesting features of the data under consideration; thus, eventually di-

recting the right path for the analysis. This section of the thesis focuses on the

preliminary data analysis techniques employed to explore what the data at hand

seeks to present in terms of the direction for appropriate methods that could be

utilized.

Exploratory Analysis Method

Exploratory analysis in almost all statistical problems is usually based on

well-known fundamental statistical methods for performing exploratory anal-

ysis of data. These methods span graphing to the application of descriptive

statistics. In particular, in terms of graphical methods, scatter plots and box-

plots were considered for learning the intrinsic relationships existing among the

defining variables of the physiological data. In addition, descriptive measures

considered as numerical measures of samples describing the center and disper-

sion of the underlying distribution of the data were considered.

Preliminary Data Analysis Results

This section presents the analysis results of the application of the ex-

ploratory analysis methods. Table 2 shows the summary statistics of the data.

The physiological vital signs that characterized the data comprise Systolic Blood

Pressure (SBP), Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP),

Pulse Pressure (PP), and Heart Rate (HR). It can be inferred that almost all the

values of each of SBP, DBP, MAP, PP, and HR are within 114.20± (3× 13.89),

72.80 ± (3 × 11.38), 86.43 ± (3 × 10.69), 41.40.43 ± (3 × 9.99) and 71.69 ±

(3 × 11.05) respectively, assuming approximately normal distribution for the

vital signs.

Also, considering the standard nature of the physiological vital signs mea-

surements, it is clear that the SBP values exhibit higher dispersion (are more

variable) (sd = 13.89) than the rest of the vital signs. However, the DBP and
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HR values exhibit quite similar dispersion with empirical standard deviations

11.38 and 11.05. The MAP values on the other hand recorded the largest disper-

sion (sd = 10.69) in comparison with the PP. This is typical of physiological

vital signs measurements due to the possible complex relationship it has with

other defining health indicators such as activity level, sleep pattern, nutrition or

diet, environmental factors, etc.

It is well known that the intensity of activity influences the vital physio-

logical organs of the human body, thus affecting the functioning of these organs.

This may eventually show up in the readings obtained from vital organs termed

physiological vital signs.

Table 2: Summary Statistics of Physilogical Vital Signs with Sample Size
n = 848× 5.

Statistic SBP DBP MAP PP HR

Minimum 78.00 44.00 55.00 20.00 45.00

Maximum 164.00 118.00 131.00 79.00 128.00

Mean 114.20 72.80 86.43 41.40 71.69

Median 114.00 73.00 86.00 41.00 72.00

Standard deviation (sd) 13.89 11.38 10.69 9.99 11.05

Skewness (η3) 0.154 0.064 0.211 0.390 0.191

Source: Researcher’s Computations (2021)

The typical nature of each of the corresponding vital signs characterizing the

physiological vital sign data are shown in Figure 14. The functional nature of the

vital signs trends is evident with each exhibiting varied frequencies according to

the intrinsic features of the sample patients. It is clearly obvious from the graphs

that some points are substantially deviating from the common functional pattern

evident in each of the vital signs data. This departure observed may to due to

many hidden reasons or factors, thus, these points can be viewed as potential

outliers.
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Figure 14: Scatter Plots of Vital Signs. From Left to Right are the Plots of SBP,
DBP, MAP, PP, and HR Respectively.

Figure 15 shows the nature of the distribution of the vital signs in terms of the

boxplot. Clearly, all the vital signs are skewed to the right with Pulse Pressure

(PP) exhibiting the highest skewness and Diastolic Blood Pressure being

modest. Though it is hard to quantify the degree of skewness based on

Figure 15, Table 2 presents a simple way via a numerical measure termed

coefficient of skewness. Thus, arranging the vital signs distributions in terms of

the level of skewness associated with each, the obvious order can be expressed

as

DBP < SBP < HR < MAP < PP.

Meaning, the underlying distribution of the Diastolic Blood Pressure

observations is less skewed to right than the remaining, while that of the Pulse

Pressure shows more shift to the right.
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Figure 15: Boxplot of Vital Signs. From Left to Right are the Plots of SBP, DBP,
MAP, PP, and HR Respectively.

Figure 16 illustrates the probability distribution function of the vital signs based

on Kernel Density Estimation and the underlying inter-relationships existing

among the vitals signs in terms of scatter plots and numerical measures termed

Pearson Correlation Coefficients. It is apparent that there exist linear relation-

ships among physiological vital signs. In particular, SBP is highly positively

related to MAP and DBP with Pearson Correlation Coefficient values of 0.82

and 0.70 respectively.

It also recorded a moderate positive linear relationship with PP, charac-

terized by a Pearson Correlation Coefficient estimate of 0.59. However, an ap-

preciable positive linear relationship exists between SBP and HR. Furthermore,

DBP is strongly positively correlated with MAP but negatively correlated with

PP on the lower scale with a Pearson Correlation Coefficient value of −0.16. In

terms of HR, an appreciable positive linear relationship can be seen with DBP

and MAP.
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Nevertheless, it does not show any linear pattern with PP. It can be ob-

served further that Figure 16 provides information in support of the right skew-

ness of the distribution of vital signs.
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Figure 16: Nature of Vital Signs Data Showing Densities, Inter-relationships
and Pearson Correlation Coefficients.

Application of Methods

The proposed schemes were then applied to the pre-processed dataset as

follows. First, the data fusion schemes were applied to the dataset variable-

wise (i.e each variable was subjected to the data fusion schemes) to extract

composite data. That is, one-dimensional datasets were generated from the

multi-dimensional dataset. Second, the extracted one-dimensional dataset was

then modeled based on the Bayesian Gaussian process regression specified in

model (3.14). For the data fusion implementation here, two different ways for

selecting the α were considered. The first way is when the experimenter speci-

fies possible values based on the restriction on α. In this direction, the candidate
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for α was set as

αe = {0.1, (0.1 + d), (0.1 + 2d), . . . , 1} , (4.1)

where d = 0.05. The second approach for selecting α considered the statistic

based on the ratio of the median of the T (y) and S(y) statistics. Let m̃1 and m̃2

denote the medians of T (y) and S(y) respectively. Then, the above statistics is

of the form

αr =
m̃1

m̃2

, (4.2)

The results obtained following the above steps are presented in the next section.

In the implementation here, standardized versions of the proposed statistics were

considered, particularly, considering response for the Gaussian process regres-

sion fitting.

Univariate Vital Signs Feature and Data Fusion Application

This section focuses on the results of the application of data fusion meth-

ods on health data. The key principle in fusing multivariate functional data is

having similarity or common pattern for defining variables of the dataset. It

is well known that near points offer a better prediction of a given point in re-

gression analysis. It can be deduced that similar patterns extracted from each

variable on which multivariate dataset is collected can ensure easy fusing than

variable patterns. Most especially when the fused pattern is expected to follow

or mimic the underlying data structure. For practical purposes, similar features

would provide a better background for deriving composite patterns, ensuring an

easy basis for comparison.
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Figure 17: Nature of Vital Signs Specific Density Plots for Standardized and
Unstandardized physiological data.

Figure 18: Nature of Vital Sgns Specific T (y) Statistics for Standardized and
Unstandardized Physiological Data.
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Figure 19: Nature of Vital Signs Specific V (y) Statistics for Standardized and
Unstandardized Physiological Data.

Figure 20: Nature of Vital Signs Specific S1(y) Statistics for Standardized and
Unstandardized Physiological Data.
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Figure 21: Plot of Vital Signs with their Corresponding Order Statistics Trend
and S1(y).

Figure 17 shows the estimated probability density function for the standard-

ized and unstandardized vital signs data using model (3.6). The plot on the left

gives the probability density functions for the standardized vital signs whiles

that on the right denotes the probability density functions of the unstandard-

ized counterparts. The differences in vitals signs are clearly characterized by

the density functions. The effect of standardization as a way to obtain common

distributional characteristics is apparently seen by the level of closeness of the

probability density functions observed in both plots. Furthermore, the ability of

the density function to handle extreme observations at varying degrees (levels)

is well illustrated. This is evidenced by the spread of the density functions.

Figure 18 shows the plot of the statistics T (y) against each of the vital

signs observations for both the standardized and unstandardized data. From left

to right are the plots for the standardized and unstandardized data respectively.

It can be observed that the statistic can inherit the structures of the underlying
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probability density functions of the corresponding vital signs observed in Fig-

ure 18. For the unstandardized variable, it is difficult to distinguish between

some vital signs via the T (y) statistic, for example, that of Heart rate (HR)

and Diastolic blood pressure (DBP). However, this challenge is addressed in

the case of the standardized variables. In general, the background (foundation)

for superimposition is better illustrated in the standardized data than the unstan-

dardized counterpart. This observation presents T (y) as an appealing candidate

statistic for fusing multivariate vital signs into a univariate vital sign within the

standardized variable context.

The utility of the V (y) statistic in the extraction of common features

across vital signs as a basis for fusing multivariate vital signs into a one-dimensional

vital sign is shown in Figure 19. The plot on the left is the plot of V (y) against

each of the standardized vital signs. The plot on the right shows the plot of

V (y) against each of the unstandardized vital signs. It can be observed that the

features generated by this statistic exhibit a similar pattern with the underlying

difference existing among the vital signs, illustrated high for the unstandardized

variables.

Figure 20 shows the nature of the S1(y) statistics in relation to the corre-

sponding vital signs. Again, the statistic is able to yield common features across

vital signs, providing a appealing source for combining the different physiolog-

ical vital signs into a single physiological vital sign feature. Also, the difference

in using the features based on the standardized variables against the unstandard-

ized counterparts becomes apparent.
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Figure 22: Plot of Vital Signs with their Corresponding Order Statistics Trend
and S1(y).
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Figure 23: The effect of αe on S1(y) Statistics. From Left to Right are the
Plots of S1(y) for 6 Randomly Selected αe Values Corresponding to
0.15, 0.50, 0.10, 0.80, 0.90 and 1.00 Values.

Figure 24: Real data: Dynamics of Vital Sign Specific Features with Vital Sign
Specific αr.
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Figure 25: Nature of Vital Sign Specific Tuning Parameter αr.

Figure 26: Dynamics of Vital Signs Specific ρs for Statistics for Standardized
and Unstandardized Physiological Data.

Figure 21 and Figure 22 show the vital signs and their corresponding fea-

tures obtained based on the order statistics of the original data. The plots on

each row give the scatter plot, the order statistic plot, and S1(y) statistic plot, for

each vital sign. The high-frequency observations at varying degrees, character-

izing each vital sign are evident. Clearly, unique features can be extracted from

high-frequency observations via density-based features.

The typical effect of the choice of α on the dynamics of the probability

density based statistics, S1(y) in (3.5) for data fusion via features are shown
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in Figure 23 and Figure 24. The plots in Figure 23 were obtained from the

implementation using αe specified in (4.1). However, the plot in Figure 24

was based on the implementation when α was set to αr defined in (4.2). The

plots from left to right are the plots of S1(y) against the standardized vital sign

values. The 6 candidates for αe were randomly selected with numerical value

0.15, 0.50, 0.10, 0.80, 0.90, 1.000. From left to right are the resulting plots. The

αs exhibit scaling effect on the statistic, S1(y) but does not alter the underlying

common structure defined by the features.

Figure 25 presents the nature the vital sign specific tuning parameters, αr

in relation to their corresponding S1(y) statistics. The red lines are the vital

sign-specific estimates of αr. The variability in the effect of tuning offered by

each vital sign is evident.

Figure 26 illustrates the nature of the vital sign specific candidates for

ρ defined in (3.13) for both the standardized and unstandardized physiological

variables. The graph on the right represents the standardized data whiles the one

on the left is that of the unstandardized data. The differences in the ρ values in

terms of numerical magnitude are clearly exhibited although, the range is the

same.
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Figure 27: Fused Vital Signs Trend Based on T (y) Statistic.

Figure 28: Fused Vital Signs Trend Based on S1(y) Statistic.

Figure 27 shows the composite vital signs trend obtained from the mul-

tivariate vital signs data based on the application of models (3.7),(3.8) and
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(3.9). The first graph gives the vital sign specific components, ρiT (yi) for

i = 1, 2, . . . , 5. The remaining plots are the fused trends, Zs, Zm and Zo respec-

tively. The nature of the fused vital sign trend obtained from the application of

fusion models (3.10),(3.11) and (3.12) are illustrated in Figure 28. From left to

right are the vital signs specific components, ρis1(yi), i = 1, . . . , 5 plots, and

graphs of Zs,Zm and Zo respectively.

Table 3: Comparison of Vital Sign Specific α and δ for Standardized Dataset.

y1 = SBP,y2 = DBP,y3 = MAP,y4 = PP,y5 = HR, yc =
5∑

i=1

yi

y1 y2 y3 y4 y5 yc

αs α̂1 α̂2 α̂3 α̂4 α̂5 α̂c

0.468 0.450 0.426 0.388 0.371 0.985

δs δ̂1 δ̂2 δ̂3 δ̂4 δ̂5 δ̂c

0.0234 0.0263 0.0195 0.0355 0.0225 0.1333

Source: Researcher’s Computations (2021)

Table 4: Comparison of Vital Sign Specific α and δ for Unstandardized
Dataset. y1 = SBP,y2 = DBP,y3 = MAP,y4 = PP,y5 = HR,

yc =
5∑

i=1

yi

y1 y2 y3 y4 y5

αu α̂1 α̂2 α̂3 α̂4 α̂5

5.987 4.886 4.876 3.449 4.199

αn = α̂u∑
α̂u

0.256 0.209 0.208 0.147 0.179

δu δ̂1 δ̂2 δ̂3 δ̂4 δ̂5

0.0234 0.0263 0.0195 0.0355 0.0225

Source: Researcher’s Computations (2021)

Table 3 and Table 4 report the estimates of αs and δ for each of the vital signs

for the standardized and unstandardized data. α̂i for i = 1, . . . , 5 are gives

the estimates for SBP , DBP , MAP , PP and HR. However, α̂c denotes the

estimate for the combined standardized data yc =
5∑

i=1

yi. The αn in Table 4

are normalized values of αs for unstandardized data. Again, the underlying
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differences existing among the physiological vital signs are clearly seen based

on the α values for the two two datasets (standardized and unstandardized).

Furthermore, the effect standardization is evidently illustrated.

Gaussian Process Regression Application on Fused Vital Signs Data

This section reports the results obtained from the application of the Gaus-

sian process regression model (3.14) to one of the fused vital sign data proposed

in the methodology. The illustration of the Gaussian process regression (GPR)

arm of this thesis was given a particular consideration based on the uniqueness

of the resulting fused trend such that the GPR’s capability for shape functional

regression can be assessed. The application of the fusion methods to the phys-

iological vital sign data considered in the previous section provided insightful

information on the typical nature of the resulting composite trend obtained from

the fusion based on each of the statistics, T (y) and S(y).

It was observed that the S1(y) based fusion schemes yielded shaped func-

tional trends with relatively complex structures than those of T (y) statistic.

Thus, the GPR was conducted on the fused vital signs derived from model (3.10),

model (3.11), and model (3.12) respectively.
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Figure 29: Plot of Llower Bound against Spectral Sample Sizem for VBFBGPR.

Figure 30: Plot of Iteration against Spectral Sample Size m. for VBFBGPR.
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Figure 31: Fitted Fussed Vital Sign with m = 40 (row 1) and m = 45 (row 2)

Figure 29 illustrates the characteristics of the variational lower bound with

increasing spectral sample sizes, m, for each of the fused vital sign trends, Zs

,Zm, and Zo. Whiles the lower bound trend for Zs and Zm are nonlinear and

similar, that of Zo shows a decreasing linear trend.

Figure 30 shows the plot of the number of iterations to the convergence

of the variational algorithm (VBFBGPR) against the spectral samples for fused

vital sign trends, Zs, Zm and Zo. Again, a similar nonlinear pattern is exhibited

for both Zs and Zm. Apparently, an increasing linear pattern is reported in the

case of Zo as m increases.

The performance of the VBFBGPR and HGS in fitting shaped functional fused

physiological vital signs is illustrated in Figure 31. The plots in row 1 are the

fitted trends for Zs, Zm and Zo respectively using m = 40. The row 2 plots give

the fitted trends for Zs, Zm and Zo for spectral sample of size, m = 45. Again,

both methods are able to recover the underlying shaped trend very well.
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Table 5: Fitting Performance of VB and HGS Based on MSEFE for selected
m.

m Z(s)V B Z(s)HGS Z(m)V B Z(m)HGS Z(o)V B Z(o)HGS

35 0.00788 0.00763 0.00788 0.00765 0.01310 0.01300

40 0.00786 0.00766 0.00786 0.00633 0.01311 0.01303

45 0.00793 0.00767 0.00793 0.00771 0.01312 0.01304

55 0.00765 0.00620 0.00765 0.00621 0.01311 0.01301

Source: Researcher’s Computations (2021)

Table 6: Fitting Performance of VB and HGS Based on MAFE for Selected
m.

m Z(s)V B Z(s)HGS Z(m)V B Z(m)HGS Z(o)V B Z(o)HGS

35 0.07304 0.07180 0.07304 0.07192 0.09328 0.09279

40 0.07305 0.07203 0.07305 0.06309 0.09333 0.09295

45 0.07275 0.07206 0.07275 0.07225 0.09335 0.09297

55 0.07181 0.06229 0.07181 0.06231 0.09336 0.09285

Source: Researcher’s Computations (2021)
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Table 7: Fitting Performance of VB and HGS Based on SMAFE Selected m.

m Z(s)V B Z(s)HGS Z(m)V B Z(m)HGS Z(o)V B Z(o)HGS

35 0.33829 0.33620 0.33829 0.33913 0.74441 0.73602

40 0.33361 0.33773 0.33361 0.31638 0.74587 0.73765

45 0.35536 0.33595 0.35536 0.33703 0.74693 0.73895

55 0.33948 0.31362 0.33948 0.31406 0.74805 0.73743

Source: Researcher’s Computations (2021)

Table 5, Table 6 and Table 7 show the Gaussian process regression fitted errors

for fussed vital signs for the VB and its MCMC counterpart using the health

data set for some selected spectral sample sizes namely, m = 35, 40, 45 and 55.

The selection was based on the fact that the HGS results were not available for

those omitted values of m. It can be observed that all the methods exhibit simi-

lar fitting performance and that recovery performance increases with increased

spectral points. This observation is important in that any one of the methods

could be applicable for inference in the future in the case where it is difficult to

monitor traumatic events and the Bayesian Gaussian process regression model

is adopted as data generating process and trend recovery is of interest.

Chapter Summary

This chapter examined the plausible inferences underlying the results ob-

tained upon application of the developed methods to both the simulated and

real datasets. In addition, implications associated with the results in relation-

ship modeling are also established. Beginning with the data fusing methods,

the results revealed that the probability density function (pdf)-based features

can provide a formal way to extract shape restricted vital sign features that are

robust to the presence of extreme measurements.
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Also, it can serve as a building block for constructing other interesting

functional features with the ability to inherit the automated extreme value con-

trolled property mentioned above. With the Gaussian process application, the

results illustrated the ability to fit Gaussian process regression models in the

feature space using the Bayesian principle.

In particular, the developed algorithms, namely the VB and its MCMC

counterpart (HGS) based on the feature, both have the ability to recover the un-

derlying composite vital sign trajectories in both the simulated and real datasets.

However, an increasing pattern exists with the spectral sample size. Further-

more, the overall fitting performance in terms of MSFE, MAFE, and SMAFE

are better in both algorithms.

Interestingly, a decreasing fitting error pattern exists with the spectral sam-

ple size with the HGS reporting a better (higher) decrease than its VB counter-

part. Regarding the computational savings, it turned out that the modeling of

the composite vital sign added to the computational savings achieved by the

VB algorithm. In general, the possibility to reduce multi-task GPR to compos-

ite single-task GPR in the Bayesian framework for a multivariate vital sign with

common time-stamps, characterized with both time-dependent and non-time de-

pendent covariates has been illustrated with the use of pdf-based statistics.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

A number of research have been done in the field of Bayesian Gaussian

process regression in its sub-domain of single task Gaussian process regression,

and multi-task Gaussian process regression. For example, Dürichen et al. (2014)

used MTGPR in a biomedical application in relation to vital signs monitoring

in intensive care unit (ICU). It was seen from literature that, the inclusion of co-

variate in MTGPR was avoided especially the non-time dependents ones. Such

information may be vital in explaining the underlying dynamics of the observed

physiological trend. Omitting it leads to loss of information that may affect

model performance.

Though Ofori (2020) considered resolving the issue of incorporation of

non-time dependent covariates in the Variational Bayes GPR using the idea of

robust statistics (Orthogonalized Gnanadesikan-Kettering (OGK)) (Maronna et

al., 2019), it was in the one-dimension direction, just for traumatic systolic blood

pressure response. It is important to note that the observation made by Ofori

(2020) regarding the use of non-time dependent covariates was similar to that

observed in this thesis.

Ofori (2020) realized that non-time covariates allow easy assessment of

the relative importance of both trauma-specific and subject-specific features.

Most importantly, these covariate impact the smoothness of the underlying trend

existing in the observed data compositely and aid in model fitting. It was also

opined that treating the smoothness of trend as a random variable and modeling

it allows the uncertainty associated with it to be well quantified and calibrated

so that its use for the assessment of how it relates with available non-time co-

variates can be achieved properly.

Thus, its utility in public health, particularly, clinical studies was outlined

via a comparison with the empirical smoothness index statistic widely used
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in the management and treatment of hypertension (Mensah, Ofori, & Howard,

2021). Another vital observation by most of the authors aforementioned (Men-

sah et al. (2016), Ofori (2020), Mensah, Ofori, and Howard (2021)) who em-

ployed the spectral GPR approach is that spectral sample size exhibits some

remarkable effect on the computational expenditure of Variational Bayes Algo-

rithms. In particular, larger spectral samples can generate different dynamics for

the number of iterations an VB algorithm requires for convergence as realized

in this thesis. Regarding the smoothness of trend, this thesis took a different

dimension. In that, the composite smoothness of all vital signs was considered

so that the joint effect of the vital sign-specific smoothness can be examined.

Another line of uniqueness of the approach adopted in this thesis can be

seen in the modeling perspective. In this study, we exploited a novel method for

handling multi-task modeling of multivariate physiological vital signs measured

over a common time-stamp within the Gaussian process regression framework.

Usually, the Gaussian process regression for modeling multivariate physiolog-

ical vital signs uses the multi-talks approach where each of the multiple vital

signs is modeled simultaneously using Gaussian process regression based on a

union of time-dependent covariates. This study exploited the joint-use of kernel

density estimation and Gaussian process regression within the Bayesian frame-

work to examine the appropriateness of double-stable modeling of multivariate

physiological vital signs as an alternative to multi-task Gaussian process regres-

sion of such vital signs.

In this regard, the study considered fusing the multivariate vital signs

into a univariate vital signs trajectory and modeling the resultant vital sign us-

ing Gaussian process regression. The computation of non-central moments for

probability density functions was explored to develop appropriate robust data

fusion methods for extracting composite vital sign trajectory in the first stage of

the dual modeling framework proposed. In the second arm of the dual model-

ing framework, appropriate Gaussian process regression data generative models

were developed for the composite vital sign trajectory.
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Non-time-dependent covariates are problematic in Gaussian process re-

gression since their incorporation is non-trial. However, with the use of ro-

bust vector covariates based on Orthogonalized Gnanadesikan-Kettering (OGK)

statistics (Maronna et al., 2019), non-time-dependent covariates were handled,

simply via hierarchical modeling of the Gaussian process covariance function.

Furthermore, both approximate and exact inference methods using Varia-

tional Bayes and hybrid MCMC methods were developed for parameter infer-

ence. The proposed double-state modeling framework was implemented and

experimented using simulated and real datasets. The results illustrated its ap-

propriateness for handling multi-task Gaussian process modeling of multivari-

ate physiological vital signs within the single-task domain.

Conclusions

In this thesis, we have proposed and implemented a novel two-stage mod-

eling framework for handling multi-task Gaussian process regression modeling

of multiple physiological vital signs with common time-dependent predictors,

within the single-task Gaussian process regression context. The proposal cou-

ples nonparametric and Bayesian methods. In particular, nonparametric Kernel

density estimation is explored to develop novel probability density function-

based schemes for fusing the variant trajectories of the multivariate physiolog-

ical vital signs into a univariate trajectory for easy modeling, using Gaussian

process regression GPR.

The fused (composite) vital sign trajectory is then modeled in relation with

the common time-dependent predictor using Gaussian processes with available

non-time-dependent covariates incorporated into the GPR via the covariance

function, using OGK statistics. Also, we have developed Variational Bayes and

hybrid MCMC methods based on sparse spectral approximation using modified

Van der Waerden statistics for parameter inference.
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The two-stage proposal allowed for automatic control of extreme values

in both the response and predictor spaces; ensured dimension reduction in the

response space; ensured data reduction in the predictor space and allowed hi-

erarchical modeling of composite smoothness of trend with existing covariates

for easy extension of Variational Bayes computational methods. An application

to simulated and real physiological vital signs datasets illustrated the potential

and the utility of the above proposal for multi-task modeling.

Recommendations

This section of the thesis focuses on some vital recommendations and

directions for possible future work based on the results obtained from the im-

plementation of the developed methods. In particular, the following recommen-

dations are considered. We recommend

1. the use of spectral approximation framework for Bayesian inference to

avoid computational issues associated with large multivariate physiologi-

cal vital signs observed over a common time-stamps.

2. the use of probability density function-statistic (features) for extracting

single-variate vital sign trajectory from a multivariate vital signs dataset

since it can ensure automatic control for extreme values.

In terms of future work, we consider the following.

1. The application of probability density function (pdf) specific features for

functional shape restricted regression using Bayesian Gaussian processes.

From our experimentation, it was realized that the pdf-based features de-

veloped yielded unique shape restricted functional trend dynamics of the

observations with the presence or otherwise of extreme observations au-

tomatically handled.
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2. Extension of the expected value contribution-based features for fusing

multivariate datasets to other non-central moments-based methods. The

data fusion approach considered in the thesis was centered on the first

central moment. It will be interesting to explore the possibility of using

other moments for future work.

3. Extension of the developed two-stage modeling framework to multivari-

ate physiological vital sign dataset with uncommon time-stamps and both

time-dependent and non-time-dependent covariate information.
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APPENDICES

APPENDIX A: REVIEW OF NORMAL AND INVERSE GAMMA

RESULTS

This section of the appendix focuses on a brief review of some well known

standard results on normal and inverse gamma probability models.

Lemma 1 (a) Let y denotes a multivariate normal random variate, y ∼ Nm

(
µ,Σ

)
.

For ν = (ν1, . . . , νm) and a positive definite matrix Φm×m, we have

Ey

[(
y − ν

)
Φ
(
y − ν

)]
=

(
µ− ν

)′

Φm

(
µ− ν

)
+ tr

(
ΦΣ

)
Ey

[
log

(
g(y)

)]
= −m

2
log 2π − 1

2
log |Σ| − m

2
,

where g(y) denotes probability density function.

(b) Suppose v ∼ IG(α, β). Then the following results hold.

Ev

[
1

v

]
=

α

β

Ev [log(v)] = log(α)− ψ(β)

where ψ(u) is the digamma function.

(c)Let Y ∼ N
(
µ, σ2

)
. Let x1 and x2 be fixed. Define the following statis-

tics.

x+12 = x1 + x2, x
−
12 = x1 − x2

D(x+12, σ
2) = exp

{
−1

2

(
x+12

)2

σ2

}
D(x−12, σ

2) = exp

{
−1

2

(
x−12

)2

σ2

}
.
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Then the following trigonometric expectations are true.

E
[
cos

(
Y x1

)
cos

(
Y x2

)]
=

1

2

[
cos

(
µx−12

)
D(x−12, σ

2) + A∗∗
]

(5.1)

A∗∗ = cos
(
µx+12

)
D(x+12, σ

2
)

E
[
sin

(
Y x1

)
sin

(
Y x2

)]
=

1

2

[
cos

(
µx−12

)
D(x−12, σ

2
)
−B∗∗

]
(5.2)

B∗∗ = cos
(
µx+12

)
D(x+12, σ

2
)

E
[
sin

(
Y x1

)
cos

(
Y x2

)]
=

1

2

[
sin

(
µx−12

)
D(x−12, σ

2) + C∗∗
]

(5.3)

C∗∗ = sin
(
µx+12

)
D(x+12, σ

2)

E
[
cos

(
Y x1

)]
= cos (µx1) exp

{
−
(1
2
x21σ

2
)}

(5.4)

and

E
[
sin

(
Y x1

)]
= sin(µx1) exp

{
−
(1
2
x21σ

2
)}

(5.5)

The proof of the above trigonometric expectations can be found in (Men-

sah, Ofori, & Howard, 2021).
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APPENDIX B : COMPUTATION OF VARIATIONAL OPTIMIZATION

FUNCTION

We begin with the unnormalized posterior obtained in the form

f(ξ | Z(y)) ∝ f(Z(y) | ξ)g(ξ) (5.6)

= f(Z(y) | β, θ, c, a, σ2
ϵ )f(θ | λ, σ2

θ)f(a | σ2
τ )

f(c | σ2
κ)f(σ

2
ϵ | vϵ)g(σ2

κ)g(λ)g(σ
2
θ)g(vϵ)g(β)

Using the computational formula obtained for the variational lower bound

in (3.35) of Chapter , the following explicit forms of components of the varia-

tional lower bounds are obtained.

L(q) = Eq

[
log f(Z(y) | ξ)

]
+ Eq

[
log g(ξ)]− Eq

[
log q(ξ)

]
,

Eq

[
log f(Z(y) | ξ)g(ξ)

]
= Eq

[
log f(Z(y) | β, θ, c, a, σ2

ϵ )
]

+ Eq

[
log f(θ | λ, σ2

θ)
]

+ Eq

[
log f(a | σ2

τ )
]
+ Eq

[
log f(c | σ2

κ)
]

+ Eq

[
log g(σ2

ϵ )
]

+ Eq

[
log g(σ2

κ)
]
+ Eq

[
log g(β)

]
+ Eq

[
log g(λ)

]
+ Eq

[
log g(σ2

θ)
]

(5.7)

and

Eq

[
log q(ξ)] = Eq

[
log q(a)

]
+ Eq

[
log q(β)

]
+ Eq

[
log q(λ)

]
+ Eq

[
log q(c)

]
+ Eq

[
log q(θ)

]
+ Eq

[
log q(σ2

τ )
]

+ Eq

[
log q(σ2

θ)
]
+ Eq

[
log q(σ2

ϵ )
]
+ Eq

[
log q(σ2

κ)
]

(5.8)

96

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



It is important to note that sum of (5.7) and (5.8) yeilds Lq. The corresponding

expectations can be computed making using of the results in Appendix A. Let

L1(q) = Eq

[
log f

(
Z(y) | β, θ, a, c, σ2

ϵ

)]
. Then, the following results are ob-

tainable. N∗ = T (S∗) + T (W ∗)
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L1(q) = Eq

[
logN

(
Z(y);Sθc+Wβa, σ

2
ϵ In

)]
= − n

2σ2
β0

[
log (2π)− log (αq

ϵ) + ψ(γqϵ )
]

− aqϵ
2bqϵ

[
Z

′

(y)Z(y) − 2T11 − 2T12 + 2T13 +N∗
]

Eq

[
log f(θ | λ, σ2

θ)
]
=− 1

2
log (2π)− 1

2

[
log (γqθ)− ψ(α

q
θ)
]

− αq
θ

2γqθ

[(
µq
θ − V

′
µq
λ

)2

+ σq
θ
2 + V

′
Σq

λV

]
Eq

[
log f(a | σ2

τ )
]
= m

[
logm− log (2π)

]
−m

[
log (γqτ )− ψ(αq

τ )
]

− mαq
τ

2γqτ

[
µq
a

′
µq
a + tr(Σq

a)
]

Eq

[
log f(c | σ2

κ)
]
= m

[
logm− log (2π)

]
−m

[
log (γqκ)− ψ(αq

κ)
]

− mαq
κ

2γqκ

[
µq
c

′
µq
c + tr(Σq

c)
]

Eq

[
log g(σ2

ϵ )
]
=− αϵ log(γϵ)− log Γ(αϵ)−

[
log (γqϵ )− ψ(αq

ϵ)
]

− αϵ
(αq

ϵ

γqϵ

)
Eq

[
log g(σ2

θ)
]
=− αθ log(γθ)− log Γ(αθ)−

[
log (γqθ)− ψ(α

q
θ)
]

− αθ

(αq
θ

γqθ

)
Eq

[
log g(σ2

τ )
]
=− ατ log(γτ )− log Γ(ατ )−

[
log (γqτ )− ψ(αq

τ )
]

− ατ

(αq
τ

γqτ

)
Eq

[
log g(σ2

κ)
]
=− ακ log(γκ)− log Γ(ακ)−

[
log (γqκ)− ψ(αq

κ)
]

− ακ

(αq
κ

γqκ

)
Eq

[
log g

(
β
)]

= −1

2

[
log (2π) + log(σ2

β0
)
]

− 1

2σ2
β0

[(
µq
β − µβ0

)2
+ σq

β
2
]

Eq

[
log g

(
λ
)]

= −1

2
log |Σ0

λ| − Tµ

and
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Eq

[
log q(a)

]
= −m log

(
2π

)
− 1

2
log |Σq

a| −m

Eq

[
log q(c)

]
= −m log

(
2π

)
− 1

2
log |Σq

c| −m

Eq

[
log q(β)

]
= −1

2
log

(
σq
β
2
)
− 1

2
log

(
2π

)
− 1

2

Eq

[
log q(λ)

]
= −1

2
log |Σq

λ| −
r

2
log

(
2π

)
− r

2

Eq

[
log q(θ)

]
= −1

2
log

(
σq
θ
2
)
− 1

2
log

(
2π

)
− 1

2

Eq

[
log q

(
σ2
ϵ

)]
= αq

ϵ log
(
γqϵ

)
− log Γ

(
γqϵ

)
−
(
αq
ϵ + 1

) [
log

(
γqϵ

)
− ψ

(
αq
ϵ

)]
− αq

ϵ

Eq

[
log q

(
σ2
τ

)]
= αq

τ log
(
γqτ

)
− log Γ

(
γqτ

)
−
(
αq
τ + 1

) [
log

(
γqτ

)
− ψ

(
αq
τ

)]
− αq

τ

Eq

[
log q

(
σ2
θ

)]
= αq

θ log
(
γqθ

)
− log Γ

(
γqθ

)
−
(
αq
θ + 1

) [
log

(
γqθ

)
− ψ

(
αq
θ

)]
− αq

θ

Eq

[
log q

(
σ2
κ

)]
= αq

κ log
(
γqκ

)
−Rc,

where

Tµ =
1

2

[(
µq
λ − µ

0
λ

)′
Σ0

λ
−1 (

µq
λ − µ

0
λ

)
+ tr

(
Σ0

λ
−1
Σ0

λ
q
)]

T (W ∗) = tr
((
µq
aµ

q
a

′
+ Σq

a

)
W ∗

)
, T (Z∗) = tr

((
µq
cµ

q
c

′
+ Σq

c

)
Z∗

)
T11 = Z

′

(y)Sµ
q
c, T12 = Z

′

(y)Wµq
a, T13 = µq

c

′
S

′
Wµq

a

Rc = log Γ
(
γqκ

)
−
(
αq
κ + 1

) [
log

(
γqκ

)
− ψ

(
αq
κ

)]
− αq

κ
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APPENDIX C: COMPUTATION OF VARIATIONAL

PARAMETER-LEVEL UPDATES

This section of the Appendix considers the parameter-level updates of the

variational algorithm. Based on the defined joint posterior distribution (5.6)

and the assumed variational approximation, the respective parameter-wise vari-

ational posteriors can be derived as follows.

q(σ2
ϵ ) ∝ exp

[
E−q(σ2

ϵ )
log

(
f(Z(y) | β, θ, c, a, σ2

ϵ )
)
g(σ2

ϵ | vϵ)
]

∝ exp
[
E−q(σ2

ϵ )

[
log

{
N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)}
+ logα∗∗

]]
= IG

(
α∗, γ∗

)
, (5.9)

where

α∗∗ =
{

IG
(
σ2
ϵ ; αϵ, γϵ

)}
α∗ =

n

2
+ αϵ

γ∗ =
1

2

[
Z

′

(y)Z(y) − 2Z
′

(y)Sµ
q
c − 2Z

′

(y)Wµq
a + 2(Sµq

c)
′
(Wµq

a) + A1 + A2

]
+ γϵ

A1 = tr
((
µq
cµ

q
c

′
+ Σq

c

)
S∗

)
, A2 = tr

((
µq
aµ

q
a

′
+ Σq

a

)
W ∗

)

Comparing the variational distribution q(σ2
ϵ ) ∼ IG

(
aqϵ , b

q
ϵ

)
with (5.9), the vari-

ational hyperparameter updates are as follows.

aqϵ ← α∗, bqϵ ← γ∗

q
(
σ2
κ

)
∝ exp

[
E−q(σ2

κ)
log f(c | σ2

κ)g(σ
2
κ)
]

∝ exp

[
E−q(σ2

κ)

[
log

{
N
(
c; 0,

σ2
κ

m
I2m

)}
+ log

{
IG

(
σ2
κ; ακ, γκ

)}]]
∝ exp

[
log

(
σ2
κ

)−(m+ακ)−1

− 1

σ2
κ

{m
2

[
tr
(
µq
cµ

q
c

′
+ Σq

c

)]
+ γκ

}]
∼ IG

(
m+ ακ,

m

2

[
tr
(
µq
cµ

q
c

′
+ Σq

c

)]
+ γκ

)
(5.10)
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Upon comparing q(σ2
κ) ∼ IG

(
αq
κ, γ

q
κ

)
with (5.10), we obtain the updates of the

form

αq
κ ← m+ ακ, bqκ ←

m

2

[
tr
(
µq
aµ

q
a

′
+ Σq

a

)]
+ γκ

q
(
σ2
τ

)
∝ exp

[
E−q(σ2

τ )
log f(a | σ2

τ )g(σ
2
τ )
]

∝ exp

[
E−q(σ2

τ )

[
log

{
N
(
a; 0,

σ2
τ

m
I2m

)}
+ log

{
IG

(
σ2
τ ; ατ , γτ

)}]]
∝ exp

[
log

(
σ2
τ

)−(m+ατ )−1

− 1

σ2
τ

{m
2

[
tr
(
µq
aµ

q
a

′
+ Σq

a

)]
+ γτ

}]
∼ IG

(
m+ ατ ,

m

2

[
tr
(
µq
aµ

q
a

′
+ Σq

a

)]
+ γτ

)
(5.11)

Upon comparing q(σ2
τ ) ∼ IG

(
αq
τ , γ

q
τ

)
with (5.11), we obtain the updates of the

form

αq
τ ← m+ ατ , bqτ ←

m

2

[
tr
(
µq
aµ

q
a

′
+ Σq

a

)]
+ γτ

q(σ2
θ) ∝ exp

[
E−q(σ2

θ)
log p

(
θ | λ, σ2

θ

)
p
(
σ2
θ

)]
∝ exp

[
E−q(σ2

θ)

[
log

{
N
(
θ; V

′
λ, σ2

θ

)}
+ log

{
IG

(
σ2
θ ; αθ, γθ

)}]]
∝ exp

log (σ2
θ

)−
(

1
2
+αθ

)
−1

− 1

σ2
θ

{
1

2
[FF ∗] + γθ

}
∼ IG

(1
2
+ αθ,

1

2

((
µq
θ − V

′
µq
λ

)2

+ σq
θ
2 + V

′
Σq

λv
)
+ γθ

)
(5.12)

FF ∗ ==
(
µq
θ − v

′
µq
λ

)2

+ σq
θ
2 + V

′
Σq

λV

Matching the hyperparmeters of q(σ2
θ) ∼ IG

(
αq
θ, γ

q
θ

)
with (5.12), it is clear

that

αq
θ ←

1

2
+ αθ, γqθ ←

1

2

((
µq
θ − V

′
µq
λ

)2

+ σq
θ
2 + V

′
Σq

λV
)
+ γθ

)
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APPENDIX D: VARIATIONAL UPDATES FOR GAUSSIAN

PARAMETERS

Recall the assumed variational models for a, c and λ a ∼ N
(
µq
a,Σ

q
a

)
, c ∼

N
(
µq
c,Σ

q
c

)
, and λ ∼ N

(
µq
λ,Σ

q
λ

)
. The corresponding updating equations can

be are obtained follows. First, we considering q(λ), we can write

q(λ) ∝ exp
[
E−q(λ) log f

(
θ | λ, σ2

θ

)
g
(
λ
)]

∝ exp
[
E−q(λ) log

{
N
(
λ;V

′
λ, σ2

θ

)
N
(
λ; µ0

λ,Σ
0
λ

)}]

Note that

N
(
λ;V

′
λ, σ2

θ

)
N
(
λ; µ0

λ,Σ
0
λ

)
(5.13)

∝ exp

{
− 1

2σ2
θΣ

0
λ

[
Σ0

λ

(
θ − V ′

λ
)2

+H(θ,λ)

]}

whereH(θ,λ) = σ2
θ

(
λ−µ0

)′(
λ−µ0

)
.We complete squares in λ of the exponent

to obtain

N
(
λ;V

′
λ, σ2

θ

)
N
(
λ; µ0

λ,Σ
0
λ

)
∝ exp

{
− 1

2Σ∗
λ

[(
λ− µ∗

λ

)′(
λ− µ∗

λ

)]}
,

where

Σ∗
λ =

σ2
θΣ

0
λ

Σ0V V ′ + σ2
θ I
, µβ =

θΣ0
λV + σ2

θµ
0
λ

Σ0V V ′ + σ2
θ I
.

Taking natural logs followed by expectations with respect to the varia-

tional distributions of all parameters except λ, it can be observed that q(λ) has

a standard distributional form

q(λ) ∼ N
(
µq
λ
∗, Σq

λ
∗
)
, (5.14)
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where

Σq
λ
∗ =

[
αq
θ

γqθ
V V

′
+ Σ0

λ
−1
]−1

, µq
λ
∗ = Σq

λ
∗
[
αq
θ

γqθ
µq
θV + Σ0

λ
−1
µ0
θ

]

The updating rules are obtained by comparing q
(
λ
)
∼ N

(
µq
β,Σ

q
β

)
and with

(5.14)

Σq
λ ← Σq

λ
∗; µq

λ ← µq
λ
∗

Next we consider the variational updating rules for q(a).Using the general

updating rule, we have

∝ exp

[
E−q(a) log

{
N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
a; 0,

σ2
τ

m
I2m

)}]

We first concentrate on the productN
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
a; 0, σ

2
τ

m
I2m

)
.

Following similar steps to those utilized in the derivations for q(λ), we can write

N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
a; 0,

σ2
τ

m
I2m

)
∝ exp

{
− 1

2Σ∗
a

[
a

′
a− 2aD∗

]}
(5.15)

where

Σ∗
a =

σ2
ϵσ

2
τ

σ2
τW

′
βWβ + σ2

ϵmI2m
, D∗ =

Z
′

(y)Wβ − (Sθc)
′
Wβ

σ2
τW

′
βWβ + σ2

ϵmI2m

We complete squares in a of the exponent of (5.15) to obtain

N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
a; 0,

σ2
τ

m
I2m

)
(5.16)

∝ exp

{
−1

2

[
(a− µa)

′
Σ−1

a (a− µa)
]}

,

where

Σa = Σ∗
a, µa = D∗
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Taking natural logs followed by expectations with respect to the variational dis-

tributions of all parameters except a, q(a) has a multivariate normal form.

q(a) ∼ N
(
µq
a
∗, Σq

a
∗
)
, (5.17)

where

Σq
a
∗ =

[
αq
ϵ

γqϵ
W ∗ +m

αq
τ

γqτ
I2m

]−1

, µq
a
∗ =

αq
ϵ

γqϵ
Σq

a
∗
[(
Z(y) − Sµq

c

)′

W

]

Comparing q(c) ∼ N
(
µq
c,Σ

q
c

)
and (5.20), the following updates are obtained

Σq
a ← Σq

a
∗ µq

a ← µq
a
∗

Finally we consider the variational updating rules for q(c) following sim-

ilar steps as that for q(a).

∝ exp

[
E−q(c) log

{
N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
c; 0,

σ2
κ]

m
I2m

)}]

We first concentrate on the productN
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
c; 0, σ

2
κ

m
I2m

)
.

We have

N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
c; 0,

σ2
κ

m
I2m

)
(5.18)

∝ exp

{
− 1

2Σ∗
c

[
c
′
c− 2cK∗

]}

where

Σ∗
c =

σ2
ϵσ

2
κ

σ2
κS

′
θSθ + σ2

ϵmI2m
, D∗ =

σ2
τ

(
Z

′

(y) +Wβa
)′

Sθ

σ2
κS

′
θSθ + σ2

ϵmI2m
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Completing squares in c of the exponent of (5.18), we obtain

N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
c; 0,

σ2
κ

m
I2m

)
(5.19)

∝ exp

{
−1

2

[
(c− µc)

′
Σ−1

c (c− µc)
]}

,

where

Σc = Σ∗
c , µc = K∗

Taking natural logs followed by expectations with respect to the variational dis-

tributions of all parameters except c, q(c) has a multivariate normal form.

q(c) ∼ N
(
µq
c
∗, Σq

c
∗
)
, (5.20)

where

Σq
c
∗ =

[
αq
ϵ

γqϵ
S∗ +m

αq
κ

γqκ
I2m

]−1

, µq
a
∗ =

αq
ϵ

γqϵ
Σq

c
∗
[(
Z(y) −Wµq

a

)′

S

]

Comparing q(a) ∼ N
(
µq
a,Σ

q
a

)
and (5.20), the following updates are obtained

Σq
c ← Σq

c
∗ µq

c ← µq
c
∗
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APPENDIX E: VARIATIONAL UPDATES FOR β AND θ

The variational updating rules for finding the optimal parameters for q(β)

and q(θ) can be derived as follows.

σq
β
2 ← −1

2

[
∂

∂σq
β
2f1(µ

q
θ, µ

q
β, σ

q
θ
2, σq

β
2) +

∂

∂σq
β
2f2(µ

q
β, σ

q
β
2)

]−1

(5.21)

µq
β ← µq

β + σq
β
2

[
∂

∂µq
β

f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2, ) +

∂

∂µq
β

f2(µ
q
β, σ

q
β
2)

]
(5.22)

σq
θ
2 ← −1

2

[
∂

∂σq
θ
2f1(µ

q
θ, µ

q
β, σ

q
θ
2, σq

β
2) +

∂

∂σq
θ
2f3(µ

q
θ, σ

q
θ
2)

]−1

(5.23)

µq
θ ← µq

θ + σq
θ
2

[
∂

∂µq
θ

f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2, ) +

∂

∂µq
θ

f3(µ
q
θ, σ

q
θ
2)

]
, (5.24)

where

f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2) = − n

2σ2
β0

[
log (2π)− log (αq

ϵ) + ψ(γqϵ )
]

− αq
ϵ

2γqϵ

[
Z

′

(y)Z(y) − 2T11 − EE∗
]

f2(µ
q
β, σ

q
β
2) = −1

2

[
log (2π) + log(σ2

β0
)
]
− 1

2σ2
β0

[FF ∗] (5.25)

f3(µ
q
θ, σ

q
θ
2) = −1

2
log (2π)− 1

2

[
log (γqθ)− ψ(α

q
θ)
]

(5.26)

− αq
θ

2γqθ

[(
µq
θ − V

′
µq
λ

)2

+ σq
θ
2 + V

′
Σq

λV

]
(5.27)

EE∗ = 2T12 + 2T13 + T (S∗) + T (W ∗), and FF ∗ =
(
µq
β − µβ0

)2
+ σq

β
2.

The partial derivatives involved the updating equations (5.21), (5.22),(5.23) and

(5.24) are computed as followed.
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∂f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2)

∂σq
θ
2 = − αq

ϵ

2γqϵ

[
2
(
Wµq

a − Z(y)

)′

Dµq
c+

]
(5.28)

∂f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2)

∂µq
θ

=
αq
ϵ

γqϵ

[
2
(
Z(y) −Wµq

a

)′

Aµq
c −

1

2
CC∗

]
(5.29)

CC∗ = tr
((
µq
cu

q
c

′
+ Σq

c

)
Z∗

)
, and DD∗ = tr

((
µq
cu

q
c

′
+ Σq

c

)
Q
)

∂f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2)

∂σq
β
2 = − αq

ϵ

2γqϵ

[
2
(
Sµq

c − Z(y)

)
Mµq

a +BB∗
]

(5.30)

∂f1(µ
q
θ, µ

q
β, σ

q
θ
2, σq

β
2)

∂µq
β

=
αq
ϵ

γqϵ

[
2
(
Z(y)−Sµq

c

)
Bµq

a −
1

2
AA∗

]
(5.31)

AA∗ = tr
((
µq
aµ

q
a

′
+ Σq

a

)
N
)
, and BB∗ = tr

((
µq
aµ

q
a

′
+ Σq

a

)
U
)

∂f2(µ
q
β, σ

q
β
2)

∂σq
β
2 = − 1

2σ2
β0

(5.32)

∂f2(µ
q
β, σ

q
β
2)

∂µq
β

= −

(
µq
β − µβ0

)
σ2
β0

(5.33)

∂f3(µ
q
θ, σ

q
θ
2)

∂σq
θ
2 = −α

q
θ

γqθ
(5.34)

∂f3(µ
q
θ, µ

q
θ
2)

∂σq
θ
2 = −

αq
θ

(
µq
θ − V

′
µq
λ

)
γqθ

(5.35)

The computational expressions for the spectral matrices associated with

the derivatives (5.28), (5.30), (5.32) and (5.34), namely,

S,W, S∗,W ∗, D,A,M,B, U,N,Q, and Z∗ can be obtained following similar

argument used by Mensah, Ofori, and Howard (2021).
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APPENDIX F: MCMC POSTERIOR FULL CONDITIONALS

In this section of the appendix, the full conditionals required for the devel-

opment of approximate MCMC algorithms for posterior inference are consid-

ered. In particular, the derivation here begins with the definition or expression

for the joint posterior distribution involved in the model considered. The vari-

ous components of the conditionals distributions needed are extracted from the

joint according to the dependencies a given parameter has with the remaining

accordingly. The joint distribution of all parameters an variables can be written

in the form

p(ξ | Z(y)) = p(Z(y) | ξ)p(ξ)

= p
(
Z(y) | β, θ, a, c, σ2

ϵ

)
p
(
θ | λ, σ2

θ

)
p
(
a | σ2

τ

)
p
(
c | σ2

κ

)
× p

(
σ2
ϵ

)
p
(
β
)
p
(
λ
)
p
(
σ2
θ

)
p
(
σ2
τ

)
p
(
σ2
κ

)
.
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APPENDIX G: POSTERIOR FULL CONDITIONALS FOR INVERSE

GAMMA PARAMETERS

The variance parameters involved the feature based GPR are σ2
ϵ , σ

2
τ , σ

2
κ

and σ2
θ . Their corresponding model can be expressed as follows.

σ2
ϵ ∼ IG

(
αϵ, γϵ

)
, σ2

θ ∼ IG
(
αθ, γθ

)
, σ2

τ ∼ IG
(
ατ , γτ

)
, σ2

κ ∼ IG
(
ακ, γκ

)
.

The full posterior conditional distributions associated with the above pa-

rameters are derived as follows.

p
(
σ2
ϵ |rest

)
= f

(
Z(y) | β, θ, a, c, σ2

ϵ

)
f
(
σ2
ϵ | αϵ, γϵ

)
= N

(
Z(y); Sθc+Wβa, σ

2
ϵ In

)
IG

(
σ2
ϵ ;αϵ, γϵ

)
∝ (σ2

ϵ )
−n

2 exp

{
− 1

2σ2
ϵ

[(
Z(y) − Sθc−Wβa

)′

B∗
]}

∗ (σ2
ϵ )

−αϵ−1 exp

{
− γϵ
σ2
ϵ

}
= (σ2

ϵ )
−
(

n
2
+αϵ

)
−1
g1, and B

∗ =
(
Z(y) − Sθc−Wβa

)

where g1 = exp

{
− 1

σ2
ϵ

[
1
2

(
Z(y) − Sθc−Wβa

)′(
Z(y) − Sθc−Wβa

)
+ αϵ

γϵ

]}
Using the standard properties of inverse gamma distribution, f(σ2

ϵ |rest)

can be identified as an inverse gamma,

f
(
σ2
ϵ |rest

)
= IG

(n
2
+ αϵ, bϵ

)
,

where bϵ =
[
1
2

(
Z(y) − Sθc−Wβa

)′(
Z(y) − Sθc−Wβa

)
+ αϵ

γϵ

]
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f
(
σ2
κ | rest

)
∝ f

(
c|σ2

κ

)
g
(
σ2
κ

)
= N

(
c; 0,

σ2
κ

m
I2m

)
IG

(
ακ, γκ

)
∝

(
σ2
κ

)−
(
m+ακ

)
−1

exp

{
− 1

σ2
κ

(
mc

′
c

2
+ γκ

)}
= IG

(
m+ ακ,

mc
′
c

2
+ γκ

)

f
(
σ2
τ | rest

)
∝ f

(
a|σ2

τ

)
g
(
σ2
τ

)
= N

(
a; 0,

σ2
τ

m
I2m

)
IG

(
ατ , γτ

)
∝

(
σ2
τ

)−
(
m+ατ

)
−1

exp

{
− 1

σ2
τ

(
ma

′
a

2
+ γτ

)}
= IG

(
m+ ατ ,

ma
′
a

2
+ γτ

)

and

f
(
σ2
θ |rest

)
= f

(
θ|λ, σ2

θ

)
g
(
σ2
θ

)
= N

(
θ;V

′
λ, σ2

θ

)
IG

(
σ2
θ ;αθ, γθ

)
=

(
σ2
λ

)−( 1
2
+αλ)−1

exp

{
− 1

σ2
λ

(
1

2

(
λ− V ′

β
)2

+ b0λ

)}
= IG

((
2αθ + 1

2

)
,
1

2

(
θ − V ′

λ
)2

+ γθ

)
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APPENDIX H: POSTERIOR CONDITIONALS FOR PARAMETERS

WITH NORMAL MODELS

The full posterior conditionals for parameters modeled with normal prob-

ability models are considered in this section of the appendix. Recall the normal

parameters among the set of parameters.

a ∼ N
(
0,
σ2
τ

m
I2m

)
,c ∼ N

(
0,
σ2
κ

m
I2m

)
θ ∼ N

(
V

′
λ, σ2

θ

)
,λ ∼ N

(
µ0
λ,Σ

0
λ

)
, β ∼ N

(
µ0
β, σ

2
β0

)

f
(
c|rest

)
∝ f

(
Z(y) | β, θ, a, c, σ2

ϵ

)
f
(
c | σ2

κ

)
= N

(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
c; 0,

σ2
κ

m
I2m

)
∝ exp

{
− 1

2σ2
ϵ

(
Z(y) − Sθc−Wβc

)′(
Z(y) − Sθc−Wβa

)}
g2

∝ exp

−
(
σ2
κS

′

θSθ + σ2
ϵmI2m

)
2σ2

κσ
2
ϵ

[
c
′
c− 2 A∗

]
where A∗ =

σ2
κ

(
Z

′

(y) −Wβa
)′

Sθ(
σ2
κS

′
θSθ + σ2

ϵmI2m
)

where g2 = exp
{
−mc

′
c

2σ2
κ

}
. Completing squares in c, yields

f
(
c|rest

)
∝ exp

{
− 1

2Σc

[
(c− µ∗

c)
′
(c− µ∗

c)
]}

.

f
(
c|rest

)
can easily be recognized as multivariate normal, N2m

(
µ∗
c ,Σ

∗
c

)
with

the following specifications for the associated parameters.

Σ∗
c =

[
1

σ2
ϵ

S∗
θ +

1

σ2
κ

mI2m

]−1

, µ∗
c = Σ∗

c

[
1

σ2
ϵ

(
Z(y) −Wβa

)′

Sθ

]
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f
(
a|rest

)
∝ f

(
Z(y) | β, θ, a, c, σ2

ϵ

)
f
(
a | σ2

τ

)
= N

(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
a; 0,

σ2
τ

m
I2m

)
∝ exp

{
− 1

2σ2
ϵ

(
Z(y) − Sθc−Wβc

)′(
Z(y) − Sθc−Wβa

)}
g3

∝ exp

−
(
σ2
τW

′

βSβ + σ2
ϵmI2m

)
2σ2

τσ
2
ϵ

[
c
′
c− 2 C∗∗

]
where C∗∗ =

σ2
τ

(
Z

′

(y) − Sθc
)′

Wβ(
σ2
τW

′
βWβ + σ2

ϵmI2m
)

where g3 = exp
{
−ma

′
a

2σ2
τ

}
. Completing squares in a, we obtain

f
(
a|rest

)
∝ exp

{
− 1

2Σa

[
(a− µ∗

a)
′
(a− µ∗

a)
]}

.

We can identify f
(
a|rest

)
as multivariate normal, N2m

(
µ∗
a,Σ

∗
a

)
with the fol-

lowing expressions for parameters,

Σ∗
a =

[
1

σ2
ϵ

W ∗
β +

1

σ2
τ

mI2m

]−1

, µ∗
a = Σ∗

a

[
1

σ2
ϵ

(
Z(y) − Sθc

)′

Wβ

]

f
(
λ|rest

)
∝ f

(
θ | λ, σ2

θ

)
g
(
λ
)

N
(
θ, ;V

′
λ, σ2

θ In
)
N
(
λ;µ0

λ,Σ
0
λ

)
∝ exp

−
(
θV

′
Σ0

λ + σ2
θµ

0
λ

)
2σ2

θΣ
0
λ

[
λ

′
λ− 2λB∗

] ,

where B∗ =
θV

′
Σ0

λ+σ2
θµ

0
λ

Σ0
λV

′V+σ2
0I
.

Completing squares in λ gives

112

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



f
(
λ|rest

)
∝ exp

{
− 1

Σ∗
λ

[(
λ− µ∗

λ

)′(
λ− µ∗

λ

)]}

f
(
λ|rest

)
can be identified as a multivariate normal distributionN2m

(
µ∗
λ,Σ

∗
λ

)
,

where

Σ∗
λ =

[
1

σ2
θ

V
′
V + Σ0

λ
−1
]−1

µ∗
λ = Σ∗

λ

[
1

σ2
θ

θV + Σ0
λ
−1
µ0
λ

]

For β and θ there exists no closed for expressions for the full conditionals.

That is the full conditionals can be identified as following some known standard

probability distributions. As result, we consider the full conditionals up to some

proportionality constants.

f
(
β|rest

)
∝ f

(
Z(y) | β, θ, c, a, σ2

ϵ

)
g
(
β
)

= N
(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
β;µβ0 σ

2
β0

)
∝ exp

{
− 1

2σ2
ϵ

(
Z(y) − Sθc−Wβc

)′(
Z(y) − Sθc−Wβa

)}
g5

where g4 = exp

{
− 1

2σ2
β

(
β − µβ0

)2
}
.

Finally, for θ, we have

f
(
θ|rest

)
∝ f

(
Z(y) | β, θ, c, a, σ2

ϵ

)
f
(
θ | λ, σ2

0

)
= N

(
Z(y);Sθc+Wβa, σ

2
ϵ In

)
N
(
θ;V

′
λ σ2

β0

)
∝ exp

{
− 1

2σ2
ϵ

(
Z(y) − Sθc−Wβc

)′(
Z(y) − Sθc−Wβa

)}
g4

where g5 = exp

{
− 1

2σ2
θ

(
θ − V ′

λ
)2
}
.
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APPENDIX I: ALGORITHM ONE

Algorithm 1 Variational Bayes Algorithm for model (3.14) (VBFBGPR)
Initialize: γqϵ = 0.5Z

′

(y)Z(y), γ
q
θ = 0.5γθ, γqτ = γτ , γqκ = γκ, µq

λ = 0, Σq
λ =

0.5Σ0
λ, σq

β
2 = σ2

β0
, µq

β = µβ0 , σ
q
θ
2 = σ2

θ0
, µq

θ = µθ0 .

Set αq
ϵ =

n
2
+ αϵ, α

q
θ ← 0.5 + αθ, αq

κ = m+ αq
κ, α

q
τ = m+ αq

τ .

Do until the change in the lower bound is less than a specified tolerance:

• Σq
c ←

[
αq
ϵ

γq
ϵ
S∗ +mαq

κ

γq
κ

I2m
]−1

, µq
c ← αq

ϵ

γq
ϵ
Σq
c

[ (
Z(y) −Wµq

a

)′
S
]

• Σq
a ←

[
αq
ϵ

γq
ϵ
W ∗ +mαq

τ

γq
τ

I2m
]−1

, µq
a ← αq

ϵ

γq
ϵ
Σq
a

[ (
Z(y) − Sµq

c

)′
W

]
• Σq

λ ←
[
αq
θ

αq
θ
V V

′
+Σ0

λ0

−1
]−1

, µq
λ ← Σq

λ

[(
αq
θ

αq
θ

)
µq
θV + µ0

λΣ
0
λ
−1

]
• γqϵ ← 1

2

{
Z

′

(y)Z(y) − 2Z
′
yZ

(
Sµq

c +Wµq
a

)
+ 2µq

a
′
S

′
Wµq

a + C∗
}

+

1
2

{
+tr

(
(µq

aµ
q
a
′
+Σq

a)W ∗
)}

+ γϵ

• where C∗ = tr
(
(µq

cµ
q
c
′
+Σq

c)S∗
)

• γqθ ←
1
2

[(
µq
θ − V

′
µq
λ

)2
+ σq

θ
2
+ V

′
Σq
λV

]
+ γθ

• γqk ←
m
2 tr

((
µq
cµ

q
c
′
+Σq

c

))
+ γk

• γqτ ← m
2 tr

((
µq
aµ

q
a
′
+Σq

a

))
+ γτ

• σq
θ
2 ←

[
αq
ϵ

γq
ϵ

{
2
(
Wµq

a − Z(y)

)′

Dµq
c + tr

((
µq
aµ

q
a
′
+Σq

a

)
Q
)}

+
αq
θ

γq
θ

]−1

• µq
θ ← µq

θ + σq
θ
2
[
αq
ϵ

γq
ϵ

{(
Z(y) −Wµq

a

)′

Aµq
c − 1

2 tr
((

µq
cµ

q
c
′
+Σq

c

)
Z∗

)}
−B∗

]
• where B∗ =

αq
θ

γq
θ
(µq

θ − V
′
µq
λ)

• σq
β
2 ←

[
αq
ϵ

γq
ϵ

{
2
(
S

′
µq
c − Z(y)

)′

Mµq
a + tr

((
µq
aµ

q
a
′
+Σq

a

)
U
)}

+ 1
σ2
β0

]−1

• µq
β ← µq

β +σq
β
2
[
αq
ϵ

γq
ϵ

{(
Z(y) − S

′
µq
c

)′

Bµq
a − 1

2 tr
((

µq
aµ

q
a
′
+Σq

a

)
N
)}
−A∗

]
• where A∗ = 1

σ2
β0

(
µq
β − µβ0

)
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APPENDIX J: ALGORITHM TWO

Algorithm 2 Hybrid Gibbs Sampler (HGS)
1: Initialization: Set MCMC sample size, N ,

2: Set b = 0 and select starting values β[0], λ[0],θ[0], a[0], c[0],

σ2
ϵ [0],σ

2
τ [0],σ

2
θ [0],σ

2
κ[0].

3: Sample β[b+1] via Metropolis step

1. Sample β∗ from N
(
β[b−1], σ

2
β

)
2. Choose β[b+1] based on:

β[b+1] =


β∗ with probability min

{
L
(
β[b], β∗

)
, 0

}
β[b] otherwise,

where

L
(
β[b], β∗

)
= log

 f
(
β∗|rest

)
f
(
β[b]|rest

)


f
(
β∗|rest

)
= f

(
β∗|β[b], a[b], θ[b], S[b],W[b], σ

2
ϵ [b], Z(y)

)
f
(
β[b]|rest

)
= f

(
β[b]|β∗, a[b], θ[b], S[b],W[b], σ

2
ϵ [b], Z(y)

)

3. Update spectral matrices W[b+1],W
∗
[b+1]
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APPENDIX K: ALGORITHM TWO CONTINUED

Algorithm 2 Hybrid Gibbs Sampler (HGS)(continued)
4: Sample θ[b+1] via Metropolis step.

1. Sample θ∗ from N
(
θ[b−1], σ

2
∗

)
2. Choose θ[b+1] based on:

θ[b+1] =


θ∗ with probability min

{
L
(
θ[b], θ∗

)
, 0

}
θ[b] otherwise,

where

L
(
θ[b], θ∗

)
= log

 f
(
θ∗|rest

)
f
(
θ[b]|rest

)


f
(
θ∗|rest

)
= f

(
θ∗|θ[b], a[b], θ[b], S[b],W[b], σ

2
ϵ [b], Zy

)
f
(
θ[b]|rest

)
= f

(
θ[b]|θ∗, a[b], θ[b], S[b],W[b], σ

2
ϵ [b], Z(y)

)
3. Update spectral matrices S[b+1], S

∗
[b+1],W[b+1], and W ∗

[b+1]

5: c[b+1] ∼ N
(
σ2
ϵ
−1
[b] Σ

∗
c

[(
Z(y) −W[b+1]a[b]

)′

S[b+1]

]
Σ∗

c

)
,

Σ∗
c =

(
σ2
ϵ
−1

[b] S
∗
[b+1] +mσ2

κ
−1

[b] I2m
)−1

6: σ2
τ [b+1] ∼ IG

(
m+ ατ ,

m
2
a

′
[b]a[b] + γτ

)
7: σ2

θ [b+1] ∼ IG
(

1
2
+ αθ,

1
2

(
θ[b+1] − v

′
λ[b]

)2

+ γθ

)
8: σ2

κ[b+1] ∼ IG
(
m+ ακ,

m
2
c
′
[b+1]c[b] + γκ

)
9: σ2

ϵ
[b+1] ∼ IG

(
n
2
+ αϵ, γ

∗
ϵ

)
,

γ∗ϵ =
1

2

[
C

′

(y)C(y)

]
+ γϵ, C(y) =

(
Z(y) − S[b+1]c[b+1] −W[b]a[b+1]

)

Σ∗
a =

(
σ2
ϵ
−1

[b+1]W
∗
[b+1] +mσ2

τ
−1

[b+1]I2m
)−1

10: Set b = b+ 1

11: If b < N0 repeat steps 4− 7. Otherwise stop.
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