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ABSTRACT 

Laser-induced autofluorescence (LIAF) was used to characterize and classify 

some selected commercial anti-malarial herbal drugs (AMHDs) to avoid sample 

destruction.  Results from deconvoluted peaks of the LIAF spectra of AMHDs 

showed secondary metabolites belonging to derivatives of alkaloids and classes of 

phenolic compounds (tannins, lignin, flavonoid, and coumarins) present in all the 

AMHDs samples. Analyses with unsupervised methods (Principal component 

analysis (PCA), K-means clustering and Hierarchical Clustering Analysis (HCA)) 

classified the AMHDs that were similar in physicochemical properties. Based on 

two PCs, supervised pattern recognition methods such as Supervised Vector 

Machine (SVM), K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis 

(QDA), and Linear Discriminant Analysis (LDA) models generated were used to 

identify and classify unknown AMHDs with 100.00, 100.00, 99.52 and 99.04 % 

accuracy respectively. LIAF technique in combination with multivariate analysis 

may offer non-destructive characterization and classification of AMHDs. 
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CHAPTER ONE 

INTRODUCTION 

Background to the Study 

Over the last decade, applications of optical spectroscopic techniques have 

increased significantly. It is possible to use different optical phenomena as well as 

different light properties to get information from samples of interest (Titus et al., 

2019; Vanlanduit & Guillaume, 2009). Generally, optical phenomena deals with 

electromagnetic radiation being in contact with a medium. The optical phenomena 

may be linear or nonlinear when considering the amplitude of the light as the key 

factor. The interaction of the electromagnetic radiation with a medium results in 

the absorption, dispersion, fluorescence, transmission, reflection or scattering of 

the electromagnetic radiation and it can be responsive to slight changes in the 

medium‘s molecular/atomic structure or soundings (Gruber, 1956; Parson, 2015; 

Sirohi, 2009; Vanlanduit & Guillaume, 2009).  

Optical spectroscopic methods propose to solve some limitations by 

detecting molecules/atoms simultaneously and non-destructively (Strachan et al., 

2007; Watanabe et al., 2019). Optical spectroscopic techniques are used in a wide 

range of applications, from semiconductors to medical sciences, art conservation 

to defense, physics to pharmaceutical, biology to geology, due to their exceptional 

sensitivity and speed. Optical spectroscopic techniques are used in laboratories for 

the examination of medical and industrial samples due to their non-invasiveness. 

These techniques could also be used in robust measuring systems and routine 

inspection of solid, liquid, and gaseous samples (Allen et al., 1971; Gruber, 1956; 
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Mayinger, 2001; Parson, 2015; Titus et al., 2019; Wartewig, 2004; Watanabe et 

al., 2019).  

Fiber optic p robes can be used in a variety of spectroscopic measurement, 

such as detecting fluorescence from a sample or elucidate the nature of a body by 

monitoring fluorescent traces in tract tracing. Optical spectroscopic techniques 

have low cost, long life, and resistance to thermal and mechanical disruptions 

make them ideal for use in harsh environments (Haruna et al., 2019; Lodder, 

2002).  

The choice of optical spectroscopic technique is based on the sample 

under study. There are several types of optical spectroscopy techniques namely: 

Raman spectroscopy, Infrared (Near and Far) spectroscopy, Atomic Absorption 

spectroscopy, Laser induced breakdown Spectroscopy, Ultraviolet and Visible 

spectroscopy, and their applications vary depending on the study's objective. 

Optical spectroscopy, such as Raman spectroscopy, is a good example used in 

atomic or molecular studies. Raman spectroscopy is a technique that deals with 

the vibrational, and rotational modes of a medium by using Raman scattering of 

monochromatic laser light (Edwards, 2005; Strachan et al., 2007). The interaction 

of the phonons with the laser light causes an energy change, which provides 

information about the phonon modes in the system. Raman spectroscopy has a 

number of advantages, including the fact that there is little or no sample 

preparation and non-destructive, water bands are typically small and easily 

subtracted making the strength of the bands in a Raman intensity spectrum be 

dependent on the concentration of the corresponding molecules, allowing for 
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quantitative study (Edwards, 2005; Huzortey et al., 2017; Strachan et al., 2007; 

Wartewig, 2004).  

Raman spectroscopy could be used in the pharmaceutical industry to 

provide information on various aspects such as medicinal uniformity, chemical 

identification, and the physical state of medicine. It has helped to improve new 

areas in pharmaceutical study (John & George, 2017; Nasdala et al., 2012). In the 

study of polymers, the information obtained from a Raman spectrum is useful not 

only for determining the relationship between chemical and morphological 

structure, but also for determining the layered structure of polymer coatings 

without need destroying the layers (Koenig, 1971; Seyrek & Decher, 2012; 

Speight, 2017; Wesełucha-birczy et al., 2014). Raman spectroscopy is also very 

useful in nano-technological applications for separating single walled Carbon 

nanotubes (CNTs) from multi-walled CNTs, as well as traces in cells (John & 

George, 2017; Wesełucha-birczy et al., 2014).  

Another method of optical spectroscopy is Infrared (IR) spectroscopy. 

Infrared spectroscopy is a method that uses the vibrations of atoms to determine 

its properties. The most popular method for obtaining an infrared spectrum is to 

transmit infrared radiation through a sample and determine what fraction of the 

incident radiation is absorbed at each energy level (Lodder, 2002; Stuart, 2005). 

The frequency of a vibration of a part of a sample molecule corresponds to the 

energy at which any peak in an absorption spectrum appears. The information 

found in the IR spectrum pertains to any element of the molecular structure. This 

is because molecules have different isotopic distributions, constitutions, 
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structures, conditions or conformations. The IR spectrum may be used to 

distinguish two distinct molecules (Schrader, 1996). The introduction of low-cost, 

high-performance computers, combined with the use of multivariate data 

techniques, has resulted in an explosion of IR spectroscopy applications in a 

variety of fields, ranging from medical to pharmaceutical to traditional food 

analysis (Hussain & Keçili, 2020a; Schrader, 1996; Stuart, 2005; Sun, 2015; 

Wulandari, Retnaningtyas, Nuri, & Lukman, 2016). Infrared spectroscopy has 

also advanced significantly as a result of constant advancements in computer 

technology. The invention of Fourier-transform spectrometers, on the other hand, 

has resulted in the most important developments in infrared spectroscopy. The 

principle behind Fourier-transform infrared (FTIR) spectroscopy is unique, in that 

two beams of light interact to produce an interferogram. An interferometer is used 

in this type of instrument, which uses the well-known mathematical method of 

Fourier-transformation. The mathematical method of Fourier-transformation can 

convert the two domain of space and time. Infrared spectroscopy using Fourier-

transform infrared (FTIR) spectroscopy has greatly improved the accuracy of 

infrared spectra while reducing the amount of time it takes to acquire results 

(Stuart, 2005). This is important in remote sensing of air pollution from factory 

and power plant chimneys, as well as vehicular (Vanlanduit & Guillaume, 2009). 

IR spectroscopy can be Near Infrared (NIR) or Far Infrared (FIR) spectroscopy 

depending on the electromagnetic radiation techniques.   

NIR spectroscopy is a sub branch of the IR spectroscopy that has evolved 

into the following acquisition modes: transmittance, transflectance, reflectance, 
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interactance, and transmittance through scattering medium, which refer to the 

various geometric arrangements of the detected radiation. Different reflectance 

methods, such as attenuated total reflection (ATR), specular reflectance, and 

diffuse reflectance, are now widely practiced in infrared spectroscopy technique 

(Pasquini, 2003; B. H. Stuart, 2005). Because it is fast and requires no sample 

preparation, ATR is one of the most popular sampling methods used by infrared 

spectroscopists. It is a contact sampling technique that takes advantage of the 

spectral information available from reflection phenomena. Unlike many sample 

techniques the ATR is able to measure the IR spectra of a medium that is too 

dense or absorbing to be measured (Larkin, 2018). Another common 

spectroscopic technique usually used in the studies of atoms or molecules of a 

medium is the Atomic Absorption Spectroscopy (AAS).  

AAS is a quantitative analytical technique that measures the optical 

radiation absorbed by an element to determine and analyze its presence in a 

complex sample. (Biswas, Karn, Paresh, & Balasubramanian, 2017; Hussain & 

Keçili, 2020). AAS is a highly sensitive method of elemental analysis that allows 

for the detection of metals in a variety of samples down to the picogram stage, as 

well as determining the concentration of a single metal constituent in a sample. 

(Biswas, et al., 2017; Butcher, 2005). The technique is often used to assess the 

toxicology of complex samples such as food, biological, industrial and 

environmental samples. In the medical sector, clinical samples are often analyzed 

to determine the presence of metals and metalloids in fluids and biological tissues 

for therapeutic purposes (Calatayud & Icardo, 2004). It has a wide range of 
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applications and is relatively interference-free when measuring a variety of 

elements (Hanrahan et al., 2004; Hill & Fisher, 2017). AAS has been used to 

evaluate heavy metals in medicinal plants. (Akram et al., 2015). 

Depending on the measurement range and concentration of the element of 

interest, there are other optical spectroscopic techniques such as flame atomic 

absorption spectroscopy (FAAS), cold vapor atomic absorption spectroscopy 

(CV-AAS), hydride-generating atomic absorption spectroscopy (HG-AAS), and 

graphite furnace atomic absorption spectroscopy (GF-AAS) systems (Michalke & 

Nischwitz, 2013). FAAS has been used in biological fluid studies as well as in 

biomedical applications to analyze solutions derived from biological tissues and 

to assess metal cation concentrations in filtered water sources (Campbell & 

Ingram, 2014; Taylor, 1999). Though some systems have low detection limits, 

their sensitivity for derivatized species has been improved (Michalke & 

Nischwitz, 2013).  

Another sensitive spectroscopic technique is the Fluorescence 

Spectroscopy (FS). FS became widely used in several fields of science after the 

groundbreaking work of Weber, Stokes, Vavilov, Perrin and Jaboski (Wolfbeis, 

2004). FS is an absorption spectroscopy complementary technique that analyzes 

the fluorescence from a sample. FS instruments use short wavelength light in the 

visible or ultraviolet wavelength ranges to illuminate samples, resulting in a 

longer wavelength (lower energy) of photon (fluorescence) (Braeuer, 2015; Da 

Silva & Utkin, 2018; Eyring & Martin, 2013). It is a responsive and adaptable 

analytical tool that can be used for both quantitative and qualitative analysis. 
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Fluorescence is used in basic analytical assays in environmental science and 

clinical chemistry, cell recognition and sorting in flow cytometry, and single-cell 

imaging in medicine, for example. FS is a generally recognized and effective 

technique that's used in a wide range of applications, including DNA sequencing, 

genetic analysis, forensics, medical diagnostics and biotechnology, environmental 

and manufacturing sites (Chirayil et al., 2017). Since water is not an interferent in 

FS measurement, it makes the technology extremely sensitive to fluorescent target 

molecules. As a result, its applications in dilute aqueous media are feasible 

(Kessler & Kessler, 2020). Fluorescence spectroscopy has been used to classify 

and measure difficult-to-quantify products such as morphine extracted from body 

fluids (Eyring & Martin, 2013; Tranter, 1999). The techniques of Laser-Induced 

Phosphorescence (LIP) and Laser-Induced Fluorescence (LIF) are both 

fluorescence processes that occur after light has been absorbed.  

The LIF and LIP phenomena are based on the ability of a 

visible/ultraviolet laser beam to selectively excite fluorescent atom/molecules. In 

order to detect LIF/LIP, a specific wavelength of light source is used. When an 

excited molecule returns to its ground state, a photon with a slightly longer 

wavelength is released (lower energy) (Karlinsey, 2012; Kumar et al., 2018). Due 

to its higher sensitivity, LIF is favoured over IR, Raman and UV spectroscopy for 

detecting compounds in low concentrations (Brinck et al., 2003; Karlinsey, 2012). 

In a thirty-one component multivitamin powder mix, LIF was used to analyze the 

concentrations of five different constituents in real-time. LIF was also used to 

monitor the mixing of pharmaceutical components in a V-blender with the aid of 
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a non-contact probe (Nadeem & Heindel, 2018). LIF's nondestructive nature has 

been used to identify various anti-malarial plants from different locations 

(Amuah, Eghan, Anderson, Adueming, & Opoku-Ansah, 2017). When induced by 

an UV/visible laser beam, the fluorescence emission from innate molecule 

fluorophores is referred to as Laser-Induced Autofluorescence (LIAF).  

LIAF  is a non-invasive procedure that does not require the use of special 

histochemical dyes (García-plazaola et al., 2015; Rost, 2016). The 

autofluorescence of a molecule can be described by a number of factors, the most 

important of which are the emission spectrum, quantum yield, lifetime, and 

polarization, all of which can be measured in a steady-state or time-resolved 

manner. They provide details about the fluorescing molecule's photophysical 

properties as well as the chemical and physical nature of its microenvironment 

(Rost, 2016; Wolfbeis, 2004). Several new LIAF-based applications have been 

developed in recent years, promoting autofluorescence spectroscopy from a 

strictly scientific to a more routine tool. Despite the fact that the number of 

regular fluorescence applications is rapidly increasing, the concepts remain the 

same. In disease diagnosis, LIAF has been used for the identification of infected 

as well as uninfected RBCs and the estimation of parasite density of Plasmodium 

falciparum (Opoku-Ansah, Eghan, Anderson, & Boampong, 2014; Opoku-Ansah, 

Eghan, Anderson, Boampong, & Buah-Bassuah, 2016). In geology, LIAF is 

characterized by the presence of small quantities of activator compounds, which 

are often referred to as "impurities" and are widely used in coal research 

(Jaffrennou et al., 2007; Rost, 2016).  In the studies of secretory cells, many 
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researchers have employed the LIAF technique. Since secretory cells of leaves, 

stems, flowers, and roots fluoresce in all colors of the visible spectrum. Secretory 

cells in plants contain a variety of fluorescent products, primary and secondary 

metabolites, as has recently been discovered (Roshchina, 2018; Roshchina et al., 

2017). Secondary substances such as phenols, flavins, quinones, alkaloids, 

polyacetylenes, coumarins, terpenoids, and others are found in secretory cells and 

can fluorescence when exposed to ultraviolet radiation (Roshchina, 2018). These 

techniques has been employed in many fields of study (Biswas, Karn, 

Balasubramanian, & Kale, 2017; Chen, Zheng, & Liu, 2011; Giridhar, Manepalli, 

& Apparao, 2017; Lamirel, 2014; Liu & Brezinski, 2014; McCreery, 2005; 

Wesełucha-birczy et al., 2014). 

Scope of Study 

This work seeks to apply LIAF to characterize, and classify eleven (11) 

commercial anti-malarial herbal drugs purchased from licensed herbal shops 

within Cape Coast Metropolis. 

Statement of the Problem  

The wide use of AMHDs has drawn the attention of many researchers to 

its study. The use of plant-based multi-herbal preparations for malaria treatment is 

very popular due to the high cost and restricted availability of artemisinin-based 

combination therapy (ACT) (Adusei-Mensah et al., 2020; Frank Adusei-Mensah 

et al., 2019; WHO, 2017a, 2018). Plant-based medicines are used more often 

because of their year-round availability, low cost, and ease of access as opposed 

to pharmaceutical medicines (Febir et al., 2016; WHO, 2017b).  
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Researchers studied the phytochemical constituents of AMHDs using 

methods such as gas chromatography-mass spectroscopy (GCMS), high-

performance liquid chromatography (HPLC), thin-layer chromatography (TLC) 

and others. Wilmot in 2017 assessed the chemo‑suppressive activity of AMHDs 

against P. berghei in vivo (Wilmot et al., 2017).  Köhler in 2002 also assessed the 

physiochemical properties of AMHDs using HPLC and TLC (Köhler et al., 2002). 

These processes are expensive, destructive and may require enough time which 

makes them not feasible enough.  

In the assessment of phytochemical analysis of medicinal plants, LIAF has 

been used widely (Donaldson, 2020; Roshchina et al., 2016). LIAF has unique 

characteristics such as rapidity, non-destructiveness, non-invasiveness, less 

expensive, and sensitivity. LIAF has been proven to be an effective and objective 

tool for characterizing, discriminating, and identifying medicinal plants (Amuah 

et al., 2017; Donaldson, 2018; García-plazaola et al., 2015; Roshchina, 2012). 

Despite LIAF‘s numerous advantages, commercial AMHDs have not been 

explored with this technique. 

Research Objectives 

This work aims to determine the spectral fingerprint of some selected 

AMHDs samples using LIAF. This is to infer secondary metabolites from 

literature to the AMHD spectral fingerprint. This work also seeks to combine the 

LIAF spectra fingerprint and multivariate analysis Principal Component Analysis 

(PCA), K-Means Clustering, Hierarchical Clustering Analysis (HCA), Linear 

Discriminant Analysis (LDA), Quadratic Linear Analysis (QDA), K-Nearest 
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Neighbor (KNN) and Support Vector Machine (SVM)) to characterize and 

classify the AMHDs of common physiochemical properties. 

Significance of the Study 

 The work would be important because the spectral fingerprints of 

AMHDs would provide faster and cheaper alternative for detecting any AMHDs. 

It is a non-destructive method and can be an objective confirmation of any 

AMHDs. 

Organization of Study 

This thesis consists of five main chapters. Chapter one gives an overview 

of optical spectroscopic techniques and discusses fluorescence spectroscopy 

applications to medicinal plants. The scope of the work and the organization of 

the thesis are included within this chapter. The second chapter reviews the 

literature on the concepts of light-matter interaction, principles of optical 

spectroscopy, as well as phytochemical constituents present in medicinal plants. 

Chapter three looks at the experimental methods and procedure for the research 

work. The LIAF spectral fingerprints results, analysis, and discussions are 

presented in Chapter four. In the fifth chapter, conclusions are drawn and relevant 

recommendations are given to assist in further research. 

Chapter Summary 

This chapter has discussed the background to various optical spectroscopic 

techniques and their associated applications, and also discussed fluorescence 

spectroscopy applications on medicinal plants (Anti-malarial herbal medicines). 
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The scope of the work and the organization of the thesis were included in this 

chapter. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This chapter reviews the literature on light-matter interaction with 

emphasis on optical spectroscopic techniques used for the characterization and 

classification of samples. The secondary metabolites found in medicinal plants are 

outlined and finally the theories involved in multivariate data analysis discussed. 

Light Interaction with Matter 

Light interacts with matter in a variety of ways. Fundamentally, the 

wavelengths, and intensity of light determines the result of their interaction with 

matter. The optical properties of matter, such as the depth, refractive index, 

surface contour, type of targeted medium and temperature of the medium, 

influence light interaction with matter (Bordin-Aykroyd et al., 2019). Due to the 

different optical properties of matter, light can be strongly absorbed, transmitted, 

reflected towards the source, refracted, or scattered by another as showed in figure 

1 (Bordin-Aykroyd et al., 2019; Keiser, 2016; Weiner, 2003).  

 

Figure 1: Some probable light-tissue interactions (reflection, transmission, 

absorption, and scattering) 
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When a light beam strikes a surface separated by two dielectric materials, 

a portion of the light beam is reflected by the first media. Once it reaches the 

second material, the remaining light is refracted. The type of reflecting surface 

has a significant impact on the amount of light reflected by a material in a certain 

direction. Specular reflection is the reflection of light off of smooth surfaces. 

Diffuse reflection occurs as light is reflected off of microscopically rough 

surfaces (Keiser, 2016). One aspect of the law of reflection is shown in equation 

1. 

        (1) 

 

where    is the angle of incidence and    is the angle of reflection. Thus, the angle 

of incidence is equal to the angle of reflection. 

Following the entry of light into a medium, the molecules of the medium 

and interactions between the electric fields of the incoming photons allow some of 

the light energy to be absorbed. Absorption therefore takes place when a portion 

of the light energy is converted into thermal motion or an increase in molecular 

motions in the material. That is, photons can give up their energy in order to shift 

a molecule's vibrational state to a higher vibrational state. The electronic structure 

of the atoms and molecules in the material, the wavelength of the light, the 

thickness of the absorbing layer, and the temperature all influence the degree of 

absorption.  

The entry of light may also scatter. Light scattering is described as the 

deflection of a light ray from a straight path due to irregularities in the 

propagation medium, particles, or the interface between two media with different 
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refractive indices than the surrounding material (Gomes & Rocha-Santos, 2019). 

The wavelength of light, as well as the refractive indices, structures, and sizes of 

the material components liable for the scattering, all influence light scattering in 

tissue. Scattering is a mechanism that can be elastic or inelastic. In elastic 

scattering, the energy of incident and scattering photons is the same. The majority 

of light-matter interactions are defined by this form of scattering. The transfer of 

energy between a scattering molecule and the photon is known as inelastic 

scattering. During inelastic scattering, energy can be transferred from the photon 

to the molecule or the photon can absorb energy from the molecule (Keiser, 

2016).  

Transmittance ( ) process occurs when photons are passed on to 

neighboring atoms through the bulk of the material and re-emitted on the opposite 

side of the medium. The light propagation through a medium is a repeated process 

of scattering and rescattering (Keiser, 2016). The transmittance is defined by the 

expression in equation 2. 

   
 

  
 (2) 

 

where    is the incident light intensity,   the transmitted light intensity upon the 

detecting area of the detector. Various techniques based on the principle of light-

matter interaction have been developed. Raman spectroscopy, infrared 

spectroscopy, atomic absorption spectroscopy, and fluorescence spectroscopy are 

some of the techniques that employ this phenomena. 
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Fluorescence Spectroscopy  

Luminescence is the emission of ultraviolet, visible, or infrared photons by 

an electronically excited molecule. Luminescence in activity includes 

fluorescence and phosphorescence. The mode of excitation is the absorption of a 

photon, which causes the absorbing species to become electronically excited. The 

emission of photons that occurs as a result of de-excitation is known as 

photoluminescence which can be in the form of phosphorescence, fluorescence, 

and delayed fluorescence, and it is one of the physical phenomena that can occur 

when light interacts with matter (Valeur, 2001; Virk, 2014). 

The spontaneous emission of light by the transitions of light from excited 

singlet states to different vibrational levels of the electronic ground state is known 

as fluorescence. Interactions in the excited state with other molecules, such as 

energy transfer, proton transfer, electron transfer, can be termed de-excitation 

(Braeuer, 2015; Valeur, 2001; Zhang, 2010). These de-excitation pathways can 

compete with fluorescence emission if they occur on a time scale comparable to 

the lifetime of the molecules in the excited state. Several parameters can be used 

to describe a molecule's fluorescence. The intensity of fluorescence at a specific 

wavelength,     , the emission spectrum (emission intensity dependence on 

emission wavelength), quantum yield    , lifetime    , and polarization     are 

significant parameters for the characterization of fluorescence of a molecule 

(Lakowicz, 1999; Sauer, Hofkens, & Enderlein, 2013; Wolfbeis, 2004). These 

variables can be tracked in both steady-state and time-resolved modes. They 
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provide details about the fluorescing molecule's photophysical properties as well 

as the physical and chemical nature of its microenvironment.  

Fluorophores are the molecules that cause fluorescence. The fluorophore, 

as well as the fluorophore's chemical environment, determine the wavelength of 

the emitted energy. The fluorophore normally resides in one of the several 

vibrational levels of an excited singlet state after being excited with light of 

appropriate wavelength (on a time scale of         seconds), as shown in the 

Jablonski diagram in figure 2 (Lakowicz, 1999; Sauer et al., 2013; Valeur, 2001; 

Wolfbeis, 2004). 

 

Figure 2: Jablonski diagram describing the electronic energy levels (Sauer et al., 

2013) 

The likelihood of discovering the fluorophore in one of the potential 

excited singlet states,          , is determined by the excitation wavelength and 

the transition probabilities (Lakowicz, 1999; Markus et al., 2013; Virk, 2014). 

Within             seconds after being excited to higher excited singlet 

states,     fluorophore undergoes internal conversion to highest vibrational levels 
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of the excited singlet state. Vibrational relaxation causes molecules in highest 

vibrational levels                 to rapidly fall to a lower vibrational level of 

the same excitation state by losing energy.  

The intersystem crossing can also reverse the spin of an excited electron,  

leaving the molecule in the first excited triplet state,    (Markus et al., 2013). 

Though excited singlet state has higher electronic energy than the triplet state, 

should in case the vibrational level of the singlet and triplet states overlap, the 

chances of intersystem crossing increase. Overall, the intersystem crossing 

efficiency is highly dependent on the fluorophore's nature and transition 

probability, and it is rarely predictive. The presence of heavy atoms, on the other 

hand, is known to significantly increase the intersystem crossing rate constant 

(Markus et al., 2013; Valeur, 2001). 

Triplet state lifetime can range from milliseconds to seconds, minutes, or 

even longer, compared to an excited singlet state's average lifetime of      

     seconds. The intersystem crossing rate, the lifetime and the extinction 

coefficient at the excitation wavelength of the triplet state all have a strong 

influence on       absorption performance (Lakowicz, 1999; Markus et al., 

2013; Virk, 2014). 

The spontaneous emission of a fluorescence photon provides details about 

the fluorophore's environment and interactions. The fluorescence emission 

spectrum, for example, reveals the solvent's polarity, while the fluorescence 

lifetime and quantum yield directly reveals the fluorophore's quenching 

interactions with its microenvironment. A fluorophore's fluorescence quantum 
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yield and lifetime are two of their most significant properties. The mechanism is 

controlled by the fluorophore's emission rate     and its non-radiative decay rate 

to the lowest singlet state,   (  ) both depopulate the excited state (Lakowicz, 

1999). The quantum yield is determined by the fraction of fluorophores that decay 

by emission. The quantum yield is expressed in equation 3. 

    
 

    
 (3) 

where   is the fluorophore's emission rate and    is the non-radiative decay rate 

to   . The brightest emission is seen in substances with the highest quantum 

yields when it approaches unity. The lifetime of a fluorophore is also significant 

since it specifies the amount of time it has to communicate with or diffuse in its 

environment, and therefore the amount of information it can provide from its 

emission. Many other factors, such as pH, polarity, hydrogen bonding, viscosity, 

and the existence of quenchers, can affect quantum yields and lifetimes in the 

condensed phase (Valeur, 2001). 

Laser-Induced Autofluorescence (LIAF) 

The fluorescence emission from atoms or molecules that have been 

excited to a higher energy level by absorption of laser light is known as LIAF. 

This molecule absorbs laser photons, resulting in an electronically excited state 

without the addition of any histochemical dyes (García-plazaola et al., 2015; Rost, 

2016). A filter or a monochromator is positioned for the fluorescent emission to 

pass through, which is then detected by a photomultiplier (Crosley, 1982; Telle & 

Donovan, 2007). 
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If the laser source resonantly stimulates a particle, a photon with the 

energy,                                                       is 

absorbed, raising the particle to the excited state. In general, the selective effect 

on tissues occurs when the light source is monochromatic in nature, such as a 

diode laser. Because biological tissue has light receptors (chromophores) that are 

highly selective to the wavelength it absorbs, the monochromaticity property of 

laser light, which is related to its specificity of wavelength, becomes a 

determinant factor in the laser-biological tissue interaction. Due to its collimation 

property, which allows non-divergent emission, the laser can deposit a large 

amount of energy in a very small area (spot size).  

Diode or semiconductor lasers, which are made up of a p-n junction, are 

the smallest lasers. They work in milliamps of current and a few volts of voltage. 

The laser kit as a whole is very thin, and it may be put onto an integrated circuit 

board if necessary (Bolshov et al., 2015; Selden, 1973). Heterostructure lasers, a 

type of diode laser, have multiple layers of different materials with same 

electronic configuration. The materials, such as phosphorous, indium, and 

aluminum, are configured to help confine the electronic current to the junction 

region and reduce heat dissipation requirements and current. Semiconductor lasers 

have wavelengths ranging from 0.4 to 1.8 m and can produce up to 100 mW of 

continuous output power (Bolshov et al., 2015; Halina, 2005; Selden, 1973). 

Induced fluorescence was first observed and debated by R. W. Wood in 1905, 

several decades before the invention of the laser (Telle & Donovan, 2007). 

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



21 

 

The popularity of LIAF in many fields, including the investigation of 

chemical processes, can be attributed to its high sensitivity. For decades, LIAF 

has been one of the most common laser spectroscopic techniques for studying 

unimolecular and bimolecular chemical reactions (Rigler & Widengren, 2018; 

Telle & Donovan, 2007). 

Secondary Metabolites  

Secretory cells have compartments that contain secondary metabolites that 

are concentrated in secretory structures like vacuoles and intracellular and 

extracellular secretion (Roshchina, 2018; Roshchina et al., 2016). Secondary 

metabolites are specialized compounds that provide the plant with additional 

surviving and competitive advantages. Natural products and phytochemicals are 

terms used to describe secondary metabolites (Neilson et al., 2017a). The 

bioactivities of various secondary metabolites are responsible for their 

chemopreventive properties, thus, antioxidant, antiparasitic, anticarcinogenic, 

antiplas3modial and anti-inflammatory effects. Phenols, terpenoids, alkaloids, and 

their derivatives are the main groups of secondary metabolites that have medicinal 

properties in humans and animals (Neilson et al., 2017b; Roshchina, 2018). The 

actions of medicinal herbs and many modern medicines are dependent on 

secondary metabolites. 

Polyphenols 

Polyphenols are a structural variety of molecules with numerous phenol 

functional groups in their structure. Polyphenols are studied for their antioxidant 

and anti-radical action, natural chelation agents, enzymatic activity, 
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antiatherosclerotic, anti-inflammatory, anticarcinogenic, hepatoprotective, 

spasmolytic, antiviral, oestrogenic activity, anticancer properties, antimicrobial, 

and again useful health effects (Agatonovic-Kustrin & Morton, 2018; Khalaf et 

al., 2019; Moreno & Peinado, 2012; Pietta et al., 2003; Simpson & Amos, 2017; 

Tamokou et al., 2017; Teoh, 2016). Phenolic acids, Flavonoids, tannins, lignans, 

stilbenes, and anthocyanins are polyphenols bearing one or more hydroxyl groups 

(Khalaf et al., 2019; Pandey & Rizvi, 2009). 

Phenolic Acid 

Phenolic molecules are widely dispersed in plant tissues, and they play a 

very important role in fruit color, flavor, and astringency. The content of phenolic 

compounds in plant tissues can range from 0.5 to 5.0 g per 100 g dry weight. 

Phenolic molecules are secondary metabolites of plant metabolism that have little 

impact on the plant's biological or environmental functions (Khalaf et al., 2019). 

Phenolic acids are the most basic polyphenols based on their chemical structure. 

Phenolic acids include carboxylic acids with benzoic or cinnamic acid skeletons. 

(Neilson et al., 2017b). 

Flavonoids 

Flavonoid chemicals are plant-derived chemicals that can be found in 

various areas of the plant in nature. They are one of the most distinctive types of 

chemicals found in higher plants. This compound is found in plants' seeds, leaves, 

flowers, and bark (Hernández-Rodríguez et al., 2018). Flavones, flavonols, 

flavanones, flavanonols, flavanols or catechins, anthocyanins, and chalcones are 
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the subgroups (Hernández-Rodríguez et al., 2018; Panche et al., 2016; Pietta et 

al., 2003). 

Plants, animals, and microorganisms all use flavonoids for a range of 

biological functions. Flavonoids have antioxidant and biochemical properties that 

have been associated to diseases such as cancer, atherosclerosis, Alzheimer's 

disease (AD), and others. Flavonoids are an essential component in a number of 

nutraceutical, pharmacological, medical, and cosmetic uses because they have a 

wide range of health-promoting benefits. This is due to their ability to control 

important cellular enzyme functions as well as their anti-carcinogenic, 

antioxidative, anti-mutagenic, and anti-inflammatory capabilities (Panche et al., 

2016). 

Tannins 

Tannins are polyphenols with molecular weights ranging between 500 to 

3000 u from a chemical standpoint. Tannic acid's chemical structure is determined 

by the plant species that produces it. All tannins share some characteristics that 

allow them to be classified as either hydrolysable or condensed. Gallotannines 

(GTs), ellagitannines (ETs), and complex tannins are three forms of hydrolysable 

tannins that are based on mainly gallic acid, glucose, and ellagic derivatives. 

Proanthocyanidins (PAs) are nonhydrolysable tannins made up of flavonoid 

monomers, quinine units, or flavone derivatives. Condensed tannins are more 

resistant to microbial destruction than hydrolysable tannins, and they have better 

antiviral, antibacterial, and antifungal properties (Krzyzowska et al., 2017; Mena 

et al., 2015; Tamokou et al., 2017). 
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Tannins have the potential to operate as a biological antioxidant, as well as 

a complexing or precipitating agent, based on their concentration. Tannins' 

biological activity is determined by their chemical structure (Krzyzowska et al., 

2017; Pietta et al., 2003).  

Lignans 

Lignans are natural compounds that are dimeric and have the same 

monomers as lignins. The structure of lignans is 2,3-dibenzylbutane. Many plants 

include such compounds as minor ingredients, where they serve as the building 

blocks for the production of lignin in the plant cell wall (Simpson & Amos, 2017). 

Anticancer, antihypertensive, antioxidant, estrogenic, antiviral, and insecticidal 

qualities have all been attributed to lignans. Pharmacological properties of its 

derivatives, podophyllotoxin is the most well-known lignan (Rodríguez-García et 

al., 2019; Simpson & Amos, 2017; Zitterman, 2003).  

Alkaloids 

Alkaloids are secondary metabolites that were originally characterized as 

pharmacologically active nitrogen-based chemicals. There are around 20000 

alkaloids known, the majority of which have been isolated from plants (Kukula-

Koch & Widelski, 2017; O‘Connor, 2010; Verpoorte, 2004).  

Alkaloids are important in human medicine as well as in an organism's 

natural defense. Alkaloids account for about 20% of all secondary metabolites 

discovered in plants which protect plants from predators while also controlling 

their growth. Alkaloids are used as cardioprotective agents, anesthetics, and anti-

inflammatory drugs in medicine. Morphine, ephedrine, strychnine, quinine, 
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cocaine, and nicotine are some of the most well-known alkaloids utilized in 

clinical settings. (Heinrich et al., 2021; Qiu et al., 2014). A variety of alkaloids 

have commercial potential as medications or as research tools in pharmacology 

(Verpoorte, 2004). 

Terpenoids  

Terpenoids, or isoprenoids, are a varied group of naturally occurring 

chemicals made up of five carbon isoprene units. The basic skeleton and 

functional groupings of terpenoids distinguish them from one another. Terpenoids 

are found in practically all kinds of living beings because they are so common. 

Terpenoid structures have been identified in over 60,000 natural sources, making 

them one of the most diverse classes of natural compounds ever discovered. They 

influence the flavor, fragrance, color of the leaves, flowers, and fruits of plants. 

Terpenoids are also necessary for plant metabolism (Reyes et al., 2017).  

Terpenoids are found in many plants and are utilized in traditional 

medicine for anti-inflammatory and pain-relieving qualities. Many members in 

the Asteraceae family have traditionally been used to alleviate inflammatory 

diseases. Their medicinal action is assumed to be due to the sesquiterpene 

lactones they generate (Agatonovic-Kustrin & Morton, 2018; Cox-Georgian et al., 

2019). Artemisinin, which is used to treat malaria, and vincristine and taxol, 

which are used to treat cancer, are examples of pharmaceuticals created from 

naturally generated terpenoids (Reyes et al., 2017; Thoppil & Bishayee, 2011). 

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



26 

 

Multivariate Analysis  

Multivariate analysis is a set of techniques for analyzing large datasets 

containing multiple variables in which the relationships between multivariate 

measurements and underlying structure are significant (Goodman et al., 1979; 

Grimnes & Martinsen, 2015). The variables can be evaluated simultaneously 

employing multivariate analysis in order to reach the key elements of the process 

that produced them. The multivariate approach allows for both (1) examination of 

the variables' joint performance and (2) determination of each variable's effect in 

the presence of the others.  

Both descriptive and inferential techniques are proposed in multivariate 

analysis. The essence of the system becomes the major emphasis with 

multivariate descriptive approaches and hypothesis tests that include whatever 

intercorrelations the variables have are known as multivariate inferential 

techniques (Rencher, 2002). 

Data Pre-treatment Methods 

Multivariate data processing is used in many procedures, and it is common 

to perform some pre-processing on the data before the methods may be properly 

used. This pre-processing stage of data analysis has three basic goals. The initial 

goal is to limit the amount of data by removing data that isn't related to the 

research study. Pre-processing data also entails preserving or enhancing enough 

information within the data to meet the desired aim, as well as extracting or 

transforming the data into a format appropriate for future analysis (Adams, 2004). 
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For data processing, the most important spectroscopic data treatment are 

in terms of noise elimination, dimension reduction, baseline correction, and data 

standardization. In comparison to untreated data samples, the treated data samples 

do not differ considerably (Liu, Kyne, Wang, & Yu, 2020; Roy, Sharma, Nath, 

Bhattacharyya, & Kalita, 2018).    

Noise Elimination 

To reduce noise, a variety of procedures are used, including signal 

averaging and smoothing. The noise associated with a recorded signal has a 

significant impact on analysis, and the signal-to-noise ratio, or S/N, is one figure 

of merit used to describe the measurement's quality (Adams, 2004). S/N is 

defined as, 

   ⁄   
                        

         
 (4) 

where the rms (root mean square) noise is           √
∑  ̅    

 

   
 where    and  ̅ 

are the signal and mean noise values, respectively, of n variables (Adams, 2004). 

Signal Smoothing  

Smoothing spectral data can be done using a variety of mathematical 

manipulation approaches. Boxcar averaging is one simple smoothing method. The 

spectral data is divided into a sequence of distinct, evenly spaced bands, with each 

band being replaced by a centroid average value. The degree of smoothing 

increases as the number of points averaged increases. (Adams, 2004; Y.-J. Liu et 

al., 2020; Press & Teukolsky, 1990). Savitzky and Golay developed a method for 

smoothing spectral data employing convolution filter vectors obtained from least-
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squares-fit polynomial function coefficients. The simple moving average 

technique can be described in equation 5 as 

 
   ∑       

 

    

 
(5) 

where  , and    are the original and smoothed data vectors, respectively, and    is 

the smoothing window's weighting factors. When performing a Savitzky-Golay 

smoothing operation on spectral data, it's important to consider the filtering 

function (quadratic or quartic), the span frequency (the smoothing function's 

width), and the number of times the filter will be applied to the data sequentially 

(Adams, 2004; Press & Teukolsky, 1990). 

Baseline Correction 

Fluorescence, phosphorescence, and black body radiation all cause 

unequal amplitude shifts across distinct wavenumbers, resulting in a slowly 

shifting curve known as baseline. Before continuing with the analysis, these 

amplitude shifts must be corrected (Qian et al., 2017). Baseline correction can be 

done in a variety of ways. 

The baseline correction can be done either physically or mathematically. 

Sample purification, gating, and pulsing are all examples of physical approaches 

that involve instrument adjustments. The mathematical approach includes the 

polynomial fitting, frequency-domain filtering, and derivative calculation (Guo et 

al., 2016). The basic baseline correction is the ‗baseline offset correction,' in 

which all variables that constitute the spectrum are subtracted from a constant 

number (Andrade-Garda, 2009). 
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Standardization 

Standardization is one of the most used methods for pre-processing 

spectral data. The purpose of standardization procedures is to make the data 

values of the measured samples comparable so that statistical analysis may be 

performed afterwards. Because of differences in volume, samples cannot always 

be directly compared. This is known as the size effect. The j-th variable's 

mean,   ̅, and standard deviation,   , are denoted by 
 

 
∑    

 
    and 

√
 

   
∑ (      ̅)

  
    respectively. The data after standardization is represented 

by  ̃  . Some of the standardization methods are: 

Mean-centering 

Mean-centering is useful when the variances of the variables are similar, 

and the converted variables have mean values of zero as shown in equation 6 

(Adams, 2004). 

 
 ̃         ̅ (6) 

Autoscaling  

The method's goal is to standardize the variables so that each observation 

has a variance of one and a mean of zero. It uses the mean and standard deviation 

of variables to alter their values (Berg et al., 2006; Roy et al., 2018). When the 

variables being measured are recorded in different units, such as concentration, 

pH, particle size, conductivity, and so on, autoscaling is almost always required 

(Adams, 2004; Roy et al., 2018). Each property of a variable can be changed 

using equation 7. 
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 ̃   

      ̅

  
 

(7) 

 

Principal Component Analysis  

Principal component analysis (PCA) is a well-known multivariate analytic 

method that employs the spectral decomposition of a correlation coefficient or 

covariance matrix. Its goal is to keep as much statistical information as feasible 

while reducing the dimensionality of a dataset (Hotelling, 1933; Salkind, 2012). 

Considering the values of   variables               are acquired from each 

of   individuals             in a sample. The mean of the  th variable is 

  ̅  
 

 
∑    

 
   . The SP (corrected sum of products), is the corresponding quantity 

for covariance, and it is defined by equation 8. 

 

 

 
∑ (      ̅)

 

   
      ̅   

(8) 

where     is the  th variable   measure and     is the  th variable   measure. The 

purpose of principal components analysis is to find the linear combination of 

variables that best summarizes the n-dimensional distribution of data. For each 

linear combination of variables, a new variable   is defined as in equation 9. 

 
                      

(9) 

where   is a vector of              constants. The new variable's variance,   
 , 

can be obtained using equation 10. 

 
   
   ∑∑    

 

   

     

 

   

 
(10) 
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which, from the definition of covariance, can be rewritten as shown in equation 

11. 

    
   ∑  

 

 

   

  
  ∑∑    

 

   

       

 

   

 (11) 

 

where ,    , denotes the linear correlation coefficient between the two variables j 

and k, as                     ⁄ . 

With standardized coefficients given to the variables used in the linear 

combinations, principal components analysis seeks the linear combination with 

the greatest variance thus the first principal axis, or first principal component. 

After then, the search for a second linear combination that has the majority of the 

remaining variance which is uncorrelated to the first principal component 

continues. This process is repeated till all the basic components are estimated, 

which is frequently the case. For interpretation and further analysis, the 

components are then used (Adams, 2004; Hancock & Smyth, 2009; Hotelling, 

1933; Jollife & Cadima, 2016; Salkind, 2012; Stuart, 1982).  

Hierarchical Clustering Techniques  

When using hierarchical clustering techniques, the raw data is divided into 

a few broad categories, each of which is further subdivided into smaller groups 

until only the individual objects remain. These techniques can be either 

agglomerative or divisive (Adams, 2004; Holak, 1974; Johnson & Wichern, 2007; 

Yeturu, 2020). Small groups, starting with individual samples, are fused to form 

larger groups via agglomerative clustering. Divisive clustering, on the other hand, 

starts with a single cluster comprising all samples, which is divided into smaller 

divisions (Adams, 2004). Hierarchical approaches are popular, not least because 
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their use results in the creation of a dendrogram, which may show both the 

clustering process and the final result in a two-dimensional visual representation. 

The generic formula of agglomerative hierarchical clustering that could be used to 

define the various between-group distance metrics is defined as show in equation 

12. 

 
                         |       | (12) 

 

The distance between objects   and   is     , while the distance between group   

and a new group       formed by the fusion of groups   and   is        . The values 

of the coefficients          and  are chosen to determine which between-group 

metric will be employed (Adams, 2004). 

K-Means Clustering 

K-means clustering main goal is to divide the   objects, each with   

variables, into   clusters with the square of the within-cluster sum of distances as 

small as possible. The elements                   define the   data 

matrix, where   and   are the number of observations and the number of 

variables used to define the observations respectively. Cluster analysis looks for 

  partitions or clusters, with each item belonging to only one of them (Adams, 

2004; Subasi, 2020; Yeturu, 2020).             is the mean value for each 

variable   for all objects in cluster  . The Euclidean metric gives the distance      

between the  th object and the center of each cluster as shown in equation 13. 
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The algorithm works by shifting an object from one cluster to the next in order to 

reduce the error, and it stops when no more movement can be made (Adams, 

2004). 

Linear Discriminate Analysis (LDA) 

LDA is a classifier that finds a linear combination of features that 

distinguishes two or more data classes. LDA, like PCA, can be used for 

dimension reduction as well as classification. The classes in LDA are supposed to 

be regularly distributed. The a priori probabilities for class 1 and class 2 in a two-

class dataset are    and   , respectively; the class means    and   , overall mean, 

 , and the class variances (     and     ) can be related as shown in equation 14.  

 
               

(14) 

Between-class and within-class scatters are then used to represent the required 

criteria for class separability. For a multiclass setting, the scatter measures are 

determined in equation 15 and 16 as follows: 

 
   ∑       

 

   

 
(15) 

where   denotes the number of classes and  

 
     (     )(     )

 
 

(16) 

The spread between classes is calculated as shown in equation 17. 
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The goal is to find a discriminant plane that maximizes the within-class to 

between-class scattering ratio (variances) which is defined in equation 18 as: 

 
     

    
 

     
 

(18) 

In practice, the class covariance and means are not always known, but the training 

set could be used to estimate them. In the aforementioned equations, the 

maximum likelihood estimate might be utilized instead of the precise value 

(Adams, 2004; Hotelling, 1933; Neath & Johnson, 2010; Subasi, 2020; Yeturu, 

2020). 

Quadratic Discriminant Analysis (QDA) 

This method is a probabilistic parametric classification algorithm that 

emerged from the LDA algorithm for nonlinear class separations. QDA, like 

LDA, assumes multivariate normal probability density distributions, but the 

dispersion is not uniform across all categories. As a result, the categories differ in 

terms of their centroid position as well as the variance–covariance (Oliveri et al., 

2010). QDA is a quadratic decision limit discriminant function that could be used 

to categorize data sets having two or more classes. QDA offers a higher prediction 

power than LDA, however it requires the estimation of each class's covariance 

matrix (Canizo et al., 2019).  

K-Nearest Neighbor (KNN)  

K-nearest-neighbor technique is a nonparametric and relatively a 

straightforward classification method. An observed data sets that are closest are 
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identified and given a point,   , that needs to be classified into one of the K 

groups. The population with the maximum data sets observed among the k-nearest 

neighbors receives    as a categorization criteria.  Points where there is no 

majority would either be assigned to one of the largest categories at random or left 

unclassified. The simplicity of k-nearest neighbor classification is an advantage. 

A user just has to choose between two options: (1) the number of neighbors and 

(2) the distance measure to utilize. Mahalanobis distance, Euclidean distance, and 

city-block distance are all popular distance metrics. The Euclidean distance 

between two pattern vectors is the most commonly used distance measure. The 

Mahalanobis distance would take into consideration the data's intrinsic 

correlations. In testing or cross-validation (CV) the classifier's quality, test data 

set are frequently used to determine the number of neighbors (Adams, 2004; 

Johnson & Wichern, 2007; Kessler & Kessler, 2020; Neath & Johnson, 2010). 

Support Vector Machine (SVM) 

The support vector machine (SVM) technique is comparable to linear 

discriminant analysis in terms of how it operates. Similar to LDA, a set of 

hyperplanes is formed to split the feature vectors into various classes, this then 

selects the hyperplane that is the furthest away from the nearest training samples. 

According to Cover's theorem, SVM determines the hyperplane with the largest 

margin by translating input data into high-dimensional space. When a complex 

classification problem is represented in high-dimensional nonlinear space rather 

than low-dimensional nonlinear space, it is more likely to be linearly separable. 

Regularization is also used by SVM to avoid artifacts. Nonlinear SVM can also 

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



36 

 

exist with a nonlinear decision boundary attributable to the Kernel function, 

giving it more flexibility (Jothilakshmi & Gudivada, 2016; Neath & Johnson, 

2010; Vaibhaw et al., 2020). 

Classification Performance 

One of the most important aspects in classification is the evaluation of the 

classified models. A classifier can be judged on its sensitivity, specificity, 

relevance, precision recall, accuracy, and error. Receiver operating curves (ROC), 

learning curves, and confusion matrix are standard methods for assessing the 

outcomes of classification algorithms (Kotu & Deshpande, 2019; MathWorks, 

2014; Oprea & Ti, 2014). The confusion matrix is the best way to describe 

classification performance. 

Confusion matrix shows the number of right and wrong predictions made 

by the model in comparison to the actual classifications in the test data 

(MathWorks, 2019; Oprea & Ti, 2014). Table 1 shows the confusion matrix for a 

classifier with two classes: True and False. 

Table 1: The confusion matrix of a classification model arranged in two 

classes as a 2   2 matrix  

 Actual Class (Observation) 

True class False Class 

Predicted class 

(expectation) 

True class True Positive (TP) False Positive (FP) 

False Class True Negative (TN) False Negative (FN) 

Source: (Kotu & Deshpande, 2019; Oprea & Ti, 2014) 
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Sensitivity 

Sensitivity refers to a classifier's ability to select all of the examples that 

must be selected. Sensitivity is defined as a percentage (or ratio) using the 

formula as shown in equation 19. 

             
  

     
 (19) 

 

Specificity 

A classifier's specificity refers to its capacity to reject all of the cases that 

need to be rejected. The ratio (or percentage) of specificity is defined in equation 

20 as: 

             
  

     
 (20) 

 

Precision  

The proportion of cases found that were genuinely relevant is defined as 

precision. Precision is therefore defined in equation 21 as: 

 
          

  

     
 

(21) 

 

Accuracy 

Classifiers ability to choose all cases that need to be selected and reject all 

cases that need to be rejected is defined as accuracy. This would indicate that FP 

= FN = 0 for a classification model with 100 % accuracy. The accuracy formula is 

shown in equation 22 as: 

 
         

       

                 
 

(22) 
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Chapter Summary 

This chapter reviewed the literature on some basic principles of light 

interaction with matter, with emphasis on fluorescence. The secondary 

metabolites present in medicinal plants were described, followed by a discussion 

of the theories involved in multivariate data analysis. 
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CHAPTER THREE 

RESEARCH METHODS 

Introduction 

The experimental set-up, method and procedure `for acquiring data of 

LIAF from AMHDs samples are presented in this chapter. The first part describes 

the collection of AMHDs samples, the second part focuses on experimental set-up 

and method for the acquisition of LIAF spectra data whiles the last part of this 

chapter describes the various methods used for the pre-processing of LIAF spectra 

data. 

Anti-Malarial Herbal Drugs (AMHDs) Samples Collection 

This research work utilized eleven (11) commercial anti-malaria herbal 

drugs (AMHDs), prepared as decoction. One of the AMHDs samples purchased 

from Centre for Scientific Research into Plant Medicine (CSRPM) at Mampong-

Akwapim was used as the standard. This AMHD is trademarked as Mampong 

Herbal Medicine and has been used extensively in the treatment of malaria at 

CSRPM‘s herbal clinic in Mampong-Akwapim, Ghana. This AMHD was 

prepared from Cryptolepis Sanguinolenta, also known as nibima, which is of a 

particular interest and has been shown to be clinically potent in the treatment of 

malaria.  

The remaining ten (10) AMHDs samples were purchased from licensed 

herbal shops distributors within the Cape Coast Metropolis. These AMHDs were 

selected based on a study carried out by Wilmot et al. (2017), which laid emphasis 
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on the number of mostly used AMHDs in the coastal regions of Ghana (Wilmot et 

al., 2017).  

For the purpose of anonymity and confidentiality, the eleven (11) AMHDs 

were re-labelled as; AMHD_A, AMHD_B, AMHD_C, AMHD_D, AMHD_E, 

AMHD_F, AMHD_G, AMHD_H, AMHD_I, AMHD_J and AMHD_K. All the 

AMHDs samples bear the registration number of the Food and Drug Authority 

(FDA) as shown in Table 2. 

Table 2: Anti-malaria herbal drugs (AMHDs) and their associated Food and 

Drug Authority (FDA) registration number. 

AMHDs FDA registration number 

AMHD_A FDB/HD 07-716X 

AMHD_B FDB/HD 15-123X 

AMHD_C FDB/HD 09-510X 

AMHD_D FDB/HD 05-907X 

AMHD_E FDA/HD 17-103X 

AMHD_F FDA/HD 18-041X 

AMHD_G FDB/HD 05-806X 

AMHD_H FDB/HD 10-509X 

AMHD_I FDB/HD 17-030X 

AMHD_J 

AMHD_K 

FDA/HD 16-041X 

FDA/HD1 16-020X  

 

The AMHDs samples on market were in 500 ml volumes in amber 

polyethylene terephthalate (PET) plastic bottles. Consumer Medicine Information 

(CMI) of all the AMHDs samples were either written on the sample bottle or box, 

showing the medication and constituents making up the decoction. From the CMI 

of all AMHDs samples, only AMHD_G and AMHD_K were prepared from a 

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



41 

 

single plant constituent with the rest having as many as two (2) to six (6) plants as 

constituents. The plants used in the preparation of each AMHDs are shown in 

Table 3. 
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Table 3: Plant species present in Anti-Malaria Herbal Drugs (AMHDs) 

Plant specie Family Local name Part used AMHD present in Reference 

Alchornea cordifolia Euphorbiaceae Ogyama L E (Appiah, Oppong, Mardani, 

Omari, Kpabitey, Amoatey, 

Onwona-agyeman, Oikawa, 

Katsura & Fujii, 2018) 

Alstonia boonei  Apocynacese Onyame dua F/R E (Oppong, Agyare, Duah, 

Mbeah, Asase, Sarkodie, 

Nettey, Adu, Boatema & 

Agyarkwa, Amoateng, 

2019) 

Anthocleista nobilis  Longaniaceae/ 

Gentisnaceae 

Wudini kƐtƐ L/Sb B (Ngwoke, 2018); (Oppong 

et al., 2019); (Komlaga, 

Agyare, Dickson, Mensah, 

Annan, Loiseau & Champy, 
2015) 

Azadirachta indica Meliaceae Neem tree Sb A/F/I (Appiah et al., 2018) 

Bindens  Asteraceae Gyinantwi L C (Komlaga et al., 2015)  

Bombax buonopozense Malveceae/ 

Bombonaceae  

Akata Sb D/J (Oppong et al., 2019); 

(Komlaga et al., 2015)  

Citrus aurantifolia Rutaceae Ankaa twadeƐ L/F C (Appiah et al., 2018); 

(Oppong et al., 2019) 

Cola gigantea Malveceae Watapuo L J/D (Komlaga et al., 2015) 
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Table 3, continued  

Cryptolepis 

Sanguinolenta 

Periplocaceae Nibima R G/I (Komlaga et al., 2015) 

Cymbopogon citratus Poaceae Lemon grass L I (Komlaga et al., 2015) 

Khaya senegalensis Meliaceae Kuntunkuri Sb E/F (Appiah et al., 2018); 

(Adeniyi et al., 2018) 

Morinda lucida Rubiaceae KonkrƆma L/Sb H (Appiah et al., 2018); 

(Oppong et al., 2019) 

Moringa oleifera Moringaceae Moringa L/S  I (Appiah et al., 2018) 

Nauclea latifolia Rabiaceae  R 

 

 

H (Osei-Djarbeng Agyekum-

Attobra,  

Nkansah, Solaga,  

Osei-Asante & 

Owusu-Dapaah, 2015); 

(Asanga et al., 2017) 

Ocimum viride Lamiaceae  Nunum L I (Osei-Djarbeng et al., 

2015); (Komlaga et al., 

2015) 

Paullinia pinnata Sapindaceae Toa-ntini L  C/E (Appiah et al., 2018) 

Polyathia longifolia Annonaceae Weeping willow F H (Komlaga et al., 2015) 

Psidium guajava Myrtaceae Guave L C (Komlaga et al., 2015); 

(Adeniyi et al., 2018) 

Pycnanthus angolensis Myristcaceae Otie L E (Appiah et al., 2018) 
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Table 3, continued 

Rauwolfia vomitoria Apocynacese Kakapenpen F E (Oppong et al., 2019); 

(Komlaga et al., 2015) 

Senna siamea Fabaceae Acacia L/Sb H (Komlaga et al., 2016) 

Solanum torvum  Solanaceae Nsusuwa L/F D/J/ H (Adeniyi et al., 2018); 

(Appiah et al., 2018)  

Spathodea 

campanulata 

Bignoniaceae Akuakuoninsuo L/Sb D/J (Komlaga et al., 2015);  

Synedrella nodiflora Asteraceae   L H (Gaertn, 2017) 

Theobroma cacao Malvaceae kookoo L I (Souza & Moreira, 2018) 

Vitex grandifolia Lamiaceae Samanibir L B (Oppong et al., 2019); 

(Bello, Zaki, Khan, Fasinu, 

Ali, Khan, Usman, & 

Oguntoye, 2017) 

Vernonia amygdalina Asteraceae AwƆnwono L/S D/J (Appiah et al., 2018) 

Xylopla aethiopica Annonaceae Hwentia Sd C (Oppong et al., 2019); 

(Komlaga et al., 2015) 

L – Leaves F – Fruit Sb – Stem bark Sd – Seed S – Stem R – Root   
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Laser-Induced Autofluorescence Experimental Set-up 

The laser-induced autofluorescence (LIAF) set-up (Figure 3) consists of a 

light source, optical components and a detecting system. The light source is a 405 

nm continuous wave (CW) diode laser (Laser module, China). It has a DC input 

voltage of 12 V and current of 2 A, with a maximum output power of 100 mW. 

The diode laser is controlled by a Transistor-Transistor Logic (TTL) modulator 

laser switch between 2.5 and 5 V.  

The optical components includes a microscope objective (040AS016 

MELLES GRIOT, Thorlabs, USA) of a 40× magnification and a numerical 

aperture of 0.65, a fibre port micropositioner (PAF-SMA-7, Thorlabs, USA) with 

a SubMiniature version A (SMA) 905 connector and a visible/near-infrared 

bifurcated optical fibre (R400-7-VIS-NIR, Ocean Optics) that has a common end 

of 600 µm probe with a diameter of 3.175 mm and a length of 76.2 mm. The 

bifurcated optical fibre has two split arms from an optical fiber probe, with one 

arm connected to the light source and the other arm connected to the 

spectrometer.  

The detecting system of the LIAF set-up is made up of a USB2000 

spectrometer (USB2000, Ocean Optics, USA) which operates on a power of 100 

mW at 5 V and a high pass absorptive edge filter (GG445; λ ˃ 455 nm) of 

diameter 12.5 mm. Other components in the LIAF experimental set-up are the 

sample stage, retort stand and a desktop computer (Hewlett-Packard Company HP 

Compaq dx2390 Microtower, Intel (R) Pentium (R) Dual CPPU E2180 @2.00 

GHz, 0.99 GB RAM). 
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Figure 3: Schematic diagram of LIAF experimental set-up for anti-malaria herbal 

drugs (AMHDs) data acquisition. DLS- Diode Laser Source, MO-

microscope objective, FPMP-fibre port micro-positioner, RS-retort 

stand, SS-sample stage, AMHD-Anti-malarial herbal drug, BOFP-

bifurcated optical fibre, U2S&HPF-USB2000 spectrometer and high 

pass filter, and DC-desktop computer 

 

The values from the output of the detector were read by OOIBase32 

spectrometer operating software (Ocean Optics Inc. Version 1.0, USA) on a 

Microsoft Windows XP Desktop Computer. The Operating Software provided a 

real time display of spectra and helps a variety of process functions such as 

integration time, signal averaging and boxcar to be altered to prevent peaks from 

being off-scale. Before performing a measurement with the LIAF set up, the 

spectrometer was calibrated at 0% transmittance by unchecking the check box of 

the ―Strobe/Lamp Enable‖ and also subtracting the stored dark spectrum with the 

light source blocked. 
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LIAF Spectra Measurement 

All measurements were taken in a Polyethylene terephthalate (PET) 

plastic bottle since it exhibits minimal absorption in the ultraviolet wavelength 

ranges. A 500 ml AMHD_A was transferred to a clear 500 ml PET plastic bottle 

and capped. The AMHD_A sample was shaken vigorously and positioned onto a 

sample stage. A continuous wave (CW) diode laser with a maximum power 

output of 100 mW was focused unto the AMHD sample by a bifurcated fibre 

optical probe through a microscope objective and a fibre port micropositioner. 

Fluorescence from the AMHD_A sample was collected by the same optical probe 

and transmitted through the output arm of the bifurcated optical fibre to the ocean 

optics spectrometer through the long pass edge filter which cut off the excitation 

source.  

The fluorescence spectrum of AMHD_A was monitored in real time with 

the aid of the OOIBase32 software. The acquisition parameters such as the 

integration time, average and boxcar of the OOI Base 32 software were altered 

for an anticipated AMHD_A spectrum. The integration time was adjusted to 500 

ms with the average adjusted to 2 and boxcar to 10, which respectively set the 

signal-to-noise ratio and smoothing width of AMHD_A spectrum. With an initial 

delay of 2 ms a total of 57 spectra were acquired. 

With the same acquisition parameters, LIAF measurements were repeated 

three times on different spots of the AMHD_A sample. The process was repeated 

for all the remaining AMHDs samples and the fluorescence emission spectra were 

recorded in each case. Since the spectrometer operating software does not allow 

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

48 

 

vigorous analysis of fluorescence emission spectra, all the individual spectra data 

were saved and exported into an excel matrix format for pre-processing and 

further analysis using a commercial third party software package MATLAB 

(Mathworks, R2020a) and OriginLab (OriginPro, 2019b). A photograph showing 

arrangement of instruments are shown in figure 4. 

 

 

Figure 4: Components of LIAF set-up used for AMHDs data acquisition. DLS- 

Diode Laser Source, MO-microscope objective, FPMP-fibre port 

micro-positioner, RS-retort stand, SS-sample stage, AMHD-Anti-

malarial herbal drug, BOFP-bifurcated optical fibre, U2S&HPF-

USB20000 spectrometer and high pass filter, and DC-desktop computer 

 

Pre-processing of LIAF Spectra Data 

In the preparation of LIAF spectra data for analysis, two preprocessing 

techniques were employed thus Savitzky-Golay smoothing filter and auto-scaling 

technique. Prior to the preprocessing techniques, the spectra data were extracted 

into a matrix format in MAT-files version 7 by a self-written MATLAB algorithm 

and their intensities were averagely computed. Since medicinal plants lighten all 
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colors in the visible spectrum due to the presence of different fluorescent 

secondary metabolites, a wavelength range of 450-800 nm was subjected to the 

preprocessing methods. A structured chart of the pre-processing methods for the 

LIAF spectra is presented in figure 5. 

 Savitzky-Golay smoothing filter was first applied to remove noisy signals 

from each LIAF spectra data. The method smoothens the observations 

individually at a width of the frequency band (span frequency) to be 0.1 in a 

second degree polynomial. The linear least square regression would be calculated 

at every frequency band of 0.1. Savitzky-Golay filter ideally minimizes the least 

error of a fitting polynomial to each noisy data frame. 

So to significantly better the classification between the AMHDs samples, 

standardization technique was used in modifying the variables of spectra data 

within appropriate range. A comparative analysis of the LIAF spectra was done 

using an auto-scaling technique which was classified as a standardization 

technique, it was applied to the smoothen the individual spectra intensities data to 

adjust each variance of variables allowing making further analysis to be done on 

the basis of correlation rather than variances. The returns would be used in 

measuring the similarity and relationship between the variables, allowing 

characterization of each spectral intensity on comparable scale across all AMHDs 

samples. The skewness and kurtosis of the individual LIAF spectra remains the 

same as the original LIAF spectra. 

A standardize syntax in Matlab was used to auto-scale the smoothen data 

set. The syntax calculated the mean centering of each column of the spectra data, 
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Extract fluorescence 

spectrum data 

thus, subtracting the mean of variables from each value of the spectra data. The 

standard deviation of the spectra data at each column was subtracted from the 

mean centering. The mean spectra data output from the Savitzky-Golay 

smoothing filter and autoscaling technique were plotted separately for further 

analysis. The new sets of the fluorescence data were further analyzed using a 

different multivariate analysis to classify and compare the secondary metabolites 

that may be present in the AMHDs. 

   

             

 

 

 

 

 

Figure 5: A structured chart for pre-processing LIAF spectra data of AMHDs 

Chapter Summary 

The first part of this chapter described the collection of AMHDs samples. LIAF 

measurements that was employed in the acquisition of AMHD samples were 

further described in the second part of this chapter. The various pre-processing 

techniques used in the smoothening and standardization of the fluorescence 

spectral data of the individual AMHD sample were described in the final part of 

the chapter.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

This chapter presents results, analysis and discussions on LIAF spectra for 

the identification and classification of AMHDs samples. The first part of this 

chapter discusses the spectral fingerprints of AMHDs and the identification of 

possible secondary metabolites that may be present. The last part discusses the 

use of chemometrics in the classification of the AMHDs.  

LIAF Spectra of AMHDs  

The LIAF spectra obtained from each AMHDs were the extract of water 

soluble secondary metabolites from either parts of a specified plant species 

tissues, such as the leaves, flowers, seeds, barks, roots, or the shrubs. Examples of 

these water soluble secondary metabolites are phenols and phenolic acid, 

flavonoid, stilbenes, lignin, etc. and are responsible for their anti-malarial 

potencies (Harborne, 1973; Oladeji et al., 2020; Roshchina, 2018; Tay et al., 

2011).  

Visual inspection of the AMHDs showed that AMHD_H had a very light 

color and almost transparent, compared to the least transparent AMHD 

(AMHD_D), which had a charcoal gray color. Though none of the AMHDs was 

the same when visually compared and the variations can also not be certified by a 

mere look and labeling. As a result, a more rapid sensitive and non-destructive 

technique was employed in evaluating some selected AMHDs using their 

fluorescence emission spectra at an excitation wavelength of 405 nm.  
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A plot of the smoothened LIAF spectra for the eleven (11) AMHDs: 

AMHD_A, AMHD_B, AMHD_C, AMHD_D, AMHD_E, AMHD_F, AMHD_G, 

AMHD_H, AMHD_I, AMHD_J, and AMHD_K displayed a unique spectra 

signature. The LIAF spectra data of each AMHD was smoothened to remove 

noisy signals from each fluorescence spectra.  

A plot showing the LIAF spectra signature of AMHD_K is shown in 

figure 6. The plot displayed a broad emission band within the spectra range of 

460-800 nm with a major emission at 500-650 nm which was characterized in the 

green to orange fluorescence. AMHD_G exhibited a likely spectra nature of 

AMHD_K, with the same major broad band emission spectra range. The LIAF 

spectra of AMHD_A, AMHD_B and AMHD_C also exhibited one major broad 

emission band which ranges from a wavelength of 460 to 620 nm and can be 

characterized in the blue (455-492 nm) to orange (590-620 nm) fluorescence as 

described in figure 7. 

 The LIAF spectra of AMHD_D, AMHD_E, AMHD_F, AMHD_H, 

AMHD_I and AMHD_J exhibited two emission bands. The major emission band 

was within 460-650 nm and a minor emission band was within 650-750 nm. The 

major emission band was characterized by the blue to orange fluorescence while 

the minor emission band was characterized by the red to far-red fluorescence. The 

spectra plot of AMHD_D, AMHD_E, AMHD_F, AMHD_H, AMHD_I and 

AMHD_J are shown in appendix A. 
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Figure 6: LIAF spectra of AMHD_K.
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Figure 7: LIAF spectra of AMHD_A, AMHD_B, AMHD_C and AMHD_G 
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Intensity-wise, all fluorescence spectra differ depending on the AMHD. 

The results showed in figure 8 indicate that the fluorescence spectra intensity of 

AMHD_H was higher and easier to differentiate as compared to the other ten (10) 

AMHDs. Among the ten (10) AMHDs, AMHD_E, AMHD_K, and AMHD_G 

showed fluorescence intensity within a range of 1250-1500 a.u. On the contrary, 

AMHD_A, AMHD_C, AMHD_J, and AMHD_I showed a fluorescence intensity 

range within 500-1000 a.u. Followed by AMHD_B and AMHD_F then 

AMHD_D that has the least fluorescence intensity among all the AMHDs. The 

spectra signature exhibited among the AMHDs were as a result of their different 

biophysical properties among them. The AMHDs could therefore be grouped 

according to their fluorescence intensities that were comparably the same. 

 

  

Figure 8: LIAF spectra showing disparities in AMHDs 
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The plot of standardized fluorescence spectra of all AMHDs is shown in 

figure 9. In this case after standardization (autoscaling), the structure of spectral 

signature of AMHDs became the main aim of study thus, the plot of all the 

AMHDs spectra together was evaluated based on correlation instead of 

covariance. Therefore making the secondary metabolites equally important for the 

study. In the correlation study of the AMHDs, two emission bands could be 

observed when all the LIAF spectra of the AMHD were plotted together. The first 

fluorescence emission band was the major band with wavelength range of 460-

620 nm. Eight of the AMHDs (AMHD_A, AMHD_B, AMHD_C, AMHD_E, 

AMHD_F, AMHD_H, AMHD_I and AMHD_J) showed high fluorescence within 

a wavelength range of 495-560 nm and could be characterized by the green (490-

575 nm) fluorescence.  

Three of the AMHDs: AMHD_D, AMHD_G and AMHD_K showed high 

fluorescence within a wavelength range of 510–580 nm and could be 

characterized by the fluorescence of green (492-575 nm) and yellow (575-597 

nm). The second emission band was within a wavelength range of 650-750 nm. 

This emission band among the fluorescence spectra of AMHDs (AMHD_D, 

AMHD_E, AMHD_F, AMHD_H, AMHD_I and AMHD_J) was characterized in 

the red to far-red (620-800 nm) fluorescence. The fluorescence emission band in 

this range was higher for AMHD_D followed by AMHD_F, AMHD_J, AMHD_I 

and AMHD_H in that order as compared to the other AMHDs. This may be the 

reason for the high concentration of secondary metabolites that were characterized 

in the red fluorescence (620-700 nm) as compared to the other AMHDs. 
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Figure 9: Standardized LIAF spectra showing differences in AMHDs 

 

Secondary metabolites found in the secretory cells of plant could 

fluorescence in all color of the visible spectrum when exposed to ultraviolet 

radiation (Roshchina, 2018; Roshchina et al., 2017). The hidden peaks of the 

individual fluorescence spectra could therefore be used to predict the type of 

secondary metabolites that may be present in each AMHDs. The LIAF spectra for 

all the AMHDs were therefore deconvolved, where the spectra signature were 

decomposed to extract information on each hidden peak. For each spectra 

signature, broad and overlapping hidden peaks with their respective different peak 

wavelength centers are presented. Each hidden peak was characterized by a 

secondary metabolite that may be present in each AMHD sample. The 
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fluorescence intensities height of the deconvoluted peaks from the individual 

standardized LIAF spectra depends on the base, wavelength center, width and 

area of their respective hidden peak. Each deconvoluted spectra contains the 

spectra signature superimposed with their corresponding fitted spectra, the 

deconvoluted peaks, their respective wavelength centers and the coefficient of 

determination.  

The degree of the interrelation of variables between the fitted spectra and 

their respective AMHDs spectra was estimated by the coefficient of 

determination, R
2
. The fitted spectra of all the AMHDs fluorescence spectra 

indicated an average of 0.9981 ± 0.0018 goodness-of-fit. The coefficient of 

determination, R
2
, showed a highly positive interdependence across all the 

averaged LIAF spectra, indicating similarity and association between the fitted 

spectra variables and their respective LIAF spectra variables. Five hidden peaks 

were identified for each deconvoluted AMHDs spectra. 

In this analysis, AMHD_K was used as a standard against which all 

AMHDs were assessed. This AMHD was prepared from Cryptolepis 

Sanguinolenta, also known as nibima, which is of a particular interest and has 

been shown to be clinically potent in the treatment of malaria. The LIAF spectra 

of AMHD_K showed only one predominant broad band without any shoulder. 

The five hidden peaks identified for the AMHD_K spectra could be characterized 

by blue-red fluorescence as shown in figure 10. According to the manufacturers, 

AMHD_K was prepared from Cryptolepis Sanguinolenta. Variety of secondary 

metabolites such as terpenes, phenolic compounds and derivatives of alkaloids 
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have been reported to be present in Cryptolepis Sanguinolenta when extracted 

through decoction (Cimanga et al., 1997; Osafo et al., 2017; Tay et al., 2011; 

Wright et al., 2001).   

Five hidden peaks were observed when the LIAF spectra signature of 

AMHD_K was deconvoluted. From the deconvoluted spectra of AMHD_K, the 

first of the five peaks has a wavelength center of 488.8 nm, which is a 

characteristic of blue fluorescence. This peak may be attributed to the secondary 

metabolites quindoline, lignin, and ferulate (Buschmann et al., 2001; Donaldson, 

2018; Lang et al., 1991; Mariz et al., 2017; Panneton et al., 2008). Quindoline has 

been reported as an alkaloid derivative compound found in Cryptolepis 

Sanguinolenta, proven and used as an anti-malarial medicine (Mariz et al., 2017; 

Odoh & Akwuaka, 2012; Paulo et al., 2000; Shuvalov et al., 2019; Yao et al., 

2012). Some derivatives of lignin and ferulate have also been identified to possess 

antiplasmodial, antimicrobial or antioxidant properties (Dey et al., 2021; Islam et 

al., 2014; Oladeji et al., 2020; Srinivasan et al., 2007; Van Lith & Ameer, 2016).  
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Figure 10: Deconvoluted LIAF spectra of AMHD_K 

 

Three peaks were observed in the green–yellow region which had 

wavelength centers at 512.6, 548.57 and 596.98 nm respectively. The wavelength 

centers may be attributed to the presence of cryptolepine, flavonoids such as 

anthocyanins, dihydrokaempferol and tannins  (Buschmann et al., 2001; 

Donaldson, 2018, 2020; Harborne, 1973; Lang et al., 1991; Mariz et al., 2017; 

Roshchina, 2018; Roshchina et al., 2016, 2017). Cryptolepine is a vital derivative 

of alkaloid and a major extract after the decoction of Cryptolepis Sanguinolenta 

which is proven to be most effective in the treatment of uncomplicated malaria 

issues (Bugyei et al., 2011; Forkuo et al., 2016; Kirby et al., 1995a; Mariz et al., 

2017; Osafo et al., 2017; Osei-Djarbeng et al., 2015; Yao et al., 2012). Flavonoids 

and tannins also form major constituents after the extraction of Cryptolepis 
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Sanguinolenta and their derivatives have been reported to possess a significant 

antiplasmodial activity (Bankole et al., 2015; Forkuo et al., 2016, 2017; Okokon 

et al., 2017; Wright et al., 2001). 

The last peak was observed in the orange region which had a wavelength 

center at 638.81 nm. Certain derivatives of the secondary metabolites such as 

alkaloids, anthocyanins and tannins fluorescence at the yellow–red region, the last 

peak could therefore be attributed to these secondary metabolites (Donaldson, 

2018, 2020; Roshchina et al., 2017). The last peak may also be attributed to 

kaempferol and sesquiterpenoid (azulene) (Donaldson, 2020; García-plazaola et 

al., 2015).  

Figure 11 show deconvoluted LIAF spectra of AMHD_A, AMHD_B, 

AMHD_C and AMHD_G. With the exception of AMHD_D, all the other 

AMHDs (AMHD_A, AMHD_B, AMHD_C, AMHD_E, MHD_F, AMHD_G, 

AMHD_H, AMHD_I, and AMHD_J) had a peak at (489.20 ± 1.85 nm) at the 

blue region which may be attributed to certain phenolic compounds, terpenoids 

and alkaloids (Donaldson, 2018, 2020; García-plazaola et al., 2015; Lang et al., 

1991; Roshchina, 2018; Roshchina et al., 2016, 2017). The deconvoluted LIAF 

spectra of AMHD_D, AMHD_E, AMHD_F, AMHD_H, AMHD_I and AMHD_J 

are shown in appendix B. 
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Figure 11: Deconvoluted LIAF spectra of AMHD_A, AMHD_B, AMHD_C and AMHD_G
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Two deconvoluted peaks from the AMHDs: AMHD_A, AMHD_B, 

AMHD_C, AMHD_E, AMHD_F, AMHD_G, AMHD_H, AMHD_J, and 

AMHD_I were observed in the green-yellow region and at wavelength center 

511.22 ± 2.86 and 549.14 ± 3.74 nm. However, AMHD_D displayed three 

deconvoluted peaks at wavelength centers 493.50, 515.04 and 553.65 nm which 

are in the green-yellow fluorescence region. Deconvoluted fluorescence peaks at 

the green-yellow region may be attributed to several derivatives of alkaloids, 

numerous classes of phenolic compounds (tannins, lignin, flavonoid, and 

coumarins) and carotenoids (Buschmann et al., 2001; Donaldson, 2018, 2020; 

García-plazaola et al., 2015; Harborne, 1973; Roshchina, 2012, 2018; Roshchina 

et al., 2016, 2017).  

Fluorescence peaks at orange-red region for all AMHDs occurred at 

604.56 ± 1.77 and 657.91 ± 20.45 nm respectively. Secondary metabolites such as 

azulene, anthocyanins and derivatives of tannins, alkaloids and quinones 

fluorescence at the orange-red region (Donaldson, 2018, 2020; Harborne, 1973; 

Roshchina, 2018; Roshchina et al., 2016). Generally, the red fluorescence is 

attributed to the chlorophyll pigments in plants (Buschmann et al., 2001; 

Donaldson, 2018, 2020; Lopes et al., 2020; Ombinda-lemboumba, 2006). 

Intensity wise, AMHD_F and AMHD_D peaked prominently at red fluorescence 

indicating a high concentration of the chlorophyll pigments and derivatives of 

alkaloids and tannins (Ahmad & Saleem, 2018; Donaldson, 2020). A summary of 

all wavelength centers and their corresponding standard error of the hidden peaks 

obtained from each AMHDs is shown in Table 4. 
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Table 4: Summary of the hidden peaks wavelength center of the individual AMHDs 

AMHDs Peak 1/nm Peak 2/ nm Peak 3/nm Peak 4/nm Peak 5/nm 

AMHD_K (standard) 488.81 ±0.331 512.56 ±0.236 548.57 ±0.314 596.98 ±1.252 638.81 ±4.990 

AMHD_A 487.76 ±0.350 508.68 ±0.631 546.53 ±1.222 602.79 ±3.745 641.82 ±10.592 

AMHD_B 488.23 ±0.338 509.37 ±0.603 547.50 ±1.017 604.23 ±3.949 643.77 ±15.859 

AMHD_C 487.41 ±0.336 508.80 ±0.570 547.21 ±0.936 603.28 ±3.982 637.46 ±17.185 

AMHD_D 493.50 ±0.485 515.04 ±0.932 553.65 ±1.540 613.75 ±2.413 677.14 ±0.556 

AMHD_E 487.71 ±0.379 508.87 ±0.654 547.46 ±0.980 605.86 ±2.971 670.24 ±2.799 

AMHD_F 487.34 ±0.402 508.36 ±0.775 545.39 ±1.336 605.27 ±5.302 678.36 ±0.423 

AMHD_G 491.05 ±0.491 514.07 ±0.352 552.88 ±0.466 606.33 ±1.362 639.02 ±4.796 

AMHD_H 488.80 ±0.385 510.10 ±0.592 548.01 ±0.874 605.55 ±2.923 670.93 ±2.513 

AMHD_I 487.65 ±0.370 508.57 ±0.642 545.79 ±1.056 603.46 ±3.987 669.65 ±3.767 

AMHD_J 487.71 ±0.377 508.78 ±0.658 546.39 ±1.091 605.08 ±3.889 671.20 ±3.325 
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Chemometrics of AMHDs 

Unsupervised methods  

Chemometric technique called PCA was employed in determining the 

differences and similarities among the fluorescence spectra data of the AMHDs. 

The PCA of the AMHDs data set was principally focused on two objectives: first, 

it was concerned with interpreting the variance-covariance structure of the set of 

variables, and thus, the intensity variation of the individual AMHDs to be 

characterized. The second objective was for PCA to disclose the set of variables 

that set out some inherent spectra structure among the individual AMHDs. These 

objectives explain the physicochemical properties among the AMHDs. The PCA 

provided a method and technique that reduces the dimension of the parameter 

space, and thus, with the same spectra data information on the AMHDs, the large 

set of variables were transformed into a smaller set of variables. The PCA 

algorithm using MATLAB returned the outputs: the latent, coefficients, scores, t-

squared, explained variables and estimated means of variables.  

The algorithm returns the latent in a single column vector which was the 

calculated eigenvalues of the covariance of the AMHDs in percentage. The 

resulting percentage eigenvalues of the total variance for the first ten (10) PCs are 

shown in the scree plot in figure 12. The first two PCs were the most significant 

in the separation and clustering of AMHDs accounting for more than 97.93 % of 

the cumulative variability which could be used to classify the AMHDs.  
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Figure 12: Scree plot showing percentage variance of the first ten (10) PCs of 

AMHDs 

 

The PC coefficients (PCCs) also known as the PC loadings represent the 

eigenvectors of the AMHDs data matrix. The return of the PC loadings were 

arranged in descending order of component variance in a single column. The first 

two eigenvectors namely Principal Component 1 and 2 (PC1 and PC2) were 

plotted as a function of wavelength as shown in figure 13. Variables within a 

wavelength range 460-800 nm were significant in determining the distribution of 

the AMHDs. Together, the PC1 and PC2 revealed separation and clear distinct 

difference between the AMHDs. From the PC1, the wavelength center of 493 and 

585 nm which were loaded on the positive and negative axis respectively indicate 

the most significant separation of the AMHDs samples.  
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Figure 13: Loadings plot the first two PCs obtained from PCA of the LIAF 

spectra of AMHDs samples 

 

Similarly, from the PC2, the wavelength center of 501 and 677 nm on the 

positive axis shown the most significant separation of AMHDs. The variation in 

chlorophyll content and derivatives of alkaloids and tannins concentration among 

the AMHDs may be the reason for the significant separation at emission band 677 

nm on PC2 axis.  

Different plant species have been used in the preparations of the individual 

AMHDs making them contain substantially different secondary metabolites. To 

compare the AMHDs according to their physio-chemical properties, a PC score 

plot was performed by loading the PC scores into the two PCs (PC1 = 66.92% 

and PC2 = 31.01%) which shows the pattern in the individual AMHDs 

represented in PC space as shown in figure 14. On the negative side of the PC1 
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axis, eight (8) AMHDs (AMHD_A, AMHD_B, AMHD_C, AMHD_D, AMHD_E 

AMHD_F, AMHD_I, and AMHD_J) were closely clustered. However, among 

these AMHDs, the trend of clustering was within bounds. AMHD_G, AMHD_H 

and AMHD_K, on the other hand, can be located on the positive side of the PC1 

axis with AMHD_K and AMHD_G clustering very closely. The clear distinction 

of AMHD_H from the rest of the samples was evident. The separation on the PC1 

axis was as a result of the spectra signature of the AMHDs (AMHD_G, 

AMHD_H, and AMHD_K) which tended to depict a high fluorescence in the 

green-yellow region as compared to the other eight AMHDs depicting a high 

fluorescence in the blue-green region. 

On the PC2 axis, all AMHDs cluster towards the positive side of the PC1 

axis. The difference in chlorophyll and derivatives of alkaloids and tannins 

concentrations may be the reason for their separation along the PC2 axis, thus, 

AMHD_D having the highest concentration and AMHD_K having the least. 

Comparing all the AMHDs on the score plot, only AMHD_G clustered best with 

AMHD_K (standard AMHD) indicating the common chemical composition 

among them. Since AMHD G and AMHD_K (standard AMHD) were prepared 

from common plant species, they would have a similar chemical composition 

making them cluster more closely, as shown in the score plot of figure 14.  
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Figure 14: Score plot showing clustering of AMHDs 

 

In order to compare secondary metabolites that may be present among the 

AMHDs, some secondary metabolites reported by Donaldson (2020), Lang et al. 

(1991), Mariz et al. (2017), and Roshchina et al. (2016) to be found in medicinal 

plants and individual AMHDs were analyzed using a PCA Biplot (Donaldson, 

2020; Mariz et al., 2017; Roshchina et al., 2016). PCA Biplot is a graphical 

representation of the PC scores and PC coefficient that is visualized in a low 

dimensional graph. The PCA Biplot then presents the fluorescence emission 

wavelength centers of certain secondary metabolites (phenolic compounds, 

derivatives of alkaloids, riboflavin and anthraquinones) reported to have 

antiplasmodial activities and the PC score of AMHDs on the same axes to observe 

their interrelationship. 
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The biplot (figure 15) was represented in quadrants of PC score with the 

various secondary metabolites unevenly distributed by a line joining the origin. A 

phenolic compound (coumarins) and riboflavin could be observed in the first 

quadrant of the biplot, indicating their high contribution in the AMHD_F, 

AMHD_I and AMHD_J than in the other AMHDs. Another phenolic compound 

(flavonoid) and a derivative of quinone (anthraquinones) appeared to be in the 

second quadrant which correlated with the AMHD_D. This shows the high 

contribution of flavonoid and anthraquinones in AMHD_D than in the other 

AMHDs.  

In the third quadrant, phenolic compound (tannin) and two major 

derivatives of alkaloids (cryptolepine and quindoline) correlated with AMHD_G 

and AMHD_K. This shows the high contribution of tannin, cryptolepine and 

quindoline in AMHD_G and AMHD_K than in the other AMHDs. Cryptolepine 

and quindoline in the third quadrant are two important secondary metabolites 

which have been proved to treat uncomplicated malaria issues. The decoction of 

Cryptolepis Sanguinolenta has been reported to contain cryptolepine and 

quindoline and some other secondary metabolites (Cimanga et al., 1997; Mariz et 

al., 2017; Osafo et al., 2017; Shuvalov et al., 2019; Yao et al., 2012). Only one 

phenolic compound appeared in the last quadrant thus lignin, which correlated 

with five AMHDs (AMHD_A, AMHD_B, AMHD_C, AMHD_H and 

AMHD_E). This also indicates the high contribution of the lignin in AMHD_A, 

AMHD_B, AMHD_C, AMHD_H and AMHD_E than in the other AMHDs. 
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      Figure 15: A PCA biplot showing secondary metabolites and PC scores of   

AMHDs 

 

Secondary metabolites that appeared in the third quadrant of the biplot 

could be derived from Cryptolepis Sanguinolenta. AMHD_K and AMHD_G were 

prepared from only one medicinal plant (Cryptolepis Sanguinolenta) which could 

be confirmed by the biplot as its extracts contributed highly to the samples 

preparations. Other secondary metabolites may be present but contributed very 

less in the AMHDs (AMHD_K and AMHD_G) decoction. The rest of the 

AMHDs were prepared from more than two plant species, for which their 

secondary metabolites are said to be mostly phenolic compounds (flavonoids, 

coumarins, lignin and tannins) (Neilson et al., 2017b; Okokon et al., 2017; Tay et 

al., 2011).  

A nonhierarchical clustering technique: K-means method was used to 

group AMHDs into a set of K clusters (number of clusters). In the process of 

locating suitable centroids for clusters of AMHD data points, K-means clustering 
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minimizes the data dimension. The individual AMHDs within a cluster could 

characterized by the cluster's correlating centroid. As a result, the clustering 

algorithm divides the data into clusters that share comparable characteristics, such 

as geometric closeness in the 2D feature space.  In the clustering analysis of the 

AMHDs dataset, the Elbow method was used to estimate the optimal cluster 

number. It uses the same AMHD dataset with a given continuous cluster number 

range (k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to perform K-means. Then, for each user-

specified cluster number k, the Within Cluster Sum of Squares (WCSS) is 

computed, and a plot of WCSS values against each cluster number k was done. 

WCSS computes the sum squared distance of each point belonging to a certain 

cluster and the corresponding centroid in the cluster.  

The optimal cluster k = 3 was chosen by the fact that from the initial 

clustering numbers (k = 1, 2), there were high values of WCSS but as the 

clustering number increases the values of WCSS fall off significantly. Between k 

= 1 and k = 2, as well as k = 2 and k = 3, there was a significant change, which 

was followed by a linear change as the clustering numbers increased making the 

elbow point to be k = 3, as indicated in the figure 16. 
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Figure 16: A visual curve display of the performance of K-cluster and the 

corresponding WCSS values 

 

The k-means++ algorithm was used as a heuristic to find the centroid for 

k-means clustering in order to implement the 2-means method. The k-means++ 

algorithm improves the speed of the K-means algorithm while also improving the 

consistency of the final solution. The Euclidean distance of each AMHD from the 

centroids point was then computed using the K-means algorithm, and each was 

reassigned to the nearest group on a grid. Figure 17 shows a plot of three cluster 

regions: Cluster 1 (AMHD_A, AMHD_B, AMHD_C, AMHD_E, AMHD_F, 

AMHD_H, AMHD_I and AMHD_J), cluster 2 (AMHD_K and AMHD_G) and 

cluster 3 (AMHD_D). The K-means clustering confirmed the clustering done in 

the PC score plot indicating the common secondary metabolites that may be 
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present in AMHD_G and AMHD_K. Whereas AMHD_J, AMHD_I, AMHD_E, 

AMHD_A, AMHD_B, AMHD_C, AMHD_H and AMHD_F may also have 

common secondary metabolites. 

 

Figure 17: K-means clustering indicating three clusters regions (1, 2 and 3) 

derived from the fluorescence spectra of the AMHDs 
 

In order to ascertain further the variability in the AMHDs, a hierarchical 

clustering analysis (HCA) was performed. HCA is an unsupervised pattern 

technique, which is complementary to the findings obtained from the PCA. As 

shown in figure 18, the hierarchical clustering results for the AMHDs were 

graphically represented on the dendrogram. The value of the modified 

dissimilarity between the combined clusters, which could be viewed as a measure 

of the separation of paired AMHDs, was labeled by the vertical line along with 
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the clustering dendrogram. Selecting a distance threshold of eight (8) showed that 

there were three clusters (1, 2 and 3). In figure 18, cluster 1 consist of AMHD_J, 

AMHD_I, AMHD_E, AMHD_A, AMHD_B, AMHD_C, AMHD_H and 

AMHD_F, cluster 2 consists of AMHD_K and AMHD_G and cluster 3 consist of 

AMHD_D. The AMHDs showed a good fit from the figure indicating a 

significant cophenetic correlation coefficient of 0.9225. The cophenetic 

correlation coefficient gives a measures of how accurately the dendrogram 

represents the dissimilarities among the AMHDs. The HCA confirms the 

clustering done by the K-means clustering indicating the common secondary 

metabolites in AMHD_K and ANHD_G.  

 

Figure 18: Dendogram indicating three cluster regions (1, 2 and 3) derived from 

the fluorescence spectra of the AMHDs 
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Figure 19: Flow Chart showing the sequence of spectra processing used for 

classification 
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Supervised methods  

The results from PCA were able to clearly differentiate the AMHDs, so a 

model could therefore be created in groups where its data could be used to 

identify and classify unknown AMHDs as belonging to one of the groups 

(Adams, 2004;  Amuah et al., 2017; Pamp et al., 2020). Therefore, supervised 

methods of pattern recognition were used: Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), Quadratic Discriminant Analysis (QDA) and Linear 

Discriminant Analysis (LDA), to help create a model in the identification and 

classification of unknown AMHDs. In figure 19, the complete steps for 

classifying unknown AMHDs spectra data is summarized by means of a flow 

diagram.  

PCA of the LIAF spectra were used as input data for the model to be 

generated. Based on the data provided in figure 12, using the two PCs, the 

prediction set was derived which suggested how unknown AMHDs could be 

classified. The first two PCs explained more than 97.93 % of the total variance in 

the LIAF spectra comprising a total of 625 samples. Based on the data provided, 

using the two PCs, the data set was subdivided into two sets; training set and test 

set for the classification model. The training set was used in generating a model 

for the individual classifier and the test set was used in testing the predictability of 

the model obtained in the training set. MATLAB was used to systematically 

divide the data set into training and test sets for each sub-group using the Random 

Sampling algorithm. The Random Sampling algorithm divides the observations 

into k disjoint sub-groups (or K-folds) that are selected at random but are 
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approximately equal in size. The performance of classifiers based on different K 

values was measured using the accuracy rate of K-fold cross-validation testing 

sets (CV accuracy rates) (MacArthur et al., 2020; Morais et al., 2019; Xu et al., 

2019). The algorithm randomly chose k = 3, where KNN, SVM, LDA and QDA 

models were obtained. Therefore, parameter K = 5 was used in all of the models 

in the PC data set partition. 

The classification models were constructed based on the random 

parameter. The classification models (KNN, SVM, QDA and LDA) were 

generated and the stability of the models was measured using the mean 

classification accuracy rate of 10-fold cross validation sets, and the generalization 

of the models was evaluated using the classification accuracy rate of the testing 

set. Table 5 summarizes the classification outcomes for the training and testing 

sets. 

Table 5: Classification results (%) of the classification models of the AMHDs 

sample 

           Classification model Training set (502)  

(%) 

Testing set (125) 

(%) 

SVM 100.00 100.00 

KNN 100.00 100.00 

LDA 99.04 99.04 

QDA 99.52 99.52 
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 In both the training and test sets, the results showed that KNN and SVM 

performed better, with a CV accuracy rate of 100.00 %. Sensitivity, specificity, 

and precision were also found to be one (1) as shown in Table 6. The model 

produced was accurate and stable. The good performance in classification model 

output offers valuable concrete proof on how perfect KNN and SVM could be 

used to classify and identify unknown potential AMHDs datasets. 

 

Table 6: Classification performance parameter of models 

Classification model Sensitivity Specificity Precision 

SVM 1.00 1.00 1.00 

KNN 1.00 1.00 1.00 

LDA 1.00 1.00 0.99 

QDA 1.00 1.00 0.99 

 

To detail the accuracy of KNN and SVM, a confusion matrix of the 

dataset were graphically displayed making use of the confusion chart function in 

MATLAB. Figures 20 and 21 shows the confusion chart for the two classifiers: 

KNN and SVM respectively of the AMHDs dataset. Each row of the confusion 

chart indicates the true class (the correct label of the individual AMHD samples 

created using the training dataset) and each column indicates the predicted class 

(incorrect label of the individual AMHD samples created using the testing 

dataset). Out of 20 % of all the AMHD dataset, both KNN and SVM correctly 

classified the dataset with no misclassified sample. 
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Figure 20: Confusion Matrix for the Prediction set of the AMHDs for the KNN 

model 

  

 

Figure 21: Confusion Matrix for the Prediction set of the AMHDs for the SVM 

model 
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Chapter Summary 

This chapter presented the analysis and discussions on results of LIAF spectra for 

the identification and classification of AMHDs. The spectral fingerprints and the 

photochemical constituents that may be present were analyzed and discussed in 

the first part. The last part of the chapter discussed the chemometrics that was 

used in the classification of the AMHDs. KNN and SVM models was used as 

classifiers for the AMHDs dataset. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

In summary, eleven (11) commercial anti-malarial herbal drugs (AMHDs) 

were assessed using laser-induced autofluorescence (LIAF) technique combined 

with multivariate analysis. The evaluation of AMHDs was done using their 

fluorescence emission spectra at an excitation wavelength of 405 nm. Results 

showed varying LIAF spectra of AMHDs. The deconvolution of the standardized 

fluorescence spectra from each AMHDs explained the secondary metabolites that 

may be present.  

 Using Principal Component Analysis (PCA), two Principal Components 

(PCs) accounted for more than 97.93 % of cumulative variability. The two PCs 

were plotted to classify the AMHDs. A nonhierarchical clustering technique: K-

means method was used to determine the number of clusters of AMHDs. 

Hierarchical Clustering Analysis (HCA) confirmed the clustering done by the K-

means method and the classification of the AMHDs by PCA. Based on the two 

PCs, a model was generated and an accuracy of 100.00 % was obtained from K-

Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifier which 

could be used to identify unknown AMHDs. 

Conclusions 

Laser-induced autofluorescence (LIAF) technique was used in this study 

to ascertain the spectral signature of eleven (11) selected AMHDs from Ghana. 

AMHDs: AMHD_A, AMHD_B, AMHD_C, AMHD_G, and AMHD_K exhibited 
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one major broad emission band within a spectral range of 460 to 800 nm which 

was characterized in the blue (455-492 nm) to far-red (680-800 nm) fluorescence. 

LIAF spectra of AMHD_D, AMHD_E, AMHD_F, AMHD_H, AMHD_I and 

AMHD_J exhibited two emission bands. A major emission band was within 460-

650 nm and a minor emission band within 650-750 nm. Intensity-wise, all the 

fluorescence spectra differ depending on the AMHDs and this was because of the 

different biophysical properties each AMHD has. 

A plot of standardized spectra was able to distinguish the AMHDs based 

on the structure of the spectral signature of AMHDs which made secondary 

metabolites equally important to be studied. Eight of the AMHD tend to have 

almost the same emission peak that runs within a range of 460-650 nm across 

their fluorescence spectra which depict high fluorescence within a wavelength 

range of 495-560 nm and can be characterized by the green (490-575 nm) 

fluorescence. Comparably, three of the AMHDs: AMHD_D, AMHD_G and 

AMHD_K depicted high fluorescence within a wavelength range of 510–580 nm 

and was characterized by the fluorescence of green (492-575 nm) and yellow 

(575-597 nm). The second emission band was within a wavelength range of 650-

750 nm which was characterized by the red to far-red (620-800 nm) fluorescence 

and appeared to peak more in AMHD_D and AMHD_F as compared to the other 

AMHDs.  

When deconvoluted five hidden peaks were seen in the LIAF spectra of 

each AMHD. The constituents‘ quindoline, lignin and ferulate were attributed to 

hidden peaks in the blue fluorescence (Buschmann et al., 2001; Donaldson, 2018, 
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2020; Lang et al., 1991). Quindoline has been reported as an alkaloid derivative 

compound found in Cryptolepis Sanguinolenta and proven to possess 

antiplasmodial activity (Mariz et al., 2017; Odoh & Akwuaka, 2012; Shuvalov et 

al., 2019; Yao et al., 2012). The hidden peaks in the green-yellow fluorescence 

were attributed to compounds cryptolepine, anthocyanins, flavonoids and tannins. 

Cryptolepine, flavonoids and tannins are major phytochemical constituents in 

Cryptolepis Sanguinolenta which are proven to be most effective in the treatment 

of uncomplicated malaria issues (Forkuo et al., 2017; Kirby et al., 1995b; Mariz et 

al., 2017; Osei-Djarbeng et al., 2015; Roshchina, 2018; Roshchina et al., 2016, 

2017; Schlechter et al., 2017). The hidden peaks at orange-red region were 

attributed to azulene, anthocyanins and derivatives of tannins, alkaloids and 

quinones (Donaldson, 2018, 2020; García-plazaola et al., 2015; Roshchina et al., 

2017). 

Three unsupervised pattern recognition methods were used to classify 

AMHDs based on their physio-chemical properties: PCA, K-mean Clustering, and 

HCA. In this analysis, the AMHD_K was used as a standard against which all 

AMHDs samples were assessed due to the medicinal plant (Cryptolepis 

Sanguinolenta) used in its preparation. PCA Biplot was graphically presented to 

compare the presence of some secondary metabolites reported by Donaldson 

(2020), Lang et al. (1991), Mariz et al. (2017), and Roshchina et al. (2016) to be 

found in medicinal plants and individual AMHDs. Secondary metabolites 

(crytolepine, tannin and quindoline) contributed very high in AMHD_K and 

AMHD_G as compared to other AMHDs. In the PCA and K-mean method, three 
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(3) clusters were observed, Cluster 1 consist of AMHD_A, AMHD_B, AMHD_C, 

AMHD_E, AMHD_F, AMHD_H AMHD_I, and AMHD_J; Cluster 2 consists of 

AMHD_K and AMHD_G and Cluster 3 also consist of AMHD_D. PCA and K-

mean method was therefore able to confirm the classification of AMHDs based on 

their physio-chemical constituent. HCA confirmed the clustering done by PCA 

and K-means method. The classification showed that AMHD_G clustered most 

with AMHD_K (used as standard) because the two samples were prepared from 

the same medicinal plant (Cryptolepis Sanguinolenta) resulting in common 

physio-chemical properties among them. 

 A supervised pattern recognition method: Supervised Vector Machine 

(SVM), K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis (QDA), 

and Linear Discriminant Analysis (LDA) were used to generate the model to 

identify and classify unknown AMHDs. The accuracy results of the classifiers 

from PC data was 99.04 % for LDA while that of QDA was 99.52 %, KNN was 

100 %, and SVM was 100 %. Accuracy results obtained from all the classifiers 

indicating all the supervised methods can be used to identify and classify 

unknown AMHDs. Classifier KNN and SVM, showed 100% accuracy, indicating 

classifiers‘ ability to predict perfectly unknown AMHDs. 

Recommendations  

It is recommended that, in the scope of research in AMHDs in Ghana, 

different optical and chemometrics techniques could be employed. Food and Drug 

Authority (FDA) could adopt Laser-Induced Autofluorescence (LIAF) technique 

as a preliminary test technique before any quality assessment of AMHDs. 
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AMHDs manufacturing industries may adopt the LIAF technique to assess the 

consistency, substandard and counterfeit of their manufactured drugs. The LIAF 

technique could also be applied in the pharmaceutical industry in examining 

phytochemical constituents present when exposed to ultra-violet (UV) radiation. 
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APPENDICES 

APPENDIX A  

LIAF SPECTRA OF AMHDS SAMPLE 

 

Figure 22: LIAF spectra of AMHD_D 

 

 

Figure 23: LIAF spectra of AMHD_E
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Figure 24: LIAF spectra of AMHD_F, AMHD_H, AMHD_I and AMHD_J 
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APPENDIX B 

DECONVOLUTED PEAKS OF AMHDs SAMPLE 

 

Figure 25: Deconvoluted LIAF spectra of AMHD_F, AMHD_H, AMHD_I and AMHD_J 
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Figure 26: Deconvoluted LIAF spectra of AMHD_D, and AMHD_E 
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