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ABSTRACT 

In this thesis, we developed an SEIR - SEI model of malaria transmission 

with the inclusion of susceptible, exposed and infected immigrants. Analysis 

of the model were carried out to find the equilibrium points and their 

stabilities. We have discovered that our model has no disease-free and hence 

no basic reproduction number ℜ0 due to the influx of exposed and infected 

immigrants. However, when the proportions of exposed and infected 

immigrants approaches zero, disease-free status will be attained whenever ℜ0 

< 1. The unique endemic equilibrium point for which there are exposed and 

infected immigrants is both locally and globally stable. Numerical simulations 

were performed to know the effect of exposed and infected immigrants and the 

results from our simulations showed that exposed and infected immigrants 

entering the population rendered the basic reproduction number ℜ0 irrelevant 

and can not be used to determine the extinction and the prevalence of malaria. 

Sensitivity analysis was carried out on the parameters that the basic 

reproduction number ℜ0 depend on. The result from the sensitivity analysis 

revealed that the most sensitive parameter is the mosquito biting rate ν. We 

recommended that immigrants should be screened at our borders and be sure 

of malaria free before allowing them to enter the population to ensure the 

health and well-being of everyone in the community. 
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CHAPTER ONE

INTRODUCTION

Mathematical modelling, an essential research tool has been employed

over the years to study the transmission dynamics of infectious diseases. Hav-

ing a comprehensive insight of how these infectious diseases are transmitted

could aid in developing the appropriate tools to mitigate the transmission of

these infectious diseases.

Background to the Study

Malaria is perceived as both epidemic and endemic disease. History has

it that there have been controversies among researchers concerning the cause of

malaria. There were two conjectures with respect to malaria transmission that

is bad air and insect vectors (Hempelmann & Krafts, 2013). Sir Patrick Man-

son discovered in 1878 that a parasite that causes human infection is capable

of infecting mosquito (CDC, 2015). Malaria parasite was discovered on 20th

October 1880 by Dr Alphonse Laveran at Military hospital in the Constantine,

Algeria (Garnham, 1988). In 1895, Sir Ronald Ross embarked on a journey in

pursuit of proving the conjectures of Dr. Alphonse Laveran and his contem-

porary Sir Patrick Manson that mosquitoes were responsible for the spread of

malaria. On 20th August 1897 in Secunderbad, Sir Ronald Ross also found the

malaria parasite after he dissected the stomach tissues of an anopheles mosquito

that fed four days previously on malaria patient and he proceeded to prove the

role of anopheles mosquitoes in the transmission of malaria parasites in humans

(CDC, 2015).

Malaria, a lethal disease caused by the parasite of the plasmodium fam-

ily which is rife in Sub-Sahara Africa and seen as a penury-induced disease

(WHO, 2019). According to WHO (2021), an estimated 241 million cases of

malaria were recorded globally in the year 2020 out of which Africa recorded
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228 million cases against 213 million cases of malaria in Africa in the year

2019. Comparatively, there was a surge in malaria cases in Africa from 2019

to 2020, which was attributed to the arrival of COVID-19 pandemic. The death

toll of malaria in Africa increased from 534000 to 602000 in the year 2019 and

2020 respectively (WHO, 2021). In 2021 world malaria report, it was estimated

that 6.7 and 5.9 million cases of malaria were presumed and confirmed in 2019

and 2020 respctively. There were 336 deaths in 2019 and 308 deaths in 2020

recorded in Ghana.

Malaria parasite is generally transmitted when the malaria parasite enter

the bloodstream of a susceptible human, after they (susceptible human) are been

bitten by female anopheles mosquito that is infected. Suscpetible mosquitoes

become infected when they bite an infected human. Since malaria parasite is

found in red blood cells of an infected person, malaria can be transmitted from

human to human via blood transfusion, organ transplant or sharing of needles or

syringes contaminated with blood (CDC, 2022). According to Otieno (2016),

pregnant women that have malaria may also transmit the malaria parasite verti-

cally to her unborn child before or during birth (congenital malaria). There are

five species of malaria parasite that infect human and cause illness: Plasmod-

ium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale

and Plasmodium knowlesi. Plasmodium falciparum malaria is a life-threatening

human parasite which accounted for 80% of all recorded malaria cases globally

and 90% of death is rife in the tropical areas of Africa and South East Asia (Mia,

Begum, Er, Abiden & Pereira, 2011). The first symptoms of malaria are fever,

headache and chills usually appeared 10-15 days after infectd female mosquito

deposit the parasite into human and may be clement and hard to recognize as

malaria. If left untreated, plasmodium falciparum malaria can progress to se-

vere illness which can lead to death within 24 hours.

Controlling mosquito population plays a crucial role in decreasing human-

female mosquito interaction which will intend decrease the spread of malaria.

2
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According to WHO (2021), insecticide-treated nets (ITNs) and indoor residual

spraying (IRS) are important tools to be employed in reducing mosquito pop-

ulation. Adulticide and larvicide can be applied to reduce the size of female

mosquito population (Nordin, Ahmad & Ahmad, 2015). Effort in planetary

malaria control is impeded by anopheles mosquito resistance to insecticides. In

2021 world malaria report, 78 countries reported mosquito’s resistance to at least

one out of four commonly-used insecticide classes in the period 2010 − 2019

whiles 29 countries reported mosquito’s resistance to all main insecticide classes

(WHO, 2021).

Preventive chemotherapy can be used to thwart malaria infections and

their implications. It consists of chemoprophylaxis, intermittent preventive treat-

ment of infants (IPTi) and pregnant women (IPTp), seasonal malaria chemopre-

vention (SMC) and mass drug administration (MDA). These safe and econom-

ical strategies are geared towards malaria control activities, including vector

control measures, prompt diagnosis of suspected malaria, and treatment of con-

firmed cases with antimalarial medicines (WHO, 2021).

Vaccination in an effective way of preventing the transmission of malaria.

World Health Organization target for malaria vaccine is at least 75% efficacy. In

October 2021, global advisory bodies for immunization convoked to review the

RTS,S/AS01 malaria vaccine among children living in regions with moderate to

high plasmodium falciparum malaria transmission. This vaccine was piloted in

three countries in Sub-Sahara Africa that is Ghana, Kenya, and Malawi of which

more than six hundred and fifty thousand children benefited in the exercise. The

vaccine has been observed to decrease malaria drastically, and deadly severe

malaria among young children so in view of that, World Health Organization

recommended wider use of this vaccine (WHO, 2021). Ball, Knock, and O’ Neil

(as cited in Koutou, Sangare & Traore, 2020) have observed that albeit malaria

vaccine could be imperfect, using it together with other control strategies could

aid in decreasing the rifeness of malaria monumentally.
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Early diagnosis and treatment of malaria does not only mitigate the dis-

ease but it also thwarts death and transmission rate drastically. According to

WHO (2021), parasite-based diagnostic testing should be used to affirm malaria

cases which would enable health care workers to promptly differentiate between

malarial and non-malarial fevers for apt treatment. Artemisinin-based combina-

tion therapy (ACT) is the best treatment specifically for P. falciparum malaria

(WHO, 2021). The main motive of treatment is to guarantee zero plasmodium

parasites to prevent a simple case of malaria from advancing to serious illness

leading to death.

WHO (2021) underscored that antimalarial drug resistance is an imped-

iment to planetary malaria control efforts in the Greater Mekong subregion.

There were report from Africa indicating drug-resistant to malaria. Strategies

are being put in place by World Health Organization to ameliorate drug resis-

tance in Africa.

Malaria elimination is the primary objective of health care providers. How-

ever, this task is not a walk on the park as the case of malaria increases astro-

nomically each year. In order to allow malaria elimination see the light of the

day, protracted measures to prevent re-establishment of transmission and relapse

of the disease is required. In 2020, twenty-six countries in the world reported

less than 100 cases of malaria. Also, countries like China and El Salvador were

certified by World Health Organization in 2021 as malaria-free and European

Region has been malaria-free since 2015 which is a confirmation that malaria

can be eliminated (WHO, 2021).

Malaria surveillance enable health care providers to figure out which areas

are most affected and does not only aids countries to track change in disease pat-

terns but it also assists them to plan effective health interventions and examine

the effect of their malaria restrain interventions

4
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Statement of the Problem

Malaria is a lethal infectious disease affecting nearly half of the world’s

population. The WHO African Region accounted-for 95% of malaria cases and

96% of malaria deaths in 2020. Children below five years accounted-for 80%

of all the malaria deaths in the WHO African Region (WHO, 2021).

Regrettably, Ghana is among the first 10 highest malaria burdened coun-

tries in the world (WHO, 2021). In 2021, a total of 5.7 million cases of malaria

were confirmed in Ghana, a modest increase of 2020 estimated number of 5.1

million cases. The number of admission due to malaria were increased from

308,358 in 2020 to 391,052 in 2021, albeit, there is a drop in inpatients deaths

from 312 to 275 in 2020 and 2021 respectively (Annoh, 2022). These figures

should make us restless, especially because malaria is a preventable and treat-

able disease. Ghana is doing everything possible to join the queue of malaria-

free countries, however, our efforts failed to see the light of the day.

Due to comparatively low level of border control in Ghana which makes it

virtually possible for immigrants to infiltrate as a result of the porous nature of

our borders, it is therefore extremely important that we conduct more research in

order to fully understand the impacts of infective immigrants in the transmission

of malaria using mathematical modelling as a tool.

Purpose of the Study

The purpose of this thesis is to formulate a deterministic epidemic model

of malaria transmission where influx of infective immigrants into the human

population is allowed.

5
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Research Objectives

General Objectives

The overall objective of this thesis is to formulate an SEIR−SEI model

for malaria transmission with infective immigrants to understand the role play

by infective immigrants in the transmission of malaria.

Specific Objectives

This thesis has the following specific objectives:

• To formulate a mathematical model of malaria with the inclusion of in-

fective immigrants into the human population.

• To determine the equilibrium states of the model.

• To determine the basic reproduction number, ℜ0.

• To determine both local and global stability of the model .

• To perform sensitivity analysis to understand the parameters that influence

the model dynamics .

• To perform numerical simulations to know the full extent of the effect of

infective immigrants on malaria transmission .

Significance of the Study

• An essential research tool that can assist us to study and understand the

transmission dynamics of malaria is deterministic mathematical modelling.

• There are several mathematical models on malaria transmission, never-

theless, much work has not been done extensively taking into account the

effect of infective immigrants on the transmission dynamics of malaria.

6
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• Therefore, it is imperative that we come with a mathematical model that

allow influx of infective immigrants, in order to inform our policy makers

on the best strategies that will effectively combat the spread of malaria.

Delimitation

This thesis is limited to finding out the crucial role played by exposed and

infected immigrants in the transmission dynamics of malaria

Limitation

This thesis has a limitation of correct estimation of parameter values be-

cause we depend primarily on values from literature and some assumed values

for our numerical simulations.

Definition of Terms

In this section, we state some fundamental defintions needed to compre-

hend the model.

Definition 1.1

A differential equation of the form

dy

dt
= f(y), (1.1)

where f does not depend explicitly on t is called an autonomous differential

equation: otherwise it is nonautonomous

Definition 1.2

A system of first-order ordinary differential equations of the form

dx(t)

dt
= f(t, x(t)), (1.2)

7
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is independent of t or f(t, x(t)) = f(x(t)) for x ∈ Rn , f ∈ Rn , t ∈ R is called

an autonomous system.

Definition 1.3

In differential equation (1.2), if a point xc is such that

f(xc) = 0, xc ∈ Rn (1.3)

then xc is called an equilibrium point (critical point, fixed point , steady-state)

Definition 1.4

An equilibrium point xc is said to be locally stable if for any ϵ > 0, there

is δ > 0 such that

∥x0 − xc∥ < δ ⇒ ∥x(t)− xc∥, ∀t > 0 (1.4)

Instinctively, an equilibrium point xc = (xc1, x
c
2, ..., x

c
n) ∈ Rn , of the au-

tonomous system (1.2) is called stable, if the initial point x0 is close to xc, then

the trajectory x(t) will remain close to xc for future time for all t ≥ 0

Definition 1.5

An equilibrium point xc is locally asymptotically stable it it is stable and

in addition there exists r(t0) ≥ 0 such that

∥x0 − xc∥ ≥ r(t0) ⇒ lim
t→∞

∥x(t)− xc∥ = 0 (1.5)

Organization of the Study

This thesis is divided into five chapters. Chapter one of this work describes

the background to the study, statement of the problem, research objectives and

8
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the significance of the problem. Chapter two deals with the review of some re-

lated literature on mathematical models of malaria with the inclusion of infected

immigrants. In chapter three, we formulate the model and investigate its stabili-

ties. Chapter four we carry out numerical simulations and sensitivity analysis of

our model. In chapter five, we present summary, conclusions recommendations.

9
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CHAPTER TWO

LITERATURE REVIEW

Introduction

In this section, we re-examine related work on deterministic mathematical

models of malaria with infective immigrants. Deterministic mathematical model

gives us a clear picture of the transmission dynamics of infectious disease.

Mathematical Models on Infectious Disease

Malaria is a long in the tooth infectious disease that researchers have tried

to comprehend its transmission dynamics for many years due to its burden on

human population globally. The breakthrough happened when the mosquito in-

volvement in the transmission cycle was uncovered by Grassi and Ross in 1897

(Mandal, Sarkar & Sinha, 2011). Deterministic mathematical model for malaria

transmission is attributed to Ross (1911). Ross was the first person to publish

a paper on simple mathematical model that provided a clear picture of inter-

active factors and their role in the eradication of malaria disease. In his work,

he used the SIS model for human population and SI model for mosquito pop-

ulation with standard incidence and constant population. According to Ross

(1911), decreasing malaria transmission does not require extinction of mosquito

population, in lieu, reducing mosquito population below a certain threshold is

enough to control malaria transmission. Scores of work on malaria transmission

was investigated after Ross (1911). For instance, Macdonald et al. (1957) reit-

erates the significance of mathematical epidemiology and extended Ross (1911)

model by adding the exposed compartment to the mosquito population. The

human population is the same as in the Ross model thus SIS model while the

mosquito population is modified to SEI model. This model gave a clear under-

standing of malaria cycle and underscored that the survival of adult mosquito

10
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is the weakest link in the cycle. This led to massive malaria eradication cam-

paign by the World Health Organization (WHO) by concentrating on the use of

DDT as an insecticide to eliminate mosquito in Africa (Macdonald et al., 1957;

Mandal, Sarkar & Sinha, 2011).

Mojeeb, Osman and Isaac (2017) did a work on SEIR model followed

by SEIR−SEI model of malaria transmission. They assumed that permanent

immunity is conferred on recovered individuals. Their analysis indicated that

both models are locally asymptotically stable whenever the associated basic re-

production numbers are less than unity and unstable, when they are greater than

unity. They went further by saying that in order to control malaria, the rate of

infection between humans and mosquitoes must be decreased, also reducing the

interaction between mosquitoes and humans and the use of malaria drugs, in-

secticides, and treated bed nets would decrease mosquito population which will

in turn keep human population stable.

Several models on malaria were developed after that. For example, New-

man, Parise, Barber and Steketee (2004) reported that nearly 1500 malaria cases

occur each year in the United States, of which 60% are among United States

travellers (imported malaria cases). This phenomenon is as a result of immi-

grants from malaria endemic regions act as a source of malaria when they move

to malaria free zone that has uninfected mosquitoes.

Also, Tumwiine, Luboobi and Mugisha (2005) did a work on a host-vector

mathematical model for malaria with infective immigrants. Analysis of their

model indicated that the basic reproduction number does not exist because there

is no disease-free equilibrium point due to the influx of infective immigrants.

Mandal and Sarkar (2011) asserted that the reason why various strategies

to eradicate infectious disease fail to see the light of the day is the disregard for

the mobility pattern of the host (human), and this confirmed the recent surge in

malaria incidence not only in endemic areas but also in areas where malaria had

been eliminated.

11
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Also, Budhwar and Daniel (2017) analysed the stability of SEIR − SI

model for malaria with infective immigrants. They found out in their analysis

that both the disease-free and endemic equilibria are stable locally and globally.

The apparent drawback of their work is that, they have not done any numerical

simulations and sensitivity analysis to comprehend the full extent of the impact

of infective immigrants on the spread of malaria in the population.

Furthermore, Sigdel and McCluskey (2014) studied global stability of an

SEI model of infectious disease with immigration into all the three compart-

ments. The result from their study indicated that there was no basic reproduc-

tion number because disease-free steady state does not exist due to the influx

of infective humans. Further analysis of their model reveals the existence of

endemic steady state which was globally asymptotically stable. They concluded

that elimination of disease becomes virtually unattainable if there is an influx of

infected immigrants in the population.

Wedajo, Bole and Koya (2018), published a paper on SIR − SI math-

ematical model of malaria with the inclusion of infected immigrants. Their

numerical analysis indicated that preventing the influx of infected immigrants

have a strong impact on the malaria disease control.

Chapter Summary

In this chapter, we reviewed some related works on mathematical models

of malaria taken into account the inclusion of infected immigrants into the hu-

man population. Many of the research on the mathematical models of malaria

do not allow the influx of exposed immigrants and even those that include ex-

posed immigrants, they have not done any numerical simulations to comprehend

the effect of those immigrants in the malaria transmission. In this study, we de-

veloped a SEIR − SEI model of malaria with the inclusion of exposed and

infected immigrants into the human population.

12
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CHAPTER THREE

RESEARCH METHODS

Introduction

In this chapter, we formulate a mathematical model for human-female

mosquito transmission of malaria using compartmental approach with mass ac-

tion as incidence rate. We consider four and three compartments in the human

and female mosquito population respectively. In the human population, there is

an influx of immigrants A where proportions ω, ψ and (1− ω − ψ) are exposed,

infected and uninfected with malaria respectively such that ( 0 ≤ ω + ψ < 1).

We consider two cases in the analysis of our model. In the first case where we

assume there are no immigrants (A = 0), we compute equilibrium points, the

basic reproduction number ℜ0 and investigate both local and global stability of

disease-free and endemic equilibria. In the second case of our model, where

there are influx of immigrants (A > 0), where proportions of the imigrants ω, ψ

and (1− ω − ψ) are exposed, infected and uninfected with malaria respectively

such that ( 0 ≤ ω + ψ < 1), we compute the equilibrium point and investigate

its stability.

According to Wedajo et al. (2018), it is without a shred of doubt that im-

migrants play a vital role in the transmission of malaria so in view of that, we

formulate a deterministic model for human-female mosquito transmission of

malaria incorporating infective immigrants in the human population. We make

the assumption that there is a transfer of individuals from the susceptible com-

partment to exposed compartment when there is an interaction between suscep-

tible humans and infected female mosquitoes given that there is a transmission

in the process of the interaction.

13
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Mathematical Backgrounds

In this section, basic definitions and theorems needed to comprehend the

model are reviewed.

Definition 3.1

An equilibrium point (steady-state, fixed-point or critical point) of a dif-

ferential equation (1.2), is a constant solution xc = (xc1, x
c
2, ..., x

c
n) ∈ Rn, satis-

fying

f(xc) = 0 (3.1)

Example 3.1

The logistic differential equation,

dx

dt
= wx

(
1− x

L

)
, w, L > 0, (3.2)

has two points of equilibrium: xc1 = 0, and xc2 = L

Example 3.2

The SEI epidemic model

dS

dt
= Λ− βIS − µS

dE

dt
= βIS − (µ+ ϵ)E

dI

dt
= ϵE − µI

(3.3)

has two equilibrium points namely

• a disease-free equilibrium point: p1 = (Λ
µ
, 0, 0), and
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• an endemic equilibrium point P2 = (S∗
2 , E

∗
2 , I

∗
2 ), where

S∗
2 =

(µ+ ϵ)µ

βϵ

E∗
2 =

µ(Λβϵ− µ2(µ+ ϵ)

βµ(µ+ ϵ)ϵ

I∗2 =
Λβϵ− µ2(µ+ ϵ)

βµ(µ+ ϵ)

The next generation matrix and the basic reproduction number

In epidemiology, the next-generation matrix is a method used to derive

the basic reproduction number, for a compartmental model of the spread of in-

fectious diseases. This method is given by (Dekmann, Heesterbeek & Metz,

1990; Van den Driessche & Watmough, 2002 ). Many of today’s most impor-

tant emerging infectious diseases are multi-host infections by their very nature.

As a result, they require a slightly more complex formalism for investigating

epidemic thresholds, etc. The basic tool for examining epidemic thresholds in

complex, structured models is the so-called next generation matrix.

Consider a population of individuals (or species) subdivided into n com-

partments, of which m are infected. Let xi represent the proportion of the pop-

ulation in the ith compartment and let the vector of the proportions in all the

compartments be x. In order to compute ℜ0, it is important to distinguish new

infections from all other changes in the population. Let

• Fi(x) be the rate of appearance of new infections in compartment i,

• V +
i (x) be the rate of transfer of individuals into compartment i by all

other means, and

• V −
i (x) be the rate of transfer of individuals out of compartment i.
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It is assumed that each function is continuously differentiable at least

twice in each variable.The disease transmission model consists of nonnegative

initial conditions together with the following system of equations:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n (3.4)

where Vi = V−
i − V+

i . We define the matrices,

F =

[
∂Fi

∂xj
(Q0)

]
, V =

[
∂Vi
∂xj

(Q0)

]
,

whereQ0 denotes the DFE with indices i, j = 1, ...,m. The entries of the matrix

G = FV −1

gives the rate at which infected individuals of state j generate new infections

of type i. The matrix G is called the next generation matrix (Diekmann et al.,

1990). R0 is the dominant eigenvalue of G. That is

ℜ0 = ρ(G) = ρ
(
FV −1

)
. (3.5)

For example , considering the epidemic model Equation (3.3) which has a

disease-free quilibrium point p1 = (Λ
µ
, 0, 0).

To compute ℜ0 for the epidemic model Equation (3.3), we note the two

disease states of the epidemic model which are E and I . The vectors Vi and Fi

are given respectively as

F =

βIS
0

 and V−
i − V+

i = V =

(µ+ ϵ)E

µi− ϵE

 .
The matrices F and V are defined respectively as
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F =

0 βS

0 0

 and V =

µ+ ϵ 0

−ϵ µ

 .
Now,

V −1 =

 1
µ+ϵ

0

ϵ
µ(µ+ϵ)

1
µ

 .
The matrix G is now given given by

G = FV −1 =

 βϵ
µ(µ+ϵ)

β
µ

0 0

 .
The basic reproduction number is given by the spectral radius of G, denoted by

ρ(G). That is ,

ℜ0 = ρ(G) =
βϵ

µ(µ+ ϵ)
.

Global Stability analysis

The Lyapunov direct method is generally used to study the stability prop-

erties of an equilibrium point of systems of non-linear ordinary differential

equation globally. There is no general techniqiues for constructing Lyapunov

functions for ODEs.

Theorem 3.1

Let Q ∈ Rn be a domain of origin. Let us consider the equation,

X ′ = f(x), (3.6)

on [0,∞)×Q with f(0) = 0 so that x∗ = 0 is an equilibrium point of Equation

(3.8). Assume that V is a Lyapunov function.
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• If v′(x) ≤ 0 , then x∗ = 0 globally stable .

• If V ′(x) < 0, x ̸= 0 (or −V ′(x) is positive definite), then x∗ = 0 is glob-

ally asymptotically stable .

• If V ′(x) > 0 , x ̸= 0 , then x∗ = 0 is unstable.

Below are some common Lyapunov candidates functions.

• Logarithemic Lyapunov Function:

V (y1, y2, ..., ym) =
∑∑∑m

i=1 qi(yi − y∗i ln
yi
y∗i
),

• Common Quadratic Lyapunov Function:

V (y1, y2, ..., ym) =
∑∑∑i=1

m
qi
2
(yi − y∗)2,

• Composite Quadratic Lyapunov Function:

V (y1, y2, ..., ym) =
q
2

[∑∑∑i=1
m (yi − y∗)

]2

Sensitivity analysis

The sensitivity analysis enables the researcher to ascertain the effect of

the parameters in the model on the independent variable, ℜ0. For example the

researcher may want to know if increasing a particular parameter will result in

increase or decrease in the dependent variable .

The sensitivity index on ℜ0 is given by

≺ℜ0
ρ =

∂ℜ0

∂ρ
· ρ
ℜ0

, (3.7)
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where ℜ0 is the basic reproductive number (independent variable) and ρ is the

parameter of interest.

Example 3.3

Let us consider the SEI model in system Equation (3.3) and compute the

sensitivity index of β with µ = 0.0113 and ϵ = 0.1 and interprete the result.

The basic reproduction number for Equation (3.3) is given by

ℜ0 =
βϵ

µ(µ+ ϵ)
. (3.8)

The sensitivity index of β on ℜ0 is given by,

≺ℜ0
β =

∂ℜ0

∂β
· β
ℜ0

. (3.9)

Differentiating (3.8) partially with respect to β, we have

∂ℜ0

∂β
=

ϵ

µ(µ+ ϵ)
. (3.10)

Substituting Equation (3.8) and Equation (3.10) into Equation (3.9), we

obtain

≺ℜ0
β =

ϵ

µ(µ+ ϵ)
· βµ(µ+ ϵ)

βϵ
. (3.11)

Simplifying Equation (3.11), we obtain

≺ℜ0
β = +1. (3.12)

The plus (+) sign of the right hand side of Equation (3.12) indicates there

is a direct relationship between β and ℜ0. The 1 means that, a unit increase in β

will result in a unit increase in ℜ0.
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Model formulation

In our model, we consider two populations that is human population (Nh(t))

and female-mosquito population (Nm(t)). We compartmentalized human popu-

lation into Susceptible (Sh), Exposed (Eh), Infected (Ih) and Recovered (Rh) at

a given time. We illustrate total human population mathematically as

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

Influx into the susceptible compartment is from two sources that is natural

birth at the rate of Λh and immigration rate (1 − ω − ψ)A. There is a movement

of individuals from the susceptible compartment to the exposed compartment

at a bitting rate ν and the rate of transmission βh. Susceptible human become

exposed at the rate of νβhIm. Furthermore, in the exposed compartment, there

is an influx of immigrants at the rate ω which is a proportion of the total number

of immigrants A coming into the human population at a given time. Individuals

move from the exposed compartment to the infected compartment at the rate αh

which is a proportion of the total number of exposed individuals Eh. Also, in

the infected compartment, there is an influx of immigrants at the rate of ψ which

is a proportion of the total number of immigrants A. Infected individuals may

die of the disease at a rate δ which is a proportion of the total number of infected

individuals Ih. Infected individuals recover at the rate of ρ which is a proportion

of Ih. Individuals in all the compartment can die naturally at the rate µh which

are proportions of the individuals’ respective status at a given time.

In a similar fashion, we compartmentalized female-mosquito population

into susceptible (Sm), exposed (Em), and infected (Im) mosquitoes. The female-

mosquito’s total population is formulated mathematically as

Nm(t) = Sm(t) + Em(t) + Im(t).
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Female-mosquitoes are rucruited into the susceptible compartment by nat-

ural birth rate Λm. Susceptible mosquitoes become infected when they have an

interaction with infected human at the bitting rate ν and the rate of transmission

βm. Susceptible female mosquitoes become infected at the rate of νβmIh. After

the susceptible female-mosquito has an interaction with infected human, they

will progress to the exposed compartment. Female mosquitoes in the exposed

compartment move to the infected compartment at the rate αm which is a pro-

portion of the total number of exposed mosquitoes. Also, female-mosquitoes

in the infected compartment remain infected until they die naturally (Wan &

Cui, 2009). Female-mosquitoes in all the three compartment die naturally at

the rate µm which are proportions of female-mosquitoes’ respective status. Our

model excludes male mosquitoes since they do not take part in the transmission

process.

State variables and parameters description

Explicit description of the state variabls and parameters of the model are

given in Table 1 and 2 below respectively.

Table 1: State Variables and their Description

State Variables Description

Sh Susceptible human

Eh Exposed human

Ih Infected human

Rh Rocovered human

Sm Susceptible female mosquitoes

Em Exposed female mosquitoes

Im Infected female mosquitoes

Source: Mojeeb, Osman and Isaac (2017)
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Table 2: Parameters Description for the Model

Parameters Description

βh Rate of transmission from infectious female

mosquitoes to susceptible human

βm Rate of transmission from infectious human

to susceptible female mosquitoes

Λh Natural birth rate for human

Λm Natural birth rate for female mosquitoes

µh Natural death rate for human

µm Natural death rate for female mosquito

ν Biting rate of female mosquitoes

ω proportion of exposed human immigrants

ψ proportion of infected immigrants

αh Human progression rate from exposed to infected

αm mosquito progression rate from exposed to infected

δ Human disease-induced death rate

ρ Human recovery rate

A Total number of immigrants

Source: Mojeeb et al. (2017)

Based on the state variables and parameters description in Table 1 and 2

above respectively and the assumption made, we present SEIR − SEI model

of malaria transmission in Figure 1
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Figure 1: Compartmental Model for Human-Female Mosquito Transmission of
Malaria with Infective Immigrants.

Equations for the model

From Figure 1, we obtained system of seven (7) non-linear differential

equations.

dSh

dt
= Λh + (1− ω − ψ)A− νβhShIm − µhSh

dEh

dt
= ωA+ νβhShIm − (µh + αh)Eh

dIh
dt

= ψA+ αhEh − (µh + δ + ρ)Ih

dRh

dt
= ρIh − µhRh

dSm

dt
= Λm + νβmSmIh − µmSm

dEm

dt
= νβmSmIh − (µm + αm)Em

dIm
dt

= αmEm − µmIm



(3.13)

Reduced model

Since the first three of system Equation (3.13) are independent of Rh,
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Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t)

and we can obtain Rh from this equation that is

Rh(t) = Nh(t)− (Eh(t) + Eh(t) + Ih(t))

We then concentrate on the reduced system because they have the same

dynamical bahaviour as system Equation (3.13). For this reason, the model

system of the reduced form excluding the Rh is given as

dSh

dt
= Λh + (1− ω − ψ)A− νβhShIm − µhSh

dEh

dt
= ωA+ νβhShIm − (µh + αh)Eh

dIh
dt

= ψA+ αhEh − (µh + δ + ρ)Ih

dSm

dt
= Λm − νβmSmIh − µmSm

dEm

dt
= νβhSmIh − (µm + αm)Em

dIm
dt

= αmEm − µmIm



. (3.14)

Basic Properties of the Malaria Model

Here, we illustrate the positivity and boundedness of solutions of system

Equation (3.14).

Positivity of solutions

For the malaria model transmission to be mathematically and epi-

demiologically correct, it is imperative to show that all state vaiables in the

model system are non-negative at all time. That is to say, model system Equa-

tion (3.14) with non-negative initial condition will give a non-negative solution

at all time.
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Lemma 3.2

Suppose that the initial conditions

{(Sh(0), Sm(0)) > 0, (Eh(0), Ih(0), Em(0), Im(0)) ≥ 0} ∈ Ω, (3.15)

then the solution set

{Sh(t), Sm(t), Eh(t), Ih(t), Em(t), Im(t)},

for model Equation (3.14) is

{(Sh(0), Sm(0)) > 0, (Eh(0), Ih(0), Em(0), Im(0)) ≥ 0} ∈ Ω

for t > 0.

Proof 3.1

We assume that

in considering the first equation in model system Equation (3.14), we have

dSh
dt

= Λh + (1− ω − ψ)A− νβhShIm − µhSh.

It follows that
dSh
dt

≥ −µhSh.

By separation of variables, we have

dSh
Sh

≥ −µhdt.

Integrating both sides, ∫
dSh
Sh

≥ −
∫
µhdt,
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we obtain

ln |Sh| ≥ −µh + co.

Taking antilog on both sides, we obtain

Sh(t) ≥ e−µht+co = e−µhteco

≥ K1e
−µht,

where K1 = eco > 0. Taking the initial condition at t = 0, we have Sh(0) ≥ K1.

This implies

Sh(t) ≥ Sh(0)e
−µht ≥ 0.

For the second equation of model Equation (3.14), we have

dEh
dt

= ωA+ νβhIm − (µh + αh)Eh.

It follows that,
dEh
dt

≥ −(µh + αh)Eh,

By separation of variables, we obtain

dEh
Eh

≥ −(µh + αh)dt.

Integrating both sides,

∫
dEh
Eh

≥ −
∫
(µh + α)dt.

The result is,

ln |Eh| ≥ −(µh + αh)t+ c1.
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Taking antilog on both sides, we have

Eh(t) ≥ e−(µh+αh)t+c1 = e−(µh+αh)ec1

≥ K2e
−(µh+αh)t,

where K2 = ec1 > 0. At t = 0, Eh(0) ≥ K2.

This implies,

Eh(t) ≥ Eh(0)e
(−µh+αh) ≥ 0.

For the third equation of model Equation (3.14), we have

dIh
dt

= ψA+ αhEh − (µh + δ + ρ)Ih.

It follows that,
dIh
dt

≥ −(µh + δ + ρ)Ih.

This gives,
dIh
Ih

≥ −(µh + δ + ρ)dt.

Integrating both sides,

∫
dIh
Ih

≥ −
∫
(µh + δ + ρ)dt.

The result is,

ln |Ih| ≥ −(µh + δ + ρ) + c2.
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Taking antilog on both sides, we have

Ih(t) ≥ e−(µh+δ+ρ)+c2 = e−(µh+δ+ρ)ec2

≥ K3e
−(µh+δ+ρ),

where K3 = ec2 > 0. At t = 0, Ih(0) ≥ K3,

This implies,

Iht ≥ Ih(0)e
−(µh+δ+ρ)t ≥ 0.

For the fourth equation of model Equation (3.14), we have

dSm
dt

= Λm + νβmSmIh − µmSm.

It follows that,
dSm
dt

≥ −µmSm.

This gives
dSm
Sm

≥ −µmdt.

Integrating both sides, ∫
dSm
Sm

≥ −
∫
µmdt.

The result is,

ln |Sm| ≥ −µmt+ c3.

Taking antilog on both sides, we have

Sm(t) ≥ e−µmt+c3 = e−µmtec3

≥ K4e
−µmt,

where K4 = ec3 > 0. At t = 0, Sm(0) ≥ K4 .
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This implies,

Sm(t) ≥ Sm(0)e
−µmt ≥ 0.

For the fifth equation of model Equation (3.14), we have

dEm
dt

= νβhSmIh − (µm + αm)Em.

It follows that,
dEm
dt

≥ −(µm + αm)Em.

This gives,
dEm
Em

≥ −(µm + αm)dt.

Integrating both sides give,

∫
dEm
Em

≥ −
∫

(µm + αm)dt.

The result is,

ln |Em| ≥ −(µm + αm)t+ c4.

Taking antilog on both sides, we have

Em(t) ≥ e−(µm+αm)t+c4

≥ K5e
−(µm+αm)t,

where K5 = ec4 > 0. At t = 0, Em(0) ≥ K5.

This implies,

Em(t) ≥ Em(0)e
−(µm+αm)t ≥ 0.

For the sixth equation of model Equation (3.14), we have

dIm
dt

= αmEm − µmIm.
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It follows that,
dIm
dt

≥ −µmIm.

This gives,
dIm
Im

≥ −µmdt.

Integrating both sides, ∫
dIm
Im

≥ −
∫
µmdt.

The result is,

ln |Im| ≥ −µmt+ c5.

Taking antilog on both sides, we have

Im(t) ≥ e−µmt+c5 = e−µmec5

≥ K6e
−µmt,

Where K6 = ec5 > 0. At t = 0, Im(0) ≥ K6.

This implies,

Im(t) ≥ Im(0)e
−µmt ≥ 0.

Boundedness of solution

Considering the human population of model system Equation (3.14), given

initial conditions

Sh(0) > 0, (Eh(0), Ih(0)) ≥ 0.

The total human population is given by

Nh(t) = Sh(t) + Eh(t) + Ih(t).
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The rate at which the total human population is changing over time is given by

dNh(t)

dt
=
dSh(t)

dt
+
dEh(t)

dt
+
dIh(t)

dt
. (3.16)

Substituting model system Equation (3.14) into Equation (3.16), we obtain

dNh(t)

dt
= Λh + A− µhSh − µhEh − µhIh − (δ + ρ)Ih,

= Λh + A− µh(Sh + Eh + Ih)− (δ + ρ)Ih,

= Λh + A− µhNh − (δ + ρ)Ih.

(3.17)

Lemma 3.3

We have the result below for the boundedness of model Equation (3.14).

The feasible region of the human population is defined by

Ωh =

{
(Sh, Eh, Ih) ∈ R3

+ : Sh + Eh + Ih ≤
Λh + A

µh
, Sh > 0, (Eh, Ih) ≥ 0

}
.

From Equation (3.17), we have

dNh(t)

dt
≥ Λh + A− µhNh,

dNh(t)

dt
+ µhNh ≥ Λh + A. (3.18)

Using integrating factor eµht, the computation for solving Equation (3.18)

is given as

eµht
dNh(t)

dt
+ eµhtµhNh ≥ eµht(Λh + A)

d(eµhtNh)

dt
≤ eµht(Λh + A)
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d(eµhNh) ≤ eµh(Λh + A)dt∫
d(eµhNh) ≤

∫
eµh(Λh + A)dt

eµhtNh(t) ≤
(Λh + A)

µh
eµht + c8,

where c8 > 0 is the constant of integration

Nh(t) ≤
Λh + A

µh
+ e−µhtc8.

At t = 0, Nh(0) ≤ Λh+A
µh

+ c8, where

c8 = Nh(0)− Λh+A
µh

.

Nh(t) ≤
Λh + A

µh
+ e−µht

(
Nh(0)−

Λh + A

µh

)
. (3.19)

Taking limit of Equation (3.19) as t→ ∞, we have

lim
t→∞

(
Nh(t) ≤

Λh + A

µh
+ e−µht(Nh(0)−

Λh + A

µh
)

)
,

lim
t→∞

Nh(t) ≤ lim
t→∞

Λh + A

µh
+ lim

t→∞
e−µht

(
Nh(0)−

Λh + A

µh

)
,

which is simplifies to

lim
t→∞

Nh(t) ≤
Λh + A

µh
. (3.20)

Hence, the human population is bounded above by the carrying capacity

Λh+A
µh

and its feasible set is given by

Ωh :=

{
(Sh, Eh, Ih) ∈ R3

+ : Sh + Eh + Ih ≤
Λh + A

µh
, Sh > 0, (Eh, Ih) ≥ 0

}
.

Also, considering the mosquito population of model Equation (3.14), given
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initial conditions

Sm(0) > 0, (Em(0), Im(0)) ≥ 0.

The total mosquito population is given by

Nm(t) = Sm(t) + Em(t) + Im(t).

The rate at which the total mosquito population is changing over time is

given by

dNm(t)

dt
=
dSm(t)

dt
+
dEm(t)

dt
+
dIm(t)

dt
. (3.21)

Substituting model system Equation (3.14) into (3.21), we obtain

dNm(t)

dt
= Λm − µmSm − µmEm − µmIm,

= Λm − µm(Sm + Em + Im),

= Λm − µmNm.

(3.22)

Lemma 3.4

We have the result for the boundedness of model Equation (3.14), the

feasible region for the female-mosquito population is define by

Ωm =

{
(Sm, Em, Im) ∈ R3

+ : Sm + Em + Im ≤ Λm
µm

, Sm > 0, (Em, Im) ≥ 0

}
.

From Equation (3.21), we have

dNm(t)

dt
≤ Λm − µmNm,

dNm(t)

dt
+ µmNm ≤ Λm. (3.23)
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Using integration factor eµmt, the computation for solving Equation (3.23)

is given by

eµmt
dNm(t)

dt
+ eµmtµmNm ≤ eµmtΛm

d

dt
(eµmtµmNm) ≤ eµmtΛm

d(eµmtNm) ≤ eµmtΛm∫
d(eµmtNm) ≤

∫
eµmtΛmdt

eµmtNm(t) ≤
Λm
µm

eµmt + c9,

where c9 is the constant of integration

Nm(t) ≤
Λm
µm

+ e−µmtc9

At t = 0, Nm(0) ≤ Λm

µm
+ c9, where

c9 = Nm(0)− Λm

µm

Nm(t) ≤
Λm
µm

+ e−µmt
(
Nm(0)−

Λm
µm

)
. (3.24)

Taking limit of Equation (3.24) as t→ ∞, we have

lim
t→∞

(
Nm(t) ≤

Λm
µm

+ e−µht(Nm(0)−
Λm
µm

)

)
,

lim
t→∞

(Nm(t) ≤ lim
t→∞

Λm
µm

+ lim
t→∞

e−µht
(
Nm(0)−

Λm
µm

)
,

which is simplifies to

lim
t→∞

(Nm(t) ≤
Λm
µm

.

Hence, the female-mosquito population is bounded above by the carrying ca-
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pacity Λm

µm
and its feasible set is given by

Ωm :=

{
(Sm, Em, Im) ∈ R3

+ : Sm + Em + Im ≤ Λm
µm

, Sm > 0, (Em, Im) ≥ 0

}
.

Model Steady State for the First Case: A = 0

The system Equation (3.14) has two equilibria that is disease-free equilib-

rium point (DFE) and endemic equilibrium point (EE1) when we there are no

exposed and infected immigrants (ω = ψ = 0).Equating the right hand side of

system Equation (3.14) to zero, we have,

Λh − νβhShIm − µhSh = 0

νβhShIm − (µh + αh)Eh = 0

αhEh − (µh + δ + ρ)Ih = 0

Λm − νβmSmIh − µmSm = 0

νβmSmIh − (µm + αm)Em = 0

αmEm − µmIm = 0



. (3.25)

Disease-Free Equlibrium (DFE)

At the disease-free equilibrium, we assume that there is no malaria in the

population. Therefore, at the disease-free equilibrium, we have E0
h = I0h =

E0
m = I0m = 0.

Substituting E0
h = I0h = E0

m = I0m = 0 into the first and second equations

of the system in Equation (3.25), we have

Λh − µhS
0
h = 0, (3.26)

and

Λm − µmS
0
m = 0. (3.27)
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Making S0
h the subject of Equation (3.26), we obtain

S0
h =

Λh
µh
.

Similarly, making S0
m the subject of Equation (3.27), we obtain

S0
m =

Λm
µm

.

Therefore , the disease- free equilibrium point Q0 with the axis is given by

Q0 = (S0
h, E

0
h, I

0
h, S

0
m, E

0
m, I

0
m),

which is defined by

Q0 =

(
Λh
µh
, 0, 0,

Λm
µm

, 0, 0

)
.

The Basic Reproduction Number

In this section, we employed next generation matrix appraoch to compute

the basic reproduction number, ℜ0. The basic reproduction, ℜ0 plays an eminent

role in epidemiological theory for infectious diseases. The basic reproduction

number, ℜ0 in this context is nothing more than the expected number of humans

who would be infected after one generation of the parasite by a singular infec-

tious human who is introduced into a susceptible population. What is essential

about the ℜ0 is that, it measures how swiftly a disease can spread in its incipient

stage and can foretell whether an infectious disease will die out or will become

endemic in a population whenever ℜ0 < 1 and ℜ0 > 1 respectively. It can also

be used to establish stability of steady states of disease models.

The system Equation (3.14) has four infected states that is Eh, Ih, Em and

Im given by
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dEh

dt
= ωA+ νβhShIm − (µh + αh)Eh

dIh
dt

= ψA+ αhEh − (µh + δ + ρ)Ih

dEm

dt
= νβhSmIh − (µm + αm)Em

dIm
dt

= αmEm − µmIm


. (3.28)

and two uninfected states, Sh, Sm. At the disease free state

E0
h = I0h = E0

m= E0
m =A= 0 and S0

h =
Λh

µh
, S0

m = Λm

µm
.

The vectors Fi and Vi are given by

Fi =



νβhShIm

0

νβmSmIh

0


, (3.29)

and

Vi =



(µh + αh)Eh

(µh + δ + ρ)Ih − αhEh

(µm + αm)Em

µmIm + αmEm


, (3.30)

respectively. The partial derivative of Equation (3.29) with respect to Eh, Ih,

Em and Im is given by

F =



0 0 0 νβhSh

0 0 0 0

0 νβmSm 0 0

0 0 0 0


. (3.31)

Evaluating Equation (3.31) at the disease-free equilibrium point (Q0) and the
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Jacobian matrix of Fi is given by

F =



0 0 0 νβhΛh

µh

0 0 0 0

0 νβmΛm

µm
0 0

0 0 0 0


.

Similarly, the partial derivative of Equation (3.30) with respect toEh, Ih,Em,and

Im is given by

V =



(µh + αh) 0 0 0

−αh (µh + δ + ρ) 0 0

0 0 (µm + αm) 0

0 0 −αm µm


. (3.32)

Evaluating Equation (3.32) at the disease-free equilibrium point (Q0) and the

Jacobian matrix of Vi is given by

V =



(µh + αh) 0 0 0

−αh (µh + δ + ρ) 0 0

0 0 (µm + αm) 0

0 0 −αm µm


.

The inverse of the matrix V is given by

V −1 =



1
(µh+αh)

0 0 0

αh

(µh+αh)(µh+δ+ρ)
1

(µh+δ+ρ)
0 0

0 0 1
(µm+αm)

0

0 0 αm

µm(µm+αm)
1
µm


.

The Next Generation Matrix is given by

G = FV −1,
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=



0 0 0 νβhΛ
µh

0 0 0 0

0 νβmΛm

µm
0 0

0 0 0 0





1
(µh+αh)

0 0 0

αh

(µh+αh)(µh+δ+ρ)
1

(µh+δ+ρ)
0 0

0 0 1
(µm+αm)

0

0 0 αm

µm(µm+αm)
1
µm


,

=



0 0 νβhΛhαm

µhµm(µm+αm)
νβhΛhαm

µhµm

0 0 0 0

νβmΛmαh

µm(µh+αh)(µh+δ+ρ)
νβmΛm

µm(µh+δ+ρ)
0 0

0 0 0 0


.

The eigen values of G are given by

λ1 = 0 , λ2 = 0, λ3 = −
√

ν2βhΛhβmΛmαmαh

µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)
and λ4 =√

ν2βhΛhβmΛmαmαh

µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)
.

The basic reproduction number ℜ0 is the spectral radius of the next generation

matrix G,

ℜ0 =

√
ν2βhΛhβmΛmαmαh

µhµ2
m(µm + αm)(µh + αh)(µh + δ + ρ)

. (3.33)

Equation (3.33) can also be expressed as

ℜ2
0 =

ν2βhΛhβmΛmαmαh
µhµ2

m(µm + αm)(µh + αh)(µh + δ + ρ)
. (3.34)

Endemic Equilibrium (EE1) when A = 0

In this section, we determine the endemic equilibrium point by solving

the system in Equation (3.25) simulteneously for all the state variables. The en-

demic equilibrium points are the steady-state solutions where the malaria cannot

be eliminated but remains in the total population. At the endemic equilibrium,

the following equations are satisfied:
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Λh − νβhS
∗
hI

∗
m − µhS

∗
h = 0

νβhS
∗
hI

∗
m − (µh + αh)E

∗
h = 0

αhE
∗
h − (µh + δ + ρ)I∗h = 0

Λm − νβmS
∗
mI

∗
h − µmS

∗
m = 0

νβmS
∗
mI

∗
h − (µm + αm)E

∗
m = 0

αmE
∗
m − µmI

∗
m = 0



. (3.35)

Making S∗
m the subject of the fourth equation in Equation (3.35), we have

S∗
m =

Λm
νβmI∗h + µm

. (3.36)

Substituting Equation (3.36) into the fifth equation in Equation (3.35), we have

νβmΛmI
∗
h

νβmI∗h + µm
− (µm + αm)E

∗
m = 0. (3.37)

Making E∗
m the the subject of Equation (3.37) , we have

E∗
m =

νβmΛmI
∗
h

(µm + αm)(νβmI∗h + µm)
. (3.38)

Also, substituting E∗
m into the sixth equation in Equation (3.35), we have

νβmΛmαmI
∗
h

(µm + αm)(νβmI∗h + µm)
− µmI

∗
m = 0. (3.39)

Making I∗m the subject of Equation (3.39), give us

I∗m =
νβmΛmαmI

∗
h

µm(µm + αm)(νβmI∗h + µm)
. (3.40)

Again, making E∗
h the subject of equation three in Equation (3.35), we have

E∗
h =

1

αh
[(µh + δ + ρ)I∗h] . (3.41)
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Also, adding the first and the second equations in Equation (3.35) together, give

us

Λh − µhS
∗
h − (µh + αh)E

∗
h = 0. (3.42)

Substituting Equation (3.41) into Equation (3.42) give us

Λh − µhS
∗
h −

(µh + αh)(µh + δ + ρ)I∗h
αh

= 0. (3.43)

Making S∗
h the subject of Equation (3.43), we have

S∗
h =

1

αhµh
[αhΛh − (µh + αh)(µh + δ + ρ)I∗h] . (3.44)

Similarly, substituting Equation (3.40) and Equation (3.41) into the second equa-

tion in Equation (3.25), give us

ν2βhβmΛmαmS
∗
hI

∗
h

µm(µm + αm)(νβmI∗h + µm)
− (µh + αh)(µh + δ + ρ)I∗h

αh
= 0. (3.45)

Making S∗
h the subject of Equation (3.45), we have

S∗
h =

µm(µm + αm)(µh + αh)(µh + δ + ρ)(νβmI
∗
h + µm)

ν2βhβmΛmαmαh
. (3.46)

From Equation (3.44) and Equation (3.46), we have

αhΛh − q1I
∗
h

µh
=
q1µm(µm + αm)(νβmI

∗
h + µm)

ν2βhβmΛmαm
, (3.47)

where q1 = (µh + αh)(µh + δ + ρ).

Simplifying and rearranging Equation (3.47) , we obtain

q1νβmMI∗h −K = 0. (3.48)

Replacing the value of q1 with (µh + αh)(µh + δ + ρ) in Equation (3.48), we
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have

νβm(µh + αh)(µh + δ + ρ)MI∗h −K = 0. (3.49)

Making I∗h the subject of Equation (3.49), we have

I∗h =
K

νβm(µh + αh)(µh + δ + ρ)M
. (3.50)

where

K = ν2βhΛhβmΛmαmαh − µhµm(µm + αm)(µh + αh)(µh + δ + ρ

M = νβhΛmαm + µhµm(µm + αm)

 .(3.51)

Substituting Equation (3.50) into the Equation (3.36), we have

S∗
m =

Λm
νβmK

νβm(µh+αh)(µh+δ+ρM
+ µm

. (3.52)

Simplifying Equation (3.52), we obtain

S∗
m =

Λm(µh + αh)(µh + δ + ρ)M

K + µm(µh + αh)(µh + δ + ρ)M
.

Similarly, substituting Equation (3.50) into Equation (3.41), we obtain

E∗
h =

(µh + δ + ρ)K

νβmαh(µh + αh)(µh + δ + ρ)M
. (3.53)

Simplifying Equation (3.53), we have

E∗
h =

K

νβmαh(µh + αh)M
.

The rest of the points are obtained in a similar fashion. The endemic equilibrium

point Q∗ is given by
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Q∗ = (S∗
h, E

∗
h, I

∗
h, S

∗
m, E

∗
m, I

∗
m),

where

S∗
h = µm(µm+αm)[K+µm(µh+αh)(µh+δ+ρ)M ]

ν2βhβmΛmαmαhM

E∗
h = K

νβmαh(µh+αh)M

I∗h = K
νβm(µh+αh)(µh+δ+ρ)M

S∗
m = Λm(µh+αh)(µh+δ+ρ)M

K+µm(µh+αh)(µh+δ+ρ)M

E∗
m = ΛmK

(µm+αm)[K+µm(µh+αh)(µh+δ+ρ)M ]

I∗m = ΛmαmK
µm(µm+αm)[K+µm(µh+αh)(µh+δ+ρ)M ]



. (3.54)

We can express the endemic equilibium points (Q∗) in terms of the basic

reproduction number (ℜ0). From Equation (3.51),

K = ν2βhΛhβmΛmαmαh − µhµ
2
m(µm + αm)(µh + αh)(µh + δ + ρ). (3.55)

Factorizing Equation (3.55), we have

K = µhµ
2
m(µm+αm)(µh+αh)(µh+δ+ρ)

[
ν2βhΛhβmΛmαmαh

µhµ2
m(µm + αm)(µh + δ + ρ)

− 1

]
.

(3.56)

Substituting Equation (3.34) into Equation (3.56), we obtained

K = µhµ
2
m(µm + αm)(µh + αh)(µh + αh)(µh + δ + ρ)[ℜ2

0 − 1]. (3.57)

Substituting Equation (3.57) into the third equation in Equation (3.54) and sim-

plifying further, we have

I∗h =
µhµ

2
m(µm + αm)[ℜ2

0 − 1]

νβmM
.

Silimilarly, substititing Equation (3.57) into the second equation in Equation

43

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



(3.54) and further simplification give us

E∗
h =

µhµm(µm + αm)(µh + δ + ρ)[ℜ2
0 − 1]

νβmαhM
.

We obtain the rest of the points in a similar fashion. The endemic equililibrium

state in terms of ℜ0 are provided in Equation (3.58)

S∗
h =

µ2
m(µm + αm)(µh + αh)(µh + δ + ρ)[µhµm(µm + αm)ℜ2

0 + νβhΛmαm]

ν2βhβmΛmαmαhM
,

E∗
h =

µhµm(µm + αm)(µh + δ + ρ)[ℜ2
0 − 1]

νβmαhM
,

I∗h =
µhµ

2
m(µm + αm)[ℜ2

0 − 1]

νβmM
,

S∗
m =

ΛmM

µm[µhµm(µm + αm)ℜ2
0 + νβhΛmαm]

,

E∗
m =

Λmµhµm(µm + αm)[ℜ2
0 − 1]

µhµm(µm + αm)ℜ2
0 + νβhΛmαm]

,

I∗m =
Λmαmµh[ℜ2

0 − 1]

µhµm(µm + αm)ℜ2
0 + νβhΛmαm]

.

(3.58)

Local Stability Analysis at the Disease Free Equilibrium Point (DFE), Q0

Now, we investigate the local stability of the disease-free equilibrium

point (DFE) when we assume that there are no immigrants that come into the

human population, that is A = 0 using the theorem below.

Theorem 3.5

The disease-free equilibrium point (Q0) which is locally asymptotically

stable if ℜ2
0 < 1 and unstable if ℜ2

0 > 1.

Proof 3.2

The Jacobian matrix of system Equation (3.14) is given by
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J =



−b1 − µh 0 0 0 0 −νβhSh

b1 b2 0 0 0 νβhSh

0 αh b3 0 0 0

0 0 −νβmSm −b4 − µm 0 0

0 0 νβmSm b4 −(µm + αm) 0

0 0 0 0 αm −µm


,

where b1 = νβhIm, b2 = −(µh + αh), b3 = −(µh + δ + ρ) and b4 = νβmIh.

Evaluating the above matrix at DFE gives J(Q0) as

J(Q0) =



−µh 0 0 0 0 −νβhΛh

µh

0 b2 0 0 0 νβhΛh

µh

0 αh b3 0 0 0

0 0 −νβmΛm

µm
−µm 0 0

0 0 νβmΛm

µm
0 −(µm + αm) 0

0 0 0 0 αm −µm


.

From columns 1 and 4, we get two of the eigenvlaues λ1 = −µh and

λ2 = −µm which are all negatives. we have the remaining matrix as

Jr =



−(µh + αh) 0 0 νβhΛh

µh

αh −(µh + δ + ρ) 0 0

0 νβmΛm

µm
−(µm + αm) 0

0 0 αm −µm


. (3.59)

We perform an elementary row-transformation for Equation (3.59) to en-

able us get the main diagonal as the eigenvalues. We obtain the following matrix
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αh
(µh + αh)

R1 +R2 → R2,



−(µh + αh) 0 0 νβhΛh

µh

0 −(µh + δ + ρ) 0 νβhΛhαh

µh(µh+αh)

0 νβmΛm

µm
−(µm + αm) 0

0 0 αm −µm


. (3.60)

Also,
νβmΛm

µm(µh + δ + ρ)
R2 +R3 → R3,



−(µh + αh) 0 0 νβhΛh

µh

0 −(µh + δ + ρ) 0 νβhΛhαh

µh(µh+αh)

0 0 −(µm + αm)
ν2βmβhΛhΛmαh

µmµh(µh+αh)(µh+δ+ρ)

0 0 αm −µm


.

(3.61)

Similarly,

αm
(µm + αm)

R3 +R4 → R4,



−(µh + αh) 0 0 νβhΛh

µh

0 −(µh + δ + ρ) 0 νβhΛhαh

µh(µh+αh)

0 0 −(µm + αm)
ν2βmβhΛhΛmαh

µmµh(µh+αh)(µh+δ+ρ)

0 0 0 D


,

(3.62)
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where

D = −µm +
ν2βmβhΛhΛmαhαm

µmµh(µm + αm)(µh + αh)(µh + δ + ρ)
.

The eigen values of Equation (3.62) are

λ3 = −(µh + αh) < 0 , λ4 = −(µh + δ + ρ) < 0 , λ5 =

−(µm + αm) < 0 and λ6 = D

For stability, λ6 < 0. Since λ1, λ2, λ3, λ4 and λ51 .

Using the value of D, we have

−µm +
ν2βmβhΛhΛmαhαm

µhµm(µm + αm)(µh + αh)(µh + δ + ρ)
< 0. (3.63)

We can expressed Equation (3.63) as

ν2βmβhΛhΛmαhαm
µmµh(µm + αm)(µh + αh)(µh + δ + ρ)

< µm. (3.64)

Dividing Equation (3.64) by µm, we have

ν2βmβhΛhΛmαhαm
µhµ2

m(µm + αm)(µh + αh)(µh + δ + ρ)
< 1. (3.65)

The right hand side of Equation (3.65) is the same as ℜ2
0 in Equation (3.34) so

expressing Equation (3.65) in terms of the basic reproduction number, ℜ0, we

have

ℜ2
0 < 1 ,

=⇒ ℜ0 < 1.

This shows that the disease-free equilibrium point is locally asymptotically sta-

ble if ℜ0 < 1.

Local Stability Analysis at the Endemic Equilibrium Point (EE1), Q∗

Again, we investigate the local stability of the endemic equilibrium point

with A = 0 using the theorem below.
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Theorem 3.6

The endemic equilibrium (Q∗) withA = 0 is locally asymptotically stable

if ℜ2
0 > 1 and unstable if ℜ2

0 < 1.

We will investigate the local stability of the EE1 by writing the infected

compartments for the EE1 in terms of ℜ2
0. The infected compartments of Q∗ in

terms of ℜ2
0 in Equation (3.58) is given by

E∗
h =

µhµm(µm+αm)(µh+δ+ρ)[ℜ2
0−1]

νβmαhM

I∗h =
µhµ

2
m(µm+αm)[ℜ2

0−1]

νβmM

E∗
m =

Λmµhµm(µm+αm)[ℜ2
0−1]

µhµm(µm+αm)ℜ2
0+νβhΛmαm]

I∗m =
Λmαmµh[ℜ2

0−1]

µhµm(µm+αm)ℜ2
0+νβhΛmαm]


. (3.66)

Since human and female-mosquito populations cannot assume a negative

value, it is crystal clear that E∗
h, I

∗
h, E

∗
m and I∗m are positive whenever ℜ2

0 > 1.

In other words, the only way the endemic equilibrium EE1 in system Equation

(3.66) can exist is when ℜ2
0 > 1.

Global Stability Analysis of the Disease Free Equilibrium (DFE), Q0

In this section, we will examine the global stability of the DFE in the

feasible region Ω. When the DFE is globally asymptotically stable, no matter

the size of the initial population , the disease will not persist in the population.

We will use Lyapunov method to study the global stabilty of the DFE.

Theorem 3.7

If ℜ2
0 ≥ 1 , then the disease free equilibrium (DFE) is globally asymptoti-

cally stable in the feasible region Ω.

Proof 3.3
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Let us consider the Lyapunov function below

V (t) = Eh(t) + q1Ih(t) + q2νβhΛhEm(t) + q3Im(t), (3.67)

where q1 > 0 , q2 > 0 and q1 > 0.

The derivative of Equation (3.67) along system Equation (3.14) gives the

expression

V ′(t) = E ′
h(t) + q1I

′
h(t) + q2νβhΛhE

′
m(t) + q3I

′
m(t), (3.68)

which ′ denotes the derivate with respect to time t. Substituting system Equation

(3.28) into Equation (3.68) with A = 0, we have

V ′(t) = νβhS
0
hI

0
m − (µh + αh)E

0
h + q1[αhE

0
h − (µh + δ + ρ)I0h]

+ q2νβhΛhαh[νβmS
0
mI

0
h − (µm + αm)E

0
m]

+ q3[αmE
0
m − µmI

0
m],

= νβhS
0
hI

0
m − (µh + αh)E

0
h + q1αhE

0
h − q1(µh + δ + ρ)I0h

+ q2ν
2βmβhΛhαhS

0
mI

0
h − q2νβhΛhαh(µm + αm)E

0
m

+ q3αmE
0
m − q3µmI

0
m.

(3.69)

Choosing q1, q2 and q3 respectively as

(µh+αh)
αh

, αh

αhµm(µm+µm)
and νβhΛh

µhµm
,

and substituting it into Equation (3.69) and simplifying further, we have

V ′(t) = νβhS
0
hI

0
m − (µh + αh)(µh + δ + ρ)I0h

αh

+
αmν

2βmβhΛhαh
µhµm(µm + αm)

− νβhΛhI
0
m

µh
.

(3.70)
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Note that

S0
h =

Λh
µh
, S0

m =
Λm
µm

. (3.71)

Substituting Equation (3.71) into Equation (3.70), we have

V ′(t) =
νβhΛhI

0
m

µh
− (µh + αh)(µh + δ + ρ)I0h

αh

+
αmν

2βmβhΛhΛmαh
µhµ2

m(µm + αm)
− νβhΛhI

0
m

µh
.

(3.72)

Simplifying Equation (3.72), we have

V ′(t) =
ν2βmβhΛhΛmαmI

0
h

µhµ2
m(µm + αm)

− (µh + αh)(µh + δ + ρ)I0h
αh

. (3.73)

Epressing Equation (3.73) in terms of ℜ0, we have

V ′(t) =
(µh + αh)(µh + δ + ρ)

αh
[ℜ2

0 − 1]I0h. (3.74)

Hence, 
V ′(t) = 0 if ℜ2

0 = 1 or I0h = 0

V ′(t) < 0 if ℜ2
0 < 1.

(3.75)

Therefore, the disease-free equilibrium is globally asymptotically stable

in the feasible region Ω whenever ℜ2
0 ≤ 1.

Global Stability of Endemic Equilibrium Point (EE1), Q∗

In this section, we will examine the global stability of endemic equilib-

rium Q∗.

Theorem 3.8

If A = 0 and ℜ0 > 1, the endemic equilibrium Q∗ of system Equation

(3.14) is globally asymptotically stable in the feasible region Ω .

Proof 3.4
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Let us consider the Lyapunov function below

L2(t) = a1(Sh − S∗
h lnSh) + a2(Eh − E∗

h lnEh)+

a3(Ih − I∗h ln Ih) + a4(Sm − S∗
m lnSm)+

a5(Em − E∗
m lnEm) + a6(Im − I∗m ln Im).

(3.76)

Differentiating Equation (3.76) along system Equation (3.14) gives the expres-

sion below

L′
2(t) = a1S

′
h(1−

S∗
h

Sh
) + a2E

′
h(1−

E∗
h

Eh
)+

a3I
′
h(1−

I∗h
Ih
) + a4S

′
m(1−

S∗
m

Sm
)+

a5E
′
m(1−

E∗
m

Sm
) + a6I

′
m(1−

I∗m
Im

).

(3.77)

Substituting system Equation (3.14) into Equation (3.77) gives us

L′
2(t) = a1 (Λh + A− νβhShIm − µh)

[
1− S∗

h

Sh

]
+ a2 (νβhIm − (µh + αh)Eh)

[
1− E∗

h

Eh

]
+ a3 (αhEh − (µh + δ + ρ)Ih)

[
1− I∗h

Ih

]
+ a4 (Λm + νβmSmIh − µmSm)

[
1− S∗

m

Sm

]
+ a5 (νβhSmIh − (µm + αm)Em)

[
1− E∗

m

Sm

]
+ a6 (αmEm − µmIm)

[
1− I∗m

Im

]
.

(3.78)

Equation (3.78) can be expressed as
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L′
2(t) = a1 (νβhS

∗
hI

∗
m + µhS

∗
h − νβhShIm − µhSh)

[
1− S∗

h

Sh

]
+ a2 (νβhShIm)

[
1− E∗

h

Eh

]
+ a3 (αhEh)

[
1− I∗h

Ih

]
+ a4 (νβmS

∗
mI

∗
h + µmS

∗
m − νβmSmIh − µmSm)

[
1− S∗

m

Sm

]
+ a5

(
νβmSmIh −

νβmS
∗
mI

∗
h

E∗
m

Em

)[
1− E∗

m

Sm

]
+ a6

(
αmEm − αmE

∗
m

I∗m
Im

)[
1− I∗m

Im

]
.

(3.79)

L′
2(t) = a1

[
µhS

∗
h − µh

S∗2
h

Sh
− µhSh + µhS

∗
h + νβhS

∗
hI

∗
m

− νβhS
∗2
h I

∗
m

Sh
− νβhShIm + νβhS

∗
hIm

]
+a2

[
νβhShIm − νβhImE

∗
h

Eh

− νβhS
∗
hI

∗
mEh

E∗
h

+ νβhS
∗
hI

∗
m

]
+a3

[
αhEh −

αhEhI
∗
h

Ih

− αhEhIh
I∗h

+ αhE
∗
h

]
+a4

[
νβmS

∗
mI

∗∗
h + µmS

∗
m

− νβmS
∗2
m I

∗
h

Sm
− µmS

∗2

Sm
− νβmSmIh + νβmS

∗
mIh

− µmSm + µmS
∗
m

]
+a5

[
νβmSmIh −

νβmSmIhE
∗
m

Em

− νβmS
∗
mI

∗
hEm

E∗
m

+ νβmS
∗
mI

∗
h

]
+a6

[
αmEm−

− αmEmI
∗
m

Im
− αmE

∗
mIm

I∗m
+ αmE

∗
m

]
.

(3.80)
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L′
2(t) = a1

[
2µhS

∗
h − µhSh − µh

S∗2
h

Sh
+ νβhS

∗
hI

∗
m

− νβhS
∗2
h I

∗
m

Sh
− νβhShIm + νβhS

∗
hIm

]
+a2

[
νβhShIm − νβhImE

∗
h

Eh

− νβhS
∗
hI

∗
mEh

E∗
h

+ νβhS
∗
hI

∗
m

]
+a3

[
αhEh −

αhEhI
∗
h

Ih
− ψAIh

I∗h

− αhEhIh
I∗h

+ αhE
∗
h

]
+a4

[
2µmS

∗
m + νβmS

∗
mI

∗
h

− νβmS
∗2
m I

∗
h

Sm
− µmS

∗2

Sm
− νβmSmIh + νβmS

∗
mIh

− µmSm

]
+a5

[
νβmSmIh −

νβmSmIhE
∗
m

Em

− νβmS
∗
mI

∗
hEm

E∗
m

+ νβmS
∗
mI

∗
h

]
+a6

[
αmEm−

− αmEmI
∗
m

Im
− αmE

∗
mIm

I∗m
+ αmE

∗
m

]
.

(3.81)

L′
2(t) = a1

[
µhS

∗
h

(
2− Sh

S∗
h

− S∗
h

Sh

)
+ νβhS

∗
hI

∗
h

(
1− S∗

h

Sh
+
Im
I∗m

− shIm
S∗
hI

∗
m

)]

+ a2

[
νβhS

∗
hI

∗
m

(
1− ShImE

∗
h

S∗
hI

∗
mEh

+
ShIm
S∗
hI

∗
m

− Eh
E∗
h

)]

+ a3

[
αhE

∗
h

(
1− Eh

E∗
h

+
EhI

∗
h

E∗
hIm

− Ih
I∗h

)]

+ a4

[
µmS

∗
m

(
2− Sm

S∗
m

− S∗∗
m

Sm

)
+ νβmS

∗
mI

∗∗
m

(
1− S∗

m

Sm
+

Ih
I∗∗h

−

smIh
S∗
mI

∗
h

)]
+a5

[
νβmS

∗
mI

∗
h

(
1− SmIhE

∗
m

S∗
mI

∗
hEm

+
SmIh
S∗
mI

∗
h

− Em
E∗
m

)]

+ a6

[
αmE

∗
m

(
1− Em

E∗
m

+
EmI

∗
m

E∗
mIm

− Im
I∗m

)]
.

(3.82)

We choose the constants a1 , a2 , a3 , a4 , a5 and a6 respectively as
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1 , 1, βhS
∗
hI

∗
m

βmS∗
mI

∗
h

, βhS
∗
hI

∗
m

βmS∗
mI

∗
h

, βhS
∗
hI

∗
m

βmS∗
mI

∗
h

and νβhS
∗
hI

∗
m

αmE∗
h
.

Sustituting a1 , a2 , a3 , a4 , a5 and a6 into Equation (3.82) gives

L′
2(t) =

[
µhS

∗
h

(
2− Sh

S∗
h

− S∗
h

Sh

)
+ νβhS

∗
hI

∗
h

(
1− S∗

h

Sh
+
Im
I∗m

− shIm
S∗
hI

∗
m

)]

+

[
νβhS

∗
hI

∗
m

(
1− ShImE

∗
h

S∗
hI

∗
mEh

+
ShIm
S∗
hI

∗
m

− Eh
E∗
h

)]

+
βhS

∗
hI

∗
m

βmS∗
mI

∗
h

[
αhE

∗∗
h

(
1− Eh

E∗
h

+
EhI

∗
h

E∗
hIm

− Ih
I∗∗h

)]

+
βhS

∗
hI

∗
m

βmS∗
mI

∗
h

[
µmS

∗
m

(
2− Sm

S∗
m

− S∗
m

Sm

)
+ νβmS

∗
mI

∗
m

(
1− S∗

m

Sm

+
Ih
I∗h

− smIh
S∗
mI

∗
h

)]
+
βhS

∗
hI

∗
m

βmS∗
mI

∗
h

[
νβmS

∗
mI

∗
h

(
1− SmIhE

∗∗
m

S∗
mI

∗
hEm

+
SmIh
S∗
mI

∗
h

− Em
E∗
m

)]
+
νβhS

∗
hI

∗
m

αmE∗
h

[
αmE

∗
m

(
1− Em

E∗
m

+
EmI

∗
m

E∗
mIm

− Im
I∗m

)]
.

(3.83)

Simplifying Equation (3.83) further gives us

L′
2(t) = µhS

∗
h

[
2− Sh

S∗
h

− S∗
h

Sh

]
+νβhS

∗
hI

∗
m

[
6− S∗

h

Sh

− S∗
m

Sm
− EhI

∗
h

E∗
hIh

− ShE
∗
hIm

S∗
hEhI

∗
m

− SmE
∗
mIh

S∗
mEmI

∗
h

− EmI
∗
m

E∗
mIm

]
+
µmβhS

∗
hI

∗
m

βmI∗h

[
2− S∗

m

Sm
− Sm
S∗
m

]
.

(3.84)

From Equation (3.84), it is clear that

2− Sh

S∗
h
− S∗

h

Sh
≤ 0,

6− S∗
h

Sh
− S∗

m

Sm
− EhI

∗
h

E∗
hIh

− ShE
∗
hIm

S∗
hEhI∗m

− SmE∗
mIh

S∗
mEmI∗∗h

− EmI∗m
E∗

mIm
≤ 0,

2− E∗
h

Eh
− Eh

E∗
h
≤ 0,

2− I∗h
Ih

− 1h
I∗h

≤ 0,

2− S∗
m

Sm
− Sm

S∗
m
≤ 0.
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Hence,

L′
2(t) ≤ 0 for ℜ0 > 1.

All the parameters in Equation (3.84) are nonnegative, so L′
2(t) = 0 if Sh =

S∗
h, Eh = E∗

h, Ih = I∗h, Sm = S∗
m, Em = E∗

m and Im = I∗m .

Therefore, the endemic equilibrium Q∗ = (S∗
h, E

∗
h, I

∗
h, S

∗
m, E

∗
m, I

∗
m) are globally

asymptotically stable whenever ℜ0 > 1 . What Theorem (3.8) means epidemio-

logically is that malaria will persist whenever ℜ0 > 1 , regardless of the number

of infected individuals at the initial stage of the population.

Model Steady State for the Second Case: (A > 0 and 0 < ω < 1,

0 < ψ < 1)

In this section, we determine the endmic equilibrium point, (EE2) when

there are proportions of exposed and infected immigrants (0 < ω < 1 and

0 < ψ < 1). At the equilibrium points, state variables are static with respect

to time. To compute the equilibrium points, we equate the right-hand side of

system Equation (3.14) to zero and solve the resulting system simulteneously.

Equating the right hand side of system Equation (3.14) to zero, we have,

Λh + (1− ω − ψ)A− νβhS
∗∗
h I

∗∗
m − µhS

∗∗
h = 0

ωA+ νβhS
∗∗
h I

∗∗
m − (µh + αh)E

∗∗
h = 0

ψA+ αhE
∗∗
h − (µh + δ + ρ)I∗∗h = 0

Λm − νβmS
∗∗
m I

∗∗
h − µmS

∗∗
m = 0

νβhS
∗∗
m I

∗∗
h − (µm + αm)E

∗∗
m = 0

αmE
∗∗
m − µmI

∗∗
m = 0



. (3.85)

Making S∗∗
m the subject from the fourth equation in Equation (3.85), we

have
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S∗∗
m =

Λm
νβmI∗∗h + µm

. (3.86)

Substituting Equation (3.86) into the fifth equation in Equation (3.85), we have

νβmΛmI
∗∗
h

νβmI∗∗h + µm
− (µm + αm)E

∗∗
m = 0 (3.87)

Making E∗∗
m the the subject of Equation (3.87) , we have

E∗∗
m =

νβmΛmI
∗∗
h

(µm + αm)(νβmI∗∗h + µm)
. (3.88)

Also, substituting Equation (3.88) into the sixth equation in Equation (3.85), we

have
νβmΛmαmI

∗∗
h

(µm + αm)(νβmI∗∗h + µm)
− µmI

∗∗
m = 0. (3.89)

Making I∗∗m the subject of Equation (3.89), give us

I∗∗m =
νβmΛmαmI

∗∗
h

µm(µm + αm)(νβmI∗∗h + µm)
. (3.90)

Again, making E∗∗
h the subject of the third equation in Equation (3.85), we have

E∗∗
h =

1

αh
[(µh + δ + ρ)I∗∗h − ψA] . (3.91)

Also, adding the first and the second equation in Equation (3.85) together, give

us

Λh + (1− ψ)A− µhS
∗∗
h − (µh + αh)E

∗∗
h = 0. (3.92)

Substituting Equation (3.91) into Equation (3.92) give us

Λh + (1− ψ)A− µhS
∗∗
h − (µh + αh)

[
q2I

∗∗
h − ψA

αh

]
= 0, (3.93)

where, q2 = µh + δ + ρ.
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Making S∗∗
h the subject in Equation (3.93), we have

S∗∗
h =

1

αhµh
[αh(Λh + A) + µhψA− (µh + αh)q2I

∗∗
h ] . (3.94)

Similarly, substituting Equation (3.90) and Equation (3.91) into the second equa-

tion in Equation (3.85), give us

ωA+
ν2βhβmΛmαmS

∗∗
h I

∗∗
h

µm(µm + αm)(νβmI∗∗h + µm)
− (µh+αh)

(
q2I

∗∗
h − ψA

αh

)
= 0. (3.95)

Making S∗∗
h the subject in Equation (3.95), we have

S∗∗
h =

q3(q2I
∗∗
h − ψA)(νβmI

∗∗
h + µm)− ωAαhµm(µm + αm)(νβmI

∗∗
h + µm)

ν2βhβmΛmαmαhI∗∗h
,

(3.96)

where, q3 = µm(µm + αm)(µh + αh).

From Equations (3.94) and (3.96), we have

αh(Λh + A) + µhψA− (µh + αh)q2I
∗∗
h

µh
=

N1

ν2βhβmΛmαmI∗∗h
, (3.97)

where,

N1 = q3(q2Ih − ψA)(νβmI
∗∗
h + µm)− ωAαhµm(µm + αm)(νβmI

∗∗
h + µm).

Substituting the values of q2 and q3 into Equation (3.47) and simplifying further,

we have

XMI∗∗2h −[K + Z1(ψM + αhY (ψ + ω))] I∗∗h −[Z2Y (ψµh + αh(ω + ψ))] = 0,

(3.98)

where
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K = ν2βhΛhβmΛmαmαh − µhµ
2
m(µm + αm)(µh + αh)(µh + δ + ρ)

M = νβhΛmαm + µhµm(µm + αm)

X = νβm(µh + αh)(µh + δ + ρ)

Y = µm(µm + αm)

Z1 = νβmµhA

Z2 = µhµmA



.(3.99)

Equation (3.98) has two roots. One negative , which is given by

I∗∗h =
[K + Z1(ψM + αhY [ψ + ω])]−B

2XM
, (3.100)

(which is meaningless epidemiologically) and one positive. The positive root is

given by

I∗∗h =
[K + Z1(ψM + αhY [ψ + ω])] +B

2XM
, (3.101)

where

B =
√

[K + Z1 (ψM + αhX(ψ + ω))]2 + 4MXY Z2[ψµh + αh(ω + ψ)].

The unique endemic equilibrium point Q∗∗ are determined from the Equations

(3.86), (3.88), (3.90), (3.91) and (3.94) with the coordinates

Q∗∗ = (S∗∗
h , E

∗∗
h , I

∗∗
h , S

∗∗
m , E

∗∗
m , I

∗∗
m ),
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where

S∗∗
h =

αh(Λh+A)+µhψA−(µh+αh)(µh+δ+ρ)I
∗∗
h

αhµh

E∗∗
h =

(µh+δ+ρ)I
∗∗
h −ψA

αh

I∗∗h = [K+Z1(ψM+αhY [ψ+ω])]+B
2XM

S∗∗
m = Λm

µm+νβmI∗∗h

E∗∗
m =

νβmΛmI∗∗h
(µm+αm)(µm+νβmI∗∗h )

I∗∗m =
νβmΛmαmI∗∗h

µm(µm+αm)(µm+νβmI∗∗h )



. (3.102)

From Equation (3.101), we notice that as (ω, ψ) → 0, we obtain

lim
(ω,ψ)→0

I∗∗h =
K +

√
K2

2XM
=
K + |K|
2XM

. (3.103)

We can express K in terms of ℜ0 which is given by

K = µhµ
2
m(µm + αm)(µh + αh)(µh + αh)(µh + δ + ρ)[ℜ2

0 − 1]. (3.104)

From Equation (3.103), if ℜ0 < 1, K < 0, so in view of that, Equation (3.103)

becomes

lim
(ω,ψ)→0

I∗∗h = 0. (3.105)

Equation (3.105) implies that there will be no malaria in the population ifK < 0

and as (ω, ψ) → 0 .

Meanwhile, from Equation (3.103), if ℜ0 > 1, K > 0, then Equation (3.103)

becomes

lim
(ω,ψ)→0

I∗∗h =
K

XM
. (3.106)

Equation (3.106) means that malaria will be endemic in the population if ℜ0 > 1

and as (ω, ψ) → 0.

59

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



However, if we take ω and ψ to be sufficiently small, Equation (3.101)

becomes

I∗∗h =
K +

√
K2 + 4Z2YMX(ψµh + αh(ω + ψ))

2XM
. (3.107)

We can rewrite Equation (3.107) as

2MXI∗∗h = K + |K|
(
1 +

4Z2MXY (ψµh + αh(ω + ψ))

K2

) 1
2

. (3.108)

Let us consider the binomial approximation in Equation (3.109)

(1 + x)n = 1 + nx. (3.109)

Using the Equation (3.109) to expand Equation (3.108), we have

2MXI∗∗h = K + |K|

(
1 +

2Z2MXY (ψµh + αh(ω + ψ))

K2

)
. (3.110)

Exapnding and simplifying Equation (3.110), we have

I∗∗h =
K + |K|
2MX

+
Z2Y (ψµh + αh(ω + ψ))

K
. (3.111)

From Equation (3.111), it is apparent that if ℜ0 < 1, then K < 0, we have

I∗∗h ≈ Z2Y (ψµh + αh(ω + ψ))

|K|
. (3.112)

On the other hand, from Equation (3.111) if ℜ0 > 1, then K > 0, we obtain

I∗∗h ≈ K

MX
+
Z2Y (ψµh + αh(ω + ψ))

K
. (3.113)
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Also, if we add the second and the third eqations in Equation (3.14) together

and set Eh = Ih = 0, we have

(
dEh
dt

+
dIh
dt

)
Eh=Ih=0

= A(ω + ψ), (3.114)

Where, 0 < ω + ψ < 1.

From Equtions (3.112) and (3.113), it can be seen that there is no thresh-

old effect if the values of ω and ψ are sufficiently small. That is the coventional

way of determining the extinction and the spread of diseases when the ℜ0 < 1

and ℜ0 > 1 respectively is irrelevant when there are exposed and infected im-

migrants. Similarly, from Equation (3.114), we observed that when there is no

disease in the population, the entering of the exposed and infected immigrants

into the population will lead to the persistence of malaria in the population. Our

model system Equation (3.14) does not have a disease free if 0 < ω < 1 and

0 < ψ < 1 and subsequently, no basic reproduction number (ℜ0). Nevertheless,

we noticed from Equations (3.105) and (3.106) that there is a threshold effect as

ω and ψ goes to zero.

Local Stability Analysis at the Unique Endemic Equilibrium Point (EE2),

Q∗∗

Also, we investigaate the local stability of the unique endemic equilibrium

(EE2) when there are constant inflow of exposed and infected immigrants into

the population, that is 0 < ω < 1 and 0 < ψ < 1 using the theorem below.

Theorem 3.9

The unique endemic equilibrium point (Q∗∗) which is locally asymptoti-

cally stable if 0 < ω < 1 and 0 < ψ < 1 and unstable otherwise.

Proof 3.5
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Linearization of the system Equuation (3.14) about a unique endemic

equilibrium Q∗∗ gives the Jacobian matrix:

J1 =



−d1 0 0 0 0 −d9

d2 −d3 0 0 0 d9

0 αh −d4 0 0 0

0 0 −d5 −d6 0 0

0 0 d5 d7 −d8 0

0 0 0 0 αm −µm


. (3.115)

Where

d1 = νβhI
∗∗
m + µh, d2 = νβhI

∗∗
m , d3 = µh + αh, d4 = µh + δ + ρ,

d5 = νβmS
∗∗
m , d6 = νβmI

∗∗
h + µm, d7 = νβmI

∗∗
h , d8 = µm + αm and

d9 = νβhS
∗∗
h .

To determine the local stability of the unique endemic equilibrium Q∗∗,

we perform an elementary row-transformation for the matrix Equation (3.115)

to enable us get the main diagonal as the eigenvalues. We obtain the following

matrix:

d2
d1
R1 +R2 → R2,

J2 =



−d1 0 0 0 0 −d9

0 −d3 0 0 0 d9(d1−d2)
d1

0 αh −d4 0 0 0

0 0 −d5 −d6 0 0

0 0 d5 d7 −d8 0

0 0 0 0 αm −µm


. (3.116)

From column 1 in Equation (3.116), we have one of the eigen value to be λ1 =

−d1 < 0, the remaining matrix becomes
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J3 =



−d3 0 0 0 d9(d1−d2)
d1

αh −d4 0 0 0

0 −d5 −d6 0 0

0 d5 d7 −d8 0

0 0 0 αm −µm


. (3.117)

From Equation (3.117), we have

αh
d3
R1 +R2 → R2,

J4 =



−d3 0 0 0 d9(d1−d2)
d1

0 −d4 0 0 αhd9(d1−d2)
d1d3

0 −d5 −d6 0 0

0 d5 d7 −d8 0

0 0 0 αm −µm


. (3.118)

From column 1 in Equation (3.118), the eigenvalue is λ2 = −d3 < 0. the

remaining matrix is given in Equation (3.119):

J5 =



−d4 0 0 αhd9(d1−d2)
d1d3

−d5 −d6 0 0

d5 d7 −d8 0

0 0 αm −µm


. (3.119)

Also, from Equation (3.119), we have

d7
d6
R2 +R3 → R3,
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J6 =



−d4 0 0 αhd9(d1−d2)
d1d3

−d5 −d6 0 0

d5(d6−d7)
d6

0 −d8 0

0 0 αm −µm


. (3.120)

Again, from column 2 in Equation (3.120), we have an eigenvalue of λ3 =

−d6 < 0. The remaining matrix is given in Equation (3.121):

J7 =


−d4 0 αhd9(d1−d2)

d1d3

d5(d6−d7)
d6

−d8 0

0 αm −µm

 . (3.121)

Simlilarly, from Equation (3.121) we have

αm
d8
R2 +R3 → R3,

J8 =


−d4 0 αhd9(d1−d2)

d1d3

d5(d6−d7)
d6

−d8 0

αmd5(d6−d7)
d6d8

0 −µm

 . (3.122)

Also, from column 2 in Equation (3.122), we have the eigenvalue to be λ4 =

−d8 < 0. The remaining matrix is given in Equation (3.123):

J9 =

 −d4 αhd9(d1−d2)
d1d3

αmd5(d6−d7)
d6d8

−µm

 . (3.123)

Also, from Equation (3.123), we have

αmd5(d6 − d7)

d4d6d8
R1 +R2 → R2,

J10 =

−d4 αhd9(d1−d2)
d1d3

0 −µm + αmαhd5d9(d1−d2)(d6−d7)
d1d3d4d6d8

 . (3.124)
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From Equation (3.124), the eigenvalues are λ5 = −d4 < 0 and

λ6 = −µm + αmαhd5d9(d1−d2)(d6−d7)
d1d3d4d6d8

,

λ6 < 0, if and only if

µmd1d3d4d6d8 − αmαhd5d9(d1 − d2)(d6 − d7) > 0. (3.125)

Using the values of d1, d2, d6 and d7, we can rewrite Equation (3.125) as

µmd1d3d4d6d8 − µmµhαmαhd5d9 > 0. (3.126)

Factoring out µm and divide through by µm, Equation (3.126) becomes

d1d3d4d6d8 − µhαmαhd5d9 > 0. (3.127)

From Equaation (3.127), it is legit to say that: d1d3d4d6d8 > µhαmαhd5d9

Hence,

λ6 < 0.

Since all the eigenvalues have negative real part, we therefore conclude that the

unique endemic equilibrium (Q∗∗) is locally asymptotically stable.

Global Stability of Endemic Equilibrium Point Q∗∗

We have already shown that our model has no disease-free equilibrium

point when there are exposed and infected immigrants. This implies that irre-

spective of the value of ℜ0, malaria will persist at the endemic equilibrium level

if there are exposed and infected immigrants in the population . In this section,

we will examine the global stability of our endemic equilibrium pointQ∗∗, using

Lyapunov Indirect Method.

Theorem 3.10
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If 0 < ω < 1 and 0 < ψ < 1 , then the unique endemic equilibriumQ∗∗ of

system Equation (3.14) is globally asymptotically stable in the feasible region

Ω .

Proof 3.6

Let us consider the Lyapunov function below

L3(t) = a1(Sh − S∗∗
h lnSh) + a2(Eh − E∗∗

h lnEh)+

a3(Ih − I∗∗h ln Ih) + a4(Sm − S∗∗
m lnSm)+

a5(Em − E∗∗
m lnEm) + a6(Im − I∗∗m ln Im).

(3.128)

Differentiating Equation (3.128) along system Equation (3.14) gives Equation

(3.129)

L′
3(t) = a1S

′
h(1−

S∗∗
h

Sh
) + a2E

′
h(1−

E∗∗
h

Eh
)+

a3I
′
h(1−

I∗∗h
Ih

) + a4S
′
m(1−

S∗∗
m

Sm
)+

a5E
′
m(1−

E∗∗
m

Sm
) + a6I

′
m(1−

I∗∗m
Im

).

(3.129)

Substituting system Equation (3.14) into Equation (3.129) gives us

L′
3(t) = a1 (Λh + (1− ω − ψ)A− νβhShIm − µh)

[
1− S∗∗

h

Sh

]
+ a2 (ωA+ νβhIm − (µh + αh)Eh)

[
1− E∗∗

h

Eh

]
+ a3 (ψA+ αhEh − (µh + δ + ρ)Ih)

[
1− I∗∗h

Ih

]
+ a4 (Λm + νβmSmIh − µmSm)

[
1− S∗∗

m

Sm

]
+ a5 (νβhSmIh − (µm + αm)Em)

[
1− E∗∗

m

Sm

]
+ a6 (αmEm − µmIm)

[
1− I∗∗m

Im

]
.

(3.130)

Equation (3.130) can be expressed as
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L′
3(t) = a1 (νβhS

∗∗
h I

∗∗
m + µhS

∗∗
h − νβhShIm − µhSh)

[
1− S∗∗

h

Sh

]
+ a2

(
ωA+ νβhShIm − (ωA+ νβhS

∗∗
m I

∗∗
m )

E∗∗
h

Eh

)[
1− E∗∗

h

Eh

]
+ a3

(
ψA+ αhEh −

(ψA+ αhE
∗∗
h )

I∗∗h
Ih

)[
1− I∗∗h

Ih

]
+ a4 (νβmS

∗∗
m I

∗∗
h + µmS

∗∗
m − νβmSmIh − µmSm)

[
1− S∗∗

m

Sm

]
+ a5

(
νβmSmIh −

νβmS
∗∗
m I

∗∗
h

E∗∗
m

Em

)[
1− E∗∗

m

Sm

]
+ a6

(
αmEm − αmE

∗∗
m

I∗∗m
Im

)[
1− I∗∗m

Im

]
.

(3.131)

L′
3(t) = a1

[
µhS

∗∗
h − µh

S∗∗2
h

Sh
− µhSh + µhS

∗∗
h + νβhS

∗∗
h I

∗∗
m

− νβhS
∗∗2
h I∗∗m
Sh

− νβhShIm + νβhS
∗∗
h Im

]
+a2

[
ω

− ωAE∗∗
h

Eh
+ νβhShIm − νβhImE

∗∗
h

Eh
− ωA

− νβhS
∗∗
h I

∗∗
mEh

E∗∗
h

+ νβhS
∗∗
h I

∗∗
m

]
+a3

[
ψA

− ψAI∗∗h
Ih

+ αhEh −
αhEhI

∗∗
h

Ih
− ψAIh

I∗∗h
+ ψA

− αhEhIh
I∗∗h

+ αhE
∗∗
h

]
+a4

[
νβmS

∗∗
m I

∗∗
h + µmS

∗∗
m

− νβmS
∗∗2
m I∗∗h
Sm

− µmS
∗∗2

Sm
− νβmSmIh + νβmS

∗∗
m Ih

− µmSm + µmS
∗∗
m

]
+a5

[
νβmSmIh −

νβmSmIhE
∗∗
m

Em

− νβmS
∗∗
m I

∗∗
h Em

E∗∗
m

+ νβmS
∗∗
m I

∗∗
h

]
+a6

[
αmEm−

− αmEmI
∗∗
m

Im
− αmE

∗∗
m Im

I∗∗m
+ αmE

∗∗
m

]
.

(3.132)
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L′
3(t) = a1

[
2µhS

∗∗
h − µhSh − µh

S∗∗2
h

Sh
+ νβhS

∗∗
h I

∗∗
m

− νβhS
∗∗2
h I∗∗m
Sh

− νβhShIm + νβhS
∗∗
h Im

]
+a2

[
2ωA

− ωAE∗∗
h

Eh
+ νβhShIm − νβhImE

∗∗
h

Eh

− νβhS
∗∗
h I

∗∗
mEh

E∗∗
h

+ νβhS
∗∗
h I

∗∗
m

]
+a3

[
2ψA

− ψAI∗∗h
Ih

+ αhEh −
αhEhI

∗∗
h

Ih
− ψAIh

I∗∗h

− αhEhIh
I∗∗h

+ αhE
∗∗
h

]
+a4

[
2µmS

∗∗
m + νβmS

∗∗
m I

∗∗
h

− νβmS
∗∗2
m I∗∗h
Sm

− µmS
∗∗2

Sm
− νβmSmIh + νβmS

∗∗
m Ih

− µmSm

]
+a5

[
νβmSmIh −

νβmSmIhE
∗∗
m

Em

− νβmS
∗∗
m I

∗∗
h Em

E∗∗
m

+ νβmS
∗∗
m I

∗∗
h

]
+a6

[
αmEm−

− αmEmI
∗∗
m

Im
− αmE

∗∗
m Im

I∗∗m
+ αmE

∗∗
m

]
.

(3.133)
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L′
3(t) = a1

[
µhS

∗∗
h

(
2− Sh

S∗∗
h

− S∗∗
h

Sh

)
+ νβhS

∗∗
h I

∗∗
h(

1− S∗∗
h

Sh
+
Im
I∗∗m

− shIm
S∗∗
h I

∗∗
m

)]
+a2

[
ωA

(
2− E∗∗

h

Eh
− Eh
E∗∗
h

)

+ νβhS
∗∗
h I

∗∗
m

(
1− ShImE

∗∗
h

S∗∗
h I

∗∗
mEh

+
ShIm
S∗∗
h I

∗∗
m

− Eh
E∗∗
h

)]

+ a3

[
ψA

(
2− I∗∗h

Ih
− Ih
I∗∗h

)
+ αhE

∗∗
h

(
1− Eh

E∗∗
h

+
EhI

∗∗
h

E∗∗
h Im

− Ih
I∗∗h

)]

+ a4

[
µmS

∗∗
m

(
2− Sm

S∗∗
m

− S∗∗
m

Sm

)
+ νβmS

∗∗
m I

∗∗
m

(
1− S∗∗

m

Sm

+
Ih
I∗∗h

− smIh
S∗∗
m I

∗∗
h

)]
+a5

[
νβmS

∗∗
m I

∗∗
h

(
1− SmIhE

∗∗
m

S∗∗
m I

∗∗
h Em

+
SmIh
S∗∗
m I

∗∗
h

−

Em
E∗∗
m

)]
+a6

[
αmE

∗∗
m

(
1− Em

E∗∗
m

+
EmI

∗∗
m

E∗∗
m Im

− Im
I∗∗m

)]
.

(3.134)

We choose the constants a1 , a2 , a3 , a4 , a5 and a6 respectively as

1 , 1, βhS
∗∗
h I∗∗m

βmS∗∗
m I∗∗h

, βhS
∗∗
h I∗∗m

βmS∗∗
m I∗∗h

, βhS
∗∗
h I∗∗m

βmS∗∗
m I∗∗h

and νβhS
∗∗
h I∗∗m

αmE∗∗
h

.

Sustituting a1 , a2 , a3 , a4 , a5 and a6 into Equation (3.134) gives
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L′
3(t) =

[
µhS

∗∗
h

(
2− Sh

S∗∗
h

− S∗∗
h

Sh

)
+ νβhS

∗∗
h I

∗∗
h(

1− S∗∗
h

Sh
+
Im
I∗∗m

− shIm
S∗∗
h I

∗∗
m

)]
+

[
ωA

(
2− E∗∗

h

Eh
− Eh
E∗∗
h

)

+ νβhS
∗∗
h I

∗∗
m

(
1− ShImE

∗∗
h

S∗∗
h I

∗∗
mEh

+
ShIm
S∗∗
h I

∗∗
m

− Eh
E∗∗
h

)]

+
βhS

∗∗
h I

∗∗
m

βmS∗∗
m I

∗∗
h

[
ψA

(
2− I∗∗h

Ih
− Ih
I∗∗h

)
+ αhE

∗∗
h

(
1− Eh

E∗∗
h

+
EhI

∗∗
h

E∗∗
h Im

− Ih
I∗∗h

)]
+
βhS

∗∗
h I

∗∗
m

βmS∗∗
m I

∗∗
h

[
µmS

∗∗
m

(
2− Sm

S∗∗
m

− S∗∗
m

Sm

)

+ νβmS
∗∗
m I

∗∗
m

(
1− S∗∗

m

Sm
+

Ih
I∗∗h

− smIh
S∗∗
m I

∗∗
h

)]
+
βhS

∗∗
h I

∗∗
m

βmS∗∗
m I

∗∗
h[

νβmS
∗∗
m I

∗∗
h

(
1− SmIhE

∗∗
m

S∗∗
m I

∗∗
h Em

+
SmIh
S∗∗
m I

∗∗
h

− Em
E∗∗
m

)]

+
νβhS

∗∗
h I

∗∗
m

αmE∗∗
h

[
αmE

∗∗
m

(
1− Em

E∗∗
m

+
EmI

∗∗
m

E∗∗
m Im

− Im
I∗∗m

)]
.

(3.135)

Simplifying Equation (3.135) further gives us

L′
3(t) = µhS

∗∗
h

[
2− Sh

S∗∗
h

− S∗∗
h

Sh

]
+νβhS

∗∗
h I

∗∗
m

[
6− S∗∗

h

Sh

− S∗∗
m

Sm
− EhI

∗∗
h

E∗∗
h Ih

− ShE
∗∗
h Im

S∗∗
h EhI

∗∗
m

− SmE
∗∗
m Ih

S∗∗
mEmI

∗∗
h

− EmI
∗∗
m

E∗∗
m Im

]
+ωA

[
2− E∗∗

h

Eh
− Eh
E∗∗
h

]
+
ψAβhS

∗∗
h I

∗∗
m

βmS∗∗
m I

∗∗
h[

2− I∗∗h
Ih

− 1h
I∗∗h

]
+
µmβhS

∗∗
h I

∗∗
m

βmI∗∗h

[
2− S∗∗

m

Sm
− Sm
S∗∗
m

]
.

(3.136)

From Equation (3.136), it is clear that

2− Sh

S∗∗
h

− S∗∗
h

Sh
≤ 0,

6− S∗∗
h

Sh
− S∗∗

m

Sm
− EhI

∗∗
h

E∗∗
h Ih

− ShE
∗∗
h Im

S∗∗
h EhI∗∗m

− SmE∗∗
m Ih

S∗∗
m EmI∗∗h

− EmI∗∗m
E∗∗

m Im
≤ 0,

2− E∗∗
h

Eh
− Eh

E∗∗
h

≤ 0,

2− I∗∗h
Ih

− 1h
I∗∗h

≤ 0,
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2− S∗∗
m

Sm
− Sm

S∗∗
m

≤ 0,

Hence,

L′
3(t) ≤ 0, for (0 < ω < 1, 0 < ψ < 1).

All the parameters in Equation (3.136) are nonnegative, so L′
2(t) = 0 if Sh =

S∗∗
h , Eh = E∗∗

h , Ih = I∗∗h , Sm = S∗∗
m , Em = E∗∗

m and Im = I∗∗m .

Therefore, the endemic equilibrium Q∗∗ = (S∗∗
h , E

∗∗
h , I

∗∗
h , S

∗∗
m , E

∗∗
m , I

∗∗
m ) are

globally asymptotically stable whenever 0 < ω < 1 and 0 < ψ < 1. What

Theorem (3.10) means epidemiologically is that malaria will persist whenever

0 < ω < 1 and 0 < ψ < 1 regardless of the number of infective immigrants at

the initial stage of the population.

Chapter Summary

In this chapter we formulated a deterministic mathematical SEIR−SEI

model for malaria transmission with the inclusion of exposed and infective im-

migrants in the human population. The state variables and the parameters used

in the model were displayed explicitly. Since we are dealing with human and

animal populations, we have established that the model is well-posed mathemat-

ically and epidemiologically correct by showing that all the state variables are

positive and bounded. The model system Equation (3.14) has three equilibria

namely; disease-free (Q0), unique endmic (EE1), (Q∗) and unique endemic

(EE1), (Q∗∗) equilibrium points. We also computed the basic reproduction

number ℜ0 and use it to investigate the local stabilities of the equilibrium points.

We end the chapter using Lyapunov method to determine the global stabilities

of the equilibrium points.
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CHAPTER FOUR

RESULTS AND DISCCUSION

Introduction

In this chapter, we performed numerical simulations of our model when

there are no immigrants (A = 0) and when there are immigrants (A > 0 such

that 0 < ω < 1, 0 < ψ < 1 ) to know the full extent of the effect of ex-

posed and infected immigrants on malaria transmission and discuss the results

obtained. Some of the parameter values were obtained from literature and some

were obtained base on assumption. Numerical simulations were carried out us-

ing Matlab. The prime aim is to confirm numerically the analytical results we

obtained in chapter three. This in our view would enable us to figure out the

future trends of malaria transmssion dynamics .

We also performed sensitivity analysis on the basic reproduction number,

ℜ0 for the following parameters: (βh), (βm), (Λh), (Λm), (µh), (µm), (ν), (αh),

(αm), (δ) and (ρ) to know the parameters that influence the transmission dynam-

ics of malaria.

Numerical Analysis

In this section, we carry out numerical simulations of our model when

there are no immigrants (A = 0) and when there are immigrants (A > 0 such

that 0 < ω < 1, 0 < ψ < 1 ) to understand effect of exposed and infected immi-

grants on malaria transmission dynamics. We vary the parameters displayed in

Table 3 which resulted in the ℜ0 < 1 and ℜ0 > 1. The initial conditions of the

state variables used in this section are given by Sh = 2500,Eh = 700, Ih = 300,

Sm = 5000, Em = 2500 and Im = 4000 and the rest of the parameters with its

corresponding values are stated in Table 3 below.
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Table 3: Parameters and their Values

Parameter Value/day Source

βh 0.002 Assumed

βm 0.005 (Tilahun, 2017)

Λh 25 (Wedajo et al., 2018)

Λm 125 (Wedajo et al., 2018)

µh 0.01146 (Mojeeb et al., 2017)

µm 0.1 (Mojeeb, Ebenezer, Hassan & Yang, 2019)

ν 0.12 (Olaniyi & Obabiyi, 2013)

ω [0, 0.4] Assumed

ψ [0, 0.3] Assumed

αh 0.1 (Mojeeb et al., 2017)

αm 0.083 (Shah & Gupta, 2013)

δ 0.068 (Mojeeb et al., 2017)

ρ 1
7

(Tumwiine et al., 2005)

A 100 Assumed

Source: Wedajo et al. (2018)

Numerical Results when there are no Immigrants (A = 0)
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Figure 2: Plot of Human Populations Against Time for ℜ0 < 1

Figure 2 display time response of the state variables Sh, Eh and Ih against

time. When we vary the values of these two parameters (βh and βm) with other

paramters used as presented in Table 3, we notice that the population settles

at disease free with ℜ0 = 0.2681 < 1. At the disease free, all the infected

human population (exposed humans and infecteds) move to zero. Also it can be

seen that the susceptible population decreases a bit and then increases steadily

which is attributed to the recruitment of new individuals into the susceptible

compartment by birth. Local and global stabilty of the malaria transmission

model at the disease free equilibrium point has also been verified numerically by

Figure 2. The epidemiological interpretation of Figure 2 is that in 60 days time,

malaria will extinct in the population. The corresponding mosquito population

is displayed in Figure 2.

74

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Figure 3: Plot of Mosquito Populations Against Time for ℜ0 < 1

Similarly, in the mosquito population, we have observed from Figure 3

that the exposed and the infected mosquitoes compartments tend to zero, while

the susceptible mosquitoes compartment decreases to non-zero number at ℜ0 =

0.2681 < 1.

Figure 4: Plot of Human Populations Against Time for ℜ0 > 1. The
Parameters are as Stated in Table 3.

Also from Figure 4, we note that when we used the all the paramters

as stated in Table 3, all the human compartments cotemporal in the population

which cornfirmed the endemicity of malaria with the basic reproduction number

of ℜ0 = 2.6809 > 1. This confirm the presence of malaria in the population.
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Figure 5: Plot of Mosquito Populations Against Time for ℜ0 > 1

From Figure 5, we have seen that all the distinct compartments of mosquito

population coexist. The ℜ0 = 2.6809 > 1 is calculated using the parameter val-

ues as presented in Table 3.

Effect of Exposed and Infected Immigrants on Disease Free Population

Figure 6: Plot of Human Populations Against Time Showing the Effect of
Exposed and Infected Immigrants on Malaria Free Population for
βh = 0.0002, βm = 0.0005, ω = 0.1, ψ = 0.01 and A = 100 with
ℜ0 < 1

Figure 6 is the time response of human population against time showing
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the effect of exposed and infected immigrants on malaria free population. We

noticed that the value of ℜ0 = 0.2681 < 1 but the population fails to settle at the

disease free. We have all the three distinct compartments of humans coexisting

in the population albeit the basic reproduction number is less than unity and this

is attributed to the influx of exposed and infected entering the population. This

confirm the analytical result in Equation (3.112).

Effect of Exposed Immigrants on Exposed and Infected Human

Populations

Figure 7: Plot of Exposed Human Populations Against Time Showing the
Effect of Varying the Proportion of Exposed Immigrants(ω = 0.1,
ω = 0.4) with Total Number of Immigrants Say, A = 100. The Rest
of the Parameters are Maintained as Stated in Table 3
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Figure 8: Plot of Infected Human Populations Against Time Showing the
Effect of Varying the Proportion of Exposed Immigrants (ω = 0.1,
ω = 0.4) with Total Number of Immigrants say, A = 100. The Rest
of the Parameters are Maintained as Stated in Table 3

In Figure 7 and 8, we noticed that as we increase the proportion of exp-

sosed immigrants from ω = 0.1 to ω = 0.4 with a total number of immigrants

say, A = 100, there is a corresponding increase in both exposed and infected

human populations . This means that as the exposed immigrants come into the

population, they join the exposed human population and subsequently progress

to the infected human population. The simulation results in Figure 7 and 8

demonstrate the crucial role exposed immigrants play in the transmission and

spreading of malaria in the population.
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Figure 9: Plot of Infected Human Populations Against Time Showing the
Effect of Varying the Proportion of Infected Immigrants(ψ = 0.01,
ψ = 0.2) with Total Number of Immigrants Say, A = 100. The Rest
of the Parameters are Maintained as Stated in Table 3

It was observed in Figure 9 that as the proportion of infected immigrants,

ψ increases from ψ = 0.01 and ψ = 0.2 with total number of immigrants say,

A = 100, there is a corresponding increase in infected human population . This

shows that that infected immigrants has impact on the spread of malaria since

those immigrants would be bitten by mosquitoes.
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Sensitivity Analysis on the Basic Reproduction Number

Sensitivity indices allow us to measure the relative change in the state

variables when a parameter changes. Also, since the basic reproduction number

ℜ0 is a function of the parameters βh, βm, Λh, Λm, ν, µh, µm, αh, αm, δ, and ρ

, we can examine the relative sensitivity for all the parameters that ℜ0 depends

on. We will not consider µh in our analysis. The normalized forward sensitivity

index for ℜ0, which depends on a parameter, say m , denoted by ≺ℜ0
m is defined

by

≺ℜ0
m =

∂ℜ0

∂m
· m
ℜ0

, (4.1)

wherem is a paraterer of interest. In order to determine how to lessen morbidity

due to malaria, it is imperative we know the relative significance of distinct

parameters that change transmission dynamics of malaria. Subsequently, using

Equation (4.1) to evaluate the impact of each parameters on ℜ0, we obtained the

following derivatives:

∂ℜ0

∂βh
· βhℜ0

= ν2ΛhβmΛmαmαh

2µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)ℜ0
· βhℜo

≥ 0,

∂ℜ0

∂βm
· βmℜ0

= ν2ΛhβhΛmαmαh

2µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)ℜ0
· βmℜ0

≥ 0 ,

∂ℜ0

∂Λm
· βmℜ0

= ν2Λhβhβmαmαh

2µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)ℜ0
· Λm

ℜ0
≥ 0.

∂ℜ0

∂ν
· ν
ℜ0

= 2νβhΛhβmΛmαmαh

2µhµ2m(µm+αm)(µh+αh)(µh+δ+ρ)ℜ0
· ν
ℜ0

≥ 0,

∂ℜ0

∂αh
· αh

ℜ0
= ν2βhΛhβmΛmαm

2µhµ2m(µm+αm)(µh+αh)2(µh+δ+ρ)ℜ0
· αh

ℜ0
≥ 0,

∂ℜ0

∂αm
· αm

ℜ0
= ν2βhΛhβmΛmαh

2µhµ2m(µm+αm)2(µh+αh)(µh+δ+ρ)ℜ0
· αm

ℜ0
≥ 0.

The sensitivity indices of ℜ0 to the rest of the parameters can be computed
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for in a similar fashion. The results are summarized in Table 4 below.

Table 4: Sensitivity Indices of ℜ0 to Parameters

Parameter Relationship

βh +

βm +

Λm +

µm −

Λh +

ν +

αh +

αm +

δ −

ρ −

Source: Mojeeb et al. (2019)

Discussion

In this thesis, we developed a mathematical model of malaria with the in-

clusion of exposed and infected human immigrants that tracks the transmission

dynamics of malaria. The model is examined for the existence of disease-free

and endemic equilibrium points when there are no immigrants thus, A = 0. The

basic reproduction number ℜ0 was computed. Also, we computed the unique

endemic equilibrium when there are immigrants. We also performed numeri-

cal simulations using values obtained from published papers and others were

assumed. Rigorous analysis of our model system show that due to the entering

of exposed and infected immigrants, an equilibrium point with positive propor-

tion of exposed and infected immigrants always exist in the population. In this

way, our model can not have a disease-free state and has only unique endemic

equilibrium point for which the disease exist for long time in the population.

We notice that the basic reproduction number ℜ0 becomes irrelevant when there
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are exposed and infected immigrants and hence can not be used in determining

when malaria will fade out or become endemic in the population. However,

when the proportion of exposed and infected immigrants approahes zero, the

basic rereproduction number ℜ0 assumes its utility in malaria eradication and

control.

Numerical results from the model simulations depict that when there are

no immigrants and the basic reproduction number ℜ0 = 0.2681 which is less

that unity, only the susceptible human and mosquito compartments exist while

the rest of the compartments go to zero which confirmed disease-free state.

Also, when ℜ0 = 2.6809 which is greater than unity, our model simulations

show that all the distinct compartments coexist in the population which indi-

cated the endemicity of malaria. We see from our numerical simulations that the

entry of the expsosed and the infected immigrants increase both exposed and in-

fected human populations, therefore we need to check the influx of immigrants

to avoid malaria transmission. The inflow of exposed and infected immigrants

do not alter the value of ℜ0 and so ℜ0 has no application in the transmission

dynamics of malaria in the population.

We also performed sensitivity analysis on the parameters that the basic

reproduction number ℜ0 depends on except human natural death rate µh. Our

sensitivity analysis indicated that the most sensitive paramter is the mosquito

biting rate ν while the less sensitive parameter is the human progression rate

from exposed to infected αh

Chapter Summary

In this chapter, numerical simulations of our model were performed with

the use of values from literature and some assumed parameters for the transmis-

sion dynamics of malaria with infective immigrants. The results obtained were

discussed in details. Matlab as a tool was used in the numerical simulations. It
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was shown that when there are some proportion of exposed and infected immi-

grants, the basic reproduction number ℜ0 lost its usefulness in the application

of malaria eradiction.

In addtion, sensitivity analysis of our model was perfomed which enable

us to know the relationship the parameters have with the basic reproduction

number ℜ0. It was found out that the parameters: βh, βm, Λh, Λm, ν, αm and

αh have a positive relationship with ℜ0 whiles parameters : µm, δ and ρ have a

negative relationship with ℜ0.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

Application of mathematical modelling as tool was employed in this thesis

to analyze the transmission dynamics of malaria. Exposed and infected immi-

grants were incorporated into the human population to examine their impact on

the malaria disease transmission. We have discussed both the analytical and nu-

merical results of our model. We summarize the results obatined in CHAPTER

THREE and FOUR below.

Summary

In this thesis we developed an SEIR − SEI model of malaria trans-

mission with influx of exposed and infected immigrants. We esblished that

our model has a disease-free and endemic equilibrium points when there are

no immigrants.. We employed the use of the next generation matrix to derive

the basic reproduction number ℜ0, a threshold value that determines whether

malaria will die out or become endemic in the population. We also showed that

both the disease-free and the endemic equilibrium points are locally and glob-

ally asymptotically stable whenever ℜ0 is less than unity and greater than unity

respectively. Also, when there are immigrants of which proportion of them are

exposed and infected , unique endemic equilibrium point exist with the propor-

tion of exposed and infected immigrants. However, it has been established that

in the population where the are proportion of exposed and infected immigrants,

attaining a disease-free status is impossible even if ℜ0 is less than unity. Hence,

we can not rely on the value of ℜ0 to determine the transmission dynamics of

malaria. Our numerical simulations confirmed the analytical results. That is, we

can only have a disease free when the proportions of the exposed and infected
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immigrants approaches zero, otherewise there will be no disease-free irrespec-

tive of the values of the basic reproduction number, ℜ0. The results of our study

, conseqquently stipulate a framework that should be taken into account by the

healthcare providers, stakeholders and policymakers when preparing policies to

control and eradicate malaria transmission.

Conclusions

An SEIR − SEI mathematical model of malaria with infective immi-

grants was developed. The model equations were obtained with the assistance

of a flowchart diagram in Figur 2. The state variables and the parameters used in

the model were displayed in Table 1 and 2 respectively. We prove that our model

is mathematically well-posed and epidemiologically meaningful because all the

model solutions were positive and bounded. In the analysis of our model, we

looked at two cases; in the first case, we assumed that there were no immigrants

(A = 0), we calculated the basic reproduction number, ℜ0 and used it to de-

termine local and global stabilities of the disease-free and endemic equilibrium

points. In the second case, where there was a constant inflow of immigrants of

which proportions are exposed and infected with mararia parasite (0 < ω < 1

and 0 < ψ < 1) entering the population, we found the unique endemic equilib-

rium point and its local and global stabilities were determined. We found out in

the course of our analysis of the model that the basic reproduction number, ℜ0

becomes irrelevant due to the influx of exposed and infected immigrants.

Moreover, we solved our model numerically using ode45 in Matlab and

the result from the numerical simulations show that exposed and infected im-

migrants make disease-free status unattainable even if the ℜ0 is less than unity.

As a matter of fact, it should be noted that small migratory influx of exposed

and infected immigrants plays an eminent role in the transmission dynamics of

malaria.
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In addtion to that, sensitivity analysis was performed on the parameters

that the basic reproduction number, ℜ0 depends on and we observed that the

most sensitive are ν, βh, βm, and Λm , these parameters need focus when em-

ploying measures to combat and eradicate malaria.

Recommendations

Sensitivity anslysis showed that the mosquito’s biting rate, ν is the most

sensitive parameter so activities (insecticides-treated nets and residual spray)

that inhibit human-mosquito interaction should be intensified.

Human immigrants should be screen at our borders to be sure of malaria

free before they are allowed to the country.
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