
UNIVERSITY OF CAPE COAST

GENERALIZED AUTO-CORRELATION FUNCTION OF HIGHER ORDER

ARMA PROCESSES: APPLICATION TO PANDEMIC DATA

GYAMU-ATTA PIUS

2023

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



©Gyamu-Atta Pius

University of Cape Coast

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



UNIVERSITY OF CAPE COAST

GENERALIZED AUTO-CORRELATION FUNCTION OF HIGHER ORDER
ARMA PROCESSES: APPLICATION TO PANDEMIC DATA

BY

GYAMU-ATTA PIUS

Thesis submitted to the Department of Statistics of the School of Physical
Sciences, College of Agriculture and Natural Sciences, University of Cape
Coast, in partial fulfilment of the requirements for the award of Master of

Philosophy degree in Statistics

MARCH 2023

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



DECLARATION

Candidate’s Declaration

I hereby declare that this thesis is the result of my own original research and
that no part of it has been presented for another degree in this university or
elsewhere.

Candidate’s Signature ................................................ Date ...............................

Name: Gyamu-Atta Pius

Supervisor’s Declaration

I hereby declare that the preparation and presentation of the thesis were super-
vised in accordance with the guidelines on supervision of thesis laid down by
the University of Cape Coast.

Supervisor’s Signature ................................................. Date .............................

Name: Prof. Bismark Kwao Nkansah

ii

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ABSTRACT

The Autocorrelation Function (ACF) of a time series process reveals the inher-

ent characteristics of the series that may not be visible from the original series.

The ACF of the ARMA(p, q) process has been presented in a few studies in un-

derstandably rigorous and laborious manner with no explicit form of the func-

tion. In this study, the approach of autocovariance generating functions (acvgf)

is used to obtain an explicit expression for a series that follows a linear process

under condition of distinct real roots of the AR(p) lag operator polynomial. The

technique is used to derive ACF of processes as far as ARMA(3,0). The pro-

cedure has shown a clear connection among the autocovariances at consecutive

lags of the respective process as well as between particular lags of consecutive

orders of the process. It is also observed that the Yule-Walker relation emerges

after lag (q + 2) for processes higher than ARMA(2,1). This means that there

is the need for the computation of individual γ(k) for k ≤ (q + 2). The de-

rived approach is applied to daily new Covid-19 cases for three countries with

stationary series, and are found to have different ARMA processes. The results

are compared with those based on ”ARIMAfit” function in R. In each case, the

results of the two methods are found to be the same with damp exponential de-

cay, an indication that the pandemic would cease eventually in these countries.

The results provide useful relations that may be utilized as diagnostic tests for

determining whether a given data follows a specified process.
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CHAPTER ONE

INTRODUCTION

In studying a phenomenon, Wu and Wei (1989) reveal that we mostly

come across datasets with observations taken according to the order of time.

Undoubtedly, the evolution and use of time series data has received a lot of at-

tention recently (Tingyan, 2010). A time series is a realization of a stochastic

process. In practice, time series arise in areas such as Physical Science, Eco-

nomics, Marketing, Demography, Process control, and Binary processes among

others (Anderson, 1976).

In times series analysis, there are primarily two types of methodologies:

frequency domain methods and time-domain methods. The frequency domain

approach is based on an extension of the methods of Fourier analysis which

originate in the idea that using a weighted sum of sine and cosine functions

with harmonically increasing frequencies, any analytic function can be approx-

imated to any level of precision over a finite interval. On the other hand, the

time domain methods have their origin from the classical theory of correlation.

Such methods primarily focus on the autocovariance function (acvf) and cross-

covariance function (ccvf) of the series, and they result in the creation of struc-

tural or parametric models of the autoregressive moving average type for single

series, and of the transfer-function type for two or more causally related series.

This method describes the features of a time series process using time func-

tions such as the autocorrelation function (ACF) and the partial autocorrelation

function (PACF), whose dynamics are depicted through various time-lag rela-

tionships (Wu and Wei, 1989).

The ACF is the correlation between a time series and a lagged version of

itself, while the PACF of a time series process at a particular lag k is the au-

tocorrelation between Xt and Xt−k that have not been accounted for by lags 1

through lag k − 1. Literature outlines the importance of the ACF in studying

1
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the dependent structure in a given time series process in addition to identify-

ing inherent characteristics that may not be visible in the original time series

observations. In view of this, some researches have looked at obtaining the the-

oretical ACFs of certain stationary time series process. It is however the case

that the higher the order of the time series process, the arduous it is in obtaining

the ACF.

The motivation for this study is to contribute to the literature on the deriva-

tion of the theoretical ACF of higher order stationary time series process through

the autocovariance generating function and apply the derivations to a pandemic

data.

Background to the Study

Time series statistical analyses are important in understanding the vari-

ability of the series data, identifying the regular and random fluctuations of the

series over time, describing the features of these oscillations, and comprehend-

ing the physical processes underlying each of these oscillations. Time series

processes can broadly be grouped into linear and non-linear. A general Linear

Process (LP) is one that assumes that a data series is generated by a linear com-

bination of random errors (Box et al., 2008). Thus, it is the result of a linear

filter whose input is a white noise, Zt. Expressed mathematically,

Xt =
∞∑
j=0

ΨjZt−j (1.1)

where Ψj is a series of constants. For Xt to depict a valid stationary process, it

is essential that the coefficient Ψj be absolutely summable; that is,
∑∞

j=0 |Ψj| <

∞. The white noise process consists of a series of random variables without any

correlation. These random variables have zero mean and constant variance, σ2.

Since the random variables Zt are considered to be uncorrelated, it implies that

2
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their autocovariance function is a step function given as

γ(k) = E
(
Zt · Zt+k

)
=


σ2, k = 0

0, k ̸= 0

(1.2)

Hence, Zt has an autocorrelation function given as

ρ(k) =


1, k = 0

0, k ̸= 0

(1.3)

Linear time series theory uses three main different model types: Autore-

gressive of order p (AR(p)), Moving Average of order q (MA(q)), and combined

AR and MA called ARMA of orders p,q (ARMA(p, q)). The AR(p) model de-

picts a linear regression relationship between a series’ present value and one or

more previous values. The MA(q) model is a regression analysis of the series’

current value versus its random shocks. It is assumed that the random errors at

each point come from an identical distribution, generally a normal distribution

with a zero mean and a steady finite variance. Generally, ARMA models are

used when the observations in a given series are stationary. In cases where the

data is not stationary, ARMA models can be extended to Autoregressive Inte-

grated Moving Average (ARIMA) of orders p, d, q. In a case where the series is

dominated by seasonal effects, ARMA models are yet extended to obtain a Sea-

sonal Autoregressive Integrated Moving Average (SARIMA) models of orders

(p,d,q)× (P,D,Q)s.

Far from linear processes, non-linear time series are generated by non-

linear dynamic equations. Thus, they have features that cannot be modeled by

linear processes. Although linear processes are appropriate for describing many

real-life phenomena, they do not capture some of the features of time series

which have periods of high and low volatility. This indicates that in empirical

3
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scenarios with more complicated time series, linear models are unable to cover

all of the information. As a result, methods for representing variations in vari-

ance over time, commonly known as heteroskedasticity, are introduced. These

models are known as Autoregressive Conditional Heteroskedasticity (ARCH)

and the collection of this model class has a variety of representations, such as the

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH), Expo-

nential Generalized AutoRegressive Conditional Heteroskedasticity (EGARCH),

Fractionally Integrated Generalized AutoRegressive Conditional Heteroskedas-

ticity (FIGARCH), among others. These ARCH model classes have been widely

utilized in forecasting and predicting various time series data such as inflation,

stock prices, exchange rates, and interest rates.

The concept of Correlation and Autocorrelation

Understanding different classes of models in time series analysis depends

greatly on correlation. The concept of correlation is generalized to autocorrela-

tion, which is the basic tool for studying a stationary time series. Time series

data are much more likely to show some dependence over time than cross sec-

tional data, which makes sense to believe that observations are independent from

one another. According to Schlittgen et al. (2008), covariance and correlation

are concepts that can be used to evaluate the lack of independence between two

adjacent data values, xs and xt. The autocorrelation function receives its name

by being an extension of the statistical correlation measure between two ran-

dom variables. In time series analysis, the ACF can either be obtained from the

sample data or from the parameter values based on the appropriate model that

characterizes the series. ACFs obtained from parameter values are known as the

theoretical ACF, while ACFs obtained from the sample data are known as the

sample or emperical ACF. In practice, the sample ACF relates directly to the

classical correlation.

4
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Assume x and y are two random variables, each with n observations. Then the

Pearson correlation between them will be given by

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1.4)

In the autocorrelation sense, the correlation is computed between one time series

and the same series lagged by one or more time units. The first-order autocor-

relation coefficient is the simple correlation coefficient between the first n − 1

observations of xt where t = 1, 2, · · · , n− 1 and the next n− 1 observations of

xt where t = 2, 3, · · · , n. The correlation between xt and xt−1 is given by

ρ1 =

∑n−1
t=1 (xt − x̄(1))(xt−1 − x̄(2))√∑n−1

t=1 (xt − x̄(1))2
√∑n−1

t=1 (xt − x̄(2))2
(1.5)

In Equation (1.5), x̄(1) is the mean of the first n − 1 observations and x̄(2) is

the mean of the last n − 1 observations. For situations where n is reasonably

large (n ≥ 30 according to the Central Limit Theory), the difference between

the sub-period means x̄(1) and x̄(2) can be ignored, and Equation (1.5) can be

approximated as

ρ1 =

∑n−1
t=1 (xt − x̄)(xt−1 − x̄)∑n

t=1(xt − x̄)2
(1.6)

where x̄ is the overall mean. Equation (1.6) can be generalized to give the

correlation between observations separated by k time steps as

ρk =

∑n−k
t=1 (xt − x̄)(xt−k − x̄)∑n

t=1(xt − x̄)2
(1.7)

ρk is the sample ACF at lag k which provides an indication of the degree to

which the shift of the time series at one time relates to or can be inferred from

its shift at another time.

In general, one can obtain the autocorrelation by first going through the

associated autocovariance. The autocovariance between Xt and Xt−k is repre-

5
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sented as

γ(t, t+ k) = cov
(
Xt, Xt+k

)
If the covariance structure is stable, the covariance depends on k but not on t.

That is,

γ(t, t+ k) = γ(k)

If k = 0, then

γ(0) = cov
(
Xt, Xt

)
= var(Xt) <∞

The acvf and the ACF are related in a way that the correlation function is a

normalized covariance function. For a continuous time series process, the au-

tocovariance between two random variables X1 = Xt and X2 = Xt+k is given

as
RXX(t, t+ k) =E

[
X1 ·X2

]
=

∫ ∞

−∞

∫ ∞

−∞
x1x2f(x1, x2)dx1dx2

(1.8)

Similarly autocovariance between two random variables of a discrete time series

process is given as

RXX(t, t+ k) = E
[
Xt ·Xt+k

]
k = · · · ,−2,−1, 0, 1, 2, · · · (1.9)

The pertinent characteristics of the ACF are:

1. It is an even function.

RXX(k) = RXX(−k)

2. It has its maximum value when k = 0. Nevertheless, this value can

emerge again, for example, at the values of the analogous points in a pe-

6
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riodic function, but it will never be exceeded. Mathematically,

RXX(0) ≥ |RXX(k)|

In addition to the advantages of the ACF mentioned earlier, Haag (2005) add

that the ACF provides information on how quickly a time series process changes

with respect to the time function, and an appealing knowledge on whether a time

series process has a periodic component and what the expected wave might be. It

also plays a vital role for statistical inference in time series analysis by providing

a vital knowledge of the Moving Average (MA) order.

The next section examines the autocovariance generating function (acvgf)

which forms the basis for obtaining the ACFs of higher order ARMA processes

in this thesis.

Autocovariance Generating Function

According to Chattamvelli and Shanmugam (2023), a generating function

(gf) is a short and simple formula in one or more dummy variables that summa-

rizes the coefficients of a finite or infinite sequence and generates a quantity of

interest using calculus or algebra. Generating functions have many useful appli-

cations. This include their use in establishing asymptotic formular for the terms

of a sequence, solving recurrence relations, and proving combinatorial identi-

ties. For a stationary time series process Xt, the sequence of autocovariances

γk, for k = 0, 1, · · · can be calculated. According to Hamilton (2020), if the

sequence is absolutely summable, then the acvgf is one technique to summarize

the autocovariances. The acvgf is represented as

c(s) =
∞∑

k=−∞

γ(k)sk (1.10)

7
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The function is formed by taking the kth autocovariane and multiplying it by

some coefficient s raised to the kth power, and then summing over all the pos-

sible values of k. This implies that the variance of the process, γ(0), is the

coefficient of s0 = 1, whereas the acv of the process at lag k is the coefficient

of sk.

The Covid-19 Pandemic

This section seeks to give a brief on the Covid-19 pandemic. This will be

helpful in obtaining an appreciable knowledge about the nature of the disease,

its effects and some implementations taken by countries across some parts of the

globe. This will aid in the discussion section of this thesis, since application of

the derived theoretical ACFs would be made to the pandemic in some selected

countries.

Various contagious viral infections and pandemics such as influenza, Zika,

Middle East Respiratory Syndrome(MERS), Spanish flu, and Ebola all emerged

in the past, which badly affected human lives and economy of the major ar-

eas and regions of the world (Khan et al., 2021). At the latter part of 2019,

a new coronavirus, SARS-CoV-2, called Corona-virus Disease 2019 (Covid-

19) emerged in Wuhan city, China (Zeroual et al., 2020). The primary mode of

transmission of the virus is through droplets of saliva or discharge from the nose

when an infected person coughs or sneezes. Within a few months, the disease

had rapidly spread over all the world. By this, the outbreak was officially de-

clared a Public Health Emergency of International concern by the World Health

Organization (WHO) on January 30, 2020, and a global pandemic on March 11,

2020 (Hiscott et al., 2020). Onyema et al. (2020) revealed that the outbreak of

the disease affected all aspects of human activities globally ranging from edu-

cation, entertainment, transportation, worship, social gathering, business, poli-

tics and economy. In response, many countries implemented measures such as

8
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frequent hand washing and sanitizing, mandatory wearing of nose masks, so-

cial distancing, self-isolation, and partial lock-downs to prevent further spread,

which proved crucial in maintaining health services to patients most in need

of care either for Covid-19 or for other various conditions (Papastefanopoulos

et al., 2020). Considering the adversities the disease brought, several researches

were carried out to explore the nature of the pandemic, and to make appropriate

forecast of the daily new infections and deaths. Petropoulos et al. (2020) note

that forecasting the outcome of outbreaks as early and as accurately as possible

is crucial for decision making and policy implementations.

Statement of the Problem

The Autocorrelation Function (ACF) plays a major role in time series

analysis by identifying inherent characteristics that may not be visible in the

original time series observations. In view of this, the literature abounds with

the computation of ACF for certain stationary time series processes. Precisely,

ACFs are derived (Box et al., 1970; Ma and Genton, 2000; McLeod et al.,

1975; Muth, 1978) for lower orders of stationary ARMA models, and a few

have focused on higher orders. The presentations of higher order ACFs of the

ARMA(p, q) process have been very complex and could be much more depend-

ing on the approach used. The problem besides the complexity of the few higher

order ACFs is that it is difficult to generalize the procedure by the approach used.

It will be apparent from this thesis that the computation of ACF of the process

under consideration is an arduous one. This study therefore makes an attempt to

explore another alternative that could reduce or possibly eliminate the identified

problems (complexity and lack of generalizability).

In the context of the Covid-19 pandemic, models that have made use of the

data for certain countries around the globe have focused on predictions which

are likely to face challenges with the irregular nature of the wavelike pattern of

9
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the pandemic.

Objectives of the Study

The ultimate objective of the study is to contribute to the literature on

the derivation of the theoretical autocorrelation functions of higher order sta-

tionary time series processes. The study seeks to obtain a generalized au-

tocorrelation function using the autocovariance generating function. The ap-

proach is underlined by rigorous mathematical bases to obtain the ACFs of

ARMA(1,q), ARMA(2,q), and ARMA(3,q) processes, after which a general-

ization to ARMA(p, q) will be made.

The study is guided by the following specific objectives:

1. To present an alternative approach for deriving the ACFs for higher orders

of ARMA(p,q) processes that ensures generalizability

2. To derive exact analytical expressions for the ACF of specific ARMA

processes

3. Use the ACF of the derived ARMA models to deduce the ACFs of specific

lower ARMA models

4. Use the derived ACFs to approximate the characteristics of a selected pan-

demic data

Significance of the Study

ACFs are usually generated from an observed time series data. Functional

expressions for the theoretical ACFs are given in the literature for lower orders

of AR, MA, and ARMA processes with a few on higher order ACFs, which are

not without problems. This is as a result of the complex nature of the ACFs

for higher order ARMA(p, q) processes. This study will therefore establish gen-

eral expressions for higher orders of the ARMA. It will be possible therefore to

10
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obtain the ACF for the lower order ARMA processes when the expression for

the general ARMA(p, q) is known. The result of this study will deepen under-

standing of identifying inherent characteristics of an observed time series that

follows a linear process. The application of this study will determine the real

characteristics of the parameters of the Covid-19 pandemic around some parts

of the globe.

Scope and Delimitation of the Study

The study is focused on deriving a generalized ACF of an ARMA(p, q)

process using the acvgf. The study will examine the ACFs of the daily new

covid-19 cases in some selected countries around the globe. Based on our de-

rived expressions, the ACFs of the daily new Covid-19 cases for the selected

countries will be tested. Various comparisons will be made, after which infer-

ences will be drawn. Although time series, the study is not centered on fore-

casting based on the appropriate models that will be obtained for the selected

countries’ daily new Covid-19 cases.

Organization of the Study

This study is organized into five chapters: Chapter One covers the intro-

ductory part of the study, the problem statement, objectives, and significance,

as well as the scope and delimitations of the study. Chapter Two presents the

literature review which focuses on works by previous researchers in obtaining

the theoritcal ACF of stationary time series processes. Chapter Three reviews

some methods employed to accomplish the purpose of the study. Chapters Four

and Five, respectively, look at data analysis and discussion on one breadth and

summary, conclusion and and suggestions for further studies on the other. The

references are also presented in the end matter.

11
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Chapter Summary

In this chapter, the nature and importance of the autocorrelation function

of a time series process has been established. Difference between the emperical

ACF and the theoretical ACF has also been noted. The chapter has also pre-

sented a brief on the autocovariance generating function, a function which will

be the basis of the derivation of the theoretical ACF in this study. The arduous

process in obtaining the theoretical ACFs of higher order ARMA(p, q) process

has been recognized, and the relevance of deriving the theoretical ACF through

the autocovariance generating function has been highlighted. Notably, it has es-

tablished how the results of the study will deepen understanding of identifying

inherent characteristics of a time series that follows a linear process.

As an application to the Covid-19 pandemic, the chapter recounts how previous

investigations have used mathematical, statistical, and deep machine learning

procedures to model and forecast Covid-19 cases across the world. Due to the

changing waves of the pandemic however, the chapter points out how good our

study will be in examining the real charateristics of the parameters of the covid-

19 pandemic around some parts of the globe.

12
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CHAPTER TWO

LITERATURE REVIEW

Introduction

The ultimatum of this research is to obtain a generalized autocorrelation

fuctions of higher order stationary time series processes using the autocovari-

ance generating function. This chapter examines studies on the autocovariance

and autocorrelation functions of stationary time series processes. In the first sec-

tion, reviews of the ACFs of lower order ARMA(p, q) processes are examined.

The second and final section of this chapter reviews the ACFs of higher order

ARMA(p, q) processes.

ACFs of Lower Order ARMA(p, q) Processes

Box et al. (1994) present the ACF of a stationary Moving Average process

of order 1. In their study, the MA(1) process is denoted by

Zt = at − θat−1 = (1− θB)at (2.1)

where B in Equation (2.1) is the backshift operator, Zt is the time series process

at time t, and at and at−1 is the Moving Average Process of order 1. It is noted

that ψ(B) = 1− θB. Additionally, the study considers the acvgf and denotes it

as

γ(B) = σ2
aψ(B)ψ(B−1) (2.2)

where ψ(·) is a rational expression explained in Chapter 3 (see Equation 3.19).

Then by substituting Equation (2.1) into (2.2) and making comparisons, the

variance and the first acv of the MA(1) process is obtained respectively as

γ0 = σ2
a(1 + θ2) (2.3)
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and

γ1 = σ2
aθ (2.4)

which are influenced directly and in a very simple way by the coefficient of the

MA component. It is found that the autocovariance at lag 2 and beyond is equal

to zero. By normalizing each autocovariance, the autocorrelations are obtained

as

ρk =


1, k = 0

θ
1+θ2

, k = 1

0, k ≥ 2

(2.5)

Yaffee and McGee (2000) present the ACFs of a stationary AR(1) process.

The process is represented as

yt = φyt−1 + et (2.6)

It is revealed that to obtain the autocovariance at a particular lag say k, where

k is an integer, yt is multiplied by yt−k after which expectation is taken. The

results of the autocovariance obtained after the deductions were summarized as

γk =


σ2

1−φ
, k = 0

φkγ(0), k ≥ 1

(2.7)

After normalization, the ACF of the AR(1) process is summarized as

ρk =


1, k = 0

φk, k ≥ 1

(2.8)
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Triacca (2016) presents the autocovariance function of an ARMA(1, 1)

process. The causal ARMA(1,1) process is represented as

xt − ϕxt−1 = µt + θµt−1 (2.9)

where x· represents the Autoregressive component and the µ· is the Moving

Average component. Equation (2.9) is represented in the form

xt =
∞∑
j=0

ψjµt−j (2.10)

after which the sequence {ψ0, ψ1, · · · } are determined by the relation (1−ϕ1z−

· · · − ϕpz
p)(ψ0 + ψ1z + · · · ) = 1 + θ1z + · · · + θqz

q. It is found that ψ0 = 1

and ψj = (ϕ + θ)ϕj−1 for j ≥ 1. The variance for the ARMA(1,1) process is

deduced afterwards as

γ0 = σ2

[
1 +

(ϕ+ θ)2

1− ϕ2

]
(2.11)

The autocovariance at lag 1 is subsequently found to be

γ1 = σ2

[
ϕ+ θ +

(ϕ+ θ)2ϕ

1− ϕ2

]
(2.12)

It is revealed that

γk = ϕk−1γ(1), k ≥ 2 (2.13)

A normalization of the autocovariance at each lag gives the respective autocor-

relation.

ACFs of Higher Order ARMA(p, q) Processes

Exploration of the literature reveals a ground-breaking work of McLeod

et al. (1975) that presents a method for deriving the theoretical autocovarince

function of an ARMA model. The derivations helped in obtaining an algorithm
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suitable for machine computation of the theoretical ACF. The study considers a

stationary ARMA(p, q) model given as

zt − ϕ1zt−1 − · · · − ϕpzt−p = at − θ1at−1 − · · · − θqat−q (2.14)

and notes that E(at) = 0, E(a2t ) = σ2
a and E(atas) = 0, t ̸= s. The study

reviews Box et al. (1970) that the autocovariance function at lag k of Equation

(2.14) is given as

γk−ϕ1γk−1−· · ·−ϕpγk−p = γza(k)−θ1γza(k−1)−· · ·−θqγza(k−q) (2.15)

where γk = E(zt−kzt) and γza(k) = E(zt−kat). Multiplying Equation (2.14) by

at−k and taking expectations,

γza(−k)− ϕ1γza(−k + 1)− · · · − ϕpγza(−k + p) = −θkσ2
a (2.16)

is obtained. It is noted that in Equation (2.16),

[θk] =


θk, k = 1, · · · , q

−1, k = 0

0, otherwise

and γza(k) = 0 if k > 0. If k > r = max(p, q), Equation (2.16) may be used

to calculate γk directly from previous values by solving a system of linear equa-

tions. The algorithm is underlined by three procedures:

i. Set ϕ0 = θ0 = −1,c0 = 1 and

ck = −θk +
min(p,k)∑

i=1

ϕick−i
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for k = 1, · · · , q

ii. Set

bk =

q∑
i−k

θici−k

for k = 0, · · · , q and bk = 0 if k > q

iii. If p = 0, γk = bkσ
2
a, k = 0, · · · , q. If p > 0, solve the equations Ax = y

where

Aij =


[ϕi−1], j = 1; i = 1, · · · , r + 1,

[ϕi−j] + [ϕi+j−2], j = 2, · · · , r + 1; i = 1, · · · , r + 1

[ϕk] =


ϕk, k = 0, 1, · · · , p

0, otherwise

yi = −bi−1σ
2
a

and then set γk = xk+1, k = 0, · · · , r.

Muth (1978) presents a study on the autocovariance function determined

via the z-transform. Special references are made in the paper to the Box-Jenkins

forecasting approach, whose underlying process is produced by running a white

noise through a linear filter. The equation that characterizes the filter yields the

impulse response of the filter as well as its z-transform. The autocovariance

function’s bilateral z-transforms are then generated from the transfer function

and inverted after a partial fraction expansion. From a review of Box et al.

(1970), the study states that if Xn is an ARMA(p, q) process, then the input-

output relationship is given as

Xn − ϕ1Xn−1 − · · · − ϕpXn−p = an − θ1an−1 − · · · − θqan−q (2.17)
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Equation (2.17) is denoted in terms of the impulse response ψn of the filter as

Xn =ψ0an + ψ1an−1 + ψ2an−2 + · · · (2.18)

=ψn ∗ an (2.19)

where n represents a time point and ∗ represents convolution. It is noted also

that the impulse response is 0 for n < 0. Furthermore, the study represents the

bilateral z − transform as

X̄(z) =
∞∑

n=−∞

Xnz
−n (2.20)

and ā(z) and ψ̄(z) are defined analogously. Equation (2.18) is then transformed

in accordance with Equation (2.20), and with the convolution rule, becomes

X̄(z) = ψ̄(z) ¯(a)(z) (2.21)

The autocovariance functions of an and Xn are then respectively denoted as µk

and γk. Thus for lag k,

µk =cov(an, an+k)

γk =cov(Xn, Xn+k)

γk was represented as an output of a linear filter with impulse response gk whose

input is µk. Thus,

γk = gk ∗ µk (2.22)

and in the transform domain,

γ̄(z) = ḡ(z)µ̄(z) (2.23)
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Significantly, the gk was obtained from ψk as

gk = ψk ∗ ψ−k (2.24)

and the transform of this relation was obtained as

ḡ(z) = ψ̄(z)ψ̄(
1

z
) (2.25)

where ψ̄(1
z
) is the transform of ψ−k.

By letting ψ̄(z) = N(z)
D(z)

and ψ̄(1
z
) = P (z)

Q(z)
,

ḡ(z) =
N(z)P (z)

D(z)Q(z)
(2.26)

Equation (2.26) is then divided by z and a partial fraction expansion is per-

formed on ḡ(z)/z. The expansion is then multiplied by z and inverted to obtain

the autocovariance function. The results from the approach were used to ob-

tain the autocovariances of certain ARMA(p, q) process. One major drawback

of this method was that for partial fraction of cases where the degree of the

numerator was higher than the degree of the denominator, the autocovariances

were quite arduous to obtain. Specifically, the autocovariances were obtained

for ARMA(p, q) processes where 1 ≤ p ≤ 2 and 1 ≤ q ≤ 3, but no generaliza-

tions were made for higher order ARMA processes.

Karanasos (1998) reveals a new approach for obtaining the theoretical

acvf of a univariate ARMA model. In the paper, a closed-form solution of the

autocovariance is obtained in terms of the roots of the AR polynomial, and the

parameters of the moving average part. The acvf of an ARMA(1, q) is derived,

after which mathematical induction is used to obtain the acvf of the general

ARMA(p, q) process.
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The paper represents the ARMA(1, q) process as

zt = ϕ2zt−1 −
q∑

i=0

θiϵt−i (2.27)

where θ0 = −1 and ϵ ∼ i.i.d(0, σ2). The study showed that

cov(zt) = ϕj
2var(zt) +

min(j,q)∑
i=1

aiϕ
j−i
2 (2.28)

where

ai = −
q−i∑
m=0

θi+mϕ
m
2 +

q−1−i∑
n=0

q−i−n∑
k=1

θkθn+i+kϕ
n
2 (2.29)

It is noted that whenever i = q, the preceding double summation vanishes be-

cause the lower limit exceeds the upper limit of the summation operator. Specif-

ically, the variance of zt(γ(0)) was shown to be obtained from

(1− ϕ2
2)var(zt) =

q∑
m=0

θ2m +2ϕ2

(
−

q∑
n=1

ϕn−1
2 θn +

q−1∑
l=1

q−l∑
k=1

θkθk+lϕ
l−1
2

)
(2.30)

Autocovariances of the process at lags other than zero were obtained as

covj(zt) =


ϕj
2

1−ϕ2
2
λ2j, j ≤ q − 1

ϕj
2

1−ϕ2
2
λ2q, j ≥ q

(2.31)

where

λ2j =

q∑
i=0

θ2i +

j∑
l=1

q−l∑
k=0

θkθk+l(ϕ
l
2+ϕ

−l
2 )+

q∑
l=j+1

q−l∑
k=0

θkθk+l(ϕ
l
2+ϕ

l−2j
2 ) (2.32)

By obtaining the acvf of the ARMA(1, q) process, it is then assumed that if the

theorem holds for an ARMA(p − 1, q) process, then it will be enough to prove

that it holds for an ARMA(p, q) process. The ARMA(p, q) process denoted as

yt is written as an AR(1) process with an ARMA(p − 1, q) error term (yt =
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ϕ1yt−1 + zt), where zt is an ARMA(p− 1, q) process given by

p∏
i=2

(1− ϕiL)zt = −
q∑

i=0

θiϵt−i (2.33)

It is noted that since zt is an ARMA(p − 1, q) process, its autocovariance is

represented as

covj(zt) =


∑p

i=2 êijλij =
∑p

i=2 êij(λiq + νij), 0 ≤ j ≤ q − 1∑p
i=2 êijλiq, j ≥ q

(2.34)

After some rigorous mathematics, the autocovariance function of an ARMA(p, q)

process is obtained as

covj(yt) =


∑p

i=1 eijλij, j ≤ q − 1∑p
i=1 eijλiq, j ≥ q

(2.35)

where

eij =
ϕj
iϕ

p−1
i∏p

l=1(1− ϕlϕi)
∏p

k=1,k ̸=i(ϕi − ϕk)
(2.36)

and

λij =

q∑
k=0

θ2k +

j∑
l=1

q−l∑
k=0

θkθk+l(ϕ
l
i + ϕ−l

i ) +

q∑
l=j+1

q−l∑
k=0

θkθk+l(ϕ
l
i + ϕl−2j

i ) (2.37)

It is again noted that for j = q, the third term of the right-hand side of the Equa-

tion (2.37) disappears because the lower limit exceeds the upper limit of the first

summation operator. Although the approach is excellent, it is unable to clearly

establish the relationships among the autocovariance at the various lags.
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Chapter Summary

The literature shows that the derivations of theoretical ACF of higher order

ARMA processes have not been left unattempted. However, there has not been

so many extensive development of the concept. While this may be due to the

ease of access to the autocorrelations in some mathematical software based on

McLeod’s algorithm, another reason why the theoretical ACF of higher order

ARMA processes have not caught the attention of many could be due to the

arduous nature of the derivations. It has been seen that the theoretical ACFs

of higher order ARMA process are underlined by rigorous mathematical bases,

which in most cases, have resulted in the inability to generalize.
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CHAPTER THREE

METHODOLOGY

Introduction

The methodology for this study is focused on the mathematical bases

for obtaining the theoretical autocorrelation of a stationary time series process.

Specifically, the chapter will examine how the Yule-Walker approach, the com-

parison of coefficients approach, and the autocovariance generating function aid

in obtaining the ACF of an ARMA process. In the final section of this chapter,

an attention is directed to the data characterization of the Covid-19 cases used

as an application to the study, and the software that will aid in the data analyses

process.

Autocorrelation Functions through the Yule-Walker Approach

The Yule-Walker equations, developed by George Udny Yule and Gilbert

Walker are a set of equations for obtaining the autocovariances and autocorrela-

tions for stationary AR(p) processes. The general AR(p) process is given by

Xt =ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + · · ·+ ϕp−1Xt−(p−1) + ϕpXt−p + εt

=

p∑
j=1

ϕjXt−j + εt
(3.1)

where t and j are the time and term indices respectively.

The autocovariance at various lags of the process is computed as follows:

At lag 0, both sides of Equation(3.1) are multiplied by Xt to obtain

Xt ·Xt =
( p∑

j=1

ϕjXt−j + εt

)
·Xt (3.2)
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Taking expectation on both sides gives

E
(
Xt ·Xt

)
=E
( p∑

j=1

ϕjXt−j ·Xt

)
+ E

(
εt ·Xt

)
E
(
Xt ·Xt

)
=

p∑
j=1

ϕjE
(
Xt−j ·Xt

)
+ σ2

ε

(3.3)

Thus, the variance of an AR(p) process is given as

γ(0) =

p∑
j=1

ϕjγ(j) + σ2
ε (3.4)

Similarly, the autocovariance at lag 1 is obtained by multiplying both sides of

Equation(3.1) by Xt−1. This gives

Xt ·Xt−1 =
( p∑

j=1

ϕjXt−j + εt

)
·Xt−1 (3.5)

Taking expectation on both sides

E
(
Xt ·Xt−1

)
= E

( p∑
j=1

ϕjXt−j ·Xt−1

)
+ E

(
εt ·Xt−1

)
(3.6)

Since the random error (εt) of the current time is uncorrelated with the previous

values of the process, E
(
εt ·Xt−1

)
= 0. Equation (3.6) simplifies to

E
(
Xt ·Xt−1

)
=

p∑
j=1

ϕjE
(
Xt−j ·Xt−1

)
γ(1) =

p∑
j=1

ϕjγ(j − 1)

Subsequently, at lag p−1, we multiply both sides of Equation (3.1) by Xt−(p−1)

to obtain

Xt ·Xt−(p−1) =
( p∑

j=1

ϕjXt−j + εt

)
·Xt−(p−1) (3.7)
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Taking expectation on both sides

E
(
Xt ·Xt−(p−1)

)
= E

( p∑
j=1

ϕjXt−j ·Xt−(p−1)

)
+ E

(
εt ·Xt−(p−1)

)
(3.8)

E
(
Xt ·Xt−(p−1)

)
=

p∑
j=1

ϕjE
(
Xt−j ·Xt−(p−1)

)
γ(p− 1) =

p∑
j=1

ϕjγ(j − p+ 1)

Similarly, at lag p, we multiply both sides of Equation (3.1) by Xt−p to obtain

Xt ·Xt−p =
( p∑

j=1

ϕjXt−j + εt

)
·Xt−p (3.9)

Taking expectation on both sides

E
(
Xt ·Xt−p

)
= E

( p∑
j=1

ϕjXt−j ·Xt−p

)
+ E

(
εt ·Xt−p

)
(3.10)

E
(
Xt ·Xt−p

)
=

p∑
j=1

ϕjE
(
Xt−j ·Xt−p

)
γ(p) =

p∑
j=1

ϕjγ(j − p)
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Putting γ(1) to γ(p) together, we obtain the system of equations

γ(1) =ϕ1γ(0) + ϕ2γ(1) + · · ·+ ϕp−1γ(p− 2) + ϕpγ(p− 1)

γ(2) =ϕ1γ(−1) + ϕ2γ(0) + · · ·+ ϕp−1γ(p− 3) + ϕpγ(p− 2)

γ(3) =ϕ1γ(−2) + ϕ2γ(−1) + · · ·+ ϕp−1γ(p− 4) + ϕpγ(p− 3)

... =
... +

... +
... +

. . . +
... +

...

γ(p− 1) =ϕ1γ(−p+ 2) + ϕ2γ(−p+ 3) + · · ·+ ϕp−1γ(0) + ϕpγ(1)

γ(p) =ϕ1γ(−p+ 1) + ϕ2γ(−p+ 2) + · · ·+ ϕp−1γ(−1) + ϕpγ(0)

Since the autocovariance function is symmetric, γ(−h) = γ(h). The system of

equations can then be simplified into a matrix as



γ(1)

γ(2)

γ(3)

...

γ(p− 1)

γ(p)


=



γ(0) γ(1) · · · γ(p− 1)

γ(1) γ(0) · · · γ(p− 2)

γ(2) γ(1) · · · γ(p− 3)

...
... . . . ...

γ(p− 2) γ(p− 3) · · · γ(1)

γ(p− 1) γ(p− 2) · · · γ(0)





ϕ1

ϕ2

ϕ3

...

ϕp−1

ϕp


γ =ΓΦ

(3.11)

In Equation (3.11), Γ is full-rank and symmetric.

The autocovariances is replaced with the autocorrelatons when normalized by
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the variance. In that way, Equation (3.11) summarizes to



ρ(1)

ρ(2)

ρ(3)

...

ρ(p− 1)

ρ(p)


=



ρ(0) ρ(1) · · · ρ(p− 1)

ρ(1) ρ(0) · · · ρ(p− 2)

ρ(2) ρ(1) · · · ρ(p− 3)

...
... . . . ...

ρ(p− 2) ρ(p− 3) · · · ρ(1)

ρ(p− 1) ρ(p− 2) · · · ρ(0)





ϕ1

ϕ2

ϕ3

...

ϕp−1

ϕp


(3.12)

To obtain functional expression for the autocorrelation at various lags, one will

have to solve a system of linear equations in Equation (3.12).

Autocorrelation Functions through the Relationships between the AR and

MA weights

Consider a causal time series process given as

Φ(L)Xt = Θ(L)Zt (3.13)

where Φ(L) and Θ(L) are linear filters, and L is the lag operator represented as

B in some texts. Equation (3.13) can be simplified as

Xt =
Θ(L)

Φ(L)
Zt (3.14)

which is the Moving Average representation of the process. Equation (3.14) can

be written as

Xt =
∞∑
j=0

ΨjL
jZt
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where

ΨjL
j =

ΘjL
j

ΦjLj

ΘjL
j =ΨjL

jΦjL
j

Θ(L) =Ψ(L)Φ(L)(
θ0 + θ1L+ · · ·+ θrL

r + · · ·
)
=

{(
ψ0 + ψ1L+ · · ·+ ψrL

r + · · ·
)
×

(
ϕ0 − ϕ1L+ · · ·+ ϕrL

r + · · ·
)}

Noting that θ0 = ϕ0 = 1, we expand and match coefficients on both sides

At j = 0, ψ0 = 1

At j = 1,

ψ1L− ψ0ϕ1L =θ1L

ψ1 − ψ0ϕ1 =θ1

At j = 2,

ψ2L
2 − ψ1ϕ1L

2 − ψ0ϕ2L
2 =θ2L

2

ψ2 − ψ1ϕ1 − ψ0ϕ2 =θ2

At j = 3,

ψ3L
3 − ψ2ϕ1L

3 − ψ1ϕ2L
3 − ψ0ϕ3L

3 =θ3L
3

ψ3 − ψ2ϕ1 − ψ1ϕ2 − ψ0ϕ3 =θ3
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and so on.

Generalizing for j = 1, 2, · · · ,

θj =ψj − ψj−1ϕ1 − ψj−2ϕ2 − ψj−3ϕ3 − · · · − ψ0ϕj

=ψj −
∞∑
k=1

ψj−kϕk

ψj = θj +
∞∑
k=1

ψj−kϕk (3.15)

Equation (3.15) gives a recursive method to calculate the elements of ψj , start-

ing with ψ0, ψ1, ψ2 and so on.

The autocovariance at lag k (γ(k)) is therefore obtained as ψjψj+k. A normal-

ization of ψjψj+k gives the autocorrelation at lag k.

Autocorrelation Functions through the Autocovariance Generating

Function Approach

For a stationary time series process Xt, the sequence of autocovariances

γk, for k = 0, 1, · · · can be calculated through a scalar valued function called

the autocovariance generating function defined as

c(s) =
∞∑

k=−∞

γ(k)sk (3.16)

The function is constructed by taking the kth autocovariane and multiplying

it by some number s raised to the kth power, and then summing over all the

possible values of k. This implies that the variance of the process, γ(0), is the

coefficient of s0 = 1, while γ(k), the autocovariance of the process at lag k is

the coefficient of both sk and s−k.
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From Equation (3.14), it is notied that if Xt is a linear process, then

Xt =
∞∑
r=0

ΨrZt−r (3.17)

where Ψr are constants and
∑

Ψ2
r <∞

The autocovariance at lag k of Equation (3.17) is obtained as

cov
(
Xt, Xt+k

)
=E
(
Xt ·Xt+k

)
=E
[∑

ΨrZt−r ·
∑

ΨjZt+k−j

]
=σ2

∞∑
r=0

ΨrΨr+k

Inferring from Equation (3.17), we consider a case where

c(s) =
∞∑
r=0

Ψrs
r (3.18)

By multiplying Equation (3.18) by another power series c(s−1), we shall obtain

c(s) · c(s−1) =
∞∑
r=0

Ψrs
r

∞∑
j=0

Ψjs
−j

=σ2

∞∑
r=0

ΨrΨr+k

which is the same as the covariance of a time series at lag k.

Thus, γ(k) is the coefficient of sk in the expansion of the power series given by

c(s)c(s−1) =σ2Θ(s)Θ(s
−1)

Φ(s)Φ(s−1)

=σ2

(
θ0 + · · ·+ θps

p
)(
θ0 + · · ·+ θps

−p
)

(
ϕ0 − · · · − ϕpsp

)(
ϕ0 − · · · − ϕps−p

) (3.19)

In Equation (3.19), θ0 = ϕ0 = 1.
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Illustrative Dataset

As an application to the derivations that will be obtained in this study in

the last part of Chapter Four, data on daily new Covid-19 cases for some selected

countries across the globe is obtained from the official website of the Johns

Hopkins University Center for Systems Science Engineering (JHU CSSE). The

choice of the countries were based on the availability of complete (non-missing)

data and the condition that the series exhibit stationarity. The starting point of

each series was different, since the Corona virus were identified on different

days for most countries. However, to make a more reliable inference, it was

ensured that the data points for all the selected countries exceeded 365. More

specifically, data points were from January 2020 to March 2022.

Data obtained will be processed and analyzed using Microsoft Excel,

Minitab 19, and R statistical software.

Chapter Summary

This chapter has presented the most dominant mathematical bases for ob-

taining the theoretical autocorrelation of a stationary time series process. Specif-

ically, the chapter has examined how the Yule-Walker approach, the comparison

of coefficients approach, and the autocovariance generating function aid in ob-

taining the ACF of an ARMA process. To help in the implementation of the

formulas that will be derived, the chapter further looks at the characteristics of

the data selected, and the software that will be used to aid in this regard.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

The focus of this chapter is to present extensions and generalizations

of the ACFs of ARMA(p, q) processes. The ACFs of lower order processes

which includes the ARMA(1, 0), ARMA(0, 1), as well as ARMA(1, 1) are well-

documented in the literature and are therefore presented in Chapter Two. This

chapter therefore begins with a study of the ACFs of ARMA(1,2) and ARMA(1,3)

are derived, after which a generalization is made for ARMA(1,q) process. Gen-

eralizations of higher order ACFs are subsequently considered. Applications of

the results are made to relevant stationary time series data in the end. Similarly,

the ACFs of ARMA(2, 0), ARMA(2, 1), ARMA(2, 2) and ARMA(2, 3) are de-

rived, after which a generalization is made for ARMA(2,q). The variance and

the first autocorrelation function of an ARMA(3, 0) process are also derived. In

the last section of this chapter, the generalizations are verified, and applications

are made to a pandemic data.

ACF of an ARMA(1,2) Process

In this section, the ACF of an ARMA(1,2) process is derived. Firstly,

the autocovariance generating function (acgf) is used to obtain the variance and

autocovariances, after which the autocovariances are normalized to obtain the

autocorrelation functions.

An ARMA (1,2) process is given by

Xt = ϕ1Xt−1 + Zt + θ1Zt−1 + θ2Zt−2 (4.1)
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By introducing a lag operator, Equation(4.1) can be simplified as

(1− ϕ1L)Xt = (1 + θ1L+ θ2L
2)Zt

Further simplification yields

Xt =
(1 + θ1L+ θ2L

2)

(1− ϕ1L)
Zt (4.2)

From acgf, the autocovariance of an ARMA (1,2) process can be written as

c(s)c(s−1) = σ2 (1 + θ1s+ θ2s
2)(1 + θ1s

−1 + θ2s
−2)

(1− ϕ1s)(1− ϕ1s−1)
(4.3)

Simplifying further, we obtain

c(s)c(s−1) = σ2

[
(1 + θ1s

−1 + θ2s
−2) + (θ1s+ θ21 + θ1θ2s

−1)+

(θ2s
2 + θ1θ2s+ θ22)

]
×

∞∑
r=0

(ϕ1s)
r ·

∞∑
r=0

(ϕ1s
−1)r

Further groupings yield

c(s)c(s−1) = σ2

[
(1 + θ21 + θ22) + (θ1 + θ1θ2)s+ θ2s

2+

(θ1 + θ1θ2)s
−1 + θ2s

−2

]
×

∞∑
r=0

(ϕ1s)
r ·

∞∑
r=0

(ϕ1s
−1)r

(4.4)

Now,

∞∑
r=0

(ϕ1s)
r ·

∞∑
r=0

(ϕ1s
−1)r =

∞∑
r=0

ϕ2r
1

[ ∞∑
r=0

(ϕ1s)
r +

∞∑
r=1

(ϕ1s
−1)r

]
(4.5)

33

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



At lag 0, we consider terms in s0 in Equation (4.4) and obtains the variance of

the series as

γ(0) =σ2

{
(1 + θ21 + θ22)

[ ∞∑
r=0

ϕ2r
1

]
+ (θ1 + θ1θ2)s

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s−1+

θ2s
2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s−2 + (θ1 + θ1θ2)s

−1
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+

θ2s
−2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2

}

=σ2

{
(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + ϕ1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ2

1θ2

∞∑
r=0

ϕ2r
1 +

ϕ1(θ1 + θ1θ2)
∞∑
r=0

ϕ2r
1 + ϕ2

1θ2

∞∑
r=0

ϕ2r
1

}

=σ2

{(
1 + θ21 + θ22

)
+ ϕ1

(
θ1 + θ1θ2

)
+ ϕ2

1θ2 + ϕ1

(
θ1 + θ1θ2

)
+

ϕ2
1θ2

}
∞∑
r=0

ϕ2r
1

After some further simplifications,

γ(0) = σ2

{
1 + θ1

(
θ1 + 2ϕ1

)
+ θ2

(
θ2 + 2ϕ1θ1 + 2ϕ2

1

)} 1

1− ϕ2
1

(4.6)

We consider terms in s and obtain the autocovariance (acv) at lag 1 as

γ(1) =σ2

{
(1 + θ21 + θ22)

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ (θ1 + θ1θ2)s

[ ∞∑
r=0

ϕ2r
1

]
+

θ2s
2
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s−1 + (θ1 + θ1θ2)s

−1
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2+

θ2s
−2
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3

}

=σ2

{
ϕ1(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + (θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ1θ2

∞∑
r=0

ϕ2r
1 +

ϕ2
1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ3

1θ2

∞∑
r=0

ϕ2r
1

}
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Further simplification gives

γ(1) = σ2

{
ϕ1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
1 + ϕ2

1

]
+ θ2

[
ϕ3
1 + ϕ1

]} 1

1− ϕ2
1

At lag 2, we consider terms in s2 and obtain

γ(2) =σ2

{
(1 + θ21 + θ22)

[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + (θ1 + θ1θ2)s

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+

θ2s
2
[ ∞∑

r=0

ϕ2r
1

]
+ (θ1 + θ1θ2)s

−1
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + θ2s

−2
[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4

}

=σ2

{
ϕ2
1(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + ϕ1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + θ2

∞∑
r=0

ϕ2r
1 +

ϕ3
1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ4

1θ2

∞∑
r=0

ϕ2r
1

}

Therefore,

γ(2) = σ2

{
ϕ2
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ3
1 + ϕ1

]
+ θ2

[
1 + ϕ4

1

]} 1

1− ϕ2
1

At lag 3, we consider terms in s3 and obtain

γ(3) =σ2

{
(1 + θ21 + θ22)

[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + (θ1 + θ1θ2)s

[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2+

θ2s
2
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ (θ1 + θ1θ2)s

−1
[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4+

θ2s
−2
[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5

}

=σ2

{
ϕ3
1(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + ϕ2

1(θ1 + θ1θ2)
∞∑
r=0

ϕ2r
1 + ϕ1θ2

∞∑
r=0

ϕ2r
1 +

ϕ4
1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ5

1θ2

∞∑
r=0

ϕ2r
1

}

=σ2

{
ϕ3
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ4
1 + ϕ2

1

]
+ θ2

[
ϕ5
1 + ϕ1

]} 1

1− ϕ2
1
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Therefore

γ(3) =ϕ1σ
2

{
ϕ2
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ3
1 + ϕ1

]
+ θ2

[
1 + ϕ4

1

]} 1

1− ϕ2
1

=ϕ1γ(2)

At lag 4, we consider terms in s4 and obtain

γ(4) =σ2

{
(1 + θ21 + θ22)

[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4 + (θ1 + θ1θ2)s

[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3+

θ2s
2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + (θ1 + θ1θ2)s

−1
[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5+

θ2s
−2
[
ϕ6
1

∞∑
r=0

ϕ2r
1

]
s6

}

=σ2

{
ϕ4
1(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + ϕ3

1(θ1 + θ1θ2)
∞∑
r=0

ϕ2r
1 + ϕ2

1θ2

∞∑
r=0

ϕ2r
1 +

ϕ5
1(θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕ6

1θ2

∞∑
r=0

ϕ2r
1

}

=σ2

{
ϕ4
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ5
1 + ϕ3

1

]
+ θ2

[
ϕ6
1 + ϕ2

1

]} 1

1− ϕ2
1

Therefore

γ(4) =ϕ2
1σ

2

{
ϕ2
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ3
1 + ϕ1

]
+ θ2

[
1 + ϕ4

1

]} 1

1− ϕ2
1

=ϕ2
1γ(2)

=ϕ1γ(3)

The autocovariances of ARMA(1,2) process obtained so far shows a clear pat-

tern after lag 2.
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Therefore, at lag k, we consider terms in sk

γ(k) =σ2

{
(1 + θ21 + θ22)

[
ϕk
1s

k + ϕk+2
1 sk + ϕk+4

1 sk + · · ·
]
+

(θ1 + θ1θ2)s
[
ϕk−1
1 sk−1 + ϕk+1

1 sk−1 + ϕk+3
1 sk−1 + · · ·

]
+

θ2s
2
[
ϕk−2
1 sk−2 + ϕk

1s
k−2 + ϕk+2

1 sk−2 + · · ·
]
+

(θ1 + θ1θ2)s
−1
[
ϕk+1
1 sk+1 + ϕk+3

1 sk+1 + ϕk+5
1 sk+1 + · · ·

]
+

θ2s
−2
[
ϕk+2
1 sk+2 + ϕk+4

1 sk+2 + ϕk+6
1 sk+2 + · · ·

]}

=σ2

{
ϕk
1(1 + θ21 + θ22)

∞∑
r=0

ϕ2r
1 + ϕk−1

1 (θ1 + θ1θ2)
∞∑
r=0

ϕ2r
1 + ϕk−2

1 θ2

∞∑
r=0

ϕ2r
1

+ ϕk+1
1 (θ1 + θ1θ2)

∞∑
r=0

ϕ2r
1 + ϕk+2

1 θ2

∞∑
r=0

ϕ2r
1

}

=σ2

{
ϕk
1

(
1 + θ21 + θ22

)
+ ϕk−1

1

(
θ1 + θ1θ2

)
+ ϕk−2

1 θ2+

ϕk+1
1

(
θ1 + θ1θ2

)
+ ϕk+2

1 θ2

}
∞∑
r=0

ϕ2r
1

=σ2

{
ϕk
1

(
1 + θ21 + θ22

)
+ ϕk−1

1

(
θ1 + θ1θ2

)
+ ϕk−2

1 θ2+

ϕk+1
1

(
θ1 + θ1θ2

)
+ ϕk+2

1 θ2

}
1

1− ϕ2
1

=σ2

{
ϕk
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕk+1
1 + ϕk−1

1

]
+

θ2

[
ϕk+2
1 + ϕk−2

1

]} 1

1− ϕ2
1

=ϕk−2
1 σ2

{
ϕ2
1

(
1 + θ21 + θ22

)
+ (θ1 + θ1θ2)

[
ϕ3
1 + ϕ1

]
+ θ2

[
1 + ϕ4

1

]} 1

1− ϕ2
1

=ϕk−2
1 γ(2)

=ϕ1γ(k − 1)
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Therefore, the ACF of an ARMA(1,2) process can be summarized as

ρ(k) =



1 , k = 0

ϕ1(1+θ21+θ22)+(θ1+θ1θ2)[1+ϕ2
1]+θ2[ϕ3

1+ϕ1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)

, k = 1

(1+θ21+θ22)+(θ1+θ1θ2)[ϕ3
1+ϕ1]+θ2[1+ϕ4

1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)

, k = 2

ϕk−2ρ(2) , k ≥ 3

(4.7)

From the relation among the γ(k)s, it can be verified that

ρ2(3) = ρ(2)× ρ(4) (4.8)

ACF of an ARMA(1,3) Process

This section examines the ACF of an ARMA(1,3) process. The acgf is

used to obtain the variance and autocovariances, after which the autocovariances

are normalized to obtain the autocorrelation function.

An ARMA (1,3) process is given by

Xt = ϕ1Xt−1 + Zt + θ1Zt−1 + θ2Zt−2 + θ3Zt−3 (4.9)

By introducing a lag operator, Equation(4.9) can be simplified as

(1− ϕ1L)Xt = (1 + θ1L+ θ2L
2 + θ3L

3)Zt

Further simplification yields

Xt =
(1 + θ1L+ θ2L

2 + θ3L
3)

(1− ϕ1L)
Zt (4.10)
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From autocovariance generating functions, the autocovariance generating func-

tion can thus be written as

c(s)c(s−1) = σ2

[
1 + θ1s+ θ2s

2 + θ3s
3

(1− ϕ1s)
× 1 + θ1s

−1 + θ2s
−2 + θ3s

−3

(1− ϕ1s−1)

]

This simplifies to

1

(1− ϕ1s)(1− ϕ1s−1)

{
(1 + θ21 + θ22 + θ23) + (θ1 + θ1θ2 + θ2θ3)s+

(θ2 + θ1θ3)s
2 + θ3s

3 + (θ1 + θ1θ2 + θ2θ3)s
−1+

(θ2 + θ1θ1θ3)s
−2 + θ3s

−3

}

Equivalently,

c(s)c(s−1) = σ2

{(
1 + θ21 + θ22 + θ23

)
+
(
θ1 + θ1θ2 + θ2θ3

)
s+

(
θ2 + θ1θ3

)
s2+

θ3s
3 +

(
θ1 + θ1θ2 + θ2θ3

)
s−1 +

(
θ2 + θ1θ1θ3

)
s−2 + θ3s

−3

}
×

∞∑
r=0

(ϕ1s)
r ·

∞∑
r=0

(ϕ1s
−1)r

(4.11)

At lag 0, we consider terms in s0 in Equation (4.11) and using Equation (4.5),

the variance of the process is given by

γ(0) =σ2

{
(1 + θ21 + θ22 + θ23)

[ ∞∑
r=0

ϕ2r
1

]
+ (θ1 + θ1θ2 + θ2θ3)s

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s−1

+ (θ2 + θ1θ3)s
2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s−2 + θ3s

3
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s−3+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ (θ2 + θ1θ3)s

−2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2+

θ3s
−3
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3

}
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=σ2

{
(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕ1(θ1 + θ1θ2 + θ2θ3)

∞∑
r=0

ϕ2r
1 +

ϕ2
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ3

1θ3

∞∑
r=0

ϕ2r
1 + ϕ1(θ1 + θ1θ2 + θ2θ3)

∞∑
r=0

ϕ2r
1 +

ϕ2
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ3

1θ3

∞∑
r=0

ϕ2r
1

}

After some further simplifications, the variance of an ARMA(1,3) is obtained as

γ(0) =σ2

{
1 + θ1

(
θ1 + 2ϕ1

)
+ θ2

(
θ2 + 2ϕ1θ1 + 2ϕ2

1

)
+

θ3

(
θ3 + 2ϕ1θ2 + 2ϕ2

1θ1 + 2ϕ3
1

)} 1

1− ϕ2
1

(4.12)

At lag 1, we consider terms in s and obtain

γ(1) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ (θ1 + θ1θ2 + θ2θ3)s

[ ∞∑
r=0

ϕ2r
1

]
+

(θ2 + θ1θ3)s
2
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s−1 + θ3s

3
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s−2+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + (θ2 + θ1θ3)s

−2
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3+

θ3s
−3
[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4

}

=σ2

{
ϕ1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + (θ1 + θ1θ2 + θ2θ3)

∞∑
r=0

ϕ2r
1 +

ϕ1(θ2 + θ1θ3)
∞∑
r=0

ϕ2r
1 + ϕ2

1θ3

∞∑
r=0

ϕ2r
1 + ϕ2

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ3
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ4

1θ3

∞∑
r=0

ϕ2r
1

}

=σ2

{
ϕ1

(
1 + θ21 + θ22 + θ23

)
+
(
θ1 + θ1θ2 + θ2θ3

)
+ ϕ1

(
θ2 + θ1θ3

)
+

ϕ2
1θ3 + ϕ2

1

(
θ1 + θ1θ2 + θ2θ3

)
+ ϕ3

1

(
θ2 + θ1θ3

)
+ ϕ4

1θ3

}
∞∑
r=0

ϕ2r
1
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Therefore, the autocovariance at lag 1 summarizes to

γ(1) =σ2

{
ϕ1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
1 + ϕ2

1

]
+

(θ2 + θ1θ3)
[
ϕ3
1 + ϕ1

]
+ θ3

[
ϕ4
1 + ϕ2

1

]} 1

1− ϕ2
1

Similarly,

γ(2) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + (θ1 + θ1θ2+

θ2θ3)s
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ (θ2 + θ1θ3)s

2
[ ∞∑

r=0

ϕ2r
1

]
+ θ3s

3
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s−1+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + (θ2 + θ1θ3)s

−2
[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4+

θ3s
−3
[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5

}

=σ2

{
ϕ2
1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕ1(θ1 + θ1θ2 + θ2θ3)

∞∑
r=0

ϕ2r
1 +

(θ2 + θ1θ3)
∞∑
r=0

ϕ2r
1 + ϕ1θ3

∞∑
r=0

ϕ2r
1 + ϕ3

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ4
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ5

1θ3

∞∑
r=0

ϕ2r
1

}

Therefore,

γ(2) =σ2

{
ϕ2
1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ3
1 + ϕ1

]
+

(θ2 + θ1θ3)
[
1 + ϕ4

1

]
+ θ3

[
ϕ5
1 + ϕ1

]} 1

1− ϕ2
1
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At lag 3, we consider terms in s3 and obtain

γ(3) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + (θ1 + θ1θ2+

θ2θ3)s
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + (θ2 + θ1θ3)s

2
[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+ θ3

∞∑
r=0

ϕ2r
1 +

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4 + (θ2 + θ1θ3)s

−2
[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5+

θ3s
−3
[
ϕ6
1

∞∑
r=0

ϕ2r
1

]
s6

}

=σ2

{
ϕ3
1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕ2

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ1(θ2 + θ1θ3)
∞∑
r=0

ϕ2r
1 + θ3

∞∑
r=0

ϕ2r
1 + ϕ4

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ5
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ6

1θ3

∞∑
r=0

ϕ2r
1

}

Therefore,

γ(3) =σ2

{
ϕ3
1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ4
1 + ϕ2

1

]
+

(θ2 + θ1θ3)
[
ϕ5
1 + ϕ1

]
+ θ3

[
1 + ϕ6

1

]} 1

1− ϕ2
1

At lag 4, we consider terms in s4 and obtain

γ(4) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4 + (θ1 + θ1θ2 + θ2θ3)s

[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + (θ2 + θ1θ3)s

2
[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2 + θ3

[
ϕ1

∞∑
r=0

ϕ2r
1

]
s+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5 + (θ2 + θ1θ3)s

−2
[
ϕ6
1

∞∑
r=0

ϕ2r
1

]
s6+

θ3s
−3
[
ϕ7
1

∞∑
r=0

ϕ2r
1

]
s7

}
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=σ2

{
ϕ4
1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕ3

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ2
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ1θ3

∞∑
r=0

ϕ2r
1 + ϕ5

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ6
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ7

1θ3

∞∑
r=0

ϕ2r
1

}

Therefore, γ(4) can be obtained as

γ(4) =σ2ϕ1

{
ϕ3
1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ4
1 + ϕ2

1

]
+

(θ2 + θ1θ3)
[
ϕ5
1 + ϕ1

]
+ θ3

[
1 + ϕ6

1

]} 1

1− ϕ2
1

=ϕ1γ(3)

Similarly,

γ(5) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕ5
1

∞∑
r=0

ϕ2r
1

]
s5 + (θ1 + θ1θ2 + θ2θ3)s

[
ϕ4
1

∞∑
r=0

ϕ2r
1

]
s4

+ (θ2 + θ1θ3)s
2
[
ϕ3
1

∞∑
r=0

ϕ2r
1

]
s3 + θ3

[
ϕ2
1

∞∑
r=0

ϕ2r
1

]
s2+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕ6
1

∞∑
r=0

ϕ2r
1

]
s6 + (θ2 + θ1θ3)s

−2
[
ϕ7
1

∞∑
r=0

ϕ2r
1

]
s7+

θ3s
−3
[
ϕ8
1

∞∑
r=0

ϕ2r
1

]
s8

}

=σ2

{
ϕ5
1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕ4

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ3
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ2

1θ3

∞∑
r=0

ϕ2r
1 + ϕ6

1(θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕ7
1(θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕ8

1θ3

∞∑
r=0

ϕ2r
1

}
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=σ2ϕ2
1

{
ϕ3
1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ4
1 + ϕ2

1

]
+

(θ2 + θ1θ3)
[
ϕ5
1 + ϕ1

]
+ θ3

[
1 + ϕ6

1

]} 1

1− ϕ2
1

=ϕ2
1γ(3)

=ϕ1γ(4)

At lag k, we consider terms in sk and obtain

γ(k) =σ2

{
(1 + θ21 + θ22 + θ23)

[
ϕk
1s

k + ϕk+2
1 sk + ϕk+4

1 sk + · · ·
]
+

(θ1 + θ1θ2 + θ2θ3)s
[
ϕk−1
1 sk−1 + ϕk+1

1 sk−1 + ϕk+3
1 sk−1 + · · ·

]
+

(θ2 + θ1θ3)s
2
[
ϕk−2
1 sk−2 + ϕk

1s
k−2 + ϕk+2

1 sk−2 + · · ·
]
+

θ3s
3
[
ϕk−3
1 sk−3 + ϕk−1

1 sk−3 + ϕk+1
1 sk−3 + · · ·

]
+

(θ1 + θ1θ2 + θ2θ3)s
−1
[
ϕk+1
1 sk+1 + ϕk+3

1 sk+1 + ϕk+5
1 sk+1 + · · ·

]
+

(θ2 + θ1θ3)s
−2
[
ϕk+2
1 sk+2 + ϕk+4

1 sk+2 + ϕk+6
1 sk+2 + · · ·

]
+

θ3s
−3
[
ϕk+3
1 sk+3 + ϕk+5

1 sk+3 + ϕk+7
1 sk+3 + · · ·

]}

=σ2

{
ϕk
1(1 + θ21 + θ22 + θ23)

∞∑
r=0

ϕ2r
1 + ϕk−1

1 (θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1 +

ϕk−2
1 (θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕk−3

1 θ3

∞∑
r=0

ϕ2r
1 + ϕk+1

1 (θ1 + θ1θ2 + θ2θ3)
∞∑
r=0

ϕ2r
1

+ ϕk+2
1 (θ2 + θ1θ3)

∞∑
r=0

ϕ2r
1 + ϕk+3

1 θ3

∞∑
r=0

ϕ2r
1

}

=σ2

{
ϕk
1

(
1 + θ21 + θ22 + θ23

)
+ ϕk−1

1

(
θ1 + θ1θ2 + θ2θ3

)
+ ϕk−2

1

(
θ2 + θ1θ3

)
+

ϕk−3
1 θ3 + ϕk+1

1

(
θ1 + θ1θ2 + θ2θ3

)
+ ϕk+2

1

(
θ2 + θ1θ3

)
+ ϕk+3

1 θ3

}
1

1− ϕ2
1
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=ϕk−3
1 σ2

{
ϕ3
1

(
1 + θ21 + θ22 + θ23

)
+ ϕ2

1

(
θ1 + θ1θ2 + θ2θ3

)
+ ϕ1

(
θ2 + θ1θ3

)
+ θ3 + ϕ4

1

(
θ1 + θ1θ2 + θ2θ3

)
+ ϕ5

1

(
θ2 + θ1θ3

)
+ ϕ6

1θ3

}
1

1− ϕ2
1

=σ2ϕk−3
1

{
ϕ3
1

(
1 + θ21 + θ22 + θ23

)
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ4
1 + ϕ2

1

]
+

(θ2 + θ1θ3)
[
ϕ5
1 + ϕ1

]
+ θ3

[
1 + ϕ6

1

]} 1

1− ϕ2
1

=ϕk−3
1 γ(3)

=ϕ1γ(k − 1)

Therefore, the ACF of an ARMA(1,3) process can be summarized as

ρ(k) =



1 , k = 0

ϕ1(1+θ21+θ22+θ23)+(θ1+θ1θ2+θ2θ3)[1+ϕ2
1]+(θ2+θ1θ3)[ϕ3

1+ϕ1]+θ3[ϕ4
1+ϕ2

1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 1

ϕ2
1(1+θ21+θ22+θ23)+(θ1+θ1θ2+θ2θ3)[ϕ3

1+ϕ1]+(θ2+θ1θ3)[1+ϕ4
1]+θ3[ϕ5

1+ϕ1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 2

ϕ3
1(1+θ21+θ22+θ23)+(θ1+θ1θ2+θ2θ3)[ϕ4

1+ϕ2
1]+(θ2+θ1θ3)[ϕ5

1+ϕ1]+θ3[1+ϕ6
1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 3

ϕk−3ρ(3) , k ≥ 4

(4.13)

From the relation among the γ(k)s of the ARMA(1,3) process, it is clear that

ρ2(4) = ρ(3)× ρ(5) (4.14)

The processes so far has shown a clear pattern among autocovariance at

consecutive lags of the respective process. It is observed that for any γ(k) of a

given ARMA(1, q) process,

γ(k) = ϕk−qγ(q) for k ≥ q + 1 (4.15)
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The pattern also suggests that separate ACFs should be obtained for individual

lags prior to the order q. These observations will be helpful to obtain a general-

ization of an expression for the ARMA(1, q) process.

ACF of an ARMA(1,q) Process

In this section, the approach used to obtain the ACFs of the ARMA(1,2)

and ARMA(1,3) time series processes is extended to derive the generalized au-

tocorrelation function of an ARMA(1, q) process. The ARMA(1,q) process is

given by

Xt − ϕXt−1 =θ1Zt−1 + θ2Zt−2 + θ3Zt−3 + · · ·+ θq−1Zt−(q−1) + θqZt−q + Zt

which may be re-written as

Xt − ϕXt−1 =

q∑
j=0

θjZt−j (4.16)

The ARMA(1,q) process can be written in a lag form as

Xt(1− ϕL) =

q∑
j=0

θjL
jZt (4.17)

It is worth noting from Equation (4.17) that θ0 = 1

Equation (4.17) can be simplified as

Xt =

∑q
j=0 θjL

j

1− ϕL
Zt (4.18)

The acvgf of an ARMA(1,q) process is obtained as

c(s)c(s−1) = σ2

∑q
j=0 θjs

j
∑q

j=0 θjs
−j

(1− ϕ1s)(1− ϕ1s−1)
(4.19)
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Equation (4.19) can be simplified as

c(s)c(s−1) = σ2

∞∑
r=0

(ϕ1s)
r

∞∑
r=0

(ϕ1s
−1)r

q∑
j=0

θjs
j

q∑
j=0

θjs
−j (4.20)

From Equation (4.20),

q∑
j=0

θjs
j

q∑
j=0

θjs
−j =

q∑
j=0

θ2j +
[ q−1∑

j=0

θjθj+1

]
s+

[ q−2∑
j=0

θjθj+2

]
s2+

[ q−3∑
j=0

θjθj+3

]
s3 + · · ·

[ q−5∑
j=0

θjθj+5

]
s5 + · · ·+

[ 2∑
j=0

θjθj+(q−2)

]
sq−2+

[ 1∑
j=0

θjθj+(q−1)

]
sq−1 +

[ 0∑
j=0

θjθj+q

]
sq +

[ q−1∑
j=0

θjθj+1

]
s−1+

[ q−2∑
j=0

θjθj+2

]
s−2 +

[ q−3∑
j=0

θjθj+3

]
s−3 + · · ·+

[ 2∑
j=0

θjθj+(q−2)

]
s−q+2+

[ 1∑
j=0

θjθj+(q−1)

]
s−q+1 +

[ 0∑
j=0

θjθq

]
s−q

(4.21)

and

∞∑
r=0

(ϕs)r ·
∞∑
r=0

(ϕs−1)r =
∞∑
r=0

ϕ2r
[ ∞∑

r=0

(ϕ1s)
r +

∞∑
r=1

(ϕs−1)r
]

(4.22)
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At lag 0, we consider terms in s0 in Equation (4.20)

γ(0) =σ2

{[
∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+

[
ϕ

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+[

ϕ2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+

[
ϕ3

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+ · · ·+[

ϕq−2

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+

[
ϕq−1

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕq

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+ · · ·+

[
ϕ

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+[

ϕ2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+

[
ϕ3

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+ · · ·+[

ϕq−2

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+

[
ϕq−1

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕq

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]}

=σ2

{[
∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+ 2

[
ϕ

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

2

[
ϕ2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+ 2

[
ϕ3

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+ · · ·+

2

[
ϕq−2

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+ 2

[
ϕq−1

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+

2

[
ϕq

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]}

=σ2

{[ q∑
j=0

θ2j

]
+ 2ϕ

[ q−1∑
j=0

θjθj+1

]
+ 2ϕ2

[ q−2∑
j=0

θjθj+2

]
+

2ϕ3
[ q−3∑

j=0

θjθj+3

]
+ · · ·+ 2ϕq−2

[ 2∑
j=0

θjθj+(q−2)

]
+

2ϕq−1
[ 1∑

j=0

θjθj+(q−1)

]
+ 2ϕq

[ 0∑
j=0

θjθj+q

]} ∞∑
r=0

ϕ2r
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Further simplification gives

γ(0) =σ2

{[ q∑
j=0

θ2j

]
+ 2ϕ

[ q−1∑
j=0

θjθj+1

]
+ 2ϕ2

[ q−2∑
j=0

θjθj+2

]
+

2ϕ3
[ q−3∑

j=0

θjθj+3

]
+ · · ·+ 2ϕq−2

[ 2∑
j=0

θjθj+(q−2)

]
+

2ϕq−1
[ 1∑

j=0

θjθj+(q−1)

]
+ 2ϕq

[ 0∑
j=0

θjθj+q

]} 1

1− ϕ2

=σ2

{
q∑

j=0

θ2j +

q∑
n=1

2ϕn

q−n∑
j=0

θjθj+n

}
1

1− ϕ2

Therefore,

γ(0) = σ2

{
q∑

j=0

θ2j + 2

q∑
n=1

q−n∑
j=0

ϕnθjθj+n

}
1

1− ϕ2
(4.23)

At lag 1 , considering terms in s gives

γ(1) =σ2

{[
∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

[
ϕ

∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+[

ϕ2

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

[
ϕ3

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕ4

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+ · · ·+

[
ϕq−1

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+[

ϕq

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+

[
ϕq+1

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+ · · ·+[

ϕ

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+

[
ϕ2

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+[

ϕ3

∞∑
r=0

ϕ2r

q−4∑
j=0

θjθj+4

]
+ · · ·+

[
ϕq−1

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]}

This further simplifies to
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γ(1) =σ2

{[ q−1∑
j=0

θjθj+1

]
+
[
ϕ

q∑
j=0

θ2j

]
+
[
ϕ2

q−1∑
j=0

θjθj+1

]
+
[
ϕ3

q−2∑
j=0

θjθj+2

]
+

[
ϕ4

q−3∑
j=0

θjθj+3

]
+ · · ·+

[
ϕq

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq+1

0∑
j=0

θjθj+q

]
+

[
ϕ

q−2∑
j=0

θjθj+2

]
+
[
ϕ2

q−3∑
j=0

θjθj+3

]
+
[
ϕ3

q−4∑
j=0

θjθj+4

]
+ · · ·

+
[
ϕq−2

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq−1

0∑
j=0

θjθj+q

]} ∞∑
r=0

ϕ2r

=σ2

{[ q−1∑
j=0

θjθj+1

]
+
[
ϕ

q∑
j=0

θ2j

]
+
[
ϕ2

q−1∑
j=0

θjθj+1

]
+
[
ϕ3

q−2∑
j=0

θjθj+2

]
+

[
ϕ4

q−3∑
j=0

θjθj+3

]
+ · · ·+

[
ϕq

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq+1

0∑
j=0

θjθj+q

]
+

[ q−1∑
j=0

θjθj+1

]
+
[
ϕ

q−2∑
j=0

θjθj+2

]
+
[
ϕ2

q−3∑
j=0

θjθj+3

]
+
[
ϕ3

q−4∑
j=0

θjθj+4

]
+ · · ·

+
[
ϕq−2

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq−1

0∑
j=0

θjθj+q

]} 1

1− ϕ2

=σ2

{
q−1∑
j=0

θjθj+1 +

q∑
n=0

ϕn+1

q−n∑
j=0

θjθj+n +

q−2∑
n=0

ϕn+1

q−(n+2)∑
j=0

θjθj+(n+2)

}
1

1− ϕ2

Therefore,

γ(1) = σ2

{
q−1∑
j=0

θjθj+1+

q∑
n=0

q−n∑
j=0

ϕn+1θjθj+n+

q−2∑
n=0

q−(n+2)∑
j=0

ϕn+1θjθj+(n+2)

}
1

1− ϕ2
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At lag 2 , we consider terms in s2

γ(2) =σ2

{[
∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+

[
ϕ

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+[

ϕ2

∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+

[
ϕ3

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+[

ϕ4

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+ · · ·+

[
ϕq

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+[

ϕq+1

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+

[
ϕq+2

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+[

ϕ
∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+

[
ϕ2

∞∑
r=0

ϕ2r

q−4∑
j=0

θjθj+4

]
+[

ϕ3

∞∑
r=0

ϕ2r

q−5∑
j=0

θjθj+5

]
+ · · ·+

[
ϕq−3

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕq−2

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]}

=σ2

{[ q−2∑
j=0

θjθj+2

]
+
[
ϕ

q−1∑
j=0

θjθj+1

]
+
[
ϕ2

q−1∑
j=0

θ2j

]
+
[
ϕ3

q−1∑
j=0

θjθj+1

]
+

[
ϕ4

q−2∑
j=0

θjθj+2

]
+ · · ·+

[
ϕq+1

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq+2

0∑
j=0

θjθj+q

]
+

[
ϕ

q−3∑
j=0

θjθj+3

]
+
[
ϕ2

q−4∑
j=0

θjθj+4

]
+
[
ϕ3

q−5∑
j=0

θjθj+5

]
+ · · ·

+
[
ϕq−3

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq−2

0∑
j=0

θjθj+q

]} ∞∑
r=0

ϕ2r

=σ2

{[ q−2∑
j=0

θjθj+2

]
+
[
ϕ

q−1∑
j=0

θjθj+1

]
+
[
ϕ2

q−1∑
j=0

θ2j

]
+
[
ϕ3

q−1∑
j=0

θjθj+1

]
+

[
ϕ4

q−2∑
j=0

θjθj+2

]
+ · · ·+

[
ϕq+1

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq+2

0∑
j=0

θjθj+q

]
+

[
ϕ

q−3∑
j=0

θjθj+3

]
+
[
ϕ2

q−4∑
j=0

θjθj+4

]
+
[
ϕ3

q−5∑
j=0

θjθj+5

]
+ · · ·

+
[
ϕq−3

1∑
j=0

θjθj+(q−1)

]
+
[
ϕq−2

0∑
j=0

θjθj+q

]} 1

1− ϕ2
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Further simplification yields

γ(2) =σ2

{
q−2∑
j=0

θjθj+2 + ϕ

q−1∑
j=0

θjθj+1 +

q∑
n=0

ϕn+2

q−n∑
j=0

θjθj+n+

q−3∑
n=0

ϕn+1

q−(n+3)∑
j=0

θjθj+(n+3)

}
1

1− ϕ2

=σ2

{
1∑

n=0

ϕ1−n

q−(n+1)∑
j=0

θjθj+(n+1) +

q∑
n=0

ϕn+2

q−n∑
j=0

θjθj+n+

q−3∑
n=0

ϕn+1

q−(n+3)∑
j=0

θjθj+(n+3)

}
1

1− ϕ2

Therefore,

γ(2) =σ2

{
1∑

n=0

q−(n+1)∑
j=0

ϕ1−nθjθj+(n+1) +

q∑
n=0

q−n∑
j=0

ϕn+2θjθj+n+

q−3∑
n=0

q−(n+3)∑
j=0

ϕn+1θjθj+(n+3)

}
1

1− ϕ2

Subsequently, at lag h, for all 1 ≤ h ≤ (q − 1),

γ(h) =σ2

{
h−1∑
n=0

ϕh−1−n

q−(n+1)∑
j=0

θjθj+(n+1) +

q∑
n=0

ϕh+n

q−n∑
j=0

θjθj+n+

q−h−1∑
n=0

ϕn+1

q−(h+n+1)∑
j=0

θjθj+(h+n+1)

}
1

1− ϕ2

=σ2

{
h−1∑
n=0

q−(n+1)∑
j=0

ϕh−1−nθjθj+(n+1) +

q∑
n=0

q−n∑
j=0

ϕh+nθjθj+n+

q−h−1∑
n=0

q−(h+n+1)∑
j=0

ϕn+1θjθj+(h+n+1)

}
1

1− ϕ2
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At lag q , we consider terms in sq and obtain

γ(q) =σ2

{[
∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+

[
ϕ

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕ2

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+ · · ·+

[
ϕq−2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕq−1

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

[
ϕq

∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+[

ϕq+1

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+2

]
+

[
ϕq+2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕq+3

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+

[
ϕq+4

∞∑
r=0

ϕ2r

q−4∑
j=0

θjθj+4

]
+ · · ·

}

=σ2

{[ 0∑
j=0

θjθj+q

]
+
[
ϕ

1∑
j=0

θjθj+(q−1)

]
+
[
ϕ2

2∑
j=0

θjθj+(q−2)

]
+ · · ·

+
[
ϕq−2

q−2∑
j=0

θjθj+2

]
+
[
ϕq−1

q−1∑
j=0

θjθj+1

]
+
[
ϕq

q∑
j=0

θ2j

]
+

[
ϕq+1

q−1∑
j=0

θjθj+1

]
+
[
ϕq+2

q−2∑
j=0

θjθj+2

]
+ · · ·

}
∞∑
r=0

ϕ2r

=σ2

{[ 0∑
j=0

θjθj+q

]
+
[
ϕ

1∑
j=0

θjθj+(q−1)

]
+
[
ϕ2

2∑
j=0

θjθj+(q−2)

]
+ · · ·

+
[
ϕq−2

q−2∑
j=0

θjθj+2

]
+
[
ϕq−1

q−1∑
j=0

θjθj+1

]
+
[
ϕq

q∑
j=0

θ2j

]
+

[
ϕq+1

q−1∑
j=0

θjθj+1

]
+
[
ϕq+2

q−2∑
j=0

θjθj+2

]
+ · · ·

}
1

1− ϕ2

=

{
q∑

n=0

ϕq−n

q−n∑
j=0

θjθj+n +

q−1∑
n=0

ϕq+n+1

q−(n+1)∑
j=0

θjθj+(n+1)

}
1

1− ϕ2

Therefore,

γ(q) =

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2
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At lag q + 1 , we consider terms in sq+1 and obtain

γ(q + 1) =

[
ϕ

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+

[
ϕ2

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕ3

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+ · · ·+

[
ϕq−1

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕq

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

[
ϕq+1

∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+[

ϕq+2

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+2

]
+

[
ϕq+3

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕq+4

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+

[
ϕq+5

∞∑
r=0

ϕ2r

q−4∑
j=0

θjθj+4

]
+ · · ·

γ(q + 1) =

{[
ϕ

0∑
j=0

θjθj+q

]
+
[
ϕ2

1∑
j=0

θjθj+(q−1)

]
+
[
ϕ3

2∑
j=0

θjθj+(q−2)

]
+ · · ·

+
[
ϕq−1

q−2∑
j=0

θjθj+2

]
+
[
ϕq

q−1∑
j=0

θjθj+1

]
+
[
ϕq+1

q∑
j=0

θ2j

]
+

[
ϕq+2

q−1∑
j=0

θjθj+1

]
+
[
ϕq+3

q−2∑
j=0

θjθj+2

]
+ · · ·

}
∞∑
r=0

ϕ2r

=

{[
ϕ

0∑
j=0

θjθj+q

]
+
[
ϕ2

1∑
j=0

θjθj+(q−1)

]
+
[
ϕ3

2∑
j=0

θjθj+(q−2)

]
+ · · ·

+
[
ϕq−1

q−2∑
j=0

θjθj+2

]
+
[
ϕq

q−1∑
j=0

θjθj+1

]
+
[
ϕq+1

q∑
j=0

θ2j

]
+

[
ϕq+2

q−1∑
j=0

θjθj+1

]
+
[
ϕq+3

q−2∑
j=0

θjθj+2

]
+ · · ·

}
1

1− ϕ2

=

{
q∑

n=0

ϕq−n+1

q−n∑
j=0

θjθj+n +

q−1∑
n=0

ϕq+n+2

q−(n+1)∑
j=0

θjθj+(n+1)

}
1

1− ϕ2

=ϕ

{
q∑

n=0

ϕq−n

q−n∑
j=0

θjθj+n +

q−1∑
n=0

ϕq+n+1

q−(n+1)∑
j=0

θjθj+(n+1)

}
1

1− ϕ2
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Therefore,

γ(q + 1) =ϕ

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2

=ϕγ(q)

Subsequently, at lag q + h , for h ≥ 1 we consider terms in sq+h

γ(q + h) =

[
ϕh

∞∑
r=0

ϕ2r

0∑
j=0

θjθj+q

]
+

[
ϕh+1

∞∑
r=0

ϕ2r

1∑
j=0

θjθj+(q−1)

]
+[

ϕh+2

∞∑
r=0

ϕ2r

2∑
j=0

θjθj+(q−2)

]
+ · · ·+

[
ϕq+h−2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]

+

[
ϕq+h−1

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+1

]
+

[
ϕq+h

∞∑
r=0

ϕ2r

q∑
j=0

θ2j

]
+[

ϕq+h+1

∞∑
r=0

ϕ2r

q−1∑
j=0

θjθj+2

]
+

[
ϕq+h+2

∞∑
r=0

ϕ2r

q−2∑
j=0

θjθj+2

]
+[

ϕq+h+3

∞∑
r=0

ϕ2r

q−3∑
j=0

θjθj+3

]
+

[
ϕq+h+4

∞∑
r=0

ϕ2r

q−4∑
j=0

θjθj+4

]
+ · · ·

=

{
ϕh
[ 0∑

j=0

θjθj+q

]
+
[
ϕh+1

1∑
j=0

θjθj+(q−1)

]
+
[
ϕh+2

2∑
j=0

θjθj+(q−2)

]
+

· · ·+
[
ϕq+h−2

q−2∑
j=0

θjθj+2

]
+
[
ϕq+h−1

q−1∑
j=0

θjθj+1

]
+
[
ϕq+h

q∑
j=0

θ2j

]
+

[
ϕq+h+1

q−1∑
j=0

θjθj+1

]
+
[
ϕq+h+2

q−2∑
j=0

θjθj+2

]
+ · · ·

}
∞∑
r=0

ϕ2r

Therefore,

γ(q + h) =ϕh

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2

=ϕhγ(q) for h ≥ 1

=ϕk−qγ(q) for k ≥ q + 1

55

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



The acvf of an ARMA(1,q) process can be summarized as

γ(0) =σ2

{
q∑

j=0

θ2j + 2

q∑
n=1

q−n∑
j=0

ϕnθjθj+n

}
1

1− ϕ2

For all h = 1, 2, · · · , q − 1

γ(h) =σ2

{
h−1∑
n=0

q−(n+1)∑
j=0

ϕh−1−nθjθj+(n+1) +

q∑
n=0

q−n∑
j=0

ϕh+nθjθj+n+

q−h−1∑
n=0

q−(h+n+1)∑
j=0

ϕn+1θjθj+(h+n+1)

}
1

1− ϕ2

(4.24)

γ(q) =

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2

(4.25)

For all h ≥ 1

γ(q + h) = ϕhγ(q) (4.26)

It then follows that a relation for three consecutive ACF of ARMA(1, q) is given

by

ρ2(q + 1) = ρ(q)× ρ(q + 2) (4.27)

ACF of an ARMA(2,0) Process

In this section, the ACF of an ARMA(2,0) process is derived. The auto-

covariance generating function (acgf) is used to obtain the variance and autoco-

variances, after which the autocovariances are normalized to obtain the autocor-

relation functions.

An ARMA (2,0) process is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + Zt (4.28)
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By introducing a lag operator, Equation (4.28) can be simplified as

(1− ϕ1L− ϕ2L
2)Xt = Zt (4.29)

Further simplification yields

Xt =
1

1− ϕ1L− ϕ2L2
Zt (4.30)

Assuming the quadratic 1 − ϕ1L − ϕ2L
2 has two different real roots, 1

α
and 1

β
,

then

1− ϕ1L− ϕ2L
2

can be written as

(1− αL)(1− βL)

It can be verified that (α + β)=ϕ1 and αβ = −ϕ2

If

Xt =
1

(1− αL)(1− βL)
Zt

then

c(s) =
1

(1− αs)(1− βs)

The acvgf can thus, be written as

c(s)c(s−1) = σ2

[
1

(1− αs)(1− βs)
× 1

(1− αs−1)(1− βs−1)

]
(4.31)

This simplifies to

c(s)c(s−1) = σ2

[
1

(1− αs)(1− αs−1)(1− βs)(1− βs−1)

]
(4.32)

57

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Equation (4.32) simplifies to

c(s)c(s−1) =σ2

∞∑
r=0

(αs)r ·
∞∑
r=0

(αs−1)r ·
∞∑
r=0

(βs)r ·
∞∑
r=0

(βs−1)r

=σ2

∞∑
r=0

α2r

∞∑
r=0

β2r

[
∞∑
r=0

(αs)r +
∞∑
r=1

(αs−1)r

]
×[

∞∑
r=0

(βs)r +
∞∑
r=1

(βs−1)r

] (4.33)

Equation (4.33) simplifies to

c(s)c(s−1) = σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

)
T(sr) (4.34)

where T(sr) are expressions in terms of sr obtained from Equation (4.33)

At lag0, we consider terms in Equation (4.33) that results in s0 and obtain

γ(0) =σ2
[ ∞∑

r=0

α2r

∞∑
r=0

β2r
]
T(s0)

=σ2 1

(1− α2)(1− β2)(1− αβ)

{[
1(1 + αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[1(1 + αβ)
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[1(1− ϕ2)
]}

Therefore, the variance function of the ARMA(2,0) which is denoted by γ2,0 is

given as

γ2,0(0) =
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

](1− ϕ2

)
(4.35)
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At lag1, we consider terms that give s

γ(1) =σ2
[ ∞∑

r=0

α2r

∞∑
r=0

β2r
]
T(s)

=σ2 1

(1− α2)(1− β2)(1− αβ)

{
1
[
(α + β)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(α + β)
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[ϕ1

]}

γ(1) is obtained in terms of γ2,0(0) as

γ(1) = σ2

[
ϕ1(1− ϕ2)

(1− ϕ2)(1 + ϕ2)
(
(1− ϕ2)2 − ϕ2

1

)]

= σ2

(
ϕ1

1− ϕ2

)[
1− ϕ2

(1 + ϕ2)
(
(1− ϕ2)2 − ϕ2

1

)]

=

(
ϕ1

1− ϕ2

)
γ2,0(0)

At lag 2, we consider terms in s2 and obtain

γ(2) =σ2
[ ∞∑

r=0

α2r

∞∑
r=0

β2r
]
T(s2)

=σ2 1

(1− α2)(1− β2)(1− αβ)

{
1
[
(α2 + β2) + αβ(1− αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(α + β)2 − αβ − (αβ)2
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(ϕ2
1 + ϕ2 − ϕ2

2)
]}
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Regrouping, we shall obtain

γ(2) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[ϕ2
1

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[ϕ2 − ϕ2
2

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{[
ϕ1

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{[
1− ϕ2

]}

=ϕ1γ(1) + ϕ2γ2,0(0)

=ϕ1

( ϕ1

1− ϕ2

)
γ2,0(0) + ϕ2γ2,0(0)

=
1

1− ϕ2

(ϕ2
1 + ϕ2 − ϕ2

2)γ2,0(0)

=
c1,20
1− ϕ2

γ2,0(0)

where c1,20 = ϕ2
1 − ϕ2

2 + ϕ2

The autocovariance at lag 3 is obtained as

γ(3) =σ2
[ ∞∑

r=0

α2r

∞∑
r=0

β2r
]
T(s3)

=σ2 1

(1− α2)(1− β2)(1− αβ)

{[
(α3 + β3) + (α2β + αβ2)(1− αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(α + β)3 − 2αβ(α + β)−

(αβ)2(α + β)
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]}
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Expanding some of the terms and regrouping, we shall obtain

γ(3) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{[
ϕ2
1 + ϕ2 − ϕ2

2

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{[
ϕ1

]}

=ϕ1γ(2) + ϕ2γ(1)

=ϕ1

( c1,20
1− ϕ2

)
γ(0) + ϕ2

( ϕ1

1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

[
ϕ1c1,20 + ϕ1ϕ2

]
γ2,0(0)

=
1

1− ϕ2

[
ϕ1

(
c1,20 + ϕ2

)]
γ2,0(0)

=
c2,20
1− ϕ2

γ2,0(0)

Where c2,20 = ϕ1c1,20 + ϕ1ϕ2

It is obvious that our simplification of the coefficient of sk so far leads to the

Yule-Walker equations.

Subsequently,

γ(4) = ϕ1γ(3) + ϕ2γ(2)

= ϕ1

( c2,0
1− ϕ2

)
γ2,0(0) + ϕ2

( c1,0
1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

[
ϕ1

(
ϕ1c1,20 + ϕ1ϕ2

)
+ ϕ2c1,20

]
γ2,0(0)

=
1

1− ϕ2

[
ϕ2
1c1,20 + ϕ2

1ϕ2 + ϕ2c1,20

]
γ2,0(0)

=
1

1− ϕ2

[(
ϕ2
1 + ϕ2

)
c1,20 + ϕ2

1ϕ2

]
γ2,0(0)

=
c3,20
1− ϕ2

γ2,0(0)
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Where c3,20 =
(
ϕ2
1 + ϕ2

)
c1,20 + ϕ2

1ϕ2

The autocovariance at lag 5 will be obtained as

γ(5) = ϕ1γ(4) + ϕ2γ(3)

= ϕ1

( c3,20
1− ϕ2

)
γ2,0(0) + ϕ2

( c2,20
1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

{[
ϕ1

(
ϕ2
1 + ϕ2

)
c1,20 + ϕ2

1ϕ2

]
+ ϕ2

[
ϕ1c1,20 + ϕ1ϕ2

]}
γ2,0(0)

=
1

1− ϕ2

{
ϕ1c1,20

(
ϕ2
1 + ϕ2

)
+ ϕ3

1ϕ2 + ϕ1ϕ2c1,20 + ϕ1ϕ
2
2

}
γ2,0(0)

=
1

1− ϕ2

{
ϕ1c1,20

(
ϕ2
1 + ϕ2

)
+ ϕ1ϕ2

(
ϕ2
1 + ϕ2

)
+ ϕ1ϕ2c1,20

}
γ2,0(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ1c1,20 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,20

}
γ2,0(0)

Where c4,20 =
(
ϕ2
1 + ϕ2

)(
ϕ1c1,20 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,20

Similarly,

γ(6) =ϕ1γ(5) + ϕ2γ(4)

=ϕ1

( c4,20
1− ϕ2

)
γ2,0(0) + ϕ2

( c3,20
1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

{
ϕ1

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,20+

ϕ1ϕ2

)
+ ϕ1ϕ2c1,20

]
+ ϕ2

[(
ϕ2
1 + ϕ2

)
c1,20 + ϕ2

1ϕ2

]}
γ2,0(0)

=
1

1− ϕ2

{[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20

]
+

[(
ϕ2
1 + ϕ2

)
ϕ2c1,20 + ϕ2

1ϕ
2
2

]}
γ2,0(0)
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Further simplification gives

γ(6) =
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20+

(
ϕ2
1 + ϕ2

)
ϕ2c1,20 + ϕ2

1ϕ
2
2

}
γ(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20 + ϕ2
1ϕ

2
2

}
γ2,0(0)

Where c5,20 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20 + ϕ2
1ϕ

2
2

At lag 7, the autocovariance is obtained as

γ(7) =ϕ1γ(6) + ϕ2γ(5)

=ϕ1

( c5,20
1− ϕ2

)
γ2,0(0) + ϕ2

( c4,20
1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

{
ϕ1

[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20 + ϕ2
1ϕ

2
2

]
+ ϕ2

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,20 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,20

]}
γ2,0(0)

=
1

1− ϕ2

{[(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,20 + ϕ1ϕ2c1,20 + ϕ3

1ϕ2

)
+ ϕ3

1ϕ2c1,20+

ϕ3
1ϕ

2
2

]
+
[(
ϕ2
1 + ϕ2

)(
ϕ1ϕ2c1,20 + ϕ1ϕ

2
2

)
+ ϕ1ϕ

2
2c1,20

]}
γ2,0(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,20 + ϕ1ϕ2c1,20 + ϕ3

1ϕ2

)
+ ϕ3

1ϕ2c1,20 + ϕ3
1ϕ

2
2

+
(
ϕ2
1 + ϕ2

)(
ϕ1ϕ2c1,20 + ϕ1ϕ

2
2

)
+ ϕ1ϕ

2
2c1,20

}
γ2,0(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,20 + 2ϕ1ϕ2c1,20 + ϕ3

1ϕ2 + ϕ1ϕ
2
2

)
+

ϕ3
1ϕ2c1,20 + ϕ1ϕ

2
2c1,20 + ϕ3

1ϕ
2
2

}
γ2,0(0)

Where c6,20 =
(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,20 + 2ϕ1ϕ2c1,20 + ϕ3

1ϕ2 + ϕ1ϕ
2
2

)
+ ϕ3

1ϕ2c1,20 +

ϕ1ϕ
2
2c1,20 + ϕ3

1ϕ
2
2
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At lag 8, the autocovariance is obtained as

γ(8) =ϕ1γ(7) + ϕ2γ(6)

=ϕ1

( c6,20
1− ϕ2

)
γ(0) + ϕ2

( c5,20
1− ϕ2

)
γ2,0(0)

=
1

1− ϕ2

{
ϕ1

[(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,20 + 2ϕ1ϕ2c1,20 + ϕ3

1ϕ2 + ϕ1ϕ
2
2

)
+

ϕ3
1ϕ2c1,20 + ϕ1ϕ

2
2c1,20 + ϕ3

1ϕ
2
2

]
+ ϕ2

[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2c1,20+

ϕ2
1ϕ2

)
+ ϕ2

1ϕ2c1,20 + ϕ2
1ϕ

2
2

]}
γ2,0(0)

=
1

1− ϕ2

{[(
ϕ2
1 + ϕ2

)(
ϕ4
1c1,20 + 2ϕ2

1ϕ2c1,20 + ϕ4
1ϕ2 + ϕ2

1ϕ
2
2

)
+

ϕ4
1ϕ2c1,20 + ϕ2

1ϕ
2
2c1,20 + ϕ4

1ϕ
2
2

]
+
[(
ϕ2
1 + ϕ2

)(
ϕ2
1ϕ2c1,20+

ϕ2
2c1,20 + ϕ2

1ϕ
2
2

)
+ ϕ2

1ϕ
2
2c1,20 + ϕ2

1ϕ
3
2

]}
γ2,0(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ4
1c1,20 + 2ϕ2

1ϕ2c1,20 + ϕ4
1ϕ2 + ϕ2

1ϕ
2
2

)
+

ϕ4
1ϕ2c1,20 + ϕ2

1ϕ
2
2c1,20 + ϕ4

1ϕ
2
2 +

(
ϕ2
1 + ϕ2

)(
ϕ2
1ϕ2c1,20 + ϕ2

2c1,20+

ϕ2
1ϕ

2
2

)
+ ϕ2

1ϕ
2
2c1,20 + ϕ2

1ϕ
3
2

}
γ2,0(0)

=
1

1− ϕ2

{(
ϕ2
1 + ϕ2

)(
ϕ4
1c1,20 + 3ϕ2

1ϕ2c1,20 + ϕ2
2c1,20 + ϕ4

1ϕ2 + 2ϕ2
1ϕ

2
2

)
+

ϕ4
1ϕ2c1,20 + 2ϕ2

1ϕ
2
2c1,20 + ϕ4

1ϕ
2
2 + ϕ2

1ϕ
3
2

}
γ2,0(0)

Where c7,20 =
(
ϕ2
1 + ϕ2

)(
ϕ4
1c1,20 + 3ϕ2

1ϕ2c1,20 + ϕ2
2c1,20 + ϕ4

1ϕ2 + 2ϕ2
1ϕ

2
2

)
+

ϕ4
1ϕ2c1,20 + 2ϕ2

1ϕ
2
2c1,20 + ϕ4

1ϕ
2
2 + ϕ2

1ϕ
3
2

An expression for γ(k) may similarly be expressed as

γ(k) =
1

1− ϕ2

ck−1,20γ2,0(0) (4.36)
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Let k − 1 = r. Then cr,20 is given by

cr,20 =
(
ϕ2
1 + ϕ2

){
c1,20

∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,20
∑

r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
(r − 5− s)

s

)
ϕr−3−2s
1 ϕs+2

2

(4.37)

for all r ≥ 4

Thus, for an ARMA(2, 0) process,

γ2,0(k) =σ
2

[(
ϕ2
1 + ϕ2

){
c1,20

∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,20
∑

r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
(r − 5− s)

s

)
ϕr−3−2s
1 ϕs+2

2

]
γ2,0(0)

1− ϕ2

(4.38)

By normalizing Equation (4.38), the ACF of an ARMA(2,0) process is obtained

as

ρ2,0(1) =
ϕ1

1− ϕ2

(4.39)

ρ2,0(2) =
c1,20
1− ϕ2

where c1,20 = ϕ2
1 − ϕ2

2 + ϕ2 (4.40)
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For lags greater or equal to 4, the autocorrelation is given as

ρ2,0(k) =

[(
ϕ2
1 + ϕ2

){
c1,20

∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,20
∑

r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
(r − 5− s)

s

)
ϕr−3−2s
1 ϕs+2

2

]
1

1− ϕ2

(4.41)

The results in Equation (4.41) shows that the ACF of the ARMA(2,0) is a func-

tion of a coefficient c1,20 = ϕ2
1−ϕ2

2+ϕ2, the numerator of the autocorrelation at

lag 2. It also involves computation of combinatorial values of the form
(
(r−t−s)

s

)
for which r − t ≥ 2s, 3 ≤ t ≤ 5. It therefore suggests that the computation of

ρ2,0(k) will be sensitive to the lag order.

ACF of an ARMA(2,1) Process

In this section, the ACF of an ARMA(2,1) process is derived. The auto-

covariance generating function (acgf) is used to obtain the variance and autoco-

variances, after which the autocovariances are normalized to obtain the autocor-

relation functions.

An ARMA (2,1) process is represented as

Xt = ϕ1Xt−1 + ϕ2Xt−2 + θ1Zt−1 + Zt (4.42)

By introducing a lag operator, Equation (4.42) can be simplified as

(1− ϕ1L− ϕ2L
2)Xt = (1 + θ1L)Zt
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Further simplification yields

Xt =
(1 + θ1L)

1− ϕ1L− ϕ2L2
Zt (4.43)

Assuming the quadratic 1 − ϕ1L − ϕ2L
2 has two different real roots, 1

α
and 1

β
,

then

1− ϕ1L− ϕ2L
2

can be written as

(1− αL)(1− βL)

It can be verified that (α + β)=ϕ1 and αβ = −ϕ2

If

Xt =
1 + θ1L

(1− αL)(1− βL)
Zt

then

c(s) =
1 + θ1s

(1− αs)(1− βs)

The acvgf can thus, be written as

c(s)c(s−1) = σ2

[
1 + θ1s

(1− αs)(1− βs)
× 1 + θ1s

−1

(1− αs−1)(1− βs−1)

]
(4.44)

This simplifies to

(1 + θ21) + θ1s+ θ1s
−1

(1− αs)(1− αs−1)(1− βs)(1− βs−1)
(4.45)

Equation (4.45) simplifies to

c(s)c(s−1) = σ2

[
(1 + θ21) + θ1s+ θ1s

−1

]
∞∑
r=0

(αs)r ·
∞∑
r=0

(αs−1)r×

∞∑
r=0

(βs)r ·
∞∑
r=0

(βs−1)r
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c(s)c(s−1) =σ2

[
(1 + θ21) + θ1s+ θ1s

−1

]
∞∑
r=0

α2r

∞∑
r=0

β2r×[
∞∑
r=0

(αs)r +
∞∑
r=1

(αs−1)r

][
∞∑
r=0

(βs)r +
∞∑
r=1

(βs−1)r

] (4.46)

Equation (4.46) simplifies to

c(s)c(s−1) = σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

)
T(sr) (4.47)

where T(sr) are expressions in terms of sr obtained from Equation (4.46)

At lag 0, we consider terms in Equation (4.46) that results in s0

γ(0) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21)

]
T(s0) +

[
θ1s
]
T(s−1) +

[
θ1s

−1
]
T(s)

}

=σ2 1

(1− α2)(1− β2)(1− αβ)

{[
(1 + θ21)(1 + αβ)

]
+
[
θ1(α + β)

]
+
[
θ1(α + β)

]}

This simplifies to

γ(0) =σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(1 + θ21)(1 + αβ)
]
+

2
[
θ1(α + β)

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21)(1− ϕ2)
]
+
[
2ϕ1θ1

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1− ϕ2

)
+ θ1

(
2ϕ1 + θ1 − θ1ϕ2

)}

Let χ = 2ϕ1 + θ1 − θ1ϕ2

The variance function of an ARMA(2,1) process represented as γ2,1(0) is given
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by

γ2,1(0) =
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{1− ϕ2 + θ1χ

}
(4.48)

It is clear from Equation (4.48) that if θ1 = 0, we obtain γ2,0(0), the variance

function of the ARMA(2,0) process. At lag1, we consider terms in s and obtain

γ(1) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21)

]
T(s) +

[
θ1s
]
T(s0) +

[
θ1s

−1
]
T(s2)

}

=σ2 1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21)

[
(α + β)

]
+

θ1

[
(1 + αβ)

]
+ θ1

[
(α2 + β2) + αβ(1− αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21)
[
(α + β)

]
+

θ1

[
(1 + αβ)

]
+ θ1

[
(α + β)2 − αβ − (αβ)2

]}

A simplification gives

γ(1) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ1

]
+ θ1

[
(1− ϕ2)

]
+

θ1

[
(ϕ2

1 + ϕ2 − ϕ2
2)
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ1

]
+ θ1

[
1 + ϕ2

1 − ϕ2
2

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{ϕ1 + θ1

(
1 + θ1ϕ1 + ϕ2

1 − ϕ2
2

)}
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Let ϖ = 1 + θ1ϕ1 + ϕ2
1 − ϕ2

2

Then,

γ(1) =
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{ϕ1 + θ1ϖ

}

=
ϕ1 + θ1ϖ

1− ϕ2 + θ1χ
γ2,1(0)

The autocovariance at lag 2 is obtained as

γ(2) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21)

]
T(s2) +

[
θ1s
]
T(s) +

[
θ1s

−1
]
T(s3)

}

=σ2 1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21)

[
(α2 + β2) + αβ(1− αβ)

]
+

θ1

[
(α + β)

]
+ θ1

[
(α3 + β3) + (α2β + αβ2)(1− αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21)
[
(α + β)2 − αβ − (αβ)2

]
+

θ1

[
(α + β)

]
+ θ1

[
(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)

]}

Further simplification yields

γ(2) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ θ1

[
ϕ1

]

+ θ1

[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ2
1 + ϕ2 − ϕ2

2

]
+

θ1

[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]}
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Regrouping, we shall obtain

γ(2) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ2
1

]
+ θ1

[
ϕ3
1 + ϕ1 − ϕ1ϕ

2
2

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ2 − ϕ2

2

]
+ θ1

[
2ϕ1ϕ2

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{
(1 + θ21)

[
ϕ1

]
+ θ1

[
1 + ϕ2

1 − ϕ2
2

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{[
(1 + θ21)(1− ϕ2)

]
+
[
2ϕ1θ1

]}

It can be observed that

γ(2) =ϕ1γ(1) + ϕ2γ(0)

=ϕ1

( ϕ1 + θ1ϖ

1− ϕ2 + θ1χ

)
γ2,1(0) + ϕ2γ2,1(0)

=
1

1− ϕ2 + θ1χ

(
ϕ2
1 + ϕ2 − ϕ2

2 + θ1ϕ2χ+ θ1ϕ1ϖ
)
γ2,1(0)

=
c1,21

1− ϕ2 + θ1χ
γ2,1(0)

where c1,21 = ϕ2
1 + ϕ2 − ϕ2

2 + θ1ϕ2χ+ θ1ϕ1ϖ

From ARMA(2, 0), we know that c1,20 = ϕ2
1 + ϕ2 − ϕ2

2

Thus,

c1,21 =c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

=c1,20 + θ1(ϕ2χ+ ϕ1ϖ)
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At lag 3, we consider terms in s3 and obtain

γ(3) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21)

]
T(s3) +

[
θ1s
]
T(s2) +

[
θ1s

−1
]
T(s4)

}

=σ2 1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ θ1

[
(α2 + β2) + αβ(1− αβ)

]
+

θ1

[
(α4 + β4) + (α3β + α2β2 + αβ3)(1− αβ)

]}

=σ2 1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21 + θ22)
[
(α + β)3−

2αβ(α + β)− (αβ)2(α + β)
]
+ θ1

[
(α + β)2 − αβ − (αβ)2

]
+

θ1

[
(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}

]}

=σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+

θ1

[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ θ1

[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21)
[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+

θ1

[
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2

]}

Expanding some of the terms and regrouping, we shall obtain

γ(3) =σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{
(1 + θ21)

[
ϕ2
1 + ϕ2 − ϕ2

2

]
+

θ1

[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]}
+

σ2 1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{
(1 + θ21)

[
ϕ1

]
+ θ1

[
1 + ϕ2

1 − ϕ2
2

]}
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Therefore,

γ(3) =ϕ1γ(2) + ϕ2γ(1)

=ϕ1

( c1,21
1− ϕ2 + θ1χ

)
γ2,1(0) + ϕ2

( ϕ1 + θ1ϖ

1− ϕ2 + θ1χ

)
γ2,1(0)

=
1

1− ϕ2 + θ1χ

[
ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ

]
γ2,1(0)

=
1

1− ϕ2 + θ1χ

[
ϕ1

(
c1,21 + ϕ2

)
+ θ1ϕ2ϖ

]
γ2,1(0)

=
c2,21

1− ϕ2 + θ1χ
γ2,1(0)

where c2,21 = ϕ1

(
c1,21 + ϕ2

)
+ θ1ϕ2ϖ

From ARMA(2, 20), we know that c2,20 = ϕ1

(
c1,20 + ϕ2

)
We also know that c1,21 = c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

Thus,

c2,21 =ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ

=ϕ1

(
c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

)
+ ϕ1ϕ2 + θ1ϕ2ϖ

=ϕ1

(
c1,20 + ϕ2

)
+ θ1ϕ1ϕ2χ+ θ1ϕ

2
1ϖ + θ1ϕ2ϖ

=c2,20 + θ1ϕ1ϕ2χ+ θ1ϖ
(
ϕ2
1 + ϕ2

)

Just like the ARMA(2, 0), it is obvious from this process also that our simplifi-

cation of the coefficient of sk so far leads to the Yule-Walker equations.

Subsequently,

γ(4) =ϕ1γ(3) + ϕ2γ(2)

=ϕ1

( c2,21
1− ϕ2 + θ1χ

)
γ2,1(0) + ϕ2

( c1,21
1− ϕ2 + θ1χ

)
γ2,1(0)
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=
1

1− ϕ2 + θ1χ

[
ϕ1

(
ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ

)
+ ϕ2c1,21

]
γ2,1(0)

=
1

1− ϕ2 + θ1χ

[(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ

]
γ2,1(0)

=
c3,21

1− ϕ2 + θ1χ
γ2,1(0)

where c3,21 =
(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ

From ARMA(2, 20), we know that c3,20 =
(
ϕ2
1 + ϕ2

)
c1,20 + ϕ2

1ϕ2

We also know that c1,21 = c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

Thus,

c3,21 =
(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ

=
(
ϕ2
1 + ϕ2

)(
c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

)
+ ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ

=c3,20 + θ1χ
(
ϕ2
1ϕ2 + ϕ2

2

)
+ θ1ϖ

(
ϕ3
1 + 2ϕ1ϕ2

)

Similarly,

γ(5) =ϕ1γ(4) + ϕ2γ(3)

=ϕ1

( c3,21
1− ϕ2 + θ1χ

)
γ2,1(0) + ϕ2

( c2,21
1− ϕ2 + θ1χ

)
γ2,1(0)

=
1

1− ϕ2 + θ1χ

{
ϕ1

[(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ
]
+

ϕ2

[
ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ

]}
γ2,1(0)

=
1

1− ϕ2 + θ1χ

{
ϕ1c1,21

(
ϕ2
1 + ϕ2

)
+ ϕ1ϕ2

(
ϕ2
1 + ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖ(ϕ2
1ϕ2 + ϕ2

2)

}
γ2,1(0)
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=
1

1− ϕ2 + θ1χ

{(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖ
(
ϕ2
1ϕ2 + ϕ2

2

)}
γ2,1(0)

=
c4,21

1− ϕ2 + θ1χ
γ2,1(0)

where c4,21 =
(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21 + θ1ϖ

(
ϕ2
1ϕ2 + ϕ2

2

)
From ARMA(2, 0), we know that c4,20 =

(
ϕ2
1+ϕ2

)(
ϕ1c1,20+ϕ1ϕ2

)
+ϕ1ϕ2c1,20

We also know that c1,21 = c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

Thus,

c4,21 =
(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21 + θ1ϖ

(
ϕ2
1ϕ2 + ϕ2

2

)
=
(
ϕ2
1 + ϕ2

)[
ϕ1(c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ) + ϕ1ϕ2

]
+

ϕ1ϕ2

(
c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

)
+ θ1ϖ

(
ϕ2
1ϕ2 + ϕ2

2

)
=c4,20 + θ1χ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ1ϖ

(
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

)

The autocovariance at lag 6 is also obtained as

γ(6) =ϕ1γ(5) + ϕ2γ(4)

=ϕ1

( c4,21
1− ϕ2 + θ1χ

)
γ2,1(0) + ϕ2

( c3,21
1− ϕ2 + θ1χ

)
γ2,1(0)

=
1

1− ϕ2 + θ1χ

{
ϕ1

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖ
(
ϕ2
1ϕ2 + ϕ2

2

)]
+ ϕ2

[(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ
2
2ϖ
]}

γ2,1(0)

=
1

1− ϕ2 + θ1χ

{[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21+

θ1ϖ
(
ϕ3
1ϕ2 + ϕ1ϕ

2
2

)]
+
[(
ϕ2
1 + ϕ2

)
ϕ2c1,21 + ϕ2

1ϕ
2
2 + θ1ϕ1ϕ

2
2ϖ
]}

γ2,1(0)
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=
1

1− ϕ2 + θ1χ

{(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21+

ϕ2
1ϕ

2
2 + θ1ϖ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)}
γ2,1(0)

=
c5,21

1− ϕ2 + θ1χ
γ2,1(0)

where c5,21 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21 + ϕ2
1ϕ

2
2 +

θ1ϖ
(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
From ARMA(2, 20), we know that

c5,20 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,20 + ϕ2c1,20 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,20 + ϕ2
1ϕ

2
2

We also know that c1,21 = c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

Thus,

c5,21 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21 + ϕ2
1ϕ

2
2+

θ1ϖ
(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)

A simplification gives

c5,21 =
(
ϕ2
1 + ϕ2

)[
ϕ2
1(c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ)

]
+
(
ϕ2
1 + ϕ2

)[
ϕ2(c1,20+

θ1ϕ2χ+ θ1ϕ1ϖ)
]
+
(
ϕ2
1 + ϕ2

)
ϕ2
1ϕ2 + ϕ2

1ϕ2

(
c1,20 + θ1ϕ2χ+ θ1ϕ1ϖ

)
+ ϕ2

1ϕ
2
2 + θ1ϖ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
=c5,20 + θ1χ

(
ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 + ϕ3

2

)
+ θ1ϖ

(
ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2

)

Subsequently,

γ(7) =
c6,21

1− ϕ2 + θ1χ
γ2,1(0)
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Where

c6,21 =
(
ϕ2
1 + ϕ2

)(
ϕ3
1c1,21 + 2ϕ1ϕ2c1,21 + ϕ3

1ϕ2 + ϕ1ϕ
2
2

)
+ ϕ3

1ϕ2 + ϕ1ϕ
2
2c1,21

+ ϕ3
1ϕ

2
2 + θ1

(
ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 + ϕ3

2

)
=c6,20 + θ1χ

(
ϕ5
1ϕ2 + 4ϕ3

1ϕ
2
2 + 3ϕ1ϕ

3
2

)
+ θ1ϖ

(
ϕ6
1 + 5ϕ4

1ϕ2 + 6ϕ2
1ϕ

2
2 + ϕ3

2

)

γ(8) =
c7,21

1− ϕ2 + θ1χ
γ2,1(0)

Where

c7,21 =
(
ϕ2
1 + ϕ2

)(
ϕ4
1c1,21 + 3ϕ2

1ϕ2c1,21 + ϕ2
2c1,21 + ϕ4

1ϕ2

+ 2ϕ2
1ϕ

2
2

)
+ ϕ4

1ϕ2c1,21 + 2ϕ2
1ϕ

2
2c1,21 + ϕ4

1ϕ
2
2 + ϕ2

1ϕ
3
2+

θ1

(
ϕ5
1ϕ2 + 4ϕ3

1ϕ
2
2 + 3ϕ1ϕ

3
2

)
=c7,20 + θ1χ

(
ϕ6
1ϕ2 + 5ϕ4

1ϕ
2
2 + 6ϕ2

1ϕ
3
2 + ϕ4

2

)
+

θ1ϖ
(
ϕ7
1 + 6ϕ5

1ϕ2 + 10ϕ3
1ϕ

2
2 + 4ϕ1ϕ

3
2

)

In terms of cr,21, an expression for γ(k) may be expressed as

γ(k) =
ck−1,21

1− ϕ2 + θ1χ
γ2,1(0) (4.49)

Let k − 1 = r. Then

cr,21 =
(
ϕ2
1 + ϕ2

){
c1,21

∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,21
∑

r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
(r − 5− s)

s

)
ϕr−3−2s
1 ϕs+2

2

(4.50)
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for all r ≥ 4

Thus, for an ARMA(2,1) process,

γ(k) = σ2

[(
ϕ2
1 + ϕ2

){
c1,21

∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,21
∑

r−4≥2s

(
(r − 4− s)

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
(r − 5− s)

s

)
ϕr−3−2s
1 ϕs+2

2

]
1

1− ϕ2 + θ1χ

(4.51)

In terms of cr,20,

cr,21 =cr,20 + θ1χ

[ ∑
r−1≥2s

(
(r − 1− s)

s

)
ϕr−1−2s
1 ϕs+1

2

]
+

θ1ϖ

[∑
r≥2s

(
(r − s)

s

)
ϕr−2s
1 ϕs

2

] (4.52)

for all r ≥ 4

Equivalently for an ARMA(2,1) process,

γ(k) =σ2

{
cr,20 + θ1χ

[ ∑
r−1≥2s

(
(r − 1− s)

s

)
ϕr−1−2s
1 ϕs+1

2

]
+

θ1ϖ

[∑
r≥2s

(
(r − s)

s

)
ϕr−2s
1 ϕs

2

]}
1

1− ϕ2 + θ1χ
γ2,1(0)

(4.53)

The results in Equation (4.53) shows that the ACF of the ARMA(2,1) is a func-

tion of a coefficient c1,21 = c1,20 + θ1ϕ2χ + θ1ϕ1ϖ, , which may further be

given in terms of a coefficient cr,20, a general coefficient for ARMA(2,0). The

results then involves computation of combinatorial values of the form
(
(r−t−s)

s

)
for which r − t ≥ 2s, 0 ≤ t ≤ 1.

Another important observation is that two more constants (χ and ϖ) have

been introduced than the constants in the general expression for ARMA(2,0)
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process.

ACF of an ARMA(2,2) Process

In this section, the ACF of an ARMA(2,2) process is derived. The auto-

covariance generating function (acgf) is used to obtain the variance and autoco-

variances, after which the autocovariances are normalized to obtain the autocor-

relation functions.

An ARMA (2,2) process is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + θ1Zt−1 + θ2Zt−2 + Zt (4.54)

By introducing the lag operator, Equation (4.54) can be simplified as

(1− ϕ1L− ϕ2L
2)Xt = (1 + θ1L+ θ2L

2)Zt

Further simplification yields

Xt =
(1 + θ1L+ θ2L

2)

1− ϕ1L− ϕ2L2
Zt (4.55)

Assuming the quadratic 1 − ϕ1L − ϕ2L
2 has two different real roots, 1

α
and 1

β
,

then

1− ϕ1L− ϕ2L
2 = 0

can be written as

Q(L) = (1− αL)(1− βL) = 0

If

Xt =
1 + θ1L+ θ2L

2

(1− αL)(1− βL)
Zt

then

c(s) =
1 + θ1s+ θ2s

2

(1− αs)(1− βs)
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The agcf can thus, be written as

c(s)c(s−1) = σ2

[
1 + θ1s+ θ2s

2

(1− αs)(1− βs)
× 1 + θ1s

−1 + θ2s
−2

(1− αs−1)(1− βs−1)

]
(4.56)

This simplifies to

c(s)c(s−1) =
θ2s

2 + (θ1 + θ1θ2)s+ (1 + θ21 + θ22) + (θ1 + θ1θ2)s
−1 + θ2s

−2

(1− αs)(1− αs−1)(1− βs)(1− βs−1)

(4.57)

Equation (4.57) simplifies to

c(s)c(s−1) =σ2

[
(1 + θ21 + θ22) + (θ1 + θ1θ2)s+ θ2s

2 + (θ1 + θ1θ2)s
−1

+ θ2s
−2

]
∞∑
r=0

α2r

∞∑
r=0

β2r

[
∞∑
r=0

(αs)r +
∞∑
r=1

(αs−1)r

]
×[

∞∑
r=0

(βs)r +
∞∑
r=1

(βs−1)r

]
(4.58)

Equation (4.58) simplifies to

c(s)c(s−1) = σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

)
T(sr) (4.59)

where T(sr) are expression in terms of sr obtained from Equation (4.58).

At lag0, we consider terms in Equation (4.58) that results in s0 and obtain

γ(0) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s0) +

[
(θ1 + θ1θ2)s

]
T(s−1)+

[
θ2s

2
]
T(s−2) +

[
(θ1 + θ1θ2)s

−1
]
T(s) +

[
θ2s

−2
]
T(s2)

}
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=
1

(1− α2)(1− β2)(1− αβ)

{[
(1 + θ21 + θ22)(1 + αβ)

]
+

[
(θ1 + θ1θ2)(α + β)

]
+ θ2

[
(α2 + β2) + αβ(1− αβ)

]
+[

(θ1 + θ1θ2)(α + β)
]
+ θ2

[
(α2 + β2) + αβ(1− αβ)

]}

=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(1 + θ21 + θ22)(1 + αβ)
]
+

2
[
(α + β)(θ1 + θ1θ2)

]
+ 2θ2

[
(α2 + β2) + αβ(1− αβ)

]}

=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(1 + θ21 + θ22)(1 + αβ)
]
+

2
[
(α + β)(θ1 + θ1θ2)

]
+ 2θ2

[
(α + β)2 − αβ − (αβ)2

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22)(1− ϕ2)
]
+
[
2ϕ1(θ1 + θ1θ2)

]

+
[
2θ2(ϕ

2
1 + ϕ2 − ϕ2

2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1− ϕ2

)
+ θ1

(
2ϕ1 + θ1 − θ1ϕ2

)
+

θ2

(
2ϕ1θ1 + 2ϕ2

1 + 2ϕ2 − 2ϕ2
2 + θ2 − θ2ϕ2

)}

Let

χ =2ϕ1 + θ1 − θ1ϕ2

=2ϕ1 + θ1(1− ϕ2)

and

τ =2ϕ1θ1 + 2ϕ2
1 + 2ϕ2 − 2ϕ2

2 + θ2 − θ2ϕ2

=2c1,20 + 2ϕ1θ1 + θ2(1− ϕ2)
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Therefore, the variance function of ARMA(2,2) denoted as γ2,2(0) is given as

γ2,2(0) =
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{1− ϕ2 + θ1χ+ θ2τ

}
(4.60)

It is clear from Equation (4.60) that if θ2 = 0, we obtain γ2,1(0), the variance

function of the ARMA(2,1) process. Additionally, if θ1 = θ2 = 0, we obtain

γ2,0(0), the variance function of the ARMA(2,0) process.

At lag 1, we consider terms in s and obtain

γ(1) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s) +

[
(θ1 + θ1θ2)s

]
T(s0)+

[
θ2s

2
]
T(s−1) +

[
(θ1 + θ1θ2)s

−1
]
T(s2) +

[
θ2s

−2
]
T(s3)

}

=
1

(1− α2)(1− β2)(1− αβ)

{[
(1 + θ21 + θ22)(α + β)

]
+

[
(θ1 + θ1θ2)(1 + αβ)

]
+
[
θ2(α + β)

]
+
[
(θ1 + θ1θ2){(α2 + β2)+

αβ(1− αβ)}
]
+ θ2

[
(α3 + β3) + (α2β + αβ2)(1− αβ)

]}

=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(1 + θ21 + θ22)(α + β)
]
+

[
(θ1 + θ1θ2)(1 + αβ)

]
+
[
θ2(α + β)

]
+
[
(θ1 + θ1θ2){(α + β)2−

αβ − (αβ)2}
]
+ θ2

[
(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22)ϕ1

]
+
[
(θ1 + θ1θ2)(1− ϕ2)

]
+

[
θ2ϕ1

]
+
[
(θ1 + θ1θ2)(ϕ

2
1 + ϕ2 − ϕ2

2)
]
+
[
θ2(ϕ

3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]}

Further simplification gives

82

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22)ϕ1

]
+ (θ1 + θ1θ2)

[
1 + ϕ2

1 − ϕ2
2

]

+ θ2

[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{ϕ1 + θ1

(
1 + θ1ϕ1 + ϕ2

1 − ϕ2
2

)
+ θ2

(
θ1 + θ2ϕ1

+ θ1ϕ
2
1 − θ1ϕ

2
2 + ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2

)}

Let ϖ = 1 + θ1ϕ1 + ϕ2
1 − ϕ2

2 and π = θ1 + θ2ϕ1 + θ1ϕ
2
1 − θ1ϕ

2
2 + ϕ3

1 + ϕ1 +

2ϕ1ϕ2 − ϕ1ϕ
2
2

Therefore,

γ(1) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ1 + θ1ϖ + θ2π

}

=
ϕ1 + θ1ϖ + θ2π

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

Similarly, the autocovariance at lag 2 is obtained as

γ(2) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s2) +

[
(θ1 + θ1θ2)s

]
T(s)+

[
θ2s

2
]
T(s0) +

[
(θ1 + θ1θ2)s

−1
]
T(s3) +

[
θ2s

−2
]
T(s4)

}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22)

[
(α2 + β2) + αβ(1− αβ)

]
+ (θ1 + θ1θ2)

[
(α + β)

]
+ θ2

[
(1 + αβ)

]
+ (θ1 + θ1θ2)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ θ2

[
(α4 + β4) + (α3β + α2β2 + αβ3)

(1− αβ)
]}
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=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21 + θ22)
[
(α + β)2 − αβ−

(αβ)2
]
+ (θ1 + θ1θ2)

[
(α + β)

]
+ θ2

[
(1 + αβ)

]
+ (θ1 + θ1θ2)

[
(α + β)3−

2αβ(α + β)− (αβ)2(α + β)
]
+ θ2

[
(α + β)4 − 3αβ(α + β)2 + (αβ)2−

(αβ)2{(α + β)2 + αβ}
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+

(θ1 + θ1θ2)
[
ϕ1

]
+ θ2

[
(1− ϕ2)

]
+ (θ1 + θ1θ2)

[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+

θ2

[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ2
1 + ϕ2 − ϕ2

2

]
+ (θ1 + θ1θ2)

[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+ θ2

[
1 + ϕ4

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 − ϕ2 + ϕ2

2 − ϕ3
2

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(ϕ2
1 + ϕ2 − ϕ2

2

)
+ θ1

(
θ1ϕ

2
1 + θ1ϕ2 − θ1ϕ

2
2 + ϕ3

1+

ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2

)
+ θ2

(
1 + ϕ4

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 − ϕ2 + ϕ2

2 − ϕ3
2 + θ2ϕ

2
1+

θ2ϕ2 − θ2ϕ
2
2 + θ1ϕ

3
1 + θ1ϕ1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

)}

Let η = θ1ϕ
2
1 + θ1ϕ2 − θ1ϕ

2
2 + ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2 and

λ = 1 + ϕ4
1 + 3ϕ2

1ϕ2 − ϕ2
1ϕ

2
2 − ϕ2 + ϕ2

2 − ϕ3
2 + θ2ϕ

2
1 + θ2ϕ2 − θ2ϕ

2
2 + θ1ϕ

3
1 +

θ1ϕ1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ
2
2

Then,

γ(2) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ

}

=
ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

=
c1,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)
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where c1,22 = ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ

From ARMA(2, 1), it can be verified that η = ϕ2χ+ ϕ1ϖ.

Again, c1,21 = ϕ2
1 + ϕ2 − ϕ2

2 + θ1(ϕ2χ+ ϕ1ϖ) and c1,20 = ϕ2
1 + ϕ2 − ϕ2

2

Thus,

c1,22 =ϕ
2
1 + ϕ2 − ϕ2

2 + θ1(ϕ2χ+ ϕ1ϖ) + θ2λ

=c1,21 + θ2λ

=c1,0 + θ1

(
ϕ2χ+ ϕ1ϖ

)
+ θ2λ

At lag 3, we consider terms in s3 and obtain

γ(3) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s3) +

[
(θ1 + θ1θ2)s

]
T(s2)+

[
θ2s

2
]
T(s) +

[
(θ1 + θ1θ2)s

−1
]
T(s4) +

[
θ2s

−2
]
T(s5)

}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ (θ1 + θ1θ2)

[
(α2 + β2) + αβ(1− αβ)

]
+

θ2

[
(α + β)

]
+ (θ1 + θ1θ2)

[
(α4 + β4) + (α3β + α2β2 + αβ3)(1− αβ)

]
+ θ2

[
(α5 + β5) + (α4β + α3β2 + α2β3 + αβ4)(1− αβ)

]}

=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21 + θ22)
[
(α + β)3 − 2αβ(α + β)

− (αβ)2(α + β)
]
+ (θ1 + θ1θ2)

[
(α + β)2 − αβ − (αβ)2

]
+ θ2

[
(α + β)

]
+ (θ1 + θ1θ2)

[
(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2+

αβ}
]
+ θ2

[
(α + β)5 − 4αβ(α + β)3 + 3(αβ)2(α + β)− (αβ)2(α + β)3

+ 2(αβ)3(α + β)
]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+

(θ1 + θ1θ2)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ θ2

[
ϕ1

]
+ (θ1 + θ1θ2)

[
(ϕ4

1 + 3ϕ2
1ϕ2+

ϕ2
2 − ϕ2

1ϕ
2
2 − ϕ3

2)
]
+ θ2

[
(ϕ5

1 + 4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+

(θ1 + θ1θ2)
[
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2

]
+ θ2

[
ϕ5
1 + ϕ1+

4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

)
+ θ1

(
ϕ4
1 + ϕ2

1+

3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2 + θ1ϕ
3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

)
+ θ2

(
ϕ5
1 + ϕ1+

4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ2ϕ

3
1 + 2θ2ϕ1ϕ2 − θ2ϕ1ϕ

2
2 + θ1ϕ

4
1+

θ1ϕ
2
1 + 3θ1ϕ

2
1ϕ2 − θ1ϕ

2
1ϕ

2
2 + θ1ϕ2 − θ1ϕ

3
2

)}

Let ω = ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2 + θ1ϕ
3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

and κ = ϕ5
1+ϕ1+4ϕ3

1ϕ2+3ϕ1ϕ
2
2−ϕ3

1ϕ
2
2−2ϕ1ϕ

3
2+θ2ϕ

3
1+2θ2ϕ1ϕ2−θ2ϕ1ϕ

2
2+

θ1ϕ
4
1 + θ1ϕ

2
1 + 3θ1ϕ

2
1ϕ2 − θ1ϕ

2
1ϕ

2
2 + θ1ϕ2 − θ1ϕ

3
2

Then,

γ(3) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2 + θ1ω + θ2κ

}

=
ϕ3
1 + ϕ1ϕ2 − ϕ1ϕ

2
2 + ϕ1ϕ2 + θ1ω + θ2κ

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

=
ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

=
c2,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)
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where c2,22 = ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ

From ARMA(2, 1), it can be verified that c2,21 = ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ =

ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω

Thus,

c2,22 =ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ

=ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ + θ2κ

=c2,21 + θ2κ

=c2,0 + θ1ϕ1ϕ2χ+ θ1ϖ
(
ϕ2
1 + ϕ2

)
+ θ2κ

At lag 4, the autocovariance is obtained as

γ(4) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s4) +

[
(θ1 + θ1θ2)s

]
T(s3)+

[
θ2s

2
]
T(s2) +

[
(θ1 + θ1θ2)s

−1
]
T(s5) +

[
θ2s

−2
]
T(s6)

}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22)

[
(α4 + β4) + (α3β+

α2β2 + αβ3)(1− αβ)
]
+ (θ1 + θ1θ2)

[
(α3 + β3) + (α2β + αβ2)

(1− αβ)
]
+ θ2

[
(α2 + β2) + αβ(1− αβ)

]
+ (θ1 + θ1θ2)

[
(α5 + β5)

+ (α4β + α3β2 + α2β3 + αβ4)(1− αβ)
]
+ θ2

[
(α6 + β6) + (α5β+

α4β2 + α3β3 + α2β4 + αβ5)(1− αβ)
]}
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=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21 + θ22)
[
(α + β)4−

3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}
]
+ (θ1 + θ1θ2)[

(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)
]
+ θ2

[
(α + β)2 − αβ−

(αβ)2
]
+ (θ1 + θ1θ2)

[
(α + β)5 − 4αβ(α + β)3 + 3(αβ)2(α + β)−

(αβ)2(α + β)3 + 2(αβ)3(α + β)
]
+ θ2

[
(α + β)6 − 5αβ(α + β)4+

6(αβ)2(α + β)2 − (αβ)2(α + β)4 + 3(αβ)3(α + β)2 − (αβ)3 − (αβ)4
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]

+ (θ1 + θ1θ2)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+ θ2

[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ (θ1 + θ1θ2)[

(ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+ θ2

[
(ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2−

ϕ4
1ϕ

2
2 − 3ϕ2

1ϕ
3
2 + ϕ3

2 − ϕ4
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]

+ (θ1 + θ1θ2)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+ θ2

[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ (θ1 + θ1θ2)[

(ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+ θ2

[
(ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2−

ϕ4
1ϕ

2
2 − 3ϕ2

1ϕ
3
2 + ϕ3

2 − ϕ4
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2 − ϕ2

1ϕ
2
2 − ϕ3

2

]
+ (θ1 + θ1θ2)

[
ϕ5
1 + ϕ3

1 + 4ϕ3
1ϕ2 + 2ϕ1ϕ

2
2 + 2ϕ1ϕ2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2

]
+

θ2

[
ϕ6
1 + ϕ2

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 + ϕ2 − ϕ2

2 + ϕ3
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ4

2

]}
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Expanding some of the terms and regrouping, we shall obtain

γ(4) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ4
1 + 2ϕ2

1ϕ2 − ϕ2
1ϕ

2
2

]
+

(θ1 + θ1θ2)
[
ϕ5
1 + ϕ3

1 + 3ϕ3
1ϕ2 + ϕ1ϕ2 − ϕ3

1ϕ
2
2 − ϕ1ϕ

3
2

]
+ θ2

[
ϕ6
1 + ϕ2

1+

4ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 2ϕ2

1ϕ
3
2

]}
+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ2
1ϕ2 + ϕ2

2 − ϕ3
2

]
+

(θ1 + θ1θ2)
[
ϕ3
1ϕ2 + ϕ1ϕ2 + 2ϕ1ϕ

2
2 − ϕ1ϕ

3
2

]
+ θ2

[
ϕ2 + ϕ4

1ϕ2+

3ϕ2
1ϕ

2
2 − ϕ2

1ϕ
3
2 − ϕ2

2 + ϕ3
2 − ϕ4

2

]}

Simplifying further, the autocovariance at lag 4 is given as

γ(4) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{
(1 + θ21 + θ22)

[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+

(θ1 + θ1θ2)
[
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2

]
+ θ2

[
ϕ5
1 + ϕ1+

4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2

]}
+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{
(1 + θ21 + θ22)

[
ϕ2
1 + ϕ2 − ϕ2

2

]
+

(θ1 + θ1θ2)
[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+ θ2

[
1 + ϕ4

1 + 3ϕ2
1ϕ2−

ϕ2
1ϕ

2
2 − ϕ2 + ϕ2

2 − ϕ3
2

]}

=ϕ1γ(3) + ϕ2γ(2)

=ϕ1

(
c2,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0) + ϕ2

(
c1,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0)
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=
1

1− ϕ2 + θ1χ+ θ2τ

[
ϕ1

(
ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ

)
+

ϕ2

(
c1,21 + θ2λ

)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[(
ϕ2
1c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ + θ2ϕ1κ
)
+

(
ϕ2c1,21 + θ2ϕ2λ

)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ+

θ2ϕ1κ+ θ2ϕ2λ

]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
c3,21 + θ2ϕ1κ+ θ2ϕ2λ

]
γ2,2(0)

=
c3,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

Similarly, the autocovariance at lag 5 is obtained as

γ(5) =σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

){[
(1 + θ21 + θ22)

]
T(s5) +

[
(θ1 + θ1θ2)s

]
T(s4)+

[
θ2s

2
]
T(s3) +

[
(θ1 + θ1θ2)s

−1
]
T(s6) +

[
θ2s

−2
]
T(s7)

}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22)

[
(α5 + β5) + (α4β+

α3β2 + α2β3 + αβ4)(1− αβ)
]
+ (θ1 + θ1θ2)

[
(α4 + β4) + (α3β+

α2β2 + αβ3)(1− αβ)
]
+ θ2

[
(α3 + β3) + (α2β + αβ2)(1− αβ)

]
+

(θ1 + θ1θ2)
[
(α6 + β6) + (α5β + α4β2 + α3β3 + α2β4 + αβ5)(1− αβ)

]
+

θ2

[
(α7 + β7) + (α6β + α5β2 + α4β3 + α3β4 + α2β5 + αβ6)(1− αβ)

]}
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=
1

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{(1 + θ21 + θ22)
[
(α + β)5−

4αβ(α + β)3 + 3(αβ)2(α + β)− (αβ)2(α + β)3 + 2(αβ)3(α + β)
]
+

(θ1 + θ1θ2)
[
(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}

]
+ θ2

[
(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)

]
+ (θ1 + θ1θ2)

[
(α + β)6−

5αβ(α + β)4 + 6(αβ)2(α + β)2 − (αβ)2(α + β)4 + 3(αβ)3(α + β)2−

(αβ)3 − (αβ)4
]
+ θ2

[
(α + β)7 − 6αβ(α + β)5 − (αβ)2(α + β)5+

10(αβ)2(α + β)3 + 4(αβ)3(α + β)3 − 4(αβ)3(α + β)− 3(αβ)4(α + β)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
(ϕ5

1 + 4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2

− 2ϕ1ϕ
3
2)
]
+ (θ1 + θ1θ2)

[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ θ2

[
(ϕ3

1+

2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+ (θ1 + θ1θ2)

[
(ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2+

ϕ3
2 − ϕ4

2)
]
+ θ2

[
(ϕ7

1 + 6ϕ5
1ϕ2 − ϕ5

1ϕ
2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2−

2ϕ1ϕ
3
2

]
+ (θ1 + θ1θ2)

[
ϕ6
1 + ϕ4

1 + 5ϕ4
1ϕ2 + 5ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ4

2+

3ϕ2
1ϕ2 + ϕ2

2

]
+ θ2

[
ϕ7
1 + ϕ3

1 + 6ϕ5
1ϕ2 + 10ϕ3

1ϕ
2
2 − ϕ5

1ϕ
2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2−

3ϕ1ϕ
4
2 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]}
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Expanding some of the terms and regrouping, we shall obtain

γ(5) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ5
1 + 3ϕ3

1ϕ2 + ϕ1ϕ
2
2−

ϕ3
1ϕ

2
2 − ϕ1ϕ

3
2

]
+ (θ1 + θ1θ2)

[
ϕ6
1 + ϕ4

1 + 4ϕ4
1ϕ2 + 2ϕ2

1ϕ
2
2 + 2ϕ2ϕ2−

ϕ4
1ϕ

2
2 − 2ϕ2

1ϕ
3
2

]
+ θ2

[
ϕ6
1 + ϕ2

1 + 4ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 2ϕ2

1ϕ
3
2

]}
+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22)
[
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2 − ϕ1ϕ

3
2

]
+

(θ1 + θ1θ2)
[
ϕ4
1ϕ2 + ϕ2

1ϕ2 + 3ϕ2
1ϕ

2
2 − ϕ2

1ϕ
3
2 + ϕ2

2 − ϕ4
2

]
+ θ2

[
ϕ5
1ϕ2+

ϕ1ϕ2 + 4ϕ3
1ϕ

2
2 + 3ϕ1ϕ

3
2 − ϕ3

1ϕ
3
2 − 2ϕ1ϕ

4
2

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{
(1 + θ21 + θ22)

[
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2−

ϕ2
1ϕ

2
2 − ϕ3

2

]
+ (θ1 + θ1θ2)

[
ϕ5
1 + ϕ3

1 + 4ϕ3
1ϕ2 + 2ϕ1ϕ

2
2 + 2ϕ1ϕ2−

ϕ3
1ϕ

2
2 − 2ϕ1ϕ

3
2

]
+ θ2

[
ϕ6
1 + ϕ2

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 + ϕ2 − ϕ2

2 + ϕ3
2−

ϕ4
1ϕ

2
2 − 3ϕ2

1ϕ
3
2 − ϕ4

2

]}
+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{
(1 + θ21 + θ22)

[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]
+

(θ1 + θ1θ2)
[
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2

]
+ θ2

[
ϕ5
1 + ϕ1+

4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2

]}

=ϕ1γ(4) + ϕ2γ(3)

=ϕ1

(
c3,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0) + ϕ2

(
c2,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
ϕ1

(
c3,21 + θ2ϕ1κ+ θ2ϕ2λ

)
+ ϕ2

(
c2,21 + θ2κ

)]
γ2,2(0)
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=
1

1− ϕ2 + θ1χ+ θ2τ

[
ϕ1

(
(ϕ2 + ϕ2)c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ+

θ2ϕ1κ+ θ2ϕ2λ
)
+ ϕ2

(
ϕ1c1,21 + ϕ1ϕ2+

θ1ϕ2ϖ + θ2κ
)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[{(
ϕ2
1 + ϕ2

)
ϕ1c1,21 + ϕ3

1ϕ2 + θ1ϖϕ
2
1ϕ2+

θ2ϕ
2
1κ+ θ2ϕ1ϕ2λ

}
+
{
ϕ1ϕ2c1,21 + ϕ1ϕ

2
2+

θ1ϕ
2
2ϖ + θ2ϕ2κ

}]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϕ
2
1ϕ2ϖ + θ1ϕ

2
2ϖ + θ2ϕ

2
1κ+ θ2ϕ2κ+ θ2ϕ1ϕ2λ

]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ1ϕ2

)
+ θ2κ

(
ϕ2
1 + ϕ2

)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
c4,21 + θ2λ

(
ϕ1ϕ2

)
+ θ2κ

(
ϕ2
1 + ϕ2

)]
γ2,2(0)

=
c4,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

It is obvious that our simplification of the coefficient of sk from γ(4) leads to

the Yule-Walker equations. Subsequently, it is now convenient to precede using

the Y-W equations.
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Thus,

γ(6) =ϕ1γ(5) + ϕ2γ(4)

=ϕ1

(
c4,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0) + ϕ2

(
c3,22

1− ϕ2 + θ1χ+ θ2τ

)
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
ϕ1

(
c4,21 + θ2λ(ϕ1ϕ2) + θ2κ(ϕ

2
1 + ϕ2)

)
+

ϕ2

(
c3,21 + θ2ϕ1κ+ θ2ϕ2λ

)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
ϕ1

{(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ1ϕ2

)
+ θ2κ

(
ϕ2
1 + ϕ2

)}
+

ϕ2

{(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ + θ2ϕ1κ+

θ2ϕ2λ
}]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[{(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21+

θ1ϖϕ1ϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ2
1ϕ2

)
+ θ2κ

(
ϕ3
1+

ϕ1ϕ2

)}
+
{(
ϕ2
1 + ϕ2

)
ϕ2c1,21 + ϕ2

1ϕ
2
2 + θ1ϕ1ϕ

2
2ϖ+

θ2ϕ1ϕ2κ+ θ2ϕ
2
2λ
}]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2c1,21 + ϕ2

1ϕ2

)
+ ϕ2

1ϕ2c1,21+

ϕ2
1ϕ

2
2 + θ1ϖ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ2λ

(
ϕ2
1ϕ2 + ϕ2

2

)
+

θ2κ
(
ϕ3
1 + 2ϕ1ϕ2

)]
γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

[
c5,21 + θ2λ

(
ϕ2
1ϕ2 + ϕ2

2

)
+ θ2κ

(
ϕ3
1 + 2ϕ1ϕ2

)]
γ2,2(0)

=
c5,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)
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Using similar deductions,

γ(7) =
1

1− ϕ2 + θ1χ+ θ2τ

[
c6,21 + θ2λ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+

θ2κ
(
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

)]
γ2,2(0)

=
c6,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

γ(8) =
1

1− ϕ2 + θ1χ+ θ2τ

[
c7,21 + θ2λ

(
ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 + ϕ3

2

)
+

θ2κ
(
ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2

)]
γ2,2(0)

=
c7,22

1− ϕ2 + θ1χ+ θ2τ
γ2,2(0)

Then for r ≥ 4,

cr,22 =cr,21 + θ2λ

[ ∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs+1

2

]
+

θ2κ

[ ∑
r−2≥2s

(
(r − 2− s)

s

)
ϕr−2−2s
1 ϕs

2

] (4.61)

Hence for an ARMA(2,2) process,

γ(k) =
1

1− ϕ2 + θ1χ+ θ2τ
c(k−1),22γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

{
cr,21 + θ2λ

[ ∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs+1

2

]
+

θ2κ

[ ∑
r−2≥2s

(
(r − 2− s)

s

)
ϕr−2−2s
1 ϕs

2

]}
γ2,2(0),

(4.62)

for r ≥ 4, noting that k − 1 = r

The results in Equation (4.61) shows that the ACF of the ARMA(2,2) is
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a function of a coefficient cr,22, which may further be given in terms of a co-

efficient cr,21, a general coefficient for ARMA(2,1). The results then involves

computation of combinatorial values of the form
(
(r−t−s)

s

)
for which r−t ≥ 2s,

2 ≤ t ≤ 3.

It is also observed that the Y-W relation emerged only after lag 3. This

means that there is the need for the computation of individual γ(k) for k ≤ 3.

Another important observation is that three more constants (τ , λ, and κ)

have been introduced than the constants in the general expression for ARMA(2,1)

process.

ACF of an ARMA(2,3) Process

In this section, the ACF of an ARMA(2,3) process is derived. The auto-

covariance generating function (acgf) is used to obtain the variance and autoco-

variances, after which the autocovariances are normalized to obtain the autocor-

relation functions.

An ARMA (2,3) process is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + θ1Zt−1 + θ2Zt−2 + θ3Zt−3 + Zt (4.63)

By introducing a lag operator, Equation (4.63) can be simplified as

(1− ϕ1L− ϕ2L
2)Xt = (1 + θ1L+ θ2L

2 + θ3L
3)Zt

Further simplification yields

Xt =
(1 + θ1L+ θ2L

2 + θ3L
3)

1− ϕ1L− ϕ2L2
Zt (4.64)
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Assuming the quadratic 1 − ϕ1L − ϕ2L
2 has two different real roots, 1

α
and 1

β
,

then

1− ϕ1L− ϕ2L
2 = 0

can be written as

(1− αL)(1− βL) = 0

It can be verified that (α + β)=ϕ1 and αβ = −ϕ2

If

Xt =
1 + θ1L+ θ2L

2 + θ3L
3

(1− αL)(1− βL)
Zt

then

c(s) =
1 + θ1s+ θ2s

2 + θ3s
3

(1− αs)(1− βs)

The autocovariance generating function can thus, be written as

c(s)c(s−1) = σ2

[
1 + θ1s+ θ2s

2 + θ3s
3

(1− αs)(1− βs)
× 1 + θ1s

−1 + θ2s
−2 + θ3s

−3

(1− αs−1)(1− βs−1)

]
(4.65)

This simplifies to

c(s)c(s−1) =
1

(1− αs)(1− αs−1)(1− βs)(1− βs−1)
σ2

{
θ3s

3 + (θ2 + θ1θ3)s
2+

(θ1 + θ1θ2 + θ2θ3)s+ (1 + θ21 + θ22 + θ33) + (θ1 + θ1θ2 + θ2θ3)s
−1

+ (θ2 + θ1θ3)s
−2 + θ3s

−3

}
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Further simplification yields

c(s)c(s−1) = σ2

[
θ3s

3 + (θ2 + θ1θ3)s
2 + (θ1 + θ1θ2 + θ2θ3)s+ (1 + θ21 + θ22 + θ33)+

(θ1 + θ1θ2 + θ2θ3)s
−1 + (θ2 + θ1θ3)s

−2 + θ3s
−3

]
×

∞∑
r=0

α2r

∞∑
r=0

β2r

[
∞∑
r=0

(αs)r +
∞∑
r=1

(αs−1)r

]
×[

∞∑
r=0

(βs)r +
∞∑
r=1

(βs−1)r

]
(4.66)

Equation (4.66) simplifies to

c(s)c(s−1) = σ2

(
∞∑
r=0

α2r

∞∑
r=0

β2r

)
T(sr) (4.67)

where T(sr) are expression in terms of sr obtained from Equation (4.66).

At lag 0, we consider terms in Equation (4.66) that results in s0 and obtain

γ2,3(0) =
[
(1 + θ21 + θ22 + θ23)

]
T(s0) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s−1)+[

(θ2 + θ1θ3)s
2
]
T(s−2) +

[
θ3s

3
]
T(s−3) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s)+[

(θ2 + θ1θ3)s
−2
]
T(s2) +

[
θ3s

−3
]
T(s3)

Making substitutions for the respective T(sr) and simplifying as before gives

γ2,3(0) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1− ϕ2

)
+ θ1

(
2ϕ1 + θ1 − θ1ϕ2

)
+

θ2

(
2ϕ1θ1 + 2ϕ2

1 + 2ϕ2 − 2ϕ2
2 + θ2 − θ2ϕ2

)
+ θ3

(
2ϕ3

1 + 4ϕ1ϕ2−

2ϕ1ϕ
2
2 + θ3 − θ3ϕ2 + 2θ2ϕ1 + 2θ1ϕ

2
1 + 2θ1ϕ2 − 2θ1ϕ

2
2

)}

Let χ = 2ϕ1 + θ1 − θ1ϕ2, τ = 2ϕ1θ1 + 2ϕ2
1 + 2ϕ2 − 2ϕ2

2 + θ2 − θ2ϕ2 and

µ = 2ϕ3
1 + 4ϕ1ϕ2 − 2ϕ1ϕ

2
2 + θ3 − θ3ϕ2 + 2θ2ϕ1 + 2θ1ϕ

2
1 + 2θ1ϕ2 − 2θ1ϕ

2
2
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Therefore, the variance function of ARMA(2,3) denoted as γ2,3(0) is given as

γ2,3(0) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
1− ϕ2 + θ1χ+ θ2τ + θ3µ

}
(4.68)

It can be observed that the γ(0) of the lower processes can be deduced from

Equation (4.68)

At lag 1, we consider terms that result in s and obtain

γ(1) =
[
(1 + θ21 + θ22 + θ23)

]
T(s) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s0)+[

(θ2 + θ1θ3)s
2
]
T(s−1) +

[
θ3s

3
]
T(s−2) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s2)+[

(θ2 + θ1θ3)s
−2
]
T(s3) +

[
θ3s

−3
]
T(s4)

Making substitutions for the respective T(sr) and simplifying gives

γ(1) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{ϕ1 + θ1

(
1 + θ1ϕ1 + ϕ2

1 − ϕ2
2

)
+

θ2

(
θ1 + θ2ϕ1 + θ1ϕ

2
1 − θ1ϕ

2
2 + ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2

)
+

θ3

(
θ3ϕ1 + θ2 + θ2ϕ

2
1 − θ2ϕ

2
2 + θ1ϕ

3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2 + ϕ4

1+

ϕ2
1 + ϕ2 + 3ϕ2

1ϕ2 − ϕ2
1ϕ

2
2 − ϕ3

2

)}

Letϖ = 1+θ1ϕ1+ϕ
2
1−ϕ2

2, π = θ1+θ2ϕ1+θ1ϕ
2
1−θ1ϕ2

2+ϕ
3
1+ϕ1+2ϕ1ϕ2−ϕ1ϕ

2
2

and

ξ = θ3ϕ1 + θ2 + θ2ϕ
2
1 − θ2ϕ

2
2 + θ1ϕ

3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2 + ϕ4

1 + ϕ2
1 + ϕ2 +

3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 − ϕ3

2
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Therefore,

γ(1) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ1 + θ1ϖ + θ2π + θ3ξ

}

=
ϕ1 + θ1ϖ + θ2π + θ3ξ

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

At lag 2, we consider terms in s2 and obtain

γ(2) =
[
(1 + θ21 + θ22 + θ23)

]
T(s2) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s)+[

(θ2 + θ1θ3)s
2
]
T(s0) +

[
θ3s

3
]
T(s−1) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s3)+[

(θ2 + θ1θ3)s
−2
]
T(s4) +

[
θ3s

−3
]
T(s5)

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α2 + β2)+

αβ(1− αβ)
]
+
[
(θ1 + θ1θ2 + θ2θ3)(α + β)

]
+ (θ2 + θ1θ3)[

(1 + αβ)
]
+ θ3

[
(α + β)

]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α4 + β4) + (α3β + α2β2+

αβ3)(1− αβ)
]
+ θ3

[
(α5 + β5) + (α4β + α3β2 + α2β3+

αβ4)(1− αβ)
]}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α + β)2 − αβ−

(αβ)2
]
+
[
(θ1 + θ1θ2 + θ2θ3)(α + β)

]
+ (θ2 + θ1θ3)

[
(1 + αβ)

]
+

θ3

[
(α + β)

]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α + β)3 − 2αβ(α + β)−

(αβ)2(α + β)
]
+ (θ2 + θ1θ3)

[
(α + β)4 − 3αβ(α + β)2 + (αβ)2−

(αβ)2{(α + β)2 + αβ}
]
+ θ3

[
(α + β)5 − 4αβ(α + β)3+

3(αβ)2(α + β)− (αβ)2(α + β)3 + 2(αβ)3(α + β)
]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+

[
(θ1 + θ1θ2 + θ2θ3)ϕ1

]
+
[
(θ2 + θ1θ3)(1− ϕ2)

]
+ θ3

[
ϕ1

]
+

(θ1 + θ1θ2 + θ2θ3)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+ (θ2 + θ1θ3)

[
(ϕ4

1+

3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ θ3

[
(ϕ5

1 + 4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22 + θ23)(ϕ
2
1 + ϕ2 − ϕ2

2)
]
+

[
(θ1 + θ1θ2 + θ2θ3)(ϕ

3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]
+
[
(θ2 + θ1θ3)(1 + ϕ4

1+

3ϕ2
1ϕ2 − ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ θ3

[
(ϕ5

1 + ϕ1 + 4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2−

ϕ3
1ϕ

2
2 − 2ϕ1ϕ

3
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(ϕ2
1 + ϕ2 − ϕ2

2

)
+ θ1

(
θ1ϕ

2
1 + θ1ϕ2−

θ1ϕ
2
2 + ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2

)
+ θ2

(
1 + ϕ4

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2−

ϕ2 + ϕ2
2 − ϕ3

2 + θ2ϕ
2
1 + θ2ϕ2 − θ2ϕ

2
2 + θ1ϕ

3
1 + θ1ϕ1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

)
+ θ3

(
ϕ5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ3ϕ

2
1 + θ3ϕ2 − θ3ϕ

2
2+

θ2ϕ
3
1 + θ2ϕ1 + 2θ2ϕ1ϕ2 − θ2ϕ1ϕ

2
2 + θ1 + θ1ϕ

4
1 + 3θ1ϕ

2
1ϕ2 − θ1ϕ2 + θ1ϕ

2
2−

θ1ϕ
2
1ϕ

2
2 − θ1ϕ

3
2

)}

Let η = θ1ϕ
2
1 + θ1ϕ2 − θ1ϕ

2
2 + ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2,

λ = 1 + ϕ4
1 + 3ϕ2

1ϕ2 − ϕ2
1ϕ

2
2 − ϕ2 + ϕ2

2 − ϕ3
2 + θ2ϕ

2
1 + θ2ϕ2 − θ2ϕ

2
2 + θ1ϕ

3
1 +

θ1ϕ1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ
2
2 and

ϱ = ϕ5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ3ϕ

2
1 + θ3ϕ2 − θ3ϕ

2
2 + θ2ϕ

3
1 +

θ2ϕ1+2θ2ϕ1ϕ2− θ2ϕ1ϕ
2
2+ θ1+ θ1ϕ

4
1+3θ1ϕ

2
1ϕ2− θ1ϕ2+ θ1ϕ

2
2− θ1ϕ

2
1ϕ

2
2− θ1ϕ

3
2
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Therefore,

γ(2) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ+ θ3ϱ

}

=
ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ+ θ3ϱ

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,2(0)

=
c1,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,2(0)

where c1,23 = ϕ2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ+ θ3ϱ

c1,23 =ϕ
2
1 + ϕ2 − ϕ2

2 + θ1η + θ2λ+ θ3ϱ

=c1,22 + θ3ϱ

=c1,21 + θ2λ+ θ3ϱ

Similarly, the autocovariance at lag 3 is obtained as

γ(3) =
[
(1 + θ21 + θ22 + θ23)

]
T(s3) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s2)+[

(θ2 + θ1θ3)s
2
]
T(s) +

[
θ3s

3
]
T(s0) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s4)+[

(θ2 + θ1θ3)s
−2
]
T(s5) +

[
θ3s

−3
]
T(s6)

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α2 + β2)+

αβ(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α + β)

]
+ θ3

[
(1 + αβ)

]
+

(θ1 + θ1θ2 + θ2θ3)
[
(α4 + β4) + (α3β + α2β2 + αβ3)(1− αβ)

]
+

(θ2 + θ1θ3)
[
(α5 + β5) + (α4β + α3β2 + α2β3 + αβ4)(1− αβ)

]
+

θ3

[
(α6 + β6) + (α5β + α4β2 + α3β3 + α2β4+

αβ5)(1− αβ)
]}
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=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α + β)3−

2αβ(α + β)− (αβ)2(α + β)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α + β)2 − αβ−

(αβ)2
]
+ (θ2 + θ1θ3)

[
(α + β)

]
+ θ3

[
(1 + αβ)

]
+ (θ1 + θ1θ2 + θ2θ3)[

(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}
]
+

(θ2 + θ1θ3)
[
(α + β)5 − 4αβ(α + β)3 + 3(αβ)2(α + β)− (αβ)2(α + β)3

+ 2(αβ)3(α + β)
]
+ θ3

[
(α + β)6 − 5αβ(α + β)4 + 6(αβ)2(α + β)2

− (αβ)2(α + β)4 + 3(αβ)3(α + β)2 − (αβ)3 − (αβ)4
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+

(θ1 + θ1θ2 + θ2θ3)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ (θ2 + θ1θ3)

[
ϕ1

]
+ θ3

[
(1− ϕ2)

]
+

(θ1 + θ1θ2 + θ2θ3)
[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2 − ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ (θ2 + θ1θ3)[

(ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+ θ3

[
(ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2−

ϕ4
1ϕ

2
2 − 3ϕ2

1ϕ
3
2 + ϕ3

2 − ϕ4
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22 + θ23)(ϕ
3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]
+

[
(θ1 + θ1θ2 + θ2θ3)(ϕ

4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2)
]
+[

(θ2 + θ1θ3)(ϕ
5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+

θ3

[
(1 + ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ2 + ϕ3

2 − ϕ4
2))
]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

)
+

θ1

(
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2 + θ1ϕ
3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

)
+

θ2

(
ϕ5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ2ϕ

3
1 + 2θ2ϕ1ϕ2 − θ2ϕ1ϕ

2
2+

θ1ϕ
4
1 + θ1ϕ

2
1 + 3θ1ϕ

2
1ϕ2 − θ1ϕ

2
1ϕ

2
2 + θ1ϕ2 − θ1ϕ

3
2

)
+ θ3

(
1 + ϕ6

1 + 5ϕ4
1ϕ2+

6ϕ2
1ϕ

2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ2 + ϕ3

2 − ϕ4
2 + θ3ϕ

3
1 + 2θ3ϕ1ϕ2 − θ3ϕ1ϕ

2
2+

θ2ϕ
4
1 + θ2ϕ

2
1 + 3θ2ϕ

2
1ϕ2 − θ2ϕ

2
1ϕ

2
2 + θ2ϕ2 − θ2ϕ

3
2 + θ1ϕ

5
1+

θ1ϕ1 + 4θ1ϕ
3
1ϕ2 + 3θ1ϕ1ϕ

2
2 − θ1ϕ

3
1ϕ

2
2 − 2θ1ϕ1ϕ

3
2

)}

Let ω = ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2 + θ1ϕ
3
1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2,

κ = ϕ5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ2ϕ

3
1 + 2θ2ϕ1ϕ2 − θ2ϕ1ϕ

2
2 +

θ1ϕ
4
1 + θ1ϕ

2
1 + 3θ1ϕ

2
1ϕ2 − θ1ϕ

2
1ϕ

2
2 + θ1ϕ2 − θ1ϕ

3
2 and

ς = 1+ϕ6
1+5ϕ4

1ϕ2+6ϕ2
1ϕ

2
2−ϕ4

1ϕ
2
2−3ϕ2

1ϕ
3
2−ϕ2+ϕ

3
2−ϕ4

2+θ3ϕ
3
1+2θ3ϕ1ϕ2−

θ3ϕ1ϕ
2
2 + θ2ϕ

4
1 + θ2ϕ

2
1 + 3θ2ϕ

2
1ϕ2 − θ2ϕ

2
1ϕ

2
2 + θ2ϕ2 − θ2ϕ

3
2 + θ1ϕ

5
1 + θ1ϕ1 +

4θ1ϕ
3
1ϕ2 + 3θ1ϕ1ϕ

2
2 − θ1ϕ

3
1ϕ

2
2 − 2θ1ϕ1ϕ

3
2

Then,

γ(3) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2 + θ1ω + θ2κ+ θ3ς

}

=
ϕ3
1 + ϕ1ϕ2 − ϕ1ϕ

2
2 + ϕ1ϕ2 + θ1ω + θ2κ+ θ3ς

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=
ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ+ θ3ς

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=
c2,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

104

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



where c2,23 = ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ+ θ3ς

c2,23 =ϕ1

(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ1ϕ2 + θ1ω + θ2κ+ θ3ς

=c2,22 + θ3ς

=c2,21 + θ2κ+ θ3ς

=ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ + θ2κ+ θ3ς

At lag 4, we consider terms in s4 and obtain

γ(4) =
[
(1 + θ21 + θ22 + θ23)

]
T(s4) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s3)+[

(θ2 + θ1θ3)s
2
]
T(s2) +

[
θ3s

3
]
T(s2) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s5)+[

(θ2 + θ1θ3)s
−2
]
T(s6) +

[
θ3s

−3
]
T(s7)

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α4 + β4)+

(α3β + α2β2 + αβ3)(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α3 + β3)+

(α2β + αβ2)(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α2 + β2) + αβ(1− αβ)

]
+ θ3

[
(α + β)

]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α5 + β5) + (α4β + α3β2+

α2β3 + αβ4)(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α6 + β6) + (α5β + α4β2+

α3β3 + α2β4 + αβ5)(1− αβ)
]
+ θ3

[
(α7 + β7)+

(α6β + α5β2 + α4β3 + α3β4 + α2β5 + αβ6)(1− αβ)
]}
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=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α + β)4−

3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}
]
+ (θ1 + θ1θ2+

θ2θ3)
[
(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)

]
+

(θ2 + θ1θ3)
[
(α + β)2 − αβ − (αβ)2

]
+ θ3

[
(α + β)

]
+

(θ1 + θ1θ2 + θ2θ3)
[
(α + β)5 − 4αβ(α + β)3 + 3(αβ)2(α + β)−

(αβ)2(α + β)3 + 2(αβ)3(α + β)
]
+ (θ2 + θ1θ3)

[
(α + β)6−

5αβ(α + β)4 + 6(αβ)2(α + β)2 − (αβ)2(α + β)4+

3(αβ)3(α + β)2 − (αβ)3 − (αβ)4
]
+ θ3

[
(α + β)7 − 6αβ(α + β)5−

(αβ)2(α + β)5 + 10(αβ)2(α + β)3 + 4(αβ)3(α + β)3−

4(αβ)3(α + β)− 3(αβ)4(α + β)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2−

ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+

(θ2 + θ1θ3)
[
(ϕ2

1 + ϕ2 − ϕ2
2)
]
+ θ3

[
ϕ1

]
+ (θ1 + θ1θ2 + θ2θ3)

[
(ϕ5

1+

4ϕ3
1ϕ2 + 3ϕ1ϕ

2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+ (θ2 + θ1θ3)

[
(ϕ6

1 + 5ϕ4
1ϕ2+

6ϕ2
1ϕ

2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 + ϕ3

2 − ϕ4
2)
]
+ θ3

[
(ϕ7

1 + 6ϕ5
1ϕ2 − ϕ5

1ϕ
2
2+

10ϕ3
1ϕ

2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2)
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22 + θ23)(ϕ
4
1 + 3ϕ2

1ϕ2 + ϕ2
2−

ϕ2
1ϕ

2
2 − ϕ3

2)
]
+
[
(θ1 + θ1θ2 + θ2θ3)(ϕ

5
1 + ϕ3

1 + 4ϕ3
1ϕ2 − ϕ3

1ϕ
2
2+

2ϕ1ϕ
2
2 + 2ϕ1ϕ2 − 2ϕ1ϕ

3
2)
]
+
[
(θ2 + θ1θ3)(ϕ

6
1 + ϕ2

1 + 5ϕ4
1ϕ2+

6ϕ2
1ϕ

2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 + ϕ2 − ϕ2

2 + ϕ3
2 − ϕ4

2)
]
+ θ3

[
(ϕ7

1 + ϕ1+

6ϕ5
1ϕ2 − ϕ5

1ϕ
2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2)
]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2 − ϕ2

1ϕ
2
2 − ϕ3

2

)
+

θ1

(
ϕ5
1 + ϕ3

1 + 4ϕ3
1ϕ2 − ϕ3

1ϕ
2
2 + 2ϕ1ϕ

2
2 + 2ϕ1ϕ2 − 2ϕ1ϕ

3
2 + θ1ϕ

4
1+

3θ1ϕ
2
1ϕ2 + θ1ϕ

2
2 − θ1ϕ

2
1ϕ

2
2 − θ1ϕ

3
2

)
+ θ2

(
ϕ6
1 + ϕ2

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2

− 3ϕ2
1ϕ

3
2 + ϕ2 − ϕ2

2 + ϕ3
2 − ϕ4

2 + θ2ϕ
4
1 + 3θ2ϕ

2
1ϕ2 + θ2ϕ

2
2−

θ2ϕ
2
1ϕ

2
2 − θ2ϕ

3
2 + θ1ϕ

5
1 + θ1ϕ

3
1 + 4θ1ϕ

3
1ϕ2 − θ1ϕ

3
1ϕ

2
2 + 2θ1ϕ1ϕ

2
2+

2θ1ϕ1ϕ2 − 2θ1ϕ
3
2

)
+ θ3

(
ϕ7
1 + ϕ1 + 6ϕ5

1ϕ2 − ϕ5
1ϕ

2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2+

4ϕ1ϕ
3
2 − 3ϕ1ϕ

4
2 + θ3ϕ

4
1 + 3θ3ϕ

2
1ϕ2 + θ3ϕ

2
2 − θ3ϕ

2
1ϕ2 − θ3ϕ

3
2 + θ2ϕ

5
1+

θ2ϕ
3
1 + 4θ2ϕ

3
1ϕ2 − θ2ϕ

3
1ϕ

2
2 + 2θ2ϕ1ϕ

2
2 + 2θ2ϕ1ϕ2 − 2θ2ϕ1ϕ

3
2 + θ1ϕ

6
1+

θ1ϕ
2
1 + 5θ1ϕ

4
1ϕ2 + 6θ1ϕ

2
1ϕ

2
2 − θ1ϕ

4
1ϕ

2
2 − 3θ1ϕ

2
1ϕ

3
2 + θ1ϕ2 − θ1ϕ

2
2+

θ1ϕ
3
2 − θ1ϕ

4
2

)}

Let ν = ϕ5
1+ϕ

3
1+4ϕ3

1ϕ2−ϕ3
1ϕ

2
2+2ϕ1ϕ

2
2+2ϕ1ϕ2− 2ϕ1ϕ

3
2+ θ1ϕ

4
1+3θ1ϕ

2
1ϕ2+

θ1ϕ
2
2 − θ1ϕ

2
1ϕ

2
2 − θ1ϕ

3
2 ,

ι = ϕ6
1 + ϕ2

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 + ϕ2 − ϕ2

2 + ϕ3
2 − ϕ4

2 + θ2ϕ
4
1 +

3θ2ϕ
2
1ϕ2+θ2ϕ

2
2−θ2ϕ2

1ϕ
2
2−θ2ϕ3

2+θ1ϕ
5
1+θ1ϕ

3
1+4θ1ϕ

3
1ϕ2−θ1ϕ3

1ϕ
2
2+2θ1ϕ1ϕ

2
2+

2θ1ϕ1ϕ2 − 2θ1ϕ
3
2 and

υ = ϕ7
1 + ϕ1 + 6ϕ5

1ϕ2 − ϕ5
1ϕ

2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2 + θ3ϕ

4
1 +

3θ3ϕ
2
1ϕ2+θ3ϕ

2
2−θ3ϕ2

1ϕ2−θ3ϕ3
2+θ2ϕ

5
1+θ2ϕ

3
1+4θ2ϕ

3
1ϕ2−θ2ϕ3

1ϕ
2
2+2θ2ϕ1ϕ

2
2+

2θ2ϕ1ϕ2 − 2θ2ϕ1ϕ
3
2 + θ1ϕ

6
1 + θ1ϕ

2
1 +5θ1ϕ

4
1ϕ2 +6θ1ϕ

2
1ϕ

2
2 − θ1ϕ

4
1ϕ

2
2 − 3θ1ϕ

2
1ϕ

3
2 +

θ1ϕ2 − θ1ϕ
2
2 + θ1ϕ

3
2 − θ1ϕ

4
2
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Therefore,

γ(4) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2 − ϕ2

1ϕ
2
2 − ϕ3

2 + θ1ν + θ2ι+ θ3υ

}

=
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2 − ϕ2

1ϕ
2
2 − ϕ3

2 + θ1ν + θ2ι+ θ3υ

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=

(
ϕ2
1 + ϕ2

)(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ2

1ϕ2 + θ1ν + θ2ι+ θ3υ

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=
c3,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

where c3,23 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ2

1ϕ2 + θ1ν + θ2ι+ θ3υ

From ARMA(2,2), it can be verified that θ2ι = θ2

(
ϕ1κ+ ϕ2λ

)

c3,23 =
(
ϕ2
1 + ϕ2

)(
ϕ2
1 + ϕ2 − ϕ2

2

)
+ ϕ2

1ϕ2 + θ1ν + θ2ι+ θ3υ

=c3,22 + θ3υ

=c3,21 + θ2ι+ θ3υ

=
(
ϕ2
1 + ϕ2

)
c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ + θ2ι+ θ3υ

The autocovariance at lag 5 is obtained as

γ(5) =
[
(1 + θ21 + θ22 + θ23)

]
T(s5) +

[
(θ1 + θ1θ2 + θ2θ3)s

]
T(s4)+[

(θ2 + θ1θ3)s
2
]
T(s3) +

[
θ3s

3
]
T(s2) +

[
(θ1 + θ1θ2 + θ2θ3)s

−1
]
T(s6)+[

(θ2 + θ1θ3)s
−2
]
T(s7) +

[
θ3s

−3
]
T(s8)

This simplifies to
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γ(5) =
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α5 + β5)+

(α4β + α3β2 + α2β3 + αβ4)(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)[

(α4 + β4) + (α3β + α2β2 + αβ3)(1− αβ)
]
+ (θ2 + θ1θ3)[

(α3 + β3) + (α2β + αβ2)(1− αβ)
]
+ θ3

[
(α2 + β2) + αβ

(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α6 + β6) + (α5β + α4β2+

α3β3 + α2β4 + αβ5)(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α7 + β7)+

(α6β + α5β2 + α4β3 + α3β4 + α2β5 + αβ6)(1− αβ)
]
+

θ3

[
(α8 + β8) + (α7β + α6β2 + α5β3 + α4β4 + α3β5+

α2β6 + αβ7)(1− αβ)
]}

=
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α5 + β5)+

(α4β + α3β2 + α2β3 + αβ4)(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)[

(α4 + β4) + (α3β + α2β2 + αβ3)(1− αβ)
]
+ (θ2 + θ1θ3)[

(α3 + β3) + (α2β + αβ2)(1− αβ)
]
+ θ3

[
(α2 + β2) + αβ

(1− αβ)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(α6 + β6) + (α5β + α4β2+

α3β3 + α2β4 + αβ5)(1− αβ)
]
+ (θ2 + θ1θ3)

[
(α7 + β7)+

(α6β + α5β2 + α4β3 + α3β4 + α2β5 + αβ6)(1− αβ)
]
+

θ3

[
(α8 + β8) + (α7β + α6β2 + α5β3 + α4β4 + α3β5+

α2β6 + αβ7)(1− αβ)
]}
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Further simplifications yield

γ(5) =
1

(1− α2)(1− β2)(1− αβ)

{
(1 + θ21 + θ22 + θ23)

[
(α + β)5−

4αβ(α + β)3 + 3(αβ)2(α + β)− (αβ)2(α + β)3 + 2(αβ)3(α + β)
]
+

(θ1 + θ1θ2 + θ2θ3)
[
(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2

{(α + β)2 + αβ}
]
+ (θ2 + θ1θ3)

[
(α + β)3 − 2αβ(α + β)−

(αβ)2(α + β)
]
+ θ3

[
(α + β)2 − αβ − (αβ)2

]
+ (θ1 + θ1θ2 + θ2θ3)[

(α + β)6 − 5αβ(α + β)4 + 6(αβ)2(α + β)2 − (αβ)2(α + β)4+

3(αβ)3(α + β)2 − (αβ)3 − (αβ)4
]
+ (θ2 + θ1θ3)

[
(α + β)7−

6αβ(α + β)5 − (αβ)2(α + β)5 + 10(αβ)2(α + β)3 + 4(αβ)3(α + β)3−

4(αβ)3(α + β)− 3(αβ)4(α + β)
]
+ θ3

[
(α + β)8 − 7αβ(α + β)6−

α2β2(α + β)6 + 15α2β2(α + β)4 − 10α3β3(α + β)2 + 5α3β3(α + β)4−

6α4β4(α + β)2 + α4β4 + α5β5
]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
(ϕ5

1 + 4ϕ3
1ϕ2+

3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(ϕ4

1 + 3ϕ2
1ϕ2 + ϕ2

2−

ϕ2
1ϕ

2
2 − ϕ3

2)
]
+ (θ2 + θ1θ3)

[
(ϕ3

1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
]
+ θ3

[
(ϕ2

1 + ϕ2−

ϕ2
2)
]
+ (θ1 + θ1θ2 + θ2θ3)

[
(ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2+

ϕ3
2 − ϕ4

2)
]
+ (θ2 + θ1θ3)

[
(ϕ7

1 + 6ϕ5
1ϕ2 − ϕ5

1ϕ
2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2+

4ϕ1ϕ
3
2 − 3ϕ1ϕ

4
2)
]
+ θ3

[
(ϕ8

1 + 7ϕ6
1ϕ2 − ϕ6

1ϕ
2
2 + 15ϕ4

1ϕ
2
2 + 10ϕ2

1ϕ
3
2−

5ϕ4
1ϕ

3
2 − 6ϕ2

1ϕ
4
2 + ϕ4

2 − ϕ5
2)
]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[(1 + θ21 + θ22 + θ23)(ϕ
5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2−

ϕ3
1ϕ

2
2 − 2ϕ1ϕ

3
2)
]
+
[
(θ1 + θ1θ2 + θ2θ3)(ϕ

6
1 + ϕ4

1 + 5ϕ4
1ϕ2 + 3ϕ2

1ϕ2+

ϕ2
2 + 5ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ4

2)
]
+
[
(θ2 + θ1θ3)(ϕ

7
1 + ϕ3

1 + 6ϕ5
1ϕ2−

ϕ5
1ϕ

2
2 + 10ϕ3

1ϕ
2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]
+

θ3

[
(ϕ8

1 + ϕ2
1 + 7ϕ6

1ϕ2 − ϕ6
1ϕ

2
2 + 15ϕ4

1ϕ
2
2 + 10ϕ2

1ϕ
3
2 − 5ϕ4

1ϕ
3
2 − 6ϕ2

1ϕ
4
2+

ϕ2 − ϕ2
2 + ϕ4

2 − ϕ5
2)
]}

Expanding some of the terms and regrouping, we shall obtain

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
ϕ5
1 + 3ϕ3

1ϕ2 + ϕ1ϕ
2
2−

ϕ3
1ϕ

2
2 − ϕ1ϕ

3
2

]
+ (θ1 + θ1θ2 + θ2θ3)

[
ϕ6
1 + ϕ4

1 + 4ϕ4
1ϕ2 − ϕ4

1ϕ
2
2+

2ϕ2
1ϕ

2
2 + 2ϕ2

1ϕ2 − 2ϕ2
1ϕ

3
2

]
+
[
(θ2 + θ1θ3)(ϕ

7
1 + ϕ3

1 + 5ϕ5
1ϕ2 + 6ϕ3

1ϕ
2
2−

ϕ5
1ϕ

2
2 − 3ϕ3

1ϕ
3
2 + ϕ1ϕ2 − ϕ1ϕ

2
2 + ϕ1ϕ

3
2 − ϕ1ϕ

4
2)
]
+ θ3

[
(ϕ8

1 + ϕ2
1 + 6ϕ6

1ϕ2−

ϕ6
1ϕ

2
2 + 10ϕ4

1ϕ
2
2 − 4ϕ4

1ϕ
3
2 + 4ϕ2

1ϕ
3
2 − 3ϕ2

1ϕ
4
2)
]}

+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{(1 + θ21 + θ22 + θ23)
[
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2 − ϕ1ϕ

3
2

]
+

(θ1 + θ1θ2 + θ2θ3)
[
ϕ4
1ϕ2 + ϕ2

1ϕ2 + 3ϕ2
1ϕ

2
2 − ϕ2

1ϕ
3
2 + ϕ2

2 − ϕ4
2

]
+

(θ2 + θ1θ3)
[
ϕ5
1ϕ2 + ϕ1ϕ2 + 4ϕ3

1ϕ
2
2 + 3ϕ1ϕ

3
2 − ϕ3

1ϕ
3
2 − 2ϕ1ϕ

4
2

]
+

θ3

[
ϕ2 + ϕ6

1ϕ2 + 5ϕ4
1ϕ

2
2 + 6ϕ2

1ϕ
3
2 − ϕ4

1ϕ
3
2 − 3ϕ2

1ϕ
4
2 − ϕ2

2 + ϕ4
2 − ϕ5

2

]}
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=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ1

{[
(1 + θ21 + θ22 + θ23)(ϕ

4
1 + 3ϕ2

1ϕ2 + ϕ2
2−

ϕ2
1ϕ

2
2 − ϕ3

2)
]
+
[
(θ1 + θ1θ2 + θ2θ3)(ϕ

5
1 + ϕ3

1 + 4ϕ3
1ϕ2 − ϕ3

1ϕ
2
2+

2ϕ1ϕ
2
2 + 2ϕ1ϕ2 − 2ϕ1ϕ

3
2)
]
+
[
(θ2 + θ1θ3)(ϕ

6
1 + ϕ2

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2−

ϕ4
1ϕ

2
2 − 3ϕ2

1ϕ
3
2 + ϕ2 − ϕ2

2 + ϕ3
2 − ϕ4

2)
]
+ θ3

[
(ϕ7

1 + ϕ1 + 6ϕ5
1ϕ2 − ϕ5

1ϕ
2
2+

10ϕ3
1ϕ

2
2 − 4ϕ3

1ϕ
3
2 + 4ϕ1ϕ

3
2 − 3ϕ1ϕ

4
2)
]}

+

1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]ϕ2

{[
(1 + θ21 + θ22 + θ23)(ϕ

3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2)
]
+

[
(θ1 + θ1θ2 + θ2θ3)(ϕ

4
1 + ϕ2

1 + 3ϕ2
1ϕ2 − ϕ2

1ϕ
2
2 + ϕ2 − ϕ3

2)
]
+[

(θ2 + θ1θ3)(ϕ
5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2)
]
+

θ3

[
(1 + ϕ6

1 + 5ϕ4
1ϕ2 + 6ϕ2

1ϕ
2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ2 + ϕ3

2 − ϕ4
2))
]}

=ϕ1γ(4) + ϕ2γ(3)

=ϕ1

(
c3,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ

)
γ2,3(0)+

ϕ2

(
c2,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ

)
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[
ϕ1

(
c3,22 + θ3ν

)
+ ϕ2

(
c2,22 + θ3ς

)]
γ2,3(0)

1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[
ϕ1

(
c3,21 + θ2ϕ1κ+ θ2ϕ2λ+ θ3ν

)
+

ϕ2

(
c2,21 + θ2κ+ θ3ς

)]
γ2,3(0)

112

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[
ϕ1

(
(ϕ2 + ϕ2)c1,21 + ϕ2

1ϕ2 + θ1ϕ1ϕ2ϖ+

θ2ϕ1κ+ θ2ϕ2λ+ θ3ν
)
+ ϕ2

(
ϕ1c1,21 + ϕ1ϕ2 + θ1ϕ2ϖ + θ2κ+ θ3ς

)]
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[{(
ϕ2
1 + ϕ2

)
ϕ1c1,21 + ϕ3

1ϕ2 + θ1ϖϕ
2
1ϕ2+

θ2ϕ
2
1κ+ θ2ϕ1ϕ2λ+ θ3ϕ1ν

}
+
{
ϕ1ϕ2c1,21 + ϕ1ϕ

2
2 + θ1ϕ

2
2ϖ + θ2ϕ2κ+

θ3ϕ2ς
}]
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϕ
2
1ϕ2ϖ + θ1ϕ

2
2ϖ + θ2ϕ

2
1κ+ θ2ϕ2κ+ θ2ϕ1ϕ2λ+ θ3ϕ1ν + θ3ϕ2ς

]
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+ ϕ1ϕ2c1,21+

θ1ϖϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ1ϕ2

)
+ θ2κ

(
ϕ2
1 + ϕ2

)
+ θ3

(
ϕ1ν + ϕ2ς

)]
γ2,3(0)

=
c4,22 + θ3

(
ϕ1ν + ϕ2ς

)
1− ϕ2 + θ1χ+ θ2τ + θ3µ

γ2,3(0)

=
c4,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

Subsequently,

γ(6) =ϕ1γ(5) + ϕ2γ(4)

=ϕ1

(
c4,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ

)
γ2,3(0)+

ϕ2

(
c3,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ

)
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[
ϕ1

(
c4,21 + θ2λ(ϕ1ϕ2) + θ2κ(ϕ

2
1 + ϕ2)+

θ3(ϕ1ν + ϕ2ς)
)
+ ϕ2

(
c3,21 + θ2ϕ1κ+ θ2ϕ2λ+ θ3ν

)]
γ2,3(0)
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=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[
ϕ1

{(
ϕ2
1 + ϕ2

)(
ϕ1c1,21 + ϕ1ϕ2

)
+

ϕ1ϕ2c1,21 + θ1ϖϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ1ϕ2

)
+ θ2κ

(
ϕ2
1 + ϕ2

)
+

θ3

(
ϕ1ν + ϕ2ς

)}
+ ϕ2

{(
ϕ2
1 + ϕ2

)
c1,21+

ϕ2
1ϕ2 + θ1ϕ1ϕ2ϖ + θ2ϕ1κ+ θ2ϕ2λ+ θ3ν

}]
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[{(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2

1ϕ2

)
+

ϕ2
1ϕ2c1,21 + θ1ϖϕ1ϕ2

(
ϕ2
1 + ϕ2

)
+ θ2λ

(
ϕ2
1ϕ2

)
+ θ2κ

(
ϕ3
1 + ϕ1ϕ2

)
+

θ3

(
ϕ2
1ν + ϕ1ϕ2ς

)}
+
{(
ϕ2
1 + ϕ2

)
ϕ2c1,21 + ϕ2

1ϕ
2
2 + θ1ϕ1ϕ

2
2ϖ+

θ2ϕ1ϕ2κ+ θ2ϕ
2
2λ+ θ3ϕ2ς

}]
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

[(
ϕ2
1 + ϕ2

)(
ϕ2
1c1,21 + ϕ2c1,21 + ϕ2

1ϕ2

)
+

ϕ2
1ϕ2c1,21 + ϕ2

1ϕ
2
2 + θ1ϖ

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ2λ

(
ϕ2
1ϕ2 + ϕ2

2

)
+

θ2κ
(
ϕ3
1 + 2ϕ1ϕ2

)
+ θ3

(
ϕ1ϕ2

)
+ θ3ν

(
ϕ2
1 + ϕ2

)]
γ2,3(0)

=
c5,22 + θ3

(
ϕ1ϕ2

)
+ θ3ν

(
ϕ2
1 + ϕ2

)
1− ϕ2 + θ1χ+ θ2τ + θ3µ

γ2,3(0)

=
c5,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

Subsequently,

c6,23 =c6,21 + θ2λ
(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ2κ

(
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

)
+

θ3ς
(
ϕ2
1ϕ2 + ϕ2

2

)
+ θ3ν

(
ϕ3
1 + 2ϕ1ϕ2

)
=c6,22 ++θ3ς

(
ϕ2
1ϕ2 + ϕ2

2

)
+ θ3ν

(
ϕ3
1 + 2ϕ1ϕ2

)
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c7,23 =c7,21 + θ2λ
(
ϕ4
1ϕ2 + 3ϕ2

1ϕ
2
2 + ϕ3

2

)
+ θ2κ

(
ϕ5
1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2

)
+

θ3ς
(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ3ν

(
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

)
=c7,22 + θ3ς

(
ϕ3
1ϕ2 + 2ϕ1ϕ

2
2

)
+ θ3ν

(
ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

)

Then for r ≥ 5,

cr,23 =cr,22 + θ3ς

[ ∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−4−2s
1 ϕs+1

2

]
+

θ3ν

[ ∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2

] (4.69)

Hence for an ARMA(2,3) process, the general autocovariance function is given

as

γ(k) =
cr,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

{
cr,22 + θ3ς

[ ∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−4−2s
1 ϕs+1

2

]
+

θ3ν

[ ∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2

]}
γ2,3(0),

(4.70)

for r ≥ 5, noting that k − 1 = r

The results in Equation (4.70) shows that the ACF of the ARMA(2,3) is

a function of a coefficient cr,23, which may further be given in terms of a co-

efficient cr,22, a general coefficient for ARMA(2,2). The results then involves

computation of combinatorial values of the form
(
(r−t−s)

s

)
for which r−t ≥ 2s,

3 ≤ t ≤ 4.

It is also observed that the Y-W relation emerged only after lag 4. This

means that there is the need for the computation of individual γ(k) for k ≤ 4.

Another important observation is that three more constants (µ, ς , and ν)

have been introduced than the constants in the general expression for ARMA(2,2)

process.
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The processes so far for deriving the ARMA(2, q), q ≤ 3 have shown

some clear pattern among the autocovariances at consecutive lags of the re-

spective process as well as between particular lags of consecutive orders of the

process. For example, for any γ2,3(k) of the ARMA(2,3) process, it is possi-

ble to deduce the expression for γ2,2(k), γ2,1(k) and γ2,0(k) for a given value

of k. The pattern can similarly be extended further down to the γ1,q(k) of the

ARMA(1, q) process. Following this pattern, the general autocovariance func-

tion for the ARMA(2, q) may be obtained.

ACF of an ARMA(2,q) Process

In this section, we seek to extend the acgf to obtain a generalized ACF of

an ARMA(2, q) process. Our motivation is that if the approach has worked for

ARMA(2,0), ARMA(2,1), ARMA(2,2) and ARMA(2,3), then it should work

for ARMA(2, q).

The ARMA(2, q) process is given by

Xt − ϕ1Xt−1 − ϕ2Xt−2 = θ1Zt−1 + · · ·+ θq−1Zt−(q−1) + θqZt−q + Zt

which is equivalent to

Xt − ϕ1Xt−1 − ϕ2Xt−2 =

q∑
j=0

θjZt−j (4.71)

Introducing a lag operator, the ARMA(2,q) process can be written as

Xt(1− ϕ1L− ϕ2L
2) =

q∑
j=0

θjL
jZt (4.72)
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Noting that θ0 = 1

Equation (4.72) can be simplified as

Xt =

∑q
j=0 θjL

j

1− ϕ1L− ϕ2L2
Zt (4.73)

Assuming the quadratic 1 − ϕ1L − ϕ2L
2 has two different real roots, 1

α
and 1

β
,

then 1− ϕ1L− ϕ2L
2 can be written as c

It can be verified that (α + β)=ϕ1 and αβ = −ϕ2

Equation (4.73) can thus be written as

Xt =

∑q
j=0 θjL

j

(1− αL)(1− βL)
Zt (4.74)

From autocovariance generating functions,

c(s)c(s−1) = σ2Θ(s)Θ(s
−1)

Φ(s)Φ(s−1)
(4.75)

Thus, the autocovariance generating function of an ARMA(2,q) process is given

as

c(s)c(s−1) = σ2

∑q
j=0 θjs

j
∑q

j=0 θjs
−j

(1− αs)(1− αs−1)(1− βs)(1− βs−1)
(4.76)

Equation (4.76) can be simplified as

c(s)c(s−1) = σ2

∞∑
r=0

(αs)r ·
∞∑
r=0

(αs−1)r ·
∞∑
r=0

(βs)r ·
∞∑
r=0

(βs−1)r
q∑

j=0

θjs
j

q∑
j=0

θjs
−j

(4.77)

From Equation (4.76),

∞∑
r=0

(αs)r ·
∞∑
r=0

(αs−1)r·
∞∑
r=0

(βs)r ·
∞∑
r=0

(βs−1)r =

[
∞∑
r=0

α2r

∞∑
r=0

β2r

]
[

∞∑
r=0

(αs)r +
∞∑
r=1

(αs−1)r

][
∞∑
r=0

(βs)r +
∞∑
r=1

(βs−1)r

]
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and

q∑
j=0

θjs
j

q∑
j=0

θjs
−j =

q∑
j=0

θ2j +
[ q−1∑

j=0

θjθj+1

]
s+

[ q−2∑
j=0

θjθj+2

]
s2+

[ q−3∑
j=0

θjθj+3

]
s3 +

[ q−4∑
j=0

θjθj+4

]
s4 + · · ·

[ q−5∑
j=0

θjθj+5

]
s5 + · · ·+

[ 2∑
j=0

θjθj+(q−2)

]
sq−2 +

[ 1∑
j=0

θjθj+(q−1)

]
sq−1 +

[ 0∑
j=0

θjθj+q

]
sq+

[ q−1∑
j=0

θjθj+1

]
s−1 +

[ q−2∑
j=0

θjθj+2

]
s−2 +

[ q−3∑
j=0

θjθj+3

]
s−3+

[ q−4∑
j=0

θjθj+4

]
s−4 + · · ·+

[ 2∑
j=0

θjθj+(q−2)

]
s−q+2+

[ 1∑
j=0

θjθj+(q−1)

]
s−q+1 +

[ 0∑
j=0

θjθq

]
s−q

At lag 0, the variance function is obtained by considering in only s0 as follows

γ(0) =

[
∞∑
r=0

α2r

∞∑
r=0

β2r + 2
(
α

∞∑
r=0

α2r · β
∞∑
r=0

β2r + α2

∞∑
r=0

α2r · β2

∞∑
r=0

β2r+

α3

∞∑
r=0

α2r · β3

∞∑
r=0

β2r + · · ·αq−2

∞∑
r=0

α2r · βq−2

∞∑
r=0

β2r+

αq−1

∞∑
r=0

α2r · βq−1

∞∑
r=0

β2r + αq

∞∑
r=0

α2r · βq

∞∑
r=0

β2r+

αq+1

∞∑
r=0

α2r · βq+1

∞∑
r=0

β2r + αq+2

∞∑
r=0

α2r · βq+2

∞∑
r=0

β2r+

αq+3

∞∑
r=0

α2r · βq+3

∞∑
r=0

β2r + · · ·+
)] q∑

j=0

θ2j+

2

[
∞∑
r=0

α2r · β
∞∑
r=0

β2r + α

∞∑
r=0

α2r · β2

∞∑
r=0

β2r+

α2

∞∑
r=0

α2r · β3

∞∑
r=0

β2r + · · ·+ αq−2

∞∑
r=0

α2r · βq−1

∞∑
r=0

β2r+

αq−1

∞∑
r=0

α2r · βq

∞∑
r=0

β2r + αq

∞∑
r=0

α2r · βq+1

∞∑
r=0

β2r+
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αq+1

∞∑
r=0

α2r · βq+2

∞∑
r=0

β2r + αq+2

∞∑
r=0

α2r · βq+3

∞∑
r=0

β2r+

αq+3

∞∑
r=0

α2r · βq+4

∞∑
r=0

β2r + · · ·+ α

∞∑
r=0

α2r ·
∞∑
r=0

β2r+

α2

∞∑
r=0

α2r · β
∞∑
r=0

β2r + α3

∞∑
r=0

α2r · β2

∞∑
r=0

β2r + · · ·+

αq−1

∞∑
r=0

α2r · βq−2

∞∑
r=0

β2r + αq

∞∑
r=0

α2r · βq−1

∞∑
r=0

β2r+

αq+1

∞∑
r=0

α2r · βq

∞∑
r=0

β2r + αq+2

∞∑
r=0

α2r · βq+1

∞∑
r=0

β2r+

αq+3

∞∑
r=0

α2r · βq+2

∞∑
r=0

β2r + αq+4

∞∑
r=0

α2r · βq+3

∞∑
r=0

β2r + · · ·

]
q−1∑
j=0

θjθj+1 + · · ·

2

[
αq−2

∞∑
r=0

α2r · β
∞∑
r=0

β2r + αq−3

∞∑
r=0

α2r · β2

∞∑
r=0

β2r+

αq−4

∞∑
r=0

α2r · β3

∞∑
r=0

β2r + · · ·+ α3

∞∑
r=0

α2r · βq−4

∞∑
r=0

β2r+

α2

∞∑
r=0

α2r · βq−3

∞∑
r=0

β2r + α
∞∑
r=0

α2r · βq−2

∞∑
r=0

β2r + · · ·+

∞∑
r=0

α2r · βq−1

∞∑
r=0

β2r + α
∞∑
r=0

α2r · βq

∞∑
r=0

β2r+

α2

∞∑
r=0

α2r · βq+1

∞∑
r=0

β2r + α3

∞∑
r=0

α2r · βq+2

∞∑
r=0

β2r+

α4

∞∑
r=0

α2r · βq+3

∞∑
r=0

β2r + · · ·+ αq−1

∞∑
r=0

α2r ·
∞∑
r=0

β2r+

αq

∞∑
r=0

α2r · β
∞∑
r=0

β2r + αq+1

∞∑
r=0

α2r · β2

∞∑
r=0

β2r + · · ·

]
1∑

j=0

θjθj+(q−1)+

2

[
αq−1

∞∑
r=0

α2r · β
∞∑
r=0

β2r + αq−2

∞∑
r=0

α2r · β2

∞∑
r=0

β2r+

αq−3

∞∑
r=0

α2r · β3

∞∑
r=0

β2r + · · ·+ α3

∞∑
r=0

α2r·

βq−3

∞∑
r=0

β2r + α2

∞∑
r=0

α2r · βq−2

∞∑
r=0

β2r + α

∞∑
r=0

α2r · βq−1

∞∑
r=0

β2r + · · ·+
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∞∑
r=0

α2r · βq

∞∑
r=0

β2r + α
∞∑
r=0

α2r · βq+1

∞∑
r=0

β2r + α2

∞∑
r=0

α2r · βq+2

∞∑
r=0

β2r+

α3

∞∑
r=0

α2r · βq+3

∞∑
r=0

β2r + α4

∞∑
r=0

α2r · βq+4

∞∑
r=0

β2r + · · ·+

αq

∞∑
r=0

α2r ·
∞∑
r=0

β2rαq+1

∞∑
r=0

α2r · β
∞∑
r=0

β2r+

αq+2

∞∑
r=0

α2r · β2

∞∑
r=0

β2r + · · ·

]
0∑

j=0

θjθj+q

The expression simplifies as

γ(0) =
∞∑
r=0

α2r

∞∑
r=0

β2r

{[
1 + 2αβ

∞∑
r=0

(αβ)r
] q∑

j=0

θ2j+

2
[
(α + β)

∞∑
r=0

(αβ)r
] q−1∑

j=0

θjθj+1 + 2
[
αβ + (α2 + β2)

∞∑
r=0

(αβ)r
] q−2∑

j=0

θjθj+2+

2
[
(α2β + αβ2) + (α3 + β3)

∞∑
r=0

(αβ)r
] q−3∑

j=0

θjθj+3 + · · ·

2
[
(αq−2β + αq−3β2 + · · ·+ α2βq−3 + αβq−2) + (αq−1+

βq−1)
∞∑
r=0

(αβ)r
] 1∑

j=0

θjθj+(q−1) + 2
[
(αq−1β + αq−2β2 + · · ·+

α2βq−2 + αβq−1) + (αq + βq)
∞∑
r=0

(αβ)r
] 0∑

j=0

θjθj+q

}

=
∞∑
r=0

α2r

∞∑
r=0

β2r

{[
(1 + αβ)

∞∑
r=0

(αβ)r
] q∑

j=0

θ2j+

2
[
(α + β)

∞∑
r=0

(αβ)r
] q−1∑

j=0

θjθj+1 + 2
[
αβ + (α2 + β2)

∞∑
r=0

(αβ)r
] q−2∑

j=0

θjθj+2+

2
[
(α2β + αβ2) + (α3 + β3)

∞∑
r=0

(αβ)r
] q−3∑

j=0

θjθj+3 + · · ·

2
[
(αq−2β + αq−3β2 + · · ·+ α2βq−3 + αβq−2)+

(αq−1 + βq−1)
∞∑
r=0

(αβ)r
] 1∑

j=0

θjθj+(q−1) + 2
[
(αq−1β + αq−2β2 + · · ·+

α2βq−2 + αβq−1) + (αq + βq)
∞∑
r=0

(αβ)r
] 0∑

j=0

θjθj+q

}
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=
∞∑
r=0

α2r

∞∑
r=0

β2r

∞∑
r=0

(αβ)r

{[
(1 + αβ)

] q∑
j=0

θ2j + 2
[
(α + β)

] q−1∑
j=0

θjθj+1+

2
[
αβ(1− αβ) + (α2 + β2)

] q−2∑
j=0

θjθj+2 + 2
[
(α2β + αβ2)(1− αβ)+

(α3 + β3)
] q−3∑

j=0

θjθj+3 + · · ·+ 2
[
(αq−2β + αq−3β2 + · · ·+ α2βq−3+

αβq−2)(1− αβ) + (αq−1 + βq−1)
] 1∑

j=0

θjθj+(q−1) + 2
[
(αq−1β+

αq−2β2 + · · ·+ α2βq−2 + αβq−1)(1− αβ) + (αq + βq)
] 0∑

j=0

θjθj+q

}

=
1

(1− α2)(1− β2)(1− αβ)

{[
(1 + αβ)

] q∑
j=0

θ2j + 2
[
(α + β)

] q−1∑
j=0

θjθj+1+

2
[
αβ(1− αβ) + (α2 + β2)

] q−2∑
j=0

θjθj+2 + 2
[
(α2β + αβ2)(1− αβ)+

(α3 + β3)
] q−3∑

j=0

θjθj+3 + · · ·+ 2
[
(αq−2β + αq−3β2 + · · ·+ α2βq−3+

αβq−2)(1− αβ) + (αq−1 + βq−1)
] 1∑

j=0

θjθj+(q−1) + 2
[
(αq−1β+

αq−2β2 + · · ·+ α2βq−2 + αβq−1)(1− αβ) + (αq + βq)
] 0∑

j=0

θjθj+q

}

Therefore, the variance function of an ARMA(2, q) in terms of the reciprocal of

the roots α and β, of the quadratic Q(L) = 0 is given as

γ(0) =
1

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q∑
j=0

θ2j+

2

q∑
n=1

[
(1− αβ)

n−1∑
r=1

αn−rβr + (αn + βn)
] q−n∑

j=0

θjθj+n

} (4.78)

The obvious restriction on this function is that whenever a limit in a summand

exceeds the upper limit, the term goes to zero.
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Using similar deductions, it can be shown that

γ(1) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q−1∑
j=0

θjθj+1+

q∑
n=0

[
(αn+1 + βn+1) + (1− αβ)

n∑
r=1

αn+1−rβr
] q−n∑

j=0

θjθj+n+

q−1∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] q−(n+1)∑

j=0

θjθj+(n+1)

}

and

γ(2) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q−2∑
j=0

θjθj+2 + (α + β)

q−1∑
j=0

θjθj+1

q∑
n=0

[
(αn+2 + βn+2) + (1− αβ)

n∑
r=1

αn+2−rβr
] q−n∑

j=0

θjθj+n+

q−2∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] q−(n+2)∑

j=0

θjθj+(n+2)

}

Subsequently, for h = 1, 2, · · · , q − 1,

γ(h) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q−h∑
j=0

θjθj+h+

h−1∑
n=1

[
(αn + βn) + (1− αβ)

h−2∑
r=1

αh+n−2−rβr
] q−n∑

j=0

θjθj+n+

q∑
n=0

[
(αn+h + βn+h) + (1− αβ)

n∑
r=1

αn+h−rβr
] q−n∑

j=0

θjθj+n+

q−h∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] q−(n+h)∑

j=0

θjθj+(n+h)

}
,
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At lag q, we consider terms in sq. After similar derivation,

γ(q) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq−n + βq−n)+

(1− αβ)

q−(n+1)∑
r=1

αq−n−rβr
] q−n∑

j=0

θjθj+n + (1 + αβ)θq+

[
(αq+(n+1) + βq+(n+1)) + (1− αβ)

q+n∑
r=1

αq+1+n−rβr
] q−(n+1)∑

j=0

θjθj+n+1

}

At lag (q + 1), terms in sq+1 gives

γ(q + 1) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq+1−n + βq+1−n)+

(1− αβ)

q+1−(n+1)∑
r=1

αq+1−n−rβr
] q+1−(n+1)∑

j=0

θjθj+n+

[
(αq+1+(n+1) + βq+1+(n+1)) + (1− αβ)

q+1+n∑
r=1

αq+1+n−r−1βr
]

q+1−(n+1)∑
j=0

θjθj+n+1

}

Using similar deductions,

γ(q + 2) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq+2−n + βq+2−n)+

(1− αβ)

q+2−(n+1)∑
r=1

αq+2−n−rβr
] q+2−(n+1)∑

j=0

θjθj+n+

[
(αq+2+(n+1) + βq+2+(n+1)) + (1− αβ)

q+2+n∑
r=1

αq+2+n−r−1βr
]

q+2−(n+1)∑
j=0

θjθj+n+1

}
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Subsequently,

γ(q + h) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq+h−n + βq+h−n)+

(1− αβ)

q+h−(n+1)∑
r=1

αq+h−n−rβr
] q+h−(n+1)∑

j=0

θjθj+n+

[
(αq+h(n+1) + βq+h(n+1)) + (1− αβ)

q+h+n∑
r=1

αq+h+n−r−1βr
]

q+h−(n+1)∑
j=0

θjθj+n+1

}

The autocovariance of an ARMA(2,q) process can be summarized as

γ(0) =
1

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q∑
j=0

θ2j+

2

q∑
n=1

[
(1− αβ)

n−1∑
r=1

αn−rβr + (αn + βn)
] q−n∑

j=0

θjθj+n

}

for all h = 1, 2, · · · , q − 1

γ(h) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q−h∑
j=0

θjθj+h+

h−1∑
n=1

[
(αn + βn) + (1− αβ)

h−2∑
r=1

αh+n−2−rβr
] q−n∑

j=0

θjθj+n+

q∑
n=0

[
(αn+h + βn+h) + (1− αβ)

n∑
r=1

αn+h−rβr
] q−n∑

j=0

θjθj+n+

q−h∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] q−(n+h)∑

j=0

θjθj+(n+h)

}
(4.79)
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γ(q) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq−n + βq−n)+

(1− αβ)

q−(n+1)∑
r=1

αq−n−rβr
] q−n∑

j=0

θjθj+n + (1 + αβ)θq+

[
(αq+(n+1) + βq+(n+1)) + (1− αβ)

q+n∑
r=1

αq+1+n−rβr
] q−(n+1)∑

j=0

θjθj+n+1

}
(4.80)

for all h ≥ 1

γ(q + h) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq+h−n + βq+h−n)+

(1− αβ)

q+h−(n+1)∑
r=1

αq+h−n−rβr
] q+h−(n+1)∑

j=0

θjθj+n+

[
(αq+h(n+1) + βq+h(n+1)) + (1− αβ)

q+h+n∑
r=1

αq+h+n−r−1βr
]

q+h−(n+1)∑
j=0

θjθj+n+1

}
(4.81)

For each autocovariance function, the usual restriction is that whenever a limit

exceeds an upper limit, the term in the summand equals to zero.

It will be demonstrated later in the chapter that the general expression

for the autocovariance function of the ARMA(2, q) may further be expressed in

terms of the parameters of the process as obtained for the lower orders in the

earlier part of this section. It should be noted in the meantime that γ(k) of the

ARMA(2, q) process is a step-function for k = 0, 1 ≤ k < q, k = q and k > q.

The next section examines much higher order ARMA(p, q) processes par-

ticularly for p = 3.

The ACF of an ARMA(3,0) Process

This section examines the first two autocorrelation functions of an ARMA(3,0)

process. The autocovariance generating function is used to obtain the variance
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and autocovariance at lag 1, after which the autocovariances are normalized to

obtain the autocorrelation functions. An ARMA (3,0) process is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + Zt (4.82)

By introducing a lag operator, Equation (4.82) can be simplified as

(1− ϕ1L− ϕ2L
2 − ϕ3L

3)Xt = Zt

Further simplification yields

Xt =
1

1− ϕ1L− ϕ2L2 − ϕ3L3
Zt (4.83)

Assuming the polynomial 1−ϕ1L−ϕ2L
2−ϕ3L

3 has three different real roots,

1
α1

, 1
α2

and 1
α3

, then

1− ϕ1L− ϕ2L
2 − ϕ3L

3

can be written as

P (L) = (1− α1L)(1− α2L)(1− α3L)

It can be verified that (α1 + α2 + α3)=ϕ1, (α1α2 + α2α3 + α1α3) = −ϕ2 and

α1α2α3 = ϕ3

If

Xt =
1

(1− α1L)(1− α2L)(1− α3L)
Zt

then

c(s) =
1

(1− α1s)(1− α2s)(1− α3s)
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The autocovariance generating function can thus be written as

c(s)c(s−1) = σ2

[
1

(1− α1s)(1− α2s)(1− α3s)
×

1

(1− α1s−1)(1− α2s−1)(1− α3s−1)

] (4.84)

Equation (4.84) simplifies to

c(s)c(s−1) =σ2

∞∑
r=0

(α1s)
r ·

∞∑
r=0

(α1s
−1)r ·

∞∑
r=0

(α2s)
r ·

∞∑
r=0

(α2s
−1)r·

∞∑
r=0

(α3s)
r ·

∞∑
r=0

(α3s
−1)r

=σ2

[
∞∑
r=0

α2r
1

( ∞∑
r=0

(α1s)
r +

∞∑
r=1

(α1s
−1)r

)]
×[

∞∑
r=0

α2r
2

( ∞∑
r=0

(α2s)
r +

∞∑
r=1

(α2s
−1)r

)]
×[

∞∑
r=0

α2r
3

( ∞∑
r=0

(α3s)
r +

∞∑
r=1

(α3s
−1)r

)]

=σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

[( ∞∑
r=0

(α1s)
r+

∞∑
r=1

(α1s
−1)r

)( ∞∑
r=0

(α2s)
r +

∞∑
r=1

(α2s
−1)r

)
( ∞∑

r=0

(α3s)
r +

∞∑
r=1

(α3s
−1)r

)]
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which further simplifies to

c(s)c(s−1) =σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

{[ ∞∑
r=0

(α1s)
r

∞∑
r=0

(α2s)
r

∞∑
r=0

(α3s)
r
]
+

[ ∞∑
r=0

(α1s)
r

∞∑
r=1

(α2s
−1)r

∞∑
r=0

(α3s)
r
]
+

[ ∞∑
r=1

(α1s
−1)r

∞∑
r=0

(α2s)
r

∞∑
r=0

(α3s)
r
]
+

[ ∞∑
r=1

(α1s
−1)r

∞∑
r=1

(α2s
−1)r

∞∑
r=0

(α3s)
r
]
+

[ ∞∑
r=0

(α1s)
r

∞∑
r=0

(α2s)
r

∞∑
r=1

(α3s
−1)r

]
+

[ ∞∑
r=0

(α1s)
r

∞∑
r=1

(α2s
−1)r

∞∑
r=1

(α3s
−1)r

]
+

[ ∞∑
r=1

(α1s
−1)r

∞∑
r=0

(α2s)
r

∞∑
r=1

(α3s
−1)r

]
+

[ ∞∑
r=1

(α1s
−1)r

∞∑
r=1

(α2s
−1)r

∞∑
r=1

(α3s
−1)r

]}
(4.85)

To obtain the autocovariance at a particular lag, say k, we consider terms in sk

in each of the expressions in Equation (4.86), and sum all of them.
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At lag 0, terms in s0 gives the variance function as follows:

γ(0) =σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

{[
1
]
+
[
1(α2α3 + α2

2α
2
3 + α3

2α
3
3 + · · · )+

α1s(α2 + α2
2α3 + α3

2α
2
3 + · · · )s−1 + α2

1s
2(α2

2 + α3
2α3 + · · · )s−2+

α3
1s

3(α3
2 + α4

2α3 + · · · )s−3 + · · ·
]
+
[
1(α1α3 + α2

1α
2
3+

α3
1α

3
3 + · · · ) + α2s(α1 + α2

1α3 + α3
1α

2
3 + · · · )s−1 + α2

2s
2(α2

1+

α3
1α3 + α4

1α
2
3 + · · · )s−2 + α3

2s
3(α3

1 + α4
1α3 + · · · )s−3 + · · ·

]
+[

α2
3s

2(α1α2)s
−2 + α3

3s
3(α1α

2
2 + α2

1α2)s
−3 + α4

3s
4(α1α

3
2 + α2

1α
2
2+

α3
1α2)s

−4 + · · ·
]
+
[
1(α2α3 + α2

2α
2
3 + α3

2α
3
3 + α4

2α
4
3 + · · · )+

α1s(α3 + α2α
2
3 + α2

2α
3
3 + α3

2α
4
3 + · · · )s−1 + α2

1s
2(α2

3 + α2α
3
3+

α2
2α

4
3 + · · · )s−2 + α3

1s
3(α3

3 + α2α
4
3 + α2

2α
5
3 + · · · )s−3 + · · ·

]
+[

α2
1s

2(α2α3)s
−2 + α3

1(α2α
2
3 + α2

2α3)s
−3 + α4

1s
4(α2α

3
3 + α2

2α
2
3+

α3
2α3) + α5

1s
5(α2α

4
3 + α2

2α
3
3 + α3

2α
2
3 + α4

2α3)s
−4 + · · ·

]
+[

α2
2s

2(α1α3)s
−2 + α3

2s
3(α1α

2
3 + α2

1α3) + α4
2s

4(α1α
3
3 + α2

1α
2
3+

α3
1α3)s

−4 + · · ·
]}

=σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

{[
1
]
+
[
α1α2

∞∑
r=0

(α1α2)
r+

α2α3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α2α3)
r
]
+
[
α1α3

∞∑
r=0

(α1α3)
r+

α1α2

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α1α3)
r
]
+
[
α1α2α

2
3

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α2α3)
r
]

+
[
α2α3

∞∑
r=0

(α2α3)
r + α1α3

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α2α3)
r
]
+

[
α2
1α2α3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α1α3)
r
]
+
[
α1α

2
2α3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α2α3)
r
]}
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γ(0) =σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α2α3)
r

{
1+

[
α1α2 + α2α3 + α1α3

]
− α1α2α3

[
α1 + α2 + α3

]
−
[
(α1α2α3)

2
]}

=
σ2

(1− α2
1)(1− α2

2)(1− α2
3)(1− α1α2)(1− α1α3)(1− α2α3)

{
1+

[
α1α2 + α2α3 + α1α3

]
− α1α2α3

[
α1 + α2 + α3

]
−
[
(α1α2α3)

2
]}

The denominator in the expression above simplifies to

[
1− (α1α2 + α2α3 + α1α3) + α1α2α3(α1 + α2 + α3)− (α1α2α3)

2
]
·[

1− {(α1 + α2 + α3)
2 − 2(α1α2 + α1α3 + α2α3)}+ {(α1α2 + α1α3 + α2α3)

2

− 2α1α2α3(α1 + α2 + α3)} − (α1α2α3)
2
]

Substituting ϕ1 = (α1 + α2 + α3), ϕ2 = −(α1α2 + α1α3 + α2α3) and ϕ3 =

α1α2α3, the variance of the ARMA(3,0) process denoted by γ3,0(0) is given by

γ(0) =σ2 1− ϕ2 − ϕ1ϕ3 − ϕ2
3[

1 + ϕ2 + ϕ1ϕ3 − ϕ3
3

][
1− ϕ2

1 − 2ϕ2 + ϕ2
2 − 2ϕ1ϕ3 − ϕ2

3

]
=σ2 1− ϕ2 − ϕ3(ϕ1 − ϕ3)[

1 + ϕ2 + ϕ3(ϕ1 − ϕ2
3)
][
(1− ϕ2)2 − ϕ2

1 − ϕ3(2ϕ1 + ϕ3)
] (4.86)

It is clear from Equation (4.87) that if ϕ3 = 0, we obtain γ2,0(0), the

variance function of the ARMA(2,0) process. Additionally, if ϕ2 = ϕ3 = 0, we

obtain γ1,0(0), the variance function of the ARMA(1,0) process. It is noted in

this case that the MA component vanishes.
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At lag 1, terms in s gives the autocovariance as

γ(1) =σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

{[
1(α2 + α3)s+ (1)α1s

]
+
[
1(α2α

2
3 + α2

2α
3
3

+ α2
2α

4
3 + · · · )s+ α1s(α2α3 + α2

2α
2
3 + α3

2α
3
3 + · · · ) + α2

1s
2(α2 + α2

2α3+

α3
2α

2
3 + · · · )s−1 + α3

1s
3(α2

2 + α3
2α3 + α4

2α
2
3 + · · · )s−2

]
+
[
1(α1α

2
3+

α2
1α

3
3 + α3

1α
4
3 + · · · ) + α2s(α1α3 + α2

1α
2
3 + α3

1α
3
3 + · · · ) + α2s

2(α1+

α2
1α3 + α3

1α
2
3 + · · · )s−1 + α3

2s
3(α2

1 + α3
1α3 + α4

1α
2
3 + · · · )s−3

]
+[

α3
3s

3(α1α2)s
−2 + α4

3s
4(α1α

2
2 + α2

1α2)s
−3 + α5

3s
5(α1α

3
2 + α2

1α
2
2+

α3
1α2)s

−4 + α6
3s

6(α1α
4
2 + α2

1α
3
2 + α3

1α
2
2 + α4

1α2)s
−5 + · · ·

]
+[

1(α2
2α3 + α3

2α
2
3 + α4

2α
3
3 + · · · )s+ α1s(α2α3 + α2

2α
2
3 + α3

2α
3
3 + · · · )+

α2
2α

2
3 + α3

2α3)s
−4 + α6

1s
6(α2α

4
3 + α2

2α
3
3 + α3

2α
2
3 + α4

2α3)s
−5
]
+ · · ·+[

α3
2s

3(α1α3)s
−2 + α4

2s
4(α1α

2
3 + α2

1α3)s
−3 + α5

2s
5(α1α

3
3 + α2

1α
2
3+

α3
1α3)s

−4 + α6
2s

6(α1α
4
3 + α2

1α
3
3 + α3

1α
2
3 + α4

1α3)
]
+ · · ·

}

=σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

{[
α1 + α2 + α3

]
+
[
α2
1α

2
2α3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α2α3)
r
]
+
[
α1α

2
3

∞∑
r=0

(α1α3)
r + α1α2α3

∞∑
r=0

(α1α3)
r
]
+

[
α1α

2
2

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α1α3)
r
]
+
[
α1α2α

2
3

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α2α3)
r
]
+

[
α1α2α3

∞∑
r=0

(α2α3)
r

∞∑
r=0

(α1α3)
r
]
+
[
α2
2α3

∞∑
r=0

(α2α3)
r
]
+

[
α3
1α2α3

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α1α2)
r
]
+

[
α1α

3
2α3

∞∑
r=0

(α2α3)
r

∞∑
r=0

(α1α2)
r
]}
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γ(1) =σ2

∞∑
r=0

α2r
1

∞∑
r=0

α2r
2

∞∑
r=0

α2r
3

∞∑
r=0

(α1α2)
r

∞∑
r=0

(α1α3)
r

∞∑
r=0

(α2α3)
r

{[
α1+

α2 + α3

]
−
[
α1α2α3(α1α3 + α2α3 + α1α2)

]}

=
σ2

(1− α2
1)(1− α2

2)(1− α2
3)(1− α1α2)(1− α1α3)(1− α2α3)

{[
α1+

α2 + α3

]
−
[
α1α2α3(α1α3 + α2α3 + α1α2)

]}

γ(1) =σ2 ϕ1 + ϕ2ϕ3[
1 + ϕ2 + ϕ1ϕ3 − ϕ3

3

][
1− ϕ2

1 − 2ϕ2 + ϕ2
2 − 2ϕ1ϕ3 − ϕ2

3

]
=

ϕ1 + ϕ2ϕ3[
1− ϕ2 − ϕ3(ϕ1 − ϕ3)

]γ3,0(0) (4.87)

It is possible to deduce the expression for γ2,0(1) and γ1,0(1) from the γ3,0(1)

given in Equation (4.88) by putting ϕ3 = 0 and ϕ2 = ϕ3 = 0, respectively.

The processes so far for deriving the autocovariance at lag k of the ARMA(3,0)

have shown a clear pattern among the autocovariances at consecutive lags of the

respective process as well as between particular lags of consecutive orders of

the process. For example, for any γ3,0(k) of the ARMA(3,0) process, it is possi-

ble to deduce the expression for γ2,0(k) and γ1,0(k) from the γ3,0(k) by putting

relevant parameters to zero. It is clear therefore that for a general ARMA(p, q)

process, the autocovariance at any lag k can be obtained. There is also a clear

connection between autocovariance at lags of consecutive orders of the process.

Using similar deductions, the variances of an ARMA(3, 1) is also obtained

as

γ3,1(0) =σ
2

(1 + θ21)
[
1− ϕ2 − ϕ3(ϕ1 − ϕ3)

]
+ 2θ1(ϕ1 + ϕ2ϕ3)[

1 + ϕ2 + ϕ3(ϕ1 − ϕ2
3)
][
(1− ϕ2)2 − ϕ2

1 − ϕ3(2ϕ1 + ϕ3)
]
(4.88)
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Validation of Derived Expressions

For the general ARMA(2, q) process, for example, the autocovariance

function is already given in terms of the reciprocal of the roots of the quadratic

equation in terms of the lag operator L even though specific expressions for

some values of q have been shown in terms of the actual parameters. In this

section, is to demonstrate that it is possible to derive any specific autocovari-

ance function from the given expression in terms of the roots. Particularly, we

validate that ARMA(1,4) and ARMA(2,3) processes can be obtained from the

step functions in Equations (4.23-4.26) and (4.78 - 4.81).

Deduction of the ACFs of an ARMA(1,4) process

For an ARMA(1,4) process, q = 4. From our derivations of the ACFs of an

ARMA(1,q) process, the variance of an ARMA(1,4) process can be obtained as

γ(0) =σ2

{
4∑

j=0

θj + 2
4∑

n=1

4−n∑
j=0

ϕnθjθj+n

}
1

1− ϕ2

=σ2

{
4∑

j=0

θ2j + 2
4−1∑
j=0

ϕθjθj+1 + 2
4−2∑
j=0

ϕ2θjθj+2 + 2
4−3∑
j=0

ϕθjθj+3

+ 2
4−4∑
j=0

ϕθjθj+4

}
1

1− ϕ2

=σ2

{
4∑

j=0

θ2j + 2
3∑

j=0

ϕθjθj+1 + 2
2∑

j=0

ϕ2θjθj+2 + 2
1∑

j=0

ϕ3θjθj+3

+ 2
0∑

j=0

ϕ4θjθj+4

}
1

1− ϕ2

Therefore, the variance function of the ARMA(1,4) process denoted as γ1,4(0)
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is given as

γ1,4(0) =σ
2

{
4∑

j=0

θ2j + 2ϕ
3∑

j=0

θjθj+1 + 2ϕ2

2∑
j=0

θjθj+2 + 2ϕ3

1∑
j=0

θjθj+3

+ 2ϕ4θ4

}
1

1− ϕ2

(4.89)

To obtain γ(1), we use the equation in h where h = 1, 2, · · · , q − 1.

γ(1) =σ2

{
1−1∑
n=0

4−(n+1)∑
j=0

ϕ1−1−nθjθj+(n+1) +
4∑

n=0

4−n∑
j=0

ϕ1+nθjθj+n+

4−1−1∑
n=0

4−(1+1+n)∑
j=0

ϕ1+nθjθj+(1+n+1)

}
1

1− ϕ2

=σ2

{
3∑

j=0

θjθj+1 +
4∑

j=0

ϕθ2j +
3∑

j=0

ϕ2θjθj+1 +
2∑

j=0

ϕ3θjθj+2+

1∑
j=0

ϕ4θjθj+3 +
0∑

j=0

ϕ5θjθj+4 +
2∑

j=0

ϕθjθj+2 +
1∑

j=0

ϕ2θjθj+3+

0∑
j=0

ϕ3θjθj+4

}
1

1− ϕ2

=σ2

{
3∑

j=0

θjθj+1 + ϕ
4∑

j=0

θ2j + ϕ2

3∑
j=0

θjθj+1 + ϕ3

2∑
j=0

θjθj+2+

ϕ4

1∑
j=0

θjθj+3 + ϕ5

0∑
j=0

θjθj+4 + ϕ
2∑

j=0

θjθj+2 + ϕ2

1∑
j=0

θjθj+3+

ϕ3

0∑
j=0

θjθj+4

}
1

1− ϕ2

Using the same deduction for lag h where h = 1, 2, · · · , q − 1, γ(2) and γ(3)
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will be obtained respectively as

γ(2) =σ2

{
ϕ

3∑
j=0

θjθj+1 +
2∑

j=0

θjθj+2 + ϕ2

4∑
j=0

θ2j + ϕ3

3∑
j=0

θjθj+1+

ϕ4

2∑
j=0

θjθj+2 + ϕ5

1∑
j=0

θjθj+3 + ϕ6

0∑
j=0

θjθj+4 + ϕ

1∑
j=0

θjθj+3+

ϕ2

0∑
j=0

θjθj+4

}
1

1− ϕ2

=σ2

{
ϕ

3∑
j=0

θjθj+1 +
2∑

j=0

θjθj+2 + ϕ2

4∑
j=0

θ2j + ϕ3

3∑
j=0

θjθj+1+

ϕ4

2∑
j=0

θjθj+2 + ϕ5

1∑
j=0

θjθj+3 + ϕ6θ4 + ϕ

1∑
j=0

θjθj+3 + ϕ2θ4

}
1

1− ϕ2

and

γ(3) =σ2

{
ϕ2

3∑
j=0

θjθj+1 + ϕ
2∑

j=0

θjθj+2 +
1∑

j=0

θjθj+3 + ϕ3

4∑
j=0

θjθ
2
j+

ϕ4

3∑
j=0

θjθj+1 + ϕ5

2∑
j=0

θjθj+2 + ϕ6

1∑
j=0

θjθj+3 + ϕ7

0∑
j=0

θjθj+4+

ϕ
0∑

j=0

θjθj+4

}
1

1− ϕ2

=σ2

{
ϕ2

3∑
j=0

θjθj+1 + ϕ
2∑

j=0

θjθj+2 +
1∑

j=0

θjθj+3 + ϕ3

4∑
j=0

θjθ
2
j+

ϕ4

3∑
j=0

θjθj+1 + ϕ5

2∑
j=0

θjθj+2 + ϕ6

1∑
j=0

θjθj+3 + ϕ7θ4 + ϕθ4

}
1

1− ϕ2

The autocovariances at lag 4 will be given as

γ(4) =σ2

{
ϕ3

3∑
j=0

θjθj+1 + ϕ2

2∑
j=0

θjθj+2 + ϕ

1∑
j=0

θjθj+3 + ϕ4

4∑
j=0

θjθ
2
j+

ϕ5

3∑
j=0

θjθj+1 + ϕ6

2∑
j=0

θjθj+2 + ϕ7

1∑
j=0

θjθj+3 + ϕ8θ4 + θ4

}
1

1− ϕ2
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Subsequently, the autocovariances after lag 4 will be given as

γ(4 + h) =ϕhγ(4), h ≥ 1

The ACF at each lag of the process is obtained by dividing the respective auto-

covarince function by the variance.

Deduction of the ACFs of an ARMA(2,3)

For an ARMA(2,3) process, q = 3. From our derivations of the ACFs of an

ARMA(2,q) process, the variance of an ARMA(2,3) process can be obtained as

γ(0) =
1

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

3∑
j=0

θ2j+

2
3∑

n=1

[
(1− αβ)

n−1∑
r=1

αn−rβr + (αn + βn)
] 3−n∑

j=0

θjθj+n

}

=
σ2

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(1 + αβ)
3∑

j=0

θ2j

]
+

2
[
(α + β)

2∑
j=0

θjθj+1

]
+ 2
[
(α2 + β2) + αβ(1− αβ)

] 1∑
j=0

θjθj+2+

2θ3

[
(α3 + β3) + (α2β + αβ2)(1− αβ)

]}

=
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[1− ϕ2

] 3∑
j=0

θ2j +
[
2ϕ1

] 2∑
j=0

θjθj+1+

[
2(ϕ2

1 + ϕ2 − ϕ2
2)
] 1∑

j=0

θjθj+2 + 2θ3

[
ϕ3
1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]}

This expression is the same as γ2,3(0) obtained earlier in Equation (4.68).
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The autocovariance at lag 1 will be obtained as

γ(1) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

3−1∑
j=0

θjθj+h+

1−1∑
n=1

[
(αn + βn) + (1− αβ)

1−2∑
r=1

α1+n−2−rβr
] q−n∑

j=0

θjθj+n+

q∑
n=0

[
(αn+1 + βn+1) + (1− αβ)

n∑
r=1

αn+1−rβr
] 3−n∑

j=0

θjθj+n+

3−1∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] 3−(n+1)∑

j=0

θjθj+(n+1)

}

γ(1) =
σ2

(1− αβ)
[
(1 + αβ)2 − (α + β)2

]{[(α + β)
3∑

j=0

θ2j

]
+

[
(1 + αβ)

2∑
j=0

θjθj+1

]
+
[
(α + β)

1∑
j=0

θjθj+2

]
+ θ3

[
(α + β)2−

αβ − (αβ)2
]
+
[
(α + β)2 − αβ − (αβ)2

] 2∑
j=0

θjθj+1+

[
(α + β)3 − 2αβ(α + β)− (αβ)2(α + β)

] 1∑
j=0

θjθj+2 + θ3

[
(α + β)4 − 3αβ(α + β)2 + (αβ)2 − (αβ)2{(α + β)2 + αβ}

]}

=
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[ϕ1

3∑
j=0

θ2j

]
+
[
1 + ϕ2

1 − ϕ2
2

] 2∑
j=0

θjθj+1+

[
(ϕ3

1 + ϕ1 + 2ϕ1ϕ2 − ϕ1ϕ
2
2)
] 1∑

j=0

θjθj+2 + θ3

[
ϕ4
1 + ϕ2

1 + 3ϕ2
1ϕ2−

ϕ2
1ϕ

2
2 + ϕ2 − ϕ3

2

]}

It can be verified subsequently that γ2,3(k) is the same as what is obtained earlier

under ARMA(2,3) process.
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Application to Pandemic Data

Having studied the general autocorrelation function of the ARMA(p, q)

process, this section now uses real data to examine the performance of the de-

rived procedure. In order to relate the derived functions with the literature, the

results obtained is compared with existing functions. The data used covers the

Covid-19 cases for Ghana, Nigeria and South Africa. It is only in these coun-

tries that cases are found to be stationary in nature with respect to the series, and

are therefore suitable for the implementations of the results.

Table 1 is a summary of the selected ARMA processes that were observed

to characterize the daily new Covid-19 cases in the selected countries around

the globe. The thoretical ACFs were obtained from the parameters of each re-

spective model. It can be seen from Table 1 that all parameter values for the

various ARMA processes are all statistically significant.

Table 1: Summary of appropriate ARMA models of the daily new
Covid-19 cases in some selected countries

Country Process Parameter Coeff. SE Coeff. p−value

Ghana ARMA(1,4)

ϕ1 0.9560 0.0137 0.000
θ1 -0.9326 0.0380 0.001
θ2 0.0248 0.0520 0.011
θ3 0.0250 0.0539 0.028
θ4 0.1373 0.0358 0.003

Nigeria ARMA(1,2)
ϕ1 0.9798 0.0077 0.000
θ1 -0.8707 0.0371 0.003
θ2 0.1318 0.0338 0.012

South Africa ARMA(2,2)

ϕ1 1.2075 0.1044 0.034
ϕ2 -0.2210 0.1024 0.014
θ1 -0.5621 0.1020 0.009
θ2 -0.1051 0.0594 0.004

Source: Researcher’s computation (2023)
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Figure 1: Time series and ACF plots of daily Covid-19 cases for Ghana

Figure 1 shows the time series plot of the daily corona virus cases re-

ported in Ghana, together with its emperical(sample) ACF. The data was sub-

jected to the ”ARIMAfit” function in R, and ARMA(1,4) was selected to best

fit the data. Based on the model and its associated parameters, the ACF based

on the McLeod algorithm presented in the R statistical software, and the theo-

retical ACF based on the derived expressions are obtained, and the results are

included to Figure 1. It can be observed from the figure that the sample ACF

shows a sinusoidal pattern, which implies that the autocorrelations of the daily

new covid-19 cases in Ghana demonstrate some wave-forms. It can again be

observed that the times between successive waves are not even, showing that

the waves are not necessarily periodic. Notably, it is evident from Figure 1 that

the autocorrelations die out as the lag gets larger, an indication that in the dis-

tant future, incidence of cases would not be influenced significantly by previous

cases. The ACF based on McLeod’s algorithm and that obtained from the de-

rived expressions do not exhibit any significant difference. From the theoretical

ACF, the ACF of the daily covid-19 cases in Ghana attenuates exponentially,

and cuts off just after lag 100. Although an ARMA(1,4) process is best chosen

to characterize the series, it is interesting to observe that while the emperical
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(sample) ACF shows sinusoidal waves which eventually dies out at higher lags,

the theoretical ACF shows a damper exponential pattern.

Figure 2: Time series and ACF plots of daily Covid-19 cases for Nigeria

Figure 2 shows the time series plot, sample ACF, ACF based on the McLeod

algorithm presented in the R statistical software, and the theoretical ACF based

on our derived expressions. The sample ACF shows a sinusoidal pattern, which

implies that the autocorrelations of the daily new covid-19 cases in Nigeria de-

picted some wave-forms. It can be seen again that the times between successive

waves are not even, showing clearly that the waves are not necessarily peri-

odic. Notably, it is evident from Figure 2 that the autocorrelations die out as

the lag gets larger. The ACF based on McLeod’s algorithm and that obtained

from our derived expressions do not exhibit any significant difference. From

the theoretical ACF, the ACF of the daily covid-19 cases in Nigeria attenuates

exponentially, and cuts off at about lag 300. Although an ARMA(1,2) process

is best chosen to characterize the series, it is interesting to observe that while

the emperical (sample) ACF shows cosine waves which eventually dies out at

higher lags, the theoretical ACF shows a prolonged damper exponential pattern.
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Figure 3: Time series and ACF plots of daily Covid-19 cases for South Africa

Figure 3 shows the time series plot of the daily corona virus cases reported

in South Africa, together with its emperical ACF. The data is subjected to the

”ARIMAfit” function in R, and ARMA(2,2) is selected to best fit the data. Based

on the model and its associated parameters, the ACF based on the McLeod al-

gorithm presented in the R statistical software, and the theoretical ACF based

on the derived expressions are obtained, and the results are added to Figure 3. It

can be observed from the figure that the sample ACF shows a sinusoidal pattern,

which implies that the autocorrelations of the daily new covid-19 cases in South

Africa also demonstrate some wave-forms. The times between successive waves

does not appear to be even, showing clearly that the waves are not necessarily

periodic. Additionally, it is evident from the emperical ACF of Figure 3 that

the autocorrelations do not die out as the lag gets larger, an indication that in the

distant future, incidence of cases would still be influenced significantly by previ-

ous cases. The theoritical ACF based on McLeod’s algorithm and that obtained

from the derived expressions do not exhibit any significant difference. From the

theoretical ACFs, the ACF of the daily covid-19 cases in South Africa attenu-

ates exponentially, and cuts off at about lag 300 in the derived ACF but appears

to cut off well after lag 300 in the one based on R. Although an ARMA(2,2)

process is best chosen to characterize the series, it is interesting to observe that
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while the sample ACF showed sinusoidal waves which eventually dies out at

higher lags, the theoretical ACF shows a prolonged damper exponential pattern.

Discussion of Results

The derivations made in this chapter have shown into much detail that the

ACF of an ARMA(p, q) process is predominantly influenced by the Moving Av-

erage order. More clearly from the generalization of the ARMA(1, q) process,

it is seen that ACF at lag q, which is the order of the MA component, and that

beyond lag q is given by the relation γ(q + h) = ϕhγ(q), for all h ≥ 1. The

relation shows that the ACFs after lag q is expected to decrease by a rate of ϕh.

The ACFs from lag 1 to (q − 1) for q ≥ 2, do not quite relate to the ACFs at

lag q and beyond. This supports the reason why the ACFs of an ARMA(1, q)

that precede lag q are determined separately. Similarly, the presentation of the

ACFs of a generalized ARMA(2, q) process shows that the ACFs at lags after q

is related to the ACF at lag q, while those that precede lag q are obtained sep-

arately. This pattern is expected to be a dominant feature of the ARMA(3, q)

and the general ARMA(p, q) process. The study has therefore obtained explicit

expressions for a general ACF of the ARMA(p, q) process, a result that is not

existent in the literature.

The literature (Chen et al., 2011; Eshel, 2003) point out the relationship

among the autocovariances and autocorrelations obtained from the Yule-Walker

simplifications respectively as γ(k) = ϕ1γ(k − 1) + · · · + ϕpγ(k − p) and

ρ(k) = ϕ1ρ(k − 1) + · · · + ϕpρ(k − p) for k ≥ p, where p is the order of

the Autoregressive part. Notably, it has been seen that the ACF of ARMA(p, q)

processes for cases where p ≥ 2 does not follow the Y-W recursive formula in

general. The derivations pinpoint that the Y-W recursive formula does not hold

for the ACFs at certain lags of some ARMA(2, q) processes. Noticeably, for an

ARMA(2,1) process the Y-W recursive formula holds for lag k ≥ 2, which is
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consistent with the literature. However, for an ARMA(2,2) and (2,3) processes,

the Yule-Walker recursive formula holds for lags k ≥ 4 and k ≥ 5, respectively,

a result which is also not observed in the literature. The derivations also show

that for ARMA processes where p ≥ 2, the Autoregressive component needed

to be expressed in a factorized form. The consequence of this is that the initial

ARMA model parameters are transformed into several new roots. To be able

to relate the ACFs of the ARMA(p, q) process for p ≥ 2 to the ACFs of an

ARMA(1, q) process, the new roots should be converted back to the original pa-

rameters.

The slow decay of the theoretical ACFs in Figures 1, 2 and 3 show that

the corona virus cases in Ghana, Nigeria and South Africa are expected to con-

tinue for a long time, but will eventually die out. Comparatively, it is expected

that daily new Covid-19 cases in Ghana which follows an ARMA(1,4) process

cuts off faster than that of Nigeria and South Africa, which follows ARMA(1,2)

and ARMA(2,2), respectively, since there is a longer memory in the ACF of the

two countries than that of Ghana. This agrees with Montgomery et al. (2015)

that generally, the higher the order of the Moving Average in an ARMA(p, q)

process, the shorter the memory. Although there was a clear difference between

the emperical ACF and the theoretical, the waves which eventually diminishes

in the emperical ACF shows that as the number of lags increases, incidence of

future cases could only be sporadic, and would not follow any discernible pat-

tern. This is in line with the literature that the theoritical ACFs are the limiting

values of the emperical ACFs. In other words, the emperical ACF mimics the

theoretical ACF for cases where the data points are extremely large. There does

not appear visible differences in the performance of the derived and the existing

theoretical ACF. This is visible in all the three datasets applied in the study. The

only difference identified is the running time of the codes based on the derived

ACF. It is observed that for higher order ARMA processes, the derived ACF

could be quite slow.
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Chapter Summary

This chapter has presented extensions and generalizations of the ACFs

of stationary ARMA(p, q) processes. Since the ACFs of lower order processes

which includes the ARMA(1,0), ARMA(0,1), and ARMA(1,1) are well-documented

in the literature, this chapter begins with a study of the ACFs of ARMA(1,2) and

ARMA(1,3), after which a generalization is made for ARMA(1,q) process.

The ARMA(1,2) and ARMA(1,3) reveals a clear pattern among autoco-

variance at consecutive lags of the respective process. It is observed that for any

γ(k) of a given ARMA(1, q) process,

γ(k) = ϕk−qγ(q) for k ≥ q + 1

The pattern also suggests that separate ACFs should be obtained for individ-

ual lags prior to the order q. The chapter also reveals that for an ARMA(1, q)

process,

ρ2(q + 1) = ρ(q)× ρ(q + 2)

Additionally, the ACFs of ARMA(2,0), ARMA(2,1), ARMA(2,2) and

ARMA(2,3) are derived, after which a generalization is made for ARMA(2,q).

The results show that the ACF of higher order ARMA(p, q) may be ex-

pressed as a function of a certain coefficient cr,pq, which may further be given in

terms of a lower order coefficient cr,(pq−1), a general coefficient for ARMA(p, q−

1). The results then involves computation of combinatorial values of the form(
(r−t−s)

s

)
for which r − t ≥ 2s.

It is also observed that the Y-W relation emerged after lag q + 2 for pro-

cesses higher than ARMA(2,1). This means that there is the need for the com-

putation of individual γ(k) for k ≤ (q + 2).

In an attempt to obtain explicit expressions for specific ARMA processes,

there is an inclusion of additional constants in the ACFs to those in the ACF of
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the lower order process. For example, three more constants are introduced in

the ACF of the ARMA(2,3) than the constants in the general ACF expression

for ARMA(2,2) process.

The processes for deriving the ARMA(2, q), q ≤ 3 shows some clear pat-

tern among the autocovariances at consecutive lags of the respective process as

well as between particular lags of consecutive orders of the process. For in-

stance, for any γ2,3(k) of the ARMA(2,3) process, it is possible to deduce the

expression for γ2,2(k), γ2,1(k) and γ2,0(k) for a given value of k. The pattern

can similarly be extended further down to the γ1,q(k) of the ARMA(1, q) pro-

cess. It is further noted that γ(k) of the ARMA(2, q) process is a step-function

for k = 0, 1 ≤ k < q, k = q and k > q.

The chapter has also explored the strategy adopted for deriving ACF for

ARMA(3,0) process. The processes for deriving the autocovariance at lag k

of the ARMA(3,0) have shown a clear pattern among the autocovariances at

consecutive lags of the respective process as well as between particular lags of

consecutive orders of the process. The chapter establishes that for a general

ARMA(p, q) process, the autocovariance at any lag k can be obtained, since

there is also a clear connection between autocovariance at lags of consecutive

orders of the process.

The daily new Covid-19 cases for Ghana, Nigeria and South Africa are

found to be stationary among Covid-19 cases in several countries explored around

the world. These three datasets are therefore used for illustration and have

brought out some pertinent observations. The data for each country is sub-

jected to the ”ARIMAfit” function in R, and ARMA(1,4), ARMA(1,2), and

ARMA(2,2) are selected to best fit the data for Ghana, Nigeria, and South

Africa, respectively. Based on the models and their associated parameters, the

ACF based on the McLeod algorithm presented in the R statistical software, and

the theoretical ACF based on the derived expressions are obtained for Covid-19

cases in each country. In each case, it is observed that the sample ACFs show an
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imperfect sinusoidal pattern that has no specific periodicity. This implies that

the autocorrelations of the daily new Covid-19 cases in all the selected coun-

tries demonstrate some wave-forms that may not be significant. Thus, the times

between successive waves are not even, showing that the waves are not neces-

sarily periodic. The theoretical ACFs in each case tails off slowly as the lags

increased. The slow decay of the theoretical ACFs show that the corona virus

cases are expected to continue for a long time, but will eventually die off. Ad-

ditionally, the observations show that incidence of future cases could only be

sporadic, and would not follow any discernible pattern. Comparatively, it is ex-

pected that the corona virus cases in Ghana would cut off faster than those of

Nigeria and South Africa.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This chapter presents an overview of the entire work and conclusions

based on the discussion of the results in Chapter Four. Based on that, recom-

mendations will be given.

Summary

The nature and importance of the autocorrelation function (ACF) of a time

series process cannot be over-emphasized. This is because the ACF reveals the

inherent characteristics of a time series data that may not be visible from the

original time series plot. There are also clear differences between the emperical

ACF and the theoretical ACF, since the latter is based on only the parameter

estimates from the sample. These reasons, among others, provide adequate mo-

tivation for continued studies on the ACF of a time series in order to generate

deeper understanding on the concept. The study has examined with a presen-

tation of the three main approaches to obtaining the theoretical ACF of lower

order ARMA(p, q) processes existing in the literature. The three approaches are

the Yule-Walker approach, the comparison of moving average weights, and the

autocovariance generating function method. The review of the literature on the

theoretical ACFs of higher order ARMA(p, q) process has shown that the pro-

cess is an arduous one and lacks analytical clarity. This challenge is particularly

the motivation for considering a derivation of an alternative theoretical ACF

through the autocovariance generating function. The new attempt will deepen

understanding of identifying inherent characteristics of a time series that follows

a linear process.

As an application to the covid-19 pandemic, a brief review on how previ-
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ous investigations have used mathematical, statistical, and deep machine learn-

ing procedures to model and forecast covid-19 cases across the world is made.

Due to the changing waves of the pandemic, the study applies results to examine

the real characteristics of the parameters of the covid-19 pandemic around some

parts of the globe.

This study has presented the basis for the use of the acvgf in obtaining the

ACFs of stationary ARMA(p, q) processes. Specifically the ACF of an AR(1)

process has been examined in addition to that of lower order MA(q) process. To

aid in the implementation of the formulas that will be derived, the chapter has

studied the characteristics of the data selected to aid in this regard.

The study has presented extensions and generalizations of the ACFs of sta-

tionary ARMA(p, q) processes. Examination of the general ARMA(1,q) process

reveals a clear pattern among autocovariance at consecutive lags of the respec-

tive process. It is observed that for any γ(k) of a given ARMA(1, q) process,

γ(k) = ϕk−qγ(q) for k ≥ q + 1

The pattern also suggests that separate ACFs should be obtained for individual

lags prior to the order q. It is also shown that for ARMA(1, q) process,

ρ2(q + 1) = ρ(q)× ρ(q + 2)

Additionally, a generalization is made for the ACF of ARMA(2,q). Using

this generalization, specific ACF of ARMA(2,q) processes have been deduced

for, e.g., the ARMA(2,0) and ARMA(2,3). The results show that the ACF of

higher order ARMA(p, q) may be obtained explicitly and expressed as a func-

tion of a certain coefficient cr,pq, which may further be given in terms of a lower

order coefficient cr,(pq−1), a general coefficient for ARMA(p, q − 1). The re-

sults then involves computation of combinatorial values of the form
(
(r−t−s)

s

)
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for which r − t ≥ 2s.

It is also observed that the Y-W relation emerges after lag (q + 2) for

processes higher than ARMA(2,1). This means that there is the need for the

computation of individual γ(k) for k ≤ (q + 2).

The processes for deriving the ARMA(2, q), q ≤ 3 shows some clear pat-

tern among the autocovariances at consecutive lags of the respective process as

well as between particular lags of consecutive orders of the process. For in-

stance, for any γ2,3(k) of the ARMA(2,3) process, it is possible to deduce the

expression for γ2,2(k), γ2,1(k) and γ2,0(k) for a given value of k. The pattern

can similarly be extended further down to the γ1,q(k) of the ARMA(1, q) pro-

cess. It is further noted that γ(k) of the ARMA(p, q) process is a step-function

for k = 0, 1 ≤ k < q, k = q and k > q.

The technique of autocovariance generating function has been used to ex-

plore the ACF of processes as far as ARMA(3,0) process. The processes for

deriving the autocovariance at lag k of the ARMA(3,0) have shown a clear pat-

tern among the autocovariances at consecutive lags of the respective process as

well as between particular lags of consecutive orders of the process. It is es-

tablished that for a general ARMA(p, q) process, the autocovariance at any lag

k can be obtained, since there is a clear connection between autocovariance at

lags of consecutive orders of the process.

The daily new Covid-19 cases for Ghana, Nigeria and South Africa are

found to be stationary among Covid-19 cases in several countries explored around

the world. These three datasets are therefore used for illustration and have

brought out some pertinent observations. The data for each country is sub-

jected to the ”ARIMAfit” function in R, and ARMA(1,4), ARMA(1,2), and

ARMA(2,2) are selected to best fit the data for Ghana, Nigeria, and South

Africa, respectively. Based on the models and their associated parameters, the

ACF based on the McLeod algorithm presented in the R statistical software, and

the theoretical ACF based on the derived expressions are obtained for Covid-19
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cases in each country. In each case, it is observed that the sample ACFs show

an imperfect sinusoidal pattern that has no specific periodicity. This implies that

the autocorrelations of the daily new Covid-19 cases in all the selected countries

demonstrate some wave-forms that may not be significant. Thus, the times be-

tween successive waves are not even, showing that the waves are not necessarily

periodic. The theoretical ACFs in each case tails off slowly as the lags increased.

The slow decay of the theoretical ACFs show that the corona virus cases are ex-

pected to continue for a long time, but will eventually die off. Additionally, the

observations show that incidence of future cases could only be sporadic, and

would not follow any discernible pattern. Comparatively, it is expected that the

pandemic cases in Ghana would cut off faster than those of Nigeria and South

Africa.

Conclusions

The thesis is an additional attempt at adding to the already existing litera-

ture, an alternative approach for obtaining a generalized autocorrelation function

of higher order ARMA processes. The autocovariance generating function was

used to achieve this ideal. Although the approach is widely known, its usage in

obtaining the ACFs of higher stationary time series processes is scarce, while

the few have had it difficult to generalize the ACFs after breaking the autoco-

variance generating function into partial fractions.

To obtain the ACFs of a higher order ARMA process using acvgf, one has

to have a solid understanding of power series. The study has therefore identi-

fied how the AR(p) part of the ARMA(p, q) process is converted into an infinite

power series to enhance easier derivations. Additionally, the study determined

that for ARMA processes where p ≥ 2, the AR(p) process will have to be bro-

ken into new roots so that the polynomial expression in terms of the original

coefficients can be written in factorized form.
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The study has presented coherent derivations of generalized ARMA(1, q)

and ARMA(2, q) processes as well as the variance and the first autocorrelation

of ARMA(3,0) process. The derivations of the general ACF expressions for

ARMA(1, q) and ARMA(2, q) has shown that the ACF of an ARMA(p, q) relies

heavily on the order of the Moving Average. It has been shown that the ACF

of an ARMA(p, q) process at lag q, the order of the Moving Average part, is

the reference point for the ACFs of the lags after it. In addition, it has been

seen that to link the ACF of an ARMA(2, q) process to the ACF of ARMA(1, q)

process, one will have to convert the new roots of the Autoregressive part back

to the original parameters of the ARMA(2, q) process, and set ϕ2, the second

parameter of the Autoregressive part to zero. The study establishes that for a

general ARMA(p, q) process, the autocovariance at any lag k can be obtained,

since there is a clear connection between autocovariance at lags of consecutive

orders of the process.

The study has also examined the behaviour of the ACF of the Corona virus

pandemic cases in some locations around the globe where incidence is station-

ary and found that in general, the pandemic would eventually die out, though

there could be sporadic cases.

It is established that for a general ARMA(p, q) process, the autocovariance at

any lag k can be obtained, since there is a clear connection between autocovari-

ance at lags of consecutive orders of the process.

Recommendations

The study has shown that for a general ARMA(p, q) process, the auto-

covariance at any lag k can be obtained as there is a clear connection between

autocovariance at lags of consecutive orders of the process. The results therefore

provide useful relations that may be utilized as diagnostic tests for determining

whether a given data follows a specified process.
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The results of the generalized ACF of the ARMA(p, q) process shows that

the theoretical ACF presents the long term behaviour of the series rather than the

actual behaviour based on the sample values. The application therefore shows

that the corona virus pandemic is expected to die out eventually, in the studied

locations with stable cases. It should however be reiterated that there could also

be sporadic incidence that are not informed by previous cases. Measures should

therefore be put in place to contain such eventualities. In addition, actual causes

of these possible sporadic cases may be investigated.

It has also been reported that the algorithm based on the derived ACF

could by slow, particularly for higher order ARMA processes. The causes of

this slow convergence may be a subject for further investigation.

Future studies can consider ACFs of ARMA(p, q) processes beyond con-

ditions that has guided the work in this study. Specifically, the ACF could be

studied also under conditions of real and repeated roots, and complex roots.
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