
 

    

UNIVERSITY OF CAPE COAST 

 

 

 

 

 

 

 

A COMPARATIVE STUDY ON SOME TECHNIQUES FOR FITTING 

LINEAR REGRESSION MODELS TO BIG DATA 

 

 

 

 

 

MATHIAS MANKOE 

 

 

 

 

 

2022 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 

 

 

 

 

 

 

 

 

 

© Mathias Mankoe 

University of Cape Coast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

UNIVERSITY OF CAPE COAST 

 

 

 

 

 

A COMPARATIVE STUDY ON SOME TECHNIQUES FOR FITTING 

LINEAR REGRESSION MODELS TO BIG DATA. 

 

 

 

BY 

 

MATHIAS MANKOE 

 

 

 

Thesis Submitted to the Department of Statistics of School of Physical 

Sciences, College of Agriculture and Natural Sciences, the University of Cape 

Coast in partial fulfilment of the requirements for the award of Master of 

Philosophy degree in Statistics 

 

 

 

 

OCTOBER, 2022 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 ii 

DECLARATION 

 

 

Candidate’s Declaration 

I hereby declare that this thesis is the result of my original research and 

that no part of it has been presented for another degree at this University or 

elsewhere. 

 

Candidate’s Signature …………………………..      Date …………………… 

Name: Mathias Mankoe 

 

Supervisors’ Declaration 

We hereby declare that the preparation and presentation of the thesis 

were supervised following the guidelines on supervision of thesis laid down by 

the University of Cape Coast 

 

Principal Supervisor’s Signature …………………….  Date ………………… 

Name: Dr Francis Eyiah-Bediako 

 

Co-Supervisor’s Signature …………………………..   Date ………………… 

Name: Dr. David Kwamena Mensah 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 iii 

ABSTRACT 

This study examines the applicability of two Random Projection and Merge and 

Reduce methods, widely used in Computer Science, for linear regression 

analysis of big data in Statistics. The Clarkson-Woodruff, Rademacher Matrix 

as well as the Merge and Reduce techniques are used as data reduction 

techniques before performing a linear regression analysis on big data sets. The 

Classical Merge and Reduce approach uses parameter estimates and standard 

errors as summary values. In summary statistics, the Bayesian Merge and 

Reduce approach uses some characteristics of the posterior distribution. The 

study reveals that the techniques considered in this thesis are good data 

reduction techniques for fitting linear regression models to big data sets. The 

Clarkson-Woodruff method provides faster and more reliable reduced data sets 

for linear regression analysis. The Merge and Reduce models better 

approximate the true Poisson and linear regression models provided there are 

enough observations per variable per block (5000 observations per block). 

However, for data sets with unbalanced factor variables, the Bayesian Merge 

and Reduce models approximate the true models better than the Classical Merge 

and Reduce models. The Merge and Reduce models show good approximations 

of the true models when outliers are evenly distributed among blocks. But the 

standard errors are overestimated for models without intercept terms. For 

uneven distribution of outliers, the Random Projection methods provide reliable 

results. The methods considered in this thesis are largely used in Computers 

Science, but they can be used for efficient linear regression analysis of big data 

sets. 
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CHAPTER ONE 

INTRODUCTION 

Background to the Study 

Big data analytics is a study field attracting significant attention from 

academics and other communities. The volume of data generated in the modern 

world has increased rapidly. The development of mobile devices, digital sensors, 

connectivity, computation, and storage has made it possible to gather and store 

a large amount of data (Yaqoob et al., 2016). Over the past five years, the total 

amount of data in the world has expanded by more than ninefold and is 

projected to double biennially (Chen et al., 2014; Naeem et al., 2022). 

Consequently, the rapid expansion of data has resulted in several problems.  

The term big data arose from the demand of corporations such 

as Google, Facebook and Yahoo to analyze huge amounts of data (Garlasu et 

al., 2013). There have been different definitions of big data, ranging from 3V to 

4V: from the volume, variety, and velocity to volume, velocity, variety, and 

veracity (Gandomi & Haider, 2015; Hashem et al., 2016; Chen & Zhang, 2014; 

Rodríguez-Mazahua et al., 2016). Volume describes the quantity of 

data; velocity relates to the rate of data generation, and variety entails different 

data types and sources (Chen & Zhang, 2014). Veracity is the fourth feature of 

big data. Veracity refers to the disorderliness and dependability of data. Value 

refers to the worth of information concealed within massive data  (Chen et al., 

2014). Big data refers to huge volumes of data that are difficult 

for efficient management and processing by current data processing techniques 

(Chen & Zhang, 2014). 
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Standard technology used to store and analyze massive amounts of data 

tend to perform unsatisfactorily (Siddiqa et al., 2016). Massive data could be 

stored and analyzed using advanced data mining and processing techniques. 

The rapid pace of data growth, which exceeds the capacity of most current data 

storage and processing techniques to efficiently process large amounts of data, 

poses problems for both practitioners and researchers (Begoli & Horey, 2012). 

The world’s data volume is expected to grow 40% per year and 50 times 

by 2020 (Yaqoob et al., 2016). About 90% of today’s data was generated in the 

last two years (Naeem et al., 2022). Over the next four years up to 2025, global 

data creation is projected to grow to more than 180 zettabytes (Naeem et al., 

2022). Before the 1990s, data had been growing at around 40 per cent annually. 

In 1998, it peaked at almost 90 per cent (Odom & Massey, 2003). By the end of 

2011, approximately 1.8 zettabytes of data had been created, and it was expected 

that 2.8 zettabytes would be produced in the subsequent years (Sagiroglu & 

Sinanc, 2013). Approximately 1.2 zettabytes of electronic data were created 

annually worldwide (Khan et al., 2014). Sagiroglu and Sinanc (2013) projected 

business and financial data to exceed 40 zettabytes by 2020. Also, business-to-

consumer and online transactions were estimated to exceed 450 billion daily by 

2020 (Khan et al., 2014). 

Opportunities accompany challenges. The advent of big data has created 

numerous opportunities for analyzing large data sets. Organizations employ 

insights from big data to uncover unique hidden behavioural patterns, which 

tend to be informative for making decisions (Raghupathi & Raghupathi, 2014). 

Not only does the analysis of big data assist in gaining information on industry 

trends, but it also facilitates the detection of fraudulent incidents.  
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For advertising objectives, data analytics assists in the strategic 

placement of advertisements (Aissi et al., 2002). Moreover, predictive analytics 

for big data empowers individuals to make informed decisions regarding the 

knowledge of clients and products. Data analytics helps companies to detect 

potential threats and opportunities. It assists healthcare organizations in 

tailoring medication for an individual patient, thus facilitating a quicker and 

more effective treatment.  

The Internet has spawned an explosion of information, including text, 

audio, photos, and videos.  Thousands of transactions frequently occur in online 

stock trading because of increased human activities and algorithmic high-

frequency trading operations. A stock trader may not be able to determine the 

maximum amount of activity that a particular stock can perform at a given time 

and circumstance, and thus big data management and analytics are necessary. 

Big data management and analytics methods that could monitor and provide 

relevant information to a user are critical in today’s world of information. 

Another area where big data analytics is of importance is city traffic. 

Real-time analysis of traffic flow over time and seasons enables planners to 

alleviate congestion and create alternatives for regular traffic flow. In a broader 

context, analyzing large data sets from various sources such as mobile phones, 

GPS devices, and medical equipment could help improve the services offered 

to the public. Efficient use of these data sets can help retailers enhance their 

customer experience and manage their various promotions and pricing. 

Big data poses some challenges. The main reason why relational 

database management does not meet the performance requirements of large-

scale data is due to its lack of scalability and extensibility (Khare, 2014). 
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Whereas NoSQL databases have demonstrated some benefits, including 

scalability, flexibility and cost-effectiveness, they are challenged by large data 

sets, as they lack maturity and performance reliability. NoSQL databases are 

not good at handling big data analytics (Khare, 2014). It is imperative to 

integrate the power of high-performance computing with an efficient technique 

capable of solving scientific, engineering, and data analysis challenge 

irrespective of the size of the data. Some high-performance computing 

techniques enable creativity at any scale. However, the complexity of 

computational science, as well as engineering codes, presents some obstacles to 

developing high-performance technologies. 

When large data sets are stored in a distributed fashion, it tends to be 

difficult to retrieve the necessary information promptly. Some novel indexing 

algorithms and strategies that could expedite the retrieval of essential data are 

required. Some existing algorithms mainly focus on retrieving data from limited 

storage sizes; hence, they are incapable of recovering the necessary details 

promptly in the situation of large data storage (Naeem et al., 2022). Some 

research studies have addressed this issue, but their efforts appear to be in their 

infancy (Zhao et al., 2016). 

The detection of data patterns could help businesses become more 

intelligent regarding production and estimations. Nonetheless, given the size, 

complexity, and dynamism of big data sets, identifying patterns of relevance 

is difficult. Existing techniques can identify relevant trends, but one of the major 

issues is that the results are often less accurate (Naeem et al., 2022). 
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Visualization refers to the representation of information by using graphs. 

Information abstracted schematically is useful for data processing and offers 

features for the information units. In most big data applications, executing 

visualization is tough because of the rapid growth pace and complexity. 

Existing technologies for big data visualization no longer seem to deliver 

optimal functionality and fast response time (Wang et al., 2015). Most big data 

visualization methods have low reaction time, and scalability problems (Naeem 

et al., 2022). Instead of using old visualization techniques, it is important to 

reconsider how to visualize large amounts of data. 

Corporations are primarily concerned with resolving difficulties in 

analyzing large data sets while enhancing security. In certain situations where 

data is generated rapidly, identifying misleading data becomes challenging. 

Most present data security methods are predicated on a static dataset, though 

big data sets are constantly changing (Siddiqa et al., 2016; Sookhak et al., 2014). 

To offer real-time protection, established big data security techniques must 

embrace the new aspects of big data, including data patterns and variability. Due 

to the complexity of the data collected and stored in big data, it is hard to 

implement effective security techniques to protect it without further delay 

(Naeem et al., 2022). 

Many issues about stream computing, cloud computing, parallel 

computing, grid computing, semantic web computing, granular computing, 

optical computing and quantum computing and cryptography, as well as edge 

computing, seem to have not been adequately researched. New technology 

domains aid in the resolution of big data analytics challenges. Thus, these new 
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disciplines are insufficiently established to effectively and efficiently manage 

large data sets. 

Big data analytic approaches are required to analyze large data sets in a 

reasonable time. A handful of methods could be used for big data analysis 

within a reasonable timeframe. Using data mining techniques, large data sets 

are summarized into meaningful and useful information. Data mining utilizes 

statistical and machine learning techniques to retrieve information. Some data 

mining techniques are regression analysis, cluster analysis, and classification. 

New strategies for mining massive amounts of data are needed since the data 

growth rate is accelerating (Chen & Zhang, 2014). Existing techniques for 

extracting information from large data sets must be modified to employ typical 

data mining algorithms for big data (Naeem et al., 2022; Zhou & Song, 2017). 

Hierarchical clustering, k-means and balanced iterative reduction must be 

enhanced to handle the clustering of big data (Naeem et al., 2022).  

Web mining is used to identify patterns from massive web databases 

(Tracy, 2010). Web mining provides previously undiscovered information 

about websites and visitors to facilitate data-driven decisions. The method aids 

in determining the effectiveness of websites. To understand data, web mining 

visualization techniques generate tables and graphs. However, the complexity 

of the four Vs makes big data visualization more challenging than conventional 

small data visualization, even in the web mining setting (Geng et al., 2012). 

Some data analysts have been using batch mode software to obtain the highest 

possible parallel data resolution for their Big Data visualization projects 

(Thompson et al., 2011). Data visualization is thus crucial when dealing with 

large data sets. 
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Machine learning enables computers to control their behaviour using 

empirical data (Chen & Zhang, 2014). Some supervised and unsupervised 

machine learning algorithms must be scaled up to accommodate large data sets. 

Map/Reduce is a scalable machine learning framework. Big data machine 

learning methods are still in their infancy and suffer from scaling issues (Naeem 

et al., 2022). Utilizing statistical estimations and control theory, artificial neural 

networks (ANN) are used for adaptive control, pattern recognition and analysis 

(Liu et al., 2011). Although ANN is frequently employed to satisfy the 

requirements of large datasets, it is time-intensive (Zhou et al., 2012). 

Optimization techniques are applied to tackle quantifiable problems. 

These procedures are utilized in different disciplines. Different methods, 

including swarm optimization, genetic algorithms, and quantum and simulated 

annealing, are applied to solve optimization problems (Sahimi & Hamzehpour, 

2010; Li & Yao, 2012; Z. Yang et al., 2008). Optimization methods are 

particularly effective due to their parallel nature. However, most optimization 

methods are sophisticated and time-consuming and hence should be scaled up 

in a real-time context to execute big data operations (Naeem et al., 2022). 

Social network analysis (SNA) is a process utilized in the study of social 

relationships. This type of analysis is commonly used to examine the 

relationships between various individuals. SNA has grown in importance 

throughout social and cloud computing. Where the amount of data to be stored 

is not excessively large, SNA performs well; however, its performance declines 

when the input data have high dimensionality (Yaqoob et al., 2016).  
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It is challenging to process high-dimensional data without the 

appropriate methods. Some methods seek to manage high-dimensional data by 

reducing its dimension. Linear Discriminant Analysis (LDA), Principal 

Component Component Analysis (PCA), Multi-dimensional Scaling (MDS), 

Singular Value Decomposition (SVC), Locally Linear Embedding (LLE), 

Isometric Mapping (ISOMAP), Laplacian Elgenmap (LE), Independent 

Component Analysis (ICA), t-distributed Stochastic Neighbour Embedding (t-

SNE), and Random Projections are methods that reduce data dimensionality 

(Anowar et al., 2021). 

Statement of the Problem 

The term “big data” has become popular in recent years. Available 

memory and the power of computing have expanded dramatically in recent 

years. As a result of these developments, it is now possible to store and 

analyze big data sets using statistical models that are quite complicated 

(Geppert, 2018). Nevertheless, the time it takes to get results is frequently 

proportional to the data size (Chen & Zhou, 2020). This indicates that 

regression techniques frequently do not scale effectively, making analysis of big 

data sets difficult. Although storing data sets normally may not cause any 

problem with available memory, it could be imperative to put it into working 

memory, with far less storage space (Geppert, 2018). 

The emergence of big data and available computer processing power is 

not new, but it presents a problem to statistical techniques and their scalability. 

Large data sets present a computational and methodological problem when 

performing regression analysis. Memory requirements scale at least linearly 

with sample size and the number of variables in the big data (Geppert et al., 
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2020). This is a challenge in both Classical and Bayesian statistical analyses, as 

normal regression analysis approaches require access to the entire set of data. 

That is, standard statistical methods often have a linear dependence on the 

sample size and the number of variables in the data set as well. This seems less 

of an issue in the classical context, as the outcome is obvious after a single run 

over the data. However, in the Bayesian framework, the majority of the Markov 

Chain Monte Carlo (MCMC) techniques take several runs through the data, 

which implies that significant time is usually required to obtain the results. In 

both situations, linear regression analysis could be impractical for high-

dimensional big data, although the challenge is more obvious in a Bayesian 

context. 

To address these issues, some scholars have proposed two requirements 

for techniques to be viable for Bayesian linear regression analysis on high-

dimensional large data sets. First, they assert that every update only reads a part 

of the data set whose size is independent of the original high-dimensional data 

set (Welling et al., 2014). This condition allows for the feasibility of techniques 

for streaming data that could be read as containing indefinitely huge amounts of 

data, ensuring that the procedure works irrespective of the size of the high-

dimensional input data set. Secondly, as per Welling et al. (2014), the technique 

should be used in parallel settings to avoid potential issues. The second 

requirement seems more advantageous because large data sets can be 

redistributed among multiple computers for processing, thereby reducing the 

workload on each computing system as well as conforming to the design of 

existing computer systems. Moreover, the second requirement would enable the 
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linear regression analysis on a parallel system with relatively little computing 

power. 

There are also methodological issues associated with regression analysis  

of big data to consider. Concerning the concept of statistical significance, large 

sample size in addition to other variables leads to larger values of test statistics. 

Although this is a good property in a broad sense, it could reject the hypothesis 

of interest for extremely tiny discrepancies between the estimated and tested 

values. It might also result in statistically significant findings for insignificant 

outcomes in practice. 

Scalability is among the primary issues of contemporary data analysis 

due to the increasingly large amount of information. For some statistical 

approaches, massively high-dimensional data results in substantial resource 

utilization (Geppert, 2018). In both Classical and Bayesian linear regression 

analysis, conducting linear regression analysis on big data sets with data points 

far greater than the number of variables (n ≫ p) becomes progressively time-

consuming and memory intensive, making the analysis almost impractical. This 

is particularly critical when big data cannot be stored in the quick internal 

memory and must be retrieved repeatedly from slow external 

memory databases, which significantly increases the real elapsed time (Geppert 

et al., 2020). 

Thus, big data poses a problem concerning the memory and the running 

time required for Classical and MCMC techniques for linear regression 

analysis, respectively. The problem entails the need for a large 

computing memory mainly for Classical linear regression analysis and 

increasing running time mostly for Bayesian linear regression analysis. It is 
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against the issues of memory and running time that this study attempts to 

explore the applicability of the principles of Random Projection (RP) and Merge 

and Reduce (M&R) from Computer Science for linear regression analysis of big 

data set in Statistics. This thesis focuses on analyzing large data sets using both 

Bayesian and classical linear regression techniques, in which the number of 

observations is considerably greater than that of the variables. 

Purpose of the Study 

The main purpose of this thesis is to examine the applicability and 

appropriateness of some big data techniques widely used in Computer Science, 

namely, Random Projection and Merge and Reduce for linear regression models 

within Statistics.  The thesis is tailored towards the following specific 

objectives. 

1. To evaluate the performance of the Rademacher Matrix (RAD) and the 

Clarkson-Woodruff (CW) random projection techniques on big data sets 

when applied to linear regression models.  

2. To assess the performance of the Merge and Reduce approach when 

applied to Generalized linear models, particularly Poisson regression 

models.  

3. To examine the performance of the Merge and Reduce approach when 

applied to linear regression models in the presence of influential 

observations.  

Research Questions 

To achieve the objectives of the study, the following research questions 

would serve as a guide: 
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1. Which of the two Random Projection techniques: the Rademacher 

(RAD) and the Clarkson-Woodruff (CW), better approximate linear 

regression models when applied to big data? 

2. Is there any performance difference between the Classical and 

Bayesian Merge and Reduce methods when applied to linear and 

Poisson regression analysis of big data? 

3. What is the performance of the Merge and Reduce method in 

approximating the linear regression model when outliers are present in 

a big dataset? 

Significance of the Study  

Large data sets present analytical challenges on both computational and 

methodological levels. Analyzing big data sets needs a significant amount of 

working computing memory in the classical framework and other modelling 

frameworks. In the Bayesian framework, in using the Markov Chain Monte 

Carlo methods, a substantial amount of time is required for developed 

algorithms to converge to achieve posterior inference for large data sets.  

This study presents efficient and less memory-intensive techniques for 

performing linear regression analysis on big datasets by utilizing Random 

Projections and Merge and Reduce procedures.  This thesis focuses on exploring 

the applicability and appropriateness of some well-known big data techniques 

widely used in Computer Sciences for solving linear regression problems in 

Statistics. As a result, this thesis has the potential to motivate the consideration 

of some well-known big data techniques within the statistical community. 

Additionally, this thesis can direct research into other techniques for handling 

big data sets in different fields within Statistics. 
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Delimitations of the Study 

This study concentrates on conditions where a big data set contains a  

greater number of observations, with a smaller number of variables. The goal is 

to lower the sample size of the large data set and efficiently fit a linear 

regression model to the new data set in recovering the original linear model. 

The techniques examined in this thesis are for data sets of n ≫ p. Thus, the 

methods examined in this thesis are aimed at recovering linear regression 

models, not the data points upon which the models are built. 

Limitations of the Study 

Since the study focuses on the case where the sample size (n) is much 

greater than the number of variables (p), n ≫ p, the methods examined cannot 

be applied to the case of n ≪ p. For the M&R technique, the number of variables 

in a block is often problematic because each block has its own set of data. This 

means that the data collected from each block will only be a subset of the total. 

The subsets are disjointed, causing some challenges as models must be 

integrated with disjointed parameter sets. Based on the subset of variables, 

linear models may not adequately fit the data. 

Model diagnostics constitute another limitation of this study. While both 

techniques use observations to approximate the required linear regression 

model, the data points are not immediately available thereafter. The M&R 

methods read the observations block-by-block and eliminate them once the 

model for each block is developed. This requires re-using the data points, which 

could be impractical. When utilizing the random projection approach, the 

sketched data are retained; however, they are represented by random linear 

combinations of the original data. Every projected data point encompasses 
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many actual data points with varying weights. Generally, sketched data are less 

useful for model diagnostics. 

Organization of the Study 

This thesis is divided into five chapters. The first chapter presents an 

introduction to the study. It comprises the study background, the statement of 

the research problem, the objectives of the study, the research questions and the 

outline of the thesis. Chapter Two is dedicated to reviewing relevant literature 

and some theoretical guarantees of the techniques employed in the study. 

Chapter Three critically discusses the methodologies and techniques employed 

in the study. The chapter also describes how the simulation study was performed 

to examine the performances of the Random Projection and the M&R 

techniques for estimating linear regression models for big data. Chapter Four 

outlines and discusses the data analysis findings. Chapter Five of the thesis 

summarises all key findings and highlights them in light of the study's 

objectives, from which conclusions are drawn. 

Chapter Summary 

High-dimensional big data sets pose computational and methodological 

challenges when performing linear regression analysis. Computing memory 

requirements scale at least proportionally with sample size and the number of 

variables in a given data set. This provides a challenge in both classical and 

Bayesian (MCMC) linear regression techniques, as linear regression analysis 

approaches require access to the entire data set. Likewise, the running time of 

conventional MCMC techniques is often proportional to the dimension of the 

data set. This is less of an issue in the classical context, as the outcome is 

obvious after a single run over the data. 
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Nevertheless, in a Bayesian framework, many MCMC techniques take 

several passes through the data, implying that significant time is required to 

obtain results. In both circumstances, linear regression analysis for high-

dimensional big data is impractical, although the challenge is more evident 

among MCMC techniques in the Bayesian framework. This thesis seeks to 

examine the performances of some Random Projection and M&R techniques 

for approximating linear regression models for high-dimensional big data. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This chapter presents a critical review of some literature on linear 

regression techniques for high-dimensional big data, dimensionality reduction 

techniques for big data in Classical and Bayesian linear regression analyses, as 

well as the efficiency of some MCMC techniques, particularly for the Bayesian 

case.  

Reducing the dimension of big data is a fundamental concept widely 

applied in Statistics and Computer Science. Generally, the objective of 

dimension reduction is to reduce the number of variables to a reasonably 

manageable number. Principal Component Analysis is popularly used in 

Statistics with the primary goal of eliminating multicollinearity issues by 

substituting orthogonal bases for the original variables. More particularly, PCA 

is a data reduction technique useful in analyzing multivariate data. The principal 

component of a multivariate data set is a diminishing proportion of its total 

variability. With PCA, the dimensionality of multivariate data could be reduced 

while maintaining the structure of the original data set by using the first 

principal components. 

The purpose of this study includes reducing the number of data points 

from 𝑛 to 𝑘, where the sample size is much greater than the number of variables, 

𝑛 ≫ 𝑝. This is particularly beneficial when dealing with high-dimensional big 

data sets since the running time of most statistical procedures is proportional to 

the sample size 𝑛 . In this case, approaches such as partial least squares 

and principal component regression are appropriate (Feldman et al., 2020). 
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Recent advances on coresets for k-means clustering are based on Principal 

Component Analysis. A study by Feldman et al. (2020) sought to identify a 

small subset of high-dimensional data that recovers the original data set with an 

approximation error of 0 < 𝜀 < 0.5. The goal of Feldman et al. (2020) was to 

combine the random sampling of multiple observations with the exclusion of 

identical ones from previously sampled data. 

Using the principle of data squashing on large data sets, Geppert 

(2018) sought to reduce data depending on the likelihood of the observations. 

The study attempted to retain the statistical information in the original high-

dimensional data. The statistical analyses performed on the squashed data set 

produce findings that are reasonably close to those obtained from the original 

high-dimensional data. Geppert et al. (2020) partitioned the data set by utilizing 

clustering-based likelihood. Pseudo-observations of the clusters are then 

constructed and used in subsequent statistical analysis. 

Random Projections (RP) 

Several studies have utilized Random Projection techniques in 

Computer Science to obtain a low-rank approximation for least squares 

regression, Gaussian process regression, clustering problems and classification 

tasks, as well as for compressed sensing (Banerjee et al., 2013; Cohen et al., 

2015; Kerber & Raghvendra, 2014; Paul et al., 2014). The random Projection 

procedure has been used to approximate a subspace group using sparse vectors 

only (Baraniuk et al., 2008).  

The statistical elements of Random Projections, as well as 

some techniques based on randomized linear algebra, have been researched by 

many scholars to study leverage score-based subsampling techniques and their 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 
18 

statistical characteristics (Ma et al., 2014; Raskutti & Mahoney, 2015). 

Dimension reduction and subsampling techniques have been used to efficiently 

prepare the data set before effectively estimating the least squares estimator (J. 

Yang et al., 2016). The researchers examined parallel and distributed 

procedures and substantiated their findings with comprehensive empirical 

assessments of high-dimensional large data sets. This thesis extends the 

investigation of the statistical aspect of Random Projections by applying it to 

Classical and Bayesian MLR models. 

Bayesian Regression Analysis for Big Data 

Bayesian linear regression analysis for big data has attracted the 

attention of many researchers. In 2015, Guhaniyogi and Dunson recommended 

using Random Projections as a data reduction tool for a larger number of 

variables and a smaller number of observations (Guhaniyogi & Dunson, 2015). 

They demonstrate that the approximations converge to the expected posterior 

distribution. However, Boutsidis et al. (2014) had already claimed that it is not 

practical in general, as dimension reduction performed in the absence of the 

target variable could result in additive errors in the worst scenario. 

In contrast, some scholars have used Tall Skinny QR (TSQR) in 

situations where the number of observations is much larger than the number of 

variables in the high-dimensional big data set (Benson et al., 2013; Demmel et 

al., 2012). TSQR makes many runs through the data. Thus, TSQR can be used 

to precondition big data for Bayesian inference utilizing MCMC techniques. 

According to Geppert (2018), the TSQR results in a steady decomposition with 

a high degree of precision. However, he notes that the TSQR is limited to 

regression models with Gaussian distributed likelihood and takes row-by-row 
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data. As per Demmel et al. (2012), the running time associated with TSQR is 

bounded low due to the QR-decomposition. 

Without loss of generality, when no mathematically solvable conjugate 

model is obtainable, MCMC techniques are the gold standard for Bayesian 

analysis. MCMC techniques provide insight into potential posterior distribution 

approximation difficulties. The amount of time it takes to run the analysis 

depends on its size and might be fairly long, resulting in inefficiency 

(Balakrishnan & Madigan, 2006). 

As Geppert et al. (2020) and Geppert (2018) notes, there is a fascinating 

field of research seeking to remedy this problem, and one such area of research 

is the enhancement of MCMC techniques, such as the Hamiltonian Monte Carlo 

(HMC) approach. The benefit of simply determining whether the outcome is a 

reasonable approximation of the expected posterior distribution is retained. 

Balakrisnan and Madigan (2006) suggest other options like tweaking the 

MCMC algorithm. A major reason for this limitation is that the likelihood is 

evaluated repeatedly, which often requires all the observations. 

Balakrishnan and Madigan (2006) developed a method for reading high-

dimensional data block by block and performing a series of MCMC steps on 

each block. Each successive block retains certain data points while discarding 

others based on respective weights. Although the approach developed by 

Balakrishnan and Madigan (2006) makes only one pass over the data, it 

presents a complete MCMC sample. Also, although the selection rule used is 

experimentally justifiable, only the univariate scenario has theoretical validity, 

which is predicated on the central limit theorem for Sequential Monte Carlo 

techniques. 
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Some research studies have proposed subsampling the high-

dimensional data to estimate the acceptance or rejection region at each stage of 

the Metropolis-Hastings (MH) technique (Bardenet et al., 2014). They 

demonstrate that the estimated decision is highly close to the original decision 

in each iteration. According to Bardenet et al. (2014), the proposed subsampling 

algorithm's iteration count is not fixed in advance. Still, the number of iterations 

that a stopping criterion takes is determined by the variability of its likelihood 

ratios. 

Others have also proposed that instead of the MH or MCMC algorithms, 

a variant ensures the proposed point is accepted or rejected depending on the 

subsample of the data set (Quiroz et al., 2018). This minimizes the algorithm's 

processing cost, resulting in a more efficient method for finding the posterior 

distribution (Quiroz et al., 2018). Moreover, Quiroz et al. (2018) offered 

proportionate inclusion probability values to the contributions of the data 

points to the likelihood estimated by a Gaussian Process. Nonetheless, the 

proposed scheme for MH adds a delayed acceptance method that evaluates the 

likelihood only when a significant chance of acceptance exists (Quiroz et 

al.,2018a). While both scenarios may bear considerable resemblance to the 

aforementioned data-squashing, Quiroz et al. (2018b) sought to provide 

standard MCMC techniques. Although there seem to be no theoretical 

guarantees of approximations, Quiroz et al. (2018a, b) demonstrated useful 

empirical applications. 

Additionally, some alternatives replace the MCMC algorithm. The 

Integrated Nested Laplace Approximation (INLA) is a good alternative to 

MCMC techniques (Rue et al., 2009). Others have stated that the Laplace 
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approximation is a more accurate method of estimating posterior distributions 

than Monte Carlo (Rue et al., 2009). They emphasize that the Laplace 

approximation technique is only applicable to latent Gaussian models. 

However, the group of latent Gaussian models contains many models with 

which the INLA is considerably faster than the Monte Carlo Markov Chains 

(Martins et al., 2013). Rue et al. (2009), however, posit that it could be more 

challenging to check the posterior distribution approximation accuracy.  

There are instances where it may not be possible to compute the 

likelihood function, and in such a situation, Approximate Bayesian 

Computation provides a way around the Bayesian analysis (Csilléry et al., 

2010). Alternatively, Csilléry et al. (2010) suggest that simulations could be 

used to approximate the likelihood. They reveal that the Approximate Bayesian 

Computation is not entirely comparable to the others because its primary goal 

is not to perform more efficient analyses but to perform Bayesian analyses in 

situations where it might be difficult otherwise. As a general rule, Csilléry et al. 

(2010) state the Approximate Bayesian Computation can produce summary 

statistics for small dimensions, where the number of variables is less than 10. 

Some research studies have also examined the divide and conquer 

strategy for some statistical challenges associated with big data, with an 

emphasis on different regressions models, hypothesis testing, partially linear 

models, and estimating equation frameworks with differentiable estimating 

functions (Chen & Xie, 2014; Lee et al., 2017; Li et al., 2012; Zhang et al., 

2015; Zhao et al., 2016). Zhang et al. (2015) compressed each subsample into 

statistical measures and uniquely combined the respective statistics to generate 

the final model estimates employing one of the most frequent techniques for the 
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divide and conquer strategy. The estimates approximated the model with a close 

efficiency to estimates from the whole data set. A computationally and memory-

efficient technique for the estimating equation method with differentiable 

estimating functions has also been designed (Lin & Xi, 2011). Nevertheless, 

although quantile regression's parameters could be estimated using the 

estimating equation approach, this technique is difficult to use.  

The Rao-CD and Wald-CD methods have been used to perform quantile 

regression on big datasets (Zhou & Song, 2017). However, Rao-estimation CD's 

process requires minimization of a quadratic form provided as a generalized 

method of moments (GMM) estimator, which is problematic for non-smooth 

estimating functions. Additionally, when analyzing a data stream, the Rao-CD 

approach needs re-running the minimization step when new data is received, 

which is extremely time-demanding. Zhou and Song (2017) did not demonstrate 

how to compute the weight matrix for the Wald-CD technique. It is critical to 

recognize that the estimation technique may be somewhat difficult due 

to the unknown density function.  

Merge and Reduce (M&R) Method for Big Data 

The M&R is a basic strategy for handling static data systems to 

accommodate dynamic entries. The technique has been used to process coresets 

in a data streaming setting (Agarwal et al., 2004; Har-Peled & Mazumdar, 

2004). According to Geppert et al. (2020), the M&R concept is mostly used to 

develop effective and fast streaming and parallel techniques for the processing 

of high-dimensional big data. Although the M&R is implicitly used, it is 

regarded as a standard method in coresets. Coresets have been explored widely 

as a data reduction and aggregation technique for addressing scalability 
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concerns associated with a variety of challenges in Computational Statistics. 

Coresets have been applied to address issues with shape fitting (Feldman et al., 

2020). Several studies have employed coresets for clustering, classification, 2-

regression, 1-regression, p-regression, M-estimators and generalized linear 

models (GLMs) (Baykal et al., 2018; Huggins et al., 2016; Munteanu et al., 

2018; Tolochinsky & Feldman, 2018). An interesting study applied the M&R 

concept to the relational database physical design of big data (Bruno & 

Chaudhuri, 2007). 

In the Bayesian framework, a one-pass-through-the-data Merge and 

Reduce streaming technique could be used to facilitate the conduct of Bayesian 

linear regression involving big data. Balakrishnan and Madigan (2006) applied 

the M&R principle where the data was read blockwise and run through an 

MCMC sampler in several stages. The data was read block by block; the 

technique either retained or replaced some samples. The selection criteria were 

weighted to reflect the data’s significance. A pass-through-the-data-

once streaming algorithm for Bayesian linear regression has been developed 

using Random Projections-based dimension reduction techniques (Geppert et 

al., 2017). They employed a linear map data sketching structure, which made it 

simple to add and modify data interactively.  

A study by Law and Wilkinson examined composable Bayesian models 

for streaming high-dimensional data analysis (Law & Wilkinson, 2018). 

They addressed the issue of sample frequency imbalance in practical streaming 

and parallel situations and hence had a distinct scope.  
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Only a few research studies have applied the Rademacher and Clarkson-

Woodruff random projection techniques directly to linear regression analysis of 

big data, despite its power, simplicity and low error rate compared to the other 

dimension reduction methods. Also, since the M&R streaming technique is 

popularly used in data structures in Computer Science, it has not received any 

serious attention in Statistics, particularly in solving MLR analysis of big data 

in a streaming setting. In the extant literature, hierarchical modelling, 

constraints such as data storage and accumulation, data streaming and 

parallel computations exist. Therefore, some statistical models tractable in 

M&R could be applied, in principle, to linear regression analysis of big data.  

Chapter Summary 

The literature has revealed how big data pose computational and 

methodological challenges in data analysis. It is established that big data 

consumes significant time when performing Bayesian regression analysis on 

them, particularly when MCMC methods are employed. In classical regression 

analysis, the literature reveals that big data poses a memory challenge. Records 

further indicate that data will continue to grow. There are studies on how to 

perform regression analysis on big data in both Bayesian and classical settings. 

Standard statistical techniques have been used extensively to study the effect of 

high-dimensional big data on linear regression models. Some results show that 

the impacts of big data on linear regression models depend on the type of data. 

However, big data has an important and consistent influence on the predictive 

performance of linear regression models. 
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CHAPTER THREE 

RESEARCH METHODS 

Introduction 

This chapter presents the theories of the primary methods that are 

important to the subject under study. The methods reviewed in this chapter 

include regression models, Random Projection methods and M&R techniques 

for approximating regression models for big data sets.  

Linear Regression Analysis 

Regression analysis is a well-established statistical concept that models 

and estimates the effects of p predictors 𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒑, on typically one 

response variable, Y. The dependent variable Y depends on the values of 

independent variables 𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒑. The latter is usually represented as column 

vectors in a matrix 𝐗 ∈ ℝ𝐧×𝐩 . The row vectors of X are commonly 

denoted by 𝑿𝒊 ∈ ℝ𝒑, where 𝐢 = 𝟏, 𝟐, . . . , 𝐧, representing the ith data point. A 

linear model is the most fundamental method of connecting the two variables. 

The matrix X and the vector Y are connected by a vector, 𝜷, of weights and an 

additive error term 𝜼, which is unobservable, culminating in a model of the 

form; 

𝐘 = 𝐗𝜷 + 𝜼, 𝜼 ~ 𝑁(0, 𝜎2𝐼𝑛 )                                                             (1) 

Some Assumptions of Linear Regression Analysis 

Some assumptions underline linear regression analysis. First, when the 

response is normally distributed, linear regression is typically used. Multiple 

linear regression analysis assumes that the residuals, which are the predicted 

minus observed values, are also normally distributed. Although most tests are 

relatively robust against violation of the normality assumption, it is usually 
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prudent to check the probability distributions of important variables in the study 

before reaching definitive conclusions. Generally, a normal probability plot is 

used to examine the probability distribution of the residuals.  

When at least two independent variables in a linear regression model are 

correlated, it is said that multicollinearity exists. Without loss of generality, 

multicollinearity is defined as a condition in which a significantly high degree 

of correlation lies between predictor variables, such that their effects cannot be 

differentiated. It is expected, in a linear regression analysis, that the explanatory 

variables are not significantly correlated. 

Another important assumption in multiple linear regression analysis is 

the assumption of homoscedasticity. Homoscedasticity refers to a condition 

where the response variable has a similar proportion of the variation as the 

predictor variables over a given range of values. Generally, homoscedasticity or 

the assumption of constant variance is checked by plotting the residuals against 

the fitted values. The form of the spread about the zero line indicates whether 

or not the assumption of constant variance is met. 

Estimation of Parameters in Classical Linear Regression Analysis 

The design matrix, X, may contain data variables as well as other 

elements like transformed and standardized variables, interactions among 

variables, and an intercept term. In classical and Bayesian frameworks, GLMs 

can be used. In a classical context, the goal is to estimate every element of 𝜷, 

often regarded as unknown constant values. The estimation of the 𝜷 is done in 

such a way that the error function is minimized. The ordinary least squares 

(OLS) estimator, which is the optimal solution, �̂�, of equation 1, is estimated 

using the following; 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 
27 

   �̂� =  (𝐗′𝐗)−𝟏𝐗′𝐘                                                                                        (2) 

In standard texts, the OLS estimate is an unbiased linear estimator which has 

E(�̂�)  = 𝜷 and Var(�̂�) = σ2(𝑿′𝑿)−𝟏 . The variance-covariance matrix of the 

OLS estimator is used in the estimation of the standard errors given as follows;  

𝑠𝑒�̂�𝑗
= √σ2e

j

′
(𝑿′𝑿)−𝟏𝒆𝒋                                                                             (3) 

where 𝒆𝒋  denotes the 𝑗𝑡ℎ  unit vector,  j =  1, 2, . . . , p and se�̂�𝑗
 is the standard 

deviation. 

Linear Regression Model Diagnostics 

Following a linear regression analysis, model diagnostics are performed 

to assess the goodness of fit of the model. The residuals are used to assess the 

regression model’s goodness of fit. Residuals signal some significant effects 

that are not captured by the model and show when certain linear 

regression assumptions have been violated. Since the error term, 𝜂, cannot be 

observed, the residual, 𝐫 = 𝐘 − 𝐗𝜷,̂ is considered as an estimated error term 

that serves as a substitute for the non-observed error term, the raw residuals, 𝑟, 

represents the difference between the observed and the estimated values of Y. 

The OLS estimator minimizes the sum of squared residuals when compared to 

all choices of �̂� (McCullagh & Nelder, 2019). 

Although examining the raw residuals in regression analysis is critical 

and useful, it is important to highlight the difference between the raw residuals 

and the error term. Unlike raw residuals, the vector of unknown errors, 𝜂 is 

presumed to be uncorrelated and homoscedastic. That is 𝒓 ~ (𝟎, 𝝈𝟐(𝑰𝒏 − 𝑯)), 

𝑯 = 𝐗(𝐗′𝐗)−𝟏𝐗′ is known as the hat matrix. The variances, Var(𝒓i) , are 

dependent on the value of 𝑖, which is not optimal for diagnostics. Given the 
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foregoing, two additional forms of residuals are presented. The standardized 

residuals (r) are defined as follows; 

𝑟�̃� =
𝑟𝑖

�̂�√(1 − ℎ𝑖𝑖)

                                                                                           (4) 

ℎ𝑖𝑖 is the 𝑖𝑡ℎ diagonal element of the hat matrix, 𝑯. 𝑖 = 1, 2, . . . , 𝑛. When the 

estimated �̂� is substituted for the true unknown σ, it is obvious that E(𝑟�̃�) = 0 

and Var(𝑟�̃�) = 1, i = 1, 2, . . . , n. The studentized residuals and the standardized 

residuals are interrelated. With the studentized residuals, rather than estimating 

the variance, 𝜎2, the variance for each observation is estimated by taking into 

account the difference between the observed and the model. The studentized 

residuals (𝑟𝑖
∗) are defined as 

𝑟𝑖
∗ =

𝑟𝑖

�̂�−𝑖
2

 √(1 − ℎ𝑖𝑖)

                                                                                     (5) 

where �̂�−𝑖
2

 is the estimated variance without the 𝑖𝑡ℎ observation. 𝑖 =

1, 2, . . . , 𝑛.     

The standardized and studentized residuals are analyzed using a residual 

plot containing the fitted values and the standardized residuals. If the 

linear model fits the data well with the underlying assumptions met, no clear 

pattern will be seen in the plot. That means that the residuals have constant 

variance and are placed around the zero line. However, If most of the low 

residuals, ri < 0, are clustered in a small area of the domain, the variability 

increases as �̂� increases, indicating that the linear model has some problems. 

The studentized residuals could be utilized in addition to standardized residuals.  
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The connection between standardized and studentized is as follows; 

𝑟𝑖
∗ = 𝑟�̃�√

𝑛 − 𝑝 − 1

𝑛 − 𝑝 − 𝑟𝑖
2
                                                                                     (6) 

This indicates that whenever the residuals lie in the interval [-1, 1], the 

standardized and studentized residuals seem to be approximately equal. Where 

the residuals have a greater absolute value, the variance increases as studentized 

residuals have higher absolute values. Accordingly, when the studentized 

residual is used, exceptionally high or low residuals become more apparent. 

Additionally, the studentized residual is used to create statistical tests, like the 

𝒓𝒊
∗ have a 𝒕𝒏−𝒑−𝟏 distribution (Chatterjee & Hadi, 1988). Apart from residual 

diagnostics, which analyze the difference between the observed and estimated 

values as per the linear model. The extent to which the observations affect the 

parameter estimates and their variability is examined.  

In simple linear regression,  𝒀 = 𝜷𝟎 ∙ 𝟏𝒏 + 𝜷𝟏𝑿𝟏 + 𝜼, variations in the 

values of 𝒚𝒊  have a greater influence on the linear model when the data 

points are closer to the high values of y and a lower effect on the linear model 

when the data points are in the centre of the range (Geppert, 2018).  

Euclidean Distance 

The Euclidean distance may give a more precise definition of open sets. 

If p is a point of ℝ3 and 𝜀 >  0 is a number, the 𝜀 neighbourhood 𝑁𝜀 of p in ℝ3 

is the set of all points q of ℝ3 such that 𝑑(𝑝, 𝑞)  <  𝜀. Then a subset 𝑆 of ℝ3  is 

open, provided that each point of 𝑆 has an 𝜀 neighbourhood entirely contained 

in 𝑆. In short, all points near enough to the point of an open set are also in the 
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set. This definition is valid with ℝ3 replaced by ℝ𝑛. If p and q are points of ℝ3. 

The Euclidean distance from p to q is the number; 

𝑑(𝑝, 𝑞) = (√(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + (𝑝3 − 𝑞3)2)                        (7) 

A Euclidean distance matrix is a representation of a set of points in a given space 

that is spaced by square distances. Given a set of points p1, p2, p3, … pn in k-

dimensional space, ℝk, the elements of its distance matrix P are given by the 

squares of distances between them. That is, 𝑃 = (𝑝𝑖𝑗); 

𝑝𝑖𝑗 = 𝑑𝑖𝑗
2

= ‖𝑝𝑖 − 𝑝𝑗‖
2
                                                                                (8) 

Where ‖. ‖ denote the Euclidean norm on ℝ𝑘. 

𝑃 =

[
 
 
 
 
 
 
 0 𝑑

12

2
𝑑

13

2
… 𝑑

1𝑛

2

𝑑
21

2
0 𝑑

23

2
… 𝑑

2𝑛

2

𝑑
31

2

⋮

𝑑
𝑛1

2

𝑑
32

2

⋮

𝑑
𝑛2

2

0  … 𝑑
3𝑛

2

⋮ ⋱ ⋮

𝑑
𝑛3

2
… 0 ]

 
 
 
 
 
 
 

 

In the case of distance matrixes, the entries are usually defined as distances, not 

squares. In the case of the Euclidean scheme, squares are used to simplify the 

various algorithms and theorems related to distance. 

Markov Chain Monte Carlo (MCMC) Methods  

MCMC methods are exact for posterior inference when the posterior 

distribution is intractable (Givens & Hoeting, 2013). For situations where a 

Bayesian linear regression model cannot be analytically fitted, an 

approximation is often used. For such approximations, MCMC methods are 

regarded as the gold standard since they tend to be more effective and applicable 

to several model types. It is also possible to test for convergence. This allows 
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us to determine if the approximation is good and if more iterations are required. 

A downside of MCMC approaches is that they are inefficient since the needed 

running time before convergence could be large. In the following lines, a quick 

overview of common MCMC algorithms is provided in the following 

paragraphs. This thesis employs the No-U-turn technique. 

As a numerical integration approach, Monte Carlo integration draws 

observations at random and evaluates them based on a function of interest. 

Monte Carlo integration techniques include rejection sampling. The techniques 

used in this process are designed to analyze a candidate's value from a proposal 

distribution and determine whether or not it should be accepted or rejected. 

Accepted observations are then added to the sample to represent the posterior 

distribution. Where a candidate value is rejected, the sample remains intact. In 

both circumstances, the procedure is repeated until the required sample size is 

attained. 

In addition to rejection sampling, there are alternative Monte Carlo 

techniques that sample observations directly from the posterior distribution. 

Nevertheless, the majority of such approaches are ineffective, especially when 

the prior distribution is uninformative relative to the probability (Bolstad, 2009). 

As a result, rejection sampling has been superseded in many cases by more 

effective methods, some of which are described below. 

The use of MCMC techniques is an efficient technique for sampling the 

posterior distribution. But MCMC algorithms could be quite slow based on the 

model and data size. The MCMC techniques begin with initial values for 

the parameters and draw a new candidate value from a proposed distribution at 

each iteration. According to the Markov property, the new observation can 
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solely depend on the current observation only. The goal of the algorithm is to 

find a way to match the new value with the posterior distribution of the current 

observation, allowing the candidate value to be retained or discarded. 

The MH method provides one option for constructing an appropriate 

Markov chain. Given 𝜃1, the initial observation of the Markov chain and 𝜃𝑡 , 𝑡 =

2, … , 𝑇 , additional Markov chain observations, where 𝑇  is the given chain 

length. The elements 𝜃𝑡  of the Markov chain are iteratively drawn. The MH 

technique uses knowledge of the unnormalized posterior distribution. Only the 

current state and the new candidate value of the Markov Chain are considered. 

The proposed distribution, 𝑞, does not affect the stationary distribution, but it 

can affect the acceptance rate as well as convergence speed (Givens & Hoeting, 

2013). 

According to Geppert (2018), the desirable acceptance rates for a given 

proposal range from around 0.3 to 0.7. Higher acceptance rates may indicate 

that the proposal's variation is less than that of the posterior distribution. This 

could lead to an extended exploration of the high-probability mass regions. A 

low acceptance rate suggests that the proposal's variation is greater than the 

posterior distribution. This is because the sample includes multiple 

observations. This method lowers the effective size of the sample. 

Block-wise Metropolis-Hastings (MH) Method 

The block-wise MH algorithm is suitable for the multi-parameter 

problem. A candidate vector is drawn and then rejected or accepted using the 

MH algorithm. The block-wise variant partitions the parameters into 𝐽 blocks. 

If variables are found to be associated, it is possible to place them in one block, 

although not required. When the values of the parameters are partitioned, they 
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are replaced with a single value, 𝜃𝐶 , which is then used to sample the candidate 

values for each block, 𝜃𝐶𝑗𝑗 = 1, … , 𝐽.  The proposal distribution for a given 

block is dependent on the current values of the various elements of the data 

chain. For instance, the value of the block 𝑗 parameter in block 1 is important. 

The candidate values for entry 𝑡  of block 𝑗  are computed iteratively. The 

candidate values for entry 𝑡 of block 𝑗 are then dependent on the 𝑡𝑡ℎ value for 

blocks 𝐽∗ < 𝐽 and (𝑡 − 1)𝑡ℎ value for blocks 𝐽′ > 𝐽. 

The Gibbs sampling algorithm is a special case of block-wise MH. It 

constructs a Gibbs sampler with the proposal distribution chosen as the full 

conditional distribution in block 𝑗. The probability of a candidate's value being 

accepted is 1 in every proposal distribution. This is due to the strong correlation 

between the proposal's posterior distribution and the probability of the 

candidate's value being accepted. Unfortunately, this is not the case with Gibb's 

sampling. 

Random Walk Metropolis-Hastings (RWMH) Method 

The proposal distribution of the block-wise or basic MH algorithm can 

be chosen symmetrically depending on the number of parameters involved, such 

that the proposal distribution 𝑞 (𝜃𝑡−1|𝜃𝐶) = 𝑞(𝜃𝐶|𝜃𝑡−1) . In such cases, the 

acceptance probability is given by, 

𝛼 = min (1,
𝑝(𝜃𝐶|𝑋, 𝑌)

𝑝 (𝜃𝑡−1|𝑋, 𝑌)
)                                                                      (9) 

where; 
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𝜃𝐶  is a candidate sampled from the proposal distribution, 𝜃𝑡−1 refers to the next 

elements of the Markov Chain, 𝑡 = 2, 3, … , 𝑇. T is the length of the Markov 

Chain. 

With the Rake-Hundred-Mandel-Hinds (RWMH) algorithm, the next 

candidate doesn't have to take into account the current position of the chain. If 

the candidate's posterior distribution is better than the current value, then it is 

accepted, but if it is further away from the centre, it is rejected. On the other 

hand, if the candidate's probability mass is lower than the centre, it can still be 

accepted. The proposed distribution of the MH algorithm should always move 

in the direction of the high probability mass to ensure the exploration of the 

posterior distribution. The variance of 𝑞 is also important in the characterization 

of the distribution. For instance, if the variance of 𝑞 is greater than the average 

step size, the algorithm's efficiency will be affected. 

Hamiltonian Monte Carlo (HMC) Method 

In most MCMC algorithms, the initial value,  𝜃1 is drawn to represent 

the probability close to a region of high probability mass. However, given a 

higher dimensional situation, 𝜃1  is likely to be placed elsewhere. The 

algorithm's implementation ensures that the constant step sizes are maintained. 

In most cases, the initial value of the algorithm is not ideal in certain situations, 

such as when the target region has a high probability of mass. However, in these 

cases, the adaptive step sizes provide a remedy. 

The HMC algorithm is a Monte Carlo method that provides a solution 

to the increasing step sizes in a system. It is a hybrid approach that combines 

MCMC techniques and Hamiltonian dynamics. Neal (2011) compared the two 

components to a hockey stick that moves over ice. Every component of the 
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algorithm has its momentum variable, 𝜑𝑗 . The goal-making mechanism of a 

hockey stick relies on its position, 𝜃  and momentum, 𝜑𝑗 . When the plane 

section moves up a slope, the momentum will remain constant, while the 

position will be slowed down. This makes the HMC algorithm ideal for 

determining the overall direction of the movement. 

The HMC algorithm updates the value of the momentum using a new 

distribution, 𝑁(0, 𝐼𝑃) . Next, the momentum and position are updated. This 

method is performed by drawing a p-dimensional unity matrix. The HMC 

algorithm uses the 𝐿  steps of the leapfrog method to perform Hamiltonian 

dynamics simulations. It updates the dynamics continuously using a series of 

steps. The first two updates are followed by an update of the position. The last 

step is a new value of momentum. The HMC algorithm updates the momentum's 

value by an addition to the current value, an l-fraction of its product. Regarding 

half-updates, the algorithm takes into account the product of the gradient, ∆𝜃, 

and ln 𝑝(𝜃|𝑌, 𝑋) of the current parameter value. Following 𝐿 of the step size, 𝑙, 

𝑢 is sampled, 𝑢~𝑈𝑛𝑖𝑓(0,1) and accept the new observation if 

𝑢 < 𝛼 = 𝑚𝑖𝑛

(

 
 

1,

exp (ln 𝑝(𝜃∗|𝑌, 𝑋) −
1

2
𝜑∗𝜑∗)

exp (ln 𝑝 (𝜃𝑡−1|𝑌, 𝑋) −
1

2
𝜑𝑡−1𝜑𝑡−1)

)

 
 

               (10) 

When the candidates are rejected, 𝜃𝑡 = 𝜃𝑡−1  and 𝜑𝑡 = 𝜑𝑡−1 . When the 

candidates are accepted, 𝜃𝑡 = 𝜃∗  and 𝜑𝑡 = −𝜑∗ ∙ 𝜑∗  is negated. It is not 

possible to have a symmetrical proposal distribution. It is “time-reversible,” but 

since the HMC algorithm can preserve volumes, it is considered a valid 

proposal. 
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The HMC approach requires careful attention to two key parameters: the 

step size, 𝑙, and number, 𝐿. Doing so will allow us to perform better simulations 

and minimize the effects of Hamiltonian dynamics (Hoffman & Gelman, 2014). 

If too many steps are performed in a sequence, the algorithm may not be able to 

follow the steps of the previous ones properly. To avoid this, Gelman and 

Hoffman (2014) proposed a no-u-turn sampler (NUTS) that can be used without 

tuning any parameters. This method achieves results similar to an HMC 

algorithm. In 2014, Gelman and Hoffman proposed a method for optimizing 

step size, 𝑙, with vanishing adaptation. They used a doubling algorithm to tune 

𝐿 automatically. The NUTS algorithm takes into account the candidate's various 

values and generates a set of suitable values 

The first step in the process of adding candidates involves adding the 

current position and momentum. In the second step, two candidates are added, 

and in the third step, a total of three candidates are added. After a jth step, the 

number of candidates is 2j. Every single step of the process involves a 2𝑗−1 

candidate moving backwards or forward from the outermost candidate. The 

process halts when the new observations are re-traced, which suggests that the 

candidate may already be explored. It also suggests that the candidate could be 

characterized by a lower probability of happening. 

The program shows the latest position as a random sampling of one 

candidate from the set. To maintain the current state of the program, NUTS 

suggests that one of the two new candidates should be considered a candidate 

for a new position in step j. This method is associated with longer jumps; it has 

a low likelihood of finding a new one in the later stages. Although small jumps 
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are not ideal for every situation, they allow long jumps even though they are not 

always feasible. 

Bayesian Linear Regression Analysis 

The parameter 𝜷  is considered a random variable in the Bayesian 

framework. It is modelled using a probability density. The assumed distribution 

is called the prior distribution, 𝐩(𝜷), which means that the knowledge about it 

before its existence is related to the current knowledge. The knowledge about 

the prior distribution is taken into account when choosing 𝐩(𝜷). This is shown 

in equation 11.  

𝒑(𝜷, 𝛔𝟐|𝐗, 𝐘)  ∝ 𝑳(𝐘|𝜷, 𝝈𝟐)𝒑(𝜷)𝒑(𝝈𝟐)                                               (11) 

where,  

𝒑(𝜷) −  Prior distribution for 𝜷 

𝒑(𝝈𝟐) −  Prior distribution for 𝝈𝟐 

𝑳(𝐘|𝜷, 𝝈𝟐)~ 𝐍(𝐗𝜷,𝝈𝟐𝑰𝒏) − Likelihood 

The posterior distribution is used to infer the linear relationship existing 

between X and Y. The posterior distribution is a function that takes into account 

the information that was previously known. It is computed as a function of the 

prior distribution and the likelihood. The distribution in equation 11 is a 

representation of the product of the probability and prior distribution. 

The posterior can be obtained as a closed-form expression in a variety 

of ways, such as through a simple Bayesian analysis. Conjugate models are 

well-known for their use in estimating the likelihood and prior distributions. 

Conjugate models are commonly used for analysis, but they are not available 

for every model. This is because the normalization constant is not an ideal 

solution, and it can prevent an analytical solution from being obtained. Usually, 
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methods such as MCMC or Laplace approximation are used to solve these 

problems. 

In line with a critical review of computational methods for 

approximating the posterior distribution by Bolstad (2010), this thesis employs 

the HMC technique. After successfully obtaining a sample of this type, various 

methods are used to analyze it. The methods include the mean, median, 

variance, and quantiles. A good boxplot or kernel density estimate can provide 

a good visual representation of the data. In a regression context, the significance 

of a variable can be evaluated using statistics. For instance, if a variable is 

important, a significance test can be performed. 

Bayesian Inference 

Bayesian inference is about the posterior distribution of the parameter 

of interest. It combines data information termed the likelihood function with the 

prior probability model assumed for the parameter. Let Y follow the probability 

model 𝑃(𝑌|𝜃 ), where 𝜃  is a parameter. Treating 𝜃  as random, let the 

uncertainty associated with 𝜃  be modelled using 𝑃(𝜃) . Then, the posterior 

inference about 𝜃 can be made using the posterior distribution. 

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

𝑃(𝑌)
                                                                             (12) 

    𝑃(𝑌) = ∫𝑃(𝑌|𝜃)𝑃(𝜃)𝑑𝜃                                                                    (13) 

From equation (12), the following statement can be made; 

𝑃(𝜃|𝑌) ∝ 𝑃(𝑌|𝜃)𝑃(𝜃)  

and 

𝑃(𝜃|𝑌) ∝  
1

𝑃(𝑌)
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It can be observed that the integral in equation (13) can introduce intractability 

in the posterior for complex models in which there are many parameters. This 

shows that some alternative methods should be considered for inference in cases 

where P(Y) cannot be obtained in closed form. That is, the posterior distribution 

will not be available in closed form. An alternative method that avoids the use 

of the marginal likelihood P(Y) is the MCMC method. MCMC methods are 

based on the full conditionals of the parameters instead of the posterior 

distributions. 

Parameter Estimation in Bayesian Linear Regression Analysis 

For the linear model in Equation (11) to make posterior inference about 

the parameters of interest, the joint posterior distribution must be obtained first. 

Given the following models for 𝛽 and 𝜎2. 

𝑃(𝛽) = 𝑁(𝜇𝛽 , 𝛴𝛽) and 

𝑃(𝜎2) = 𝐼𝐺(𝛼, 𝛾) 

IG (.) denotes an inverse gamma distribution with parameters 𝛼 and 𝛾. The 

joint posterior for 𝛽 and 𝜎2 are derived as follows. 

𝑃(𝛽, 𝜎2|𝑌) =
𝑃(𝑌|𝛽, 𝜎2)𝑃(𝛽)𝑃(𝜎2)

𝑃(𝑌)
                                                   (14) 

𝑃(𝑌) = ∫𝑃(𝑌|𝛽, 𝜎2)𝑃(𝛽)𝑃(𝜎2)𝑑𝛽𝑑𝜎2 

Using the numerator of equation (14),  

𝑃(𝛽, 𝜎2|𝑌) ∝ 𝑃(𝑌|𝛽, 𝜎2)𝑃(𝛽)𝑃(𝜎2) 

𝑃(𝛽, 𝜎2|𝑌) ∝ 𝑁(𝑦; 𝑋𝛽, 𝜎2𝐼𝑛) × 𝑁(𝛽; 𝜇, 𝛴𝛽) × 𝐼𝐺(𝜎2; 𝛼, 𝛾) 
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𝑃(𝛽, 𝜎2|𝑌) ∝ (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2[(𝑌−𝑋𝛽)′(𝑌−𝛽)]

× (2𝜋)−
𝑟
2|𝛴𝛽|

−
1
2𝑒−

1
2
[(𝛽−𝜇𝛽)

′
𝛴𝛽

−1(𝛽−𝜇𝛽)]

×
𝛾𝛼

𝛤(𝛼)
(𝜎2)−𝛼−1𝑒

−
𝛾
𝜎2                                                    (15) 

Then, in Equation (15), the marginal posteriors for 𝛽 and 𝜎2 are obtained 

respectively. It can be shown that the marginals are of the form. 

𝑃(𝛽|𝑌) = ∫𝑃(𝛽, 𝜎2|𝑌)𝑑𝜎2                                                                    (16) 

    = 𝑁(𝜇𝛽
∗ , 𝛴𝛽

∗)                                                                                 (17) 

where 

𝛴𝛽
∗ =

𝜎2𝛴𝛽

𝛴𝛽𝑋′𝑋 + 𝜎2𝐼𝑟
 

𝜇𝛽
∗ =

𝑌′𝛴𝛽 + 𝜎2𝜇𝛽

𝛴𝛽𝑋′𝑋 + 𝜎2𝐼𝑟
 

r is the dimension of 𝜷. 

𝑃(𝜎2|𝑌) = ∫𝑃(𝛽, 𝜎2|𝑌)𝑑𝛽                                                                    (18) 

   = 𝐼𝐺(𝑎∗, 𝑏∗)                                                                                (19)  

where, 

𝑎∗ = (
𝑛

2
+ 𝛼) , 𝑏∗ =

1

2
[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)] + 𝛾 

Point estimates for 𝛽 and 𝜎2 can be obtained from the corresponding marginal 

posteriors. Usually, the posterior means are used. For 𝛽, the posterior estimate 

will be the 𝜇𝛽
∗  and for 𝜎2 . The corresponding estimate will be the posterior 

mean of the inverse gamma given by  

𝐸[𝜎2|𝑌] =
𝑏∗

𝑎∗ − 1
, 𝑎∗ > 1                                                                        (20) 
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The details of the derivations are provided in Appendix A. 

Random Projections (RP) 

Random projections are mathematical techniques that show how a given 

vector’s dimension can be reduced by a random matrix. For instance, if a vector 

has a dimension of 𝑛 , 𝐯 ∈ ℝ𝐧,  then ∃  𝛑 ∈ ℝ𝐤×𝐧  for which the following 

inequality is true: 

(1 − ε)||𝐯|| ≤ ||𝛑𝐯|| ≤ (1 + ε)||𝐯||                                                      (21) 

The epsilon parameter, which is an estimate of the projection distance, is used 

to determine the close relationship between the original vector and the 

projection. This concept was first introduced by the Johnson-Lindenstrauss 

theorem in 1984 (William & Lindenstrauss, 1984). There has been a lot of 

research in this area, and one of the main goals is to find a way to create random 

matrixes suitable for different applications. 

To reduce the size of the data, random projections are used. In the case 

of n ≫ p, the goal is to reduce the n to k, where n > k > p and p is the number 

of variables. However, this method is not ideal for every case and is prone to 

error. For instance, if a reduction below the rank of X is performed, it can lead 

to a catastrophic loss. The term random projections are used to describe the 

process of sketching. In this thesis, the Johnson-Lindenstrauss (JL) theorem is 

applied in the random projections. In a Classical case, the loss function for 𝜷 

could be regarded as a vector. 

min
𝜷

∑(𝑦𝑖 − 𝑋𝑖.𝜷)2 = 𝑎𝑟𝑔 min
𝜷

||𝑌 − 𝑿𝜷||
2

2
𝑛

𝑖=1

                                      (22) 

This allows the values of the function to be recovered when multiple options 

are considered. A property that is desirable for various kinds of random 
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projections is that the computation of the goodness-of-approximation can be 

controlled by the parameter 𝛆. 

Epsilon-subspace Projection 

Consider a matrix 𝑈 ∈ ℝ𝑛×𝑝 with orthonormal columns, some integer, 

𝑘 ≤ 𝑛. Given an approximation parameter, 0 < 𝜖 ≤ 0.5, the epsilon-subspace 

projection for U is a function 𝜋:ℝ𝑛 − ℝ𝑘  such that (1 − 𝜀)‖𝑈𝑋‖2 ≤

‖𝜋𝑈𝑋‖2 ≤ (1 + 𝜀)‖𝑈𝑋‖2, ∀∈ ℝ𝑝. If 𝑝(𝜷|𝑿, 𝒀) is tractable, then the epsilon-

based posterior 𝑝(𝜷|𝝅𝑿,𝝅𝒀) will also be tractable. First, the big data set is 

projected onto a lower-dimensional subspace and then an appropriate statistical 

analysis is performed on the reduced data set. This helps to reduce the running 

time problem associated with MCMC techniques as well as the memory 

problem in the Classical framework in big data analytics. 

Some Theoretical Guarantees 

This thesis presents two methods that are commonly used for obtaining 

random projections in linear regression. The first is the Rademacher matrix 

(RAD), while the second is the Clarkson-Woodruff (CW) approach. The 

resulting sketches are linear. Instead of sketching the entire data set at a time, 

one can easily create subsets of the data set and then aggregate them into a single 

output similar to the original. This is especially useful when performing a quick 

analysis of several data sets in parallel. 

Most RP fails to provide the expected good-of-approximation. This 

occurs when the probability of failure (𝛿) increases. This is because the target 

number of observations (𝑘) is influenced by the failure probability. The good-

of-approximation is not held by the random projection method. It is merely a 

statistical approximation that can be slightly worse than the expected result. 
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Although catastrophic failures can happen, such as the failure of a computer, 

the likelihood of a meteor hitting the device is still higher if it hits the embedded 

data set. This study compares two different classical linear regression models 

and sketches the original data set. If the results of the analysis (𝛽) are not 

similar, a failure might occur. 

Rademacher (RAD) Random Projection Technique 

The Rademacher matrix is a simple form of sketching that takes into 

account the probability of every single cell sampled from {−1, 1}. Then, the 

matrix is multiplied by 
1

√𝑘
 to rescale it, which gives the sketching matrix, 𝛑. 

When choosing k = 𝐎(
𝐩𝐥𝐨𝐠(𝐩/𝛅)

𝛆𝟐 ), the failure probability is δ, and the error of 

projection is ε (Sarlos, 2006). This technique was first used to decrease the 

number of observations needed to get the lower bound. However, Clarkson and 

Woodruff (2009) proposed k = 𝐎(
𝐩+𝐥𝐨𝐠(𝟏/𝛅)

𝛆𝟐 ). 

Clarkson-Woodruff (CW) Random Projection Technique 

For the CW method, the matrix is scaled by multiplying it with 
1

√𝑘
, to get 

𝜋 =
1

√𝑘
𝜑𝐷. 𝐷 ϵ ℝn×n is a diagonal matrix. With equal probability, its elements 

are drawn from {−1, 1}.  φ ∈  ℝk×n is also a matrix of 0s and 1s. A random 

map, h, is used for the positions of the 1-entries. That is h: {1, . . . , n} →

{1, . . . , k}. For each i ∈ {1, . . . , n}. The image, h(i), is drawn from {1, . . . , k} 

with equal chance, 
1

𝑘
. The elements, 𝜑ℎ(𝑖),𝑖𝑖 = 1, . . . , 𝑛, are turned to 1. Any 

other member of φ is turned to 0. 
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The CW sketch could be used to apply any matrix in 𝐎(np) time. This 

is ideal for analyzing and sketching complex data sets. It also provides a small 

multiplicative factor when sketching data sets (Geppert, 2018). The target 

dimension of the sketch is k = Ω(p2). Nevertheless, with a probability of 1 − δ 

and k = 𝐎(
p2

ε2δ
) , a good ε -subspace embedding is guaranteed (Nelson & 

Nguyen, 2013).  

The two main methods used to sketch the data set were RAD and CW. 

The former could be faster than the latter, as it takes into account the number of 

entries in the set. With the latter on the other hand, the number of variables 

affects the size of a sketch. This is also why the number of variables in a given 

sketch affects the overall size. Although CW could generally be faster than RAD 

when it comes to creating sketches, it can also be affected by the size of the 

target dimension. 

The selection of a sketching method is influenced by the size of the data 

and desired time to obtain the sketch. This is relevant for frequentist linear 

regression. For instance, if the data set is large, the MCMC algorithm’s running 

time can be affected by the size of the data set. If a quick analysis is a focus, 

then a small target dimension is required. These are ideal for applications in 

distributed systems. For instance, a 𝑘 dimension is not dependent on 𝑛, and can 

be easily used in a distributed environment. 

Although the sketches can handle certain types of cases where 𝑘 > 𝑛 is 

an important difference, they can also be affected by situations where the data 

set is being distributed in parallel or batches. For instance, in a streaming 

situation, the data set may be larger than the sketch since 𝑘 is independent of 𝑛. 

The results of both methods are controlled by the approximation error 
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parameter. For instance, if the 𝜺 values are larger than the original results, then 

the smaller the data set is the larger error. On the other hand, if the values of 𝜺 

are lower than the original results, then the larger the data set is. Table 1 

provides a comparison of the two random projection techniques. 

Table 1: Comparison of the Two ε-subspace Projections 

   Technique           Target Dimension       Running Time     Handles 𝑘 >  𝑛 

     RAD                       𝑶(
𝑝+ln(1/𝛿)

𝜀2
)                   𝐎(npk)                         Yes 

     CW        𝑶(
𝑝2

𝜀2𝛿
)        𝐎(nnz(X)) = 𝐎(np)       Yes 

Source: Geppert (2018) 

As shown in Table 1, the target dimension k, or the ε-subspace embedding 

function, depends on the number of 0s in X and the time it takes to get it. The 

failure probability is expressed in terms of the non-zero entries in X. 

Implementation of Methods 

The R package RaProR was used. The RaProR makes it easy to set the 

target dimension, k, of a random projection without having to specify a 

projection error value, 𝜀. This is a significant trade-off in the Bayesian case. The 

lower the target value, the larger the approximation error. If the goal is to get a 

result as quickly as possible, a larger value of the projection error can lead to a 

higher reduction in the accuracy of the approximation, while a lower value of 

the projection error can provide a better approximation. 
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The Merge and Reduce (M&R) Principle 

The M&R approach consists of the following steps that are carried out 

repeatedly: 

1. Batching data using the appropriate procedure 

2. Reading in blocks of data 

3. Conducting statistical analysis of the current block of data 

4. Sufficient statistics that summarize the analysis are stored 

5. Merging models following a tree structure while ensuring their 

complexity does not increase. 

Figure 1 illustrates how the principle of Merge and Reduce was applied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Principle of the Merge and Reduce Method 
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Before implementing the Merge and Reduce technique, it is important 

to specify the number of observations that will be made per block, 𝑛𝑏 . In 

streaming setups, the total number of observations and blocks may not be known 

beforehand. However, since memory requirements are also taken into account, 

n ≤ nbB . Every model in our implementation summarizes the results of 

statistical analysis. It also contains some meta-information: the model level and 

the sample size it takes to make a model work.  

The data is read block-wise until it reaches the desired number of 

observations. A model is then built on that block of data, and once the model 

has been created, the data is deleted. This happens whenever large sample sizes 

are recorded in streaming contexts. Models are then merged with another model 

after the relevant information has been passed to the next level. This ensures 

that the space for storing observations is always maintained. On the other hand, 

to keep the models, the memory required is only computed based on the number 

of blocks to be analyzed, 𝐎(ln (
n

nb

)). Two models with the same level are 

merged when two of them become available. For instance, if 𝑀2 is stored, then 

𝑀1 and 𝑀2 will immediately merge to form 𝑀3. However, since they are on 

different levels, 𝑀4 is not merged with 𝑀3. When 𝑀5 is calculated, then 𝑀6 

becomes 𝑀7. The process of merging two different models is not considered 

problematic if the appropriate weight is used. After the two models are merged, 

the complexity of the new model is reduced to prevent it from increasing.  
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Merge and Reduce (M&R) Approaches 

In this section, the Classical and Bayesian Merge and Reduce techniques 

are discussed. The merge step involves merging the models, while the reduce 

step ensures that the complexity of the model does not increase.  

Classical Merge and Reduce Approach (M&R 1) 

In the Classical Merge and Reduce approach, the parameter estimates 

and standard errors were used as summary statistics. A Classical regression 

model is typically characterized by the use of parameter estimates and standard 

errors. In most cases, the standard error could be used for both the linear and 

generalized models. The estimate of the change in the jth variable is very 

important for predicting the effect of the variable. The standard error is used to 

determine whether the variable impact on a given set of values is distinguishable 

from zero. This helps to retrieve important details about the original model. Our 

first step in the Merge and Reduce approach 1 is to take the weighted mean of 

the various summary values. Given the vectors, 𝑆𝑖−1 and 𝑆𝑖, of summaries for 

models 𝑖 − 1 and 𝑖 respectively, the merged vector, 𝑆𝑚&𝑟 is thus obtained using 

Equation (18). 

𝑆𝑚&𝑟 = 𝑤𝑖−1𝑆𝑖−1 + 𝑤𝑖𝑆𝑖                                   (23) 

The weights, 𝑤𝑖−1 and 𝑤𝑖, are given by 𝑤𝑖−1 = 𝑛𝑏,𝑖−1/(𝑛𝑏,𝑖 + 𝑛𝑏,𝑖) and 𝑤𝑖 =

𝑛𝑏,𝑖/(𝑛𝑏,𝑖−1 + 𝑛𝑏,𝑖) with 𝑛𝑏,𝑖−1 and 𝑛𝑏,𝑖  as the number of observations upon 

which the two models are built respectively. The merge step ensures that the 

model does not get too complex. The reduce step automatically adds value to 

the final model after merging. The merge step ensures that the model becomes 

overly complex, and the reduce step automatically adds value to the final model 

after the merge. 
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Bayesian Merge and Reduce Approach (M&R 2) 

The Bayesian Merge and Reduce models used some characteristics of 

the posterior distribution as summary statistics. The M&R 2 was used to 

estimate the posterior distribution of Bayesian linear regression models. The 

statistics were chosen carefully so that they provide an accurate representation 

of the distribution. Several useful and reasonable solutions can be found to the 

problem of estimating the posterior distribution of a given model. In this study, 

the mean, median, 2.5% and 97.5% quantiles, as well as the MCMC sample are 

used as summary values. 

S = (�̅�1, . . . , �̅�𝑑, �̃�𝑢,1, . . . , �̃�𝑢,𝑑, s1, . . . , sd)                                               (24) 

where u ∈ {0.025, 0.25, 0.5, 0.75, 0.975}  denotes the posterior quantiles 

considered.  

The number of observations that the models make is used as the weights 

for the final model. In the case of the frequentist case, every observation is taken 

into account to ensure that the final model is equal to its importance. In the 

Bayesian situation, some correction factors are needed. The standard deviation 

is used for the posterior distribution. The same procedure is used for the 

standard error. The posterior standard deviation is then divided by √⌈
𝑛

𝑛𝑏
⌉. Thus, 

standardization is required, as shown in Equation (21). 

𝑆𝑢,𝑗
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑆𝑢,𝑗 − �̅�𝑗

√⌈
𝑛
𝑛𝑏

⌉

+ �̅�𝑗                                                                       (25) 

For quantiles considered to be measures of dispersion, the posterior mean is 

subtracted from the equation. The correct quantile is then computed by 

introducing the correction factor. 
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Some Properties of the Merging Technique 

In this section, some properties of the merging approach are reviewed. 

Given a non-stochastic matrix, X with rank p, the values of X are realizations 

from some arbitrary random distribution with expected value  −∞ < μX < ∞ 

and variance σ
X

2
> 0. For linear regression models, as the standard least squares 

estimator �̂� is unbiased for every block b = 1, 2, . . . , B. That is E(�̂�𝑏) = 𝜷. 

This thesis provided an unbiased estimate of the true values of various 

parameters 𝜷 using a merging approach. 

The variance-covariance matrix of the estimator is computed by taking 

into account the different values of X. The principal diagonal matrix shows the 

variances for every estimate, 𝛽𝑗  𝑗 = 1, 2, . . . , 𝑝.  The 𝑗𝑡ℎ  component has a 

variance, Var(𝛽𝑗) = σ2(X′∙JX ∙J)
−1 . Although 𝜎2  is an unbiased estimator, its 

block-wise counterpart, Var(𝛽𝑗
𝑏), may not be as accurate as its counterpart, 

Var(𝛽𝑗). This is because the difference between the two is due to the difference 

in the respective version of (𝑋′∙𝐽𝑋 ∙𝐽). The X is non-stochastic, and its entries 

are derived from the distribution, (𝜇𝑋, 𝜎𝑋
2
) . The 𝑛  and 𝑿′𝑿  are positively 

related. On the other hand, the elements of the secondary diagonal are slower 

than those of the primary diagonal. Hence, the primary diagonal of (𝑿′𝑿)−𝟏 and 

n are negatively related. 

The estimation of the variance of a block is often biased if the previous 

summary statistics are used to merge it. For most blocks, the estimated variance 

is around 
𝑛𝑏

𝑛
. However, for the last block, the expected variance is higher due to 

the presence of fewer observations. This block then has a lower weight, which 
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makes the variance overestimated by ⌈
𝑛𝑏

𝑛
⌉ . To avoid overestimation, the 

summary statistics that represent standard deviations should be divided by the 

overestimated factor, as shown in Equation (21). 

𝑆
𝑚&𝑟
∗𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑆
𝑚&𝑟
∗

√⌈
𝑛𝑏

𝑛 ⌉

                                                                                  (26) 

where 𝑆
𝑚&𝑟
∗  denotes standard errors. If they are not corrected, the variance 

would be significantly higher, which would lead to a conservative approach to 

the selection of variables. The procedure can be used to estimate the results of 

a given model based on the estimates of its standard errors and its regression 

coefficients. 

Generalized Linear Models (GLMs) 

The ability of Y to follow different distributions is a key feature of the 

GLM framework. The functions of the design matrix X and vector 𝜷 remain the 

same. The assumptions concerning them are also the same. The link between 

𝑋𝛽 and 𝑌 is established using a function, g. The 𝐸(𝑌) is computed by taking 

into account 𝑋𝛽. The result of this function is a general formulation of a GLM, 

as shown in Equation (22). 

g (E(𝒀)) =  𝑿𝜷                                                                                          (27) 

A GLM is a type of model that takes into account the elements of 𝒀 and 

then produces a linear regression model, a Poisson regression, or a logistic 

regression. In these cases, the link between the elements of 𝒀 and the 𝑿𝜷 is an 

identity function. In the simulation study, a generalized linear model (Poisson 

model) was examined. When performing the regression analysis on the real 

data, the link function was applied. 
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Application of Methods 

This section presents the application of the selected techniques on both 

simulated and real data. 

Data Simulation and Models 

A simulation study was performed to analyze the applicability and 

appropriateness of the different methods in linear regression analysis. Table 2 

shows the various parameters used in the simulation study. 

Table 2: Overview of Simulated Parameters 

Sample Size (n)    Number of Variables (p)   Error Term Standard Deviation (σ) 

50,000   50     1 

100,000   100     2 

500,000         500    5 

1,000,000          1,000    10  

Source: Researcher’s Construct (2021) 

The data set's dimensions play different roles in the selection of optimal 

settings. The number of variables, p, can significantly affect the number of 

observations, k. But, the number of data points, n, is not dependent on variables, 

p. These two parameters are used to confirm the reduction of observations. The 

model's fit to the data set is also considered when it comes to the estimation of 

the good approximation. This parameter is included as a parameter in the 

model's design. All the simulated datasets were appropriate since they were 

based on the true model. However, it could be observed that there are some 

differences among the patterns exhibited by the datasets. This is due to the 

settings considered for the variance parameter, 𝜎2. The values of 𝛽 were set to 

zero with a probability of 0.5. They were sampled from a Poisson distribution 

having a rate of 3. These values were chosen to ensure that the Poisson 
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distribution is not inflated. To examine the effects of negative influences on the 

model, all components were multiplied by -1. The values in every column were 

then drawn from a demeaned normal distribution with a standard deviation of 

25. A column of 1s was then used to model the intercept term. The 𝜼 values 

were sampled from 𝑵(0, σ2). 𝒀 was computed as Y = Xβ + 𝜼. 

A Bayesian model is a statistical method that uses a standard likelihood  

to estimate the likelihood of a given outcome. 𝒀  is assumed to follow a normal 

distribution, 

            𝒀~𝑵(𝑿𝜷, σ2𝐼n)                                                                                         (28) 

In the prior distribution, an improper uniform distribution was used for both 𝜷 

and 𝝈𝟐. This led to a posterior distribution, which is proportional to its original 

distribution. 

p(𝐘|𝐗𝜷) ∝ L(𝜷|𝐗, 𝐘) ∙ 1p                                                                        (29) 

The proper posterior distribution is provided by L(𝜷|𝐗, 𝐘), which ensures that 

the information in the data is sufficiently large to minimize potential challenges 

associated with a large data set. 

Software and Packages Used 

All the simulations and real data analyses in this thesis were conducted 

using the R statistical software. Some standard R software packages were used. 

The Bayesian regression analyses were performed by utilizing the R package 

rstan. The sketches were calculated using the R package RaProR. The Merge 

and Reduce principle was implemented using the mrregression R package. All 

the R packages used in this thesis were downloaded from the Comprehensive R 

Archive Network (CRAN) website. 
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Work Station 

The simulations were conducted on an Apple MacBook Pro with Intel(R) 

Core(TM) i5-2435M CPU running at 2.40GHz using 4 GB RAM on a Windows 

10 Home Operating System. The stan function from the rstan package was used 

to fit the Bayesian linear regression models. The stan function takes into account 

the various constraints of a Bayesian model and returns a set of models that are 

based on the No-U-Turn Sampler. The default settings were then used to run 

parallel chains. 

Chapter Summary 

The chapter has reviewed some techniques that are considered suitable  

for the regression analysis of big data. The techniques include the Merge and 

Reduce, a technique mainly used in data structures in Computer Science and 

some Random Projection methods, as well as their underlying assumptions and 

theoretical guarantees. The random projections are used to perform a pre-

processing step before the analysis is performed by randomly projecting high-

dimensional input data onto a low-dimensional sub-space with the pairwise 

distance almost preserved. The M&R technique enabled us to perform 

regression analysis on the whole big data by dividing the big data into blocks 

and performing the analysis on each block, after which the respective models 

are merged to obtain one model for the whole data. The chapter has also 

reviewed some computational methods, including MCMC techniques and 

Bayesian estimation of linear regression parameters, as well as the Euclidean 

distance. It is expected that the two techniques would make MLR analysis of 

big data more efficient in both the Classical and Bayesian settings. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

In all, 32 data sets were generated in our simulation study, one for each  

of the possibilities listed in Table 2 in Chapter Three. On each set of data points, 

a Bayesian linear regression analysis was performed to get the results for the 

original data set. Nevertheless, because of resource constraints, most of 

the analyses succeeded for most of the simulated data sets. Reduced data sets 

were created for each original data set using the Rademacher (RAD) and 

CW Random Projection techniques. Random projection error, 𝜀, values of 0.1 

and 0.2 were used which resulted in four reduced data sets for each simulated 

data set. The Bayesian linear regression analysis results for the reduced data sets 

were compared to the actual values of 𝛽. The results of the Bayesian linear 

regression analysis were compared with those of the original data sets. 

Comparing the Running Times 

First, a basic simulation experiment was performed to determine how 

long a Bayesian linear regression model takes to converge as the number of 

observations, 𝑛 , increases. The running times used for various numbers of 

observations, 𝑛ϵ [50, 50,000]  with the number of variables, p, set at 52 as 

shown in Figure 2. 
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Figure 2: Running Times for Bayesian Linear Regression Models  

From Table 2, the analysis running time appears to be linearly 

proportional to the number of observations, with rare leaps. The running time 

for 50 observations appears to be an outlying observation, which could be that 

the number of variables exceeded the number of data points. The dependence 

on the number of observations seems unproblematic for medium and small data 

sets. But in big data situations, only approaches with a sublinear dependence on 

the rising dimensions scale adequately and remain practicable (Cormode & 

Muthukrishnan, 2005). This shows the importance of projecting big data on a 

lower-dimensional subspace. Theoretically, doubling the number of data 

points should affect just the required time to obtain the sketched data set, but 

not the time needed to perform linear regression analysis on the sketched data 

set. Both embedded data sets are identical in size. Considering the condition at 

hand, when the linear regression analysis takes most of the total running time, 

doubling the number of data points has a negligible impact.  
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Table 3 shows the target dimensions, k, of the RP methods for various 

numbers of variables and projection errors. The required dimensions are 

functions of the number of variables, p, and the desired level of accuracy of the 

approximations, ε. 

Table 3: Target Dimensions for the Random Projection Techniques  

         P       ε               RAD                 CW 

   52             0.1    20547     16384 

   52     0.2    5137     4096 

  102     0.1    47175     65536 

  102     0.2    11794     16384 

Source: Researcher’s Computation (2021) 

Appendix B summarises the running times by grouping them into 

“Preprocessing” and “Analysis” times. The “Analysis” running time shows the 

amount of time used to approximate a Bayesian linear regression model which 

converged, given the data sets. The time used for “Preprocessing” varies across 

the original and the sketched data sets. For original sets of data, the number 

represents the time used in reading and loading the data set into the 

working memory. For the sketched data, the number indicates the time 

used in constructing the projected data sets. The running time needed for the 

Bayesian linear regression analysis was computed by summing the times spent 

reading and embedding the data sets. It then comes up with a convergent model 

that takes into account all of the reduced data sets. 

Figure 3 shows the running time for various sample sizes and the number  

of observations. The figure also reflects the consequence of doubling the sample 

size on the running time.  
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Figure 3: Total Running Times in Minutes  

The running times presented for the original data set contain time spent reading 

and analyzing the data. In both the RAD and CW sketching techniques, the 

sketching time is added to the running time. Once the sample size is increased 

from 50,000 to 100,000, the overall running time more than doubles from over 

600 minutes to over 2,000 minutes. The running time of the RAD and 

CW sketches exhibits no discernible pattern. Whereas the running time 

needed for embedding doubles for both techniques, that of the Bayesian linear 

regression analysis exhibit only a few minor deviations that appear to be 

random. The running time for the Bayesian linear analysis is higher than 

that for reading and sketching. Hence there seems to be no clear systematic 

impact. The overall running time for the embedded data sets includes the time 

spent reading, sketching, and approximating the linear regression model. 

The time for sketching for the original data is 0 because this step is not 

applicable in this condition. 
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Comparing the Posterior Means 

Table 4 shows the Euclidean distances between the posterior means of the true 

data sets and the sketches. 

Table 4: Euclidean Distances Between Posterior Means of the 

Approximated and the Actual Models 

     𝑛         Sketch       𝜀    𝜎 = 1            𝜎 = 2            𝜎 = 5    𝜎 = 10 

             Squared Euclidean Distances 

5 × 104         RAD    0.1     0.052          0.025         0.021      0.834 

5 × 104         RAD    0.2     0.014          0.781         0.892      1.512 

5 × 104         CW    0.1     0.025          0.004         0.021      0.195 

5 × 104         CW    0.2     0.016 0.040         0.156      0.915 

1 × 105         RAD    0.1            0.836      0.958 

1 × 105         RAD    0.2                       0.061      0.777 

1 × 105         CW    0.1                       0.056      3.844 

1 × 105         CW    0.2                       2.624      2.937 

Source: Researcher’s Computation (2021) 

The mean values of the posterior distributions on both embedded and 

actual data sets were compared. It was found that the values of β differed in 

some cases. The sum-of-squares Euclidean distances increase proportionally to 

the error term's standard deviations. There appear to be no 

consistent performance differences between the two Random Projection 

techniques. With greater ε, some distances increase, although this is not at all 

times. Some numbers are missing from the linear regression models due to the 

failure of the models to converge in a reasonable time. Additionally, the 

posterior mean values were compared to the true mean values.  
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Table 5 presents the squared Euclidean distances between the actual mean and 

the standard deviations in 52 variables. 

Table 5: Squared Euclidean Distances Between True Mean Values and 

Posterior Means of Models Based on the Sketches 

   𝑛           sketch           𝜀         𝜎 = 1       𝜎 = 2        𝜎 = 5         𝜎 = 10 

                                                   Squared Euclidean Distances 

5 × 104          none          0.000        0.003       0.065  4.614 

5 × 104          RAD     0.100       0.048  0.016       0.124 1.718 

5 × 104          RAD     0.200       0.012  0.710       0.506 10.845 

5 × 104 CW     0.100       0.022  0.011       0.046 6.474 

5 × 104 CW     0.200       0.014  0.056       0.089 1.870 

1 × 105 none                      0.065 0.035 

1 × 105 RAD     0.100       0.007  0.031       1.354 0.679 

1 × 105 RAD     0.200       0.033  0.009       0.117 0.579 

1 × 105 CW     0.100       0.004  0.232       0.022 4.496 

1 × 105 CW     0.200       0.011  0.072        3.484 3.473 

5 × 105 RAD     0.100       0.009  0.223        0.563 12.920 

5 × 105 RAD     0.200       0.045  0.322        1.729  0.658 

5 × 105 CW     0.100       0.027  0.097        1.305  0.153 

5 × 105 CW     0.200       0.050  0.009        0.135 3.579 

1 × 106 RAD     0.100       0.001  0.016        0.126 3.967 

1 × 106 RAD     0.200       0.080  0.011         0.072 1.357 

1 × 106 CW     0.100       0.002  0.289         1.202 4.445 

1 × 106 CW     0.200       0.003  0.047         0.100 0.395 

Source: Researcher’s Computation (2021) 

The overall result appears to be consistent with the findings in Table 5. While 

the original model consistently has the lowest squared Euclidean distances, the 

linear regression models based on sketched data sets are occasionally more 
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accurate. Thus, no consistent difference appears to exist between the 

projection techniques. With some assuming lower values as the sample size 

increases, the squared Euclidean distances seem unaffected by the value of the 

sample size. 

Comparing the Fitted Values 

Having made some parameter-level comparisons, where the number of 

parameters is unaffected by projecting, the linear regression models concerning 

the number of observations where the sketched data sets contain a proportion of 

the original data points were compared. The mean vector of 𝛽, which is derived 

from the data set or the sketch, is used to multiply X to determine the accuracy 

of the approximation in the response space. The scatterplot in Figure 4 shows 

two-dimensional estimates of the kernel densities derived from the data sets. 

 

 
Figure 4: Scatterplot of Fitted Values Using the Original Data Set  

Although the data sets used for the fitted values are prone to errors, all of them 

are close to the dividing line, which shows that the models are similar in terms 

of their fitted values. The darker shades of black represent the presence of more 

observations. Figure 5 presents the distances between the fitted values to 

provide a better overview of both RP techniques. 
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Fitted Values 

Figure 5: Fitted Values Based on the Original and Approximated Models 

Each of the four sets of distances is clustered around the zero line. The boxplot 

reveals the effect of the goodness of approximation value; the variability is 

greater for ε = 0.2, independent of the random projection method used. Given a 

fixed ε, both sketching techniques produce almost the same results. The RAD 

technique is more variable than the CW method when it comes to sketching. 

This is because the former uses more variability while the latter uses more 

control. 

The results of our study indicate that the RP techniques can sufficiently 

recover the posterior means. The study also shows that the observed variations 

in the data set are not significant. The posterior predictive distribution is 

appropriate for updated information.  Compared to the posterior distribution, 

the posterior predictive distribution incorporates additional variability to 

account for the uncertainties in predicting unknown data. 

Comparing the Posterior Distributions 

A Bayesian model is a statistical model that takes into account the whole 

posterior distribution of a given parameter. In Figure 6, two boxplots show the 
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distributions of these models for two Parameters 𝛽11 and 𝛽22. The number of 

observations is 50,000. 52 variables and a standard deviation of 5, as well as 

their respective sketches, were used. 

 

Figure 6: Boxplots of MCMC Samples for 𝜷𝟏𝟏 and 𝜷𝟐𝟐 

The medians of the MCMC samples are well represented by the sketches. No 

systematic biases were found. The introduction of additional variation does not 

seem to affect the sketching techniques. 

One of the most common tasks in a regression analysis is identifying 

important variables. This can be done through variable selection, which can be 

performed in a Bayesian setting. The results of this study indicate that the 

accuracy of this process can be achieved through the use of the methods under 

study. One should take into account the additional variation that can be found 

in the variable selection process.  

Streaming Big Data 

Most of the simulations in the study are focused on the size of the data 

sets. This allows them to perform a quick analysis of the original data set, but it 

precludes the analysis of large data sets. To solve this issue, a big data 

simulation was conducted. In this simulation, some data sets were created based 

on the rules described in Chapter Three. The data set's dimensionality is 
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109 × 100, and every entry has a double-precision value. This means that it 

requires at least 750 GB of RAM to perform the analysis. 

In a format of comma-separated values CSV, the sketched data set has a 

dimension of 65,536 × 100. It can easily fit into the working memory of a 

computer. It took 2,781 minutes to perform a Bayesian regression analysis on 

the data. Although the result of the analysis is not the same as the one shown in 

the sketch, the distances between the β values and the posterior means are small. 

The random projection and reading of the data set only add a small 

multiplicative element to the running time of the analysis. The interval [1.01, 

1.04] was the optimal range for small data sets. On the other hand, lower factors 

were typically observed for large data sets. 

Analysis of Empirical Big Data Using Random Projection Method 

In addition to a simulation study, some linear regression analyses were 

performed on a real data set that contains the number of bikes rented in the 

United States of America (USA), Washington. The data was sourced from a 

repository created by Fanaee-T and Gama in 2014. It consists of 17379 hours 

of observations. The variables used to determine the hourly number of rented 

bike users are put into registered and casual bike users. In our model, the total 

number of bike users is regarded as a count variable. A square root transform 

reveals that this variable is bi-modal. However, it also fits linearly well to a 

normal distribution. 

Table 6 contains some information about the real data. The data set used 

for this analysis includes three standardized variables: apparent temperature, 

wind speed, and humidity. 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 
65 

Table 6: Variables in the Real Data Set 

Variable       Description          Remark 

cnt.    Number of rental bikes  Response variable 

season    Seasons in the year   4-level factor 

yr.    Year 2011 or 2012   2-level factor 

hour    Hours from 0 to 23  24-level factor 

holiday   Public holiday   2-level factor 

weekday   Week days     7-level factor 

weathersit.   Weather situations  3-level factor 

atemp.    Apparent temperature  Standardized 

hum.    Humidity    Standardized 

windspeed   Windspeed    Standardized 

Source: UCI Machine Learning Repository (Geppert, 2018) 

The other variable that was excluded when it comes to the weathersit is the 

apparent temperature. This is because the data set had a lot of these factors, 

which are highly correlated with the model. The variable had 4 levels, namely 

heavy rain, light rain, clear and cloudy. The final variable that was excluded 

when it comes to the weathersit is the apparent temperature. It appears thrice in 

the data set. The third and fourth levels were joined to get rainy weather as the 

new level 3. 

To create the correct design matrix for the various factor variables, 

intercept and dummy variables were introduced. The design matrix has a 

dimension of 17379 ×  40. Small sample sizes cause the embedded matrix to 

be larger than the original design, given an approximation error of 0.1. For the 

RAD and the CW sketches, approximation errors of 0.15 and 0.20 were chosen 

respectively. This resulted in the 6767 and 3807 observations for the reduced 
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data. For the various CW-sketched data, k is used to represent the target 

dimensions. 

Table 7 shows the sketch sizes for the real data given the sketching 

method and the approximation error. 

Table 7: Sample Sizes of the Sketches  

P   𝜀    RAD     CW 

40   0.15     6767    8192 

40   0.20   3807   4096 

Source: Researcher’s Computation (2021) 

In Chapter 3, how to check the accuracy of the results of the projected data sets 

against those of the true data set was discussed. This method is similar to the 

one used in Table 8. The distance between the sketched models and that of the 

true models is shown in Table 8. 

Table 8: Sum of Euclidean Distances Between Posterior Means of the 

Original and Recovered Models  

𝜀     RAD    CW 

0.15     1.790     0.907 

0.2     6.511     1.657 

Source: Researcher’s Computation (2021) 

The difference between the projection errors of 0.15 and 0.20 for the 

RAD sketch is high, while the other sketching method does not increase as much 

when the projection error increases. The CW method offers the lowest square 

distances, which may be why the number of observations made using the CW 

technique is higher when compared to the RAD method. 
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The values in Figure 7 are shown in terms of their original and approximated 

models. They are then fitted using the data set X. 

 
Figure 7: Difference in Fitted Values Based on Original and Reduced Models 

The boxes are the smallest sizes for the CW sketches when a constant projection 

error is kept. The values for 𝜀 =  0.15 and 𝜀 =  0.20 are close to zero, while 

those for RAD sketches are different. For instance, some fitted values for 𝜀 =

 0.15  are more than 1. The effect becomes clearer as the data set’s target 

dimension grows. The highest values could be observed when the number of 

bikes increases. Hence, the differences between the values for the RAD sketches 

are low. 

The boxplots of the MCMC sample show the distributions of the 

variable weathersit. They are based on the original and sketched data sets. The 

reference category for this variable is clear weather: partly cloudy or sunny. 
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Figure 8: Boxplots of MCMC Samples for the Weather Parameters  

According to the data set, about 66% of the hours feature a weather 

condition in category 1. 25% of the time, it is cloudy weather, while 6% are rain 

and cloudy weather. On the other hand, the number of rental bikes is not 

significantly different between clear and cloudy weather. The 95% credible 

interval of both the original and approximated linear model does not include 0, 

which is a concern when sketching. This means that a variable's credible interval 

could be zero in a model when the data set's original interval is close to zero. 

The negative effect of the weather situation is shown in Figure 8. It can 

be seen that the results of the analysis are close to those of the original data set 

when the weather gets worse and there are thunderstorms. The influence of the 

parameter ε  is also important. It introduces additional variability in the 

distribution. On the other hand, the sketching method seems to have a noticeable 

effect. 

Linear Regression Analysis of Simulated Big Data Using the Merge and 

Reduce Method  

The results of the simulation study are presented for the Merge and 

Reduce method. They show that the models performed well in linear and 

Poisson regression models. Two different measures are then used to evaluate 
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the performance of the approximated linear models. The first measure is the 

square of the distance between the estimates of the models, which are based on 

the M&R process. The second measure is used to evaluate the standard 

deviations of the models. It takes into account the recovery of the standard 

deviation through the Merge and Reduce techniques. 

Results of Linear Regression Analysis for the Classical Merge and Reduce 

Approach 

In Figure 9, the boxplots display the Euclidean distances between the 

original models and the approximated models used in the simulation using the 

Merge and Reduce technique 1. 

 
Figure 9: Boxplots of Euclidean Distances Between Simulated Regression 

Models 

Subfigure (a) has all the squared Euclidean distances. For subfigure (b), the 

outliers are excluded. The Merge and Reduce approach is useful in performing 

frequentist linear regression or analyzing the posterior distribution in a Bayesian 

case. Figure 9 shows how well the method recovers the original estimate of the 

original variables. 

Subfigure (a) shows the values of the squared Euclidean distances, 

which were computed in the simulation study that included various parameter 

settings. The box on the left shows the outliers. Subfigure (b) displays only the 
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box and whiskers of the distances. Out of the total values obtained, 75% of them 

are between 0 and 0.0006. On the other hand, the median squared Euclidean 

distance is very low, at around 0.00002. Observations that are outside the box’s 

interquartile range are considered to be outlying. 

A further look at quantiles shows that the original linear model does not 

account for the significant differences between the observed and proposed 

square-shaped distances. Table 9 shows some of the selected quantiles of 

squared Euclidean distances that are obtained from the Classical Merge and 

Reduce models. 

Table 9: Quantiles of the Euclidean Distances Between Parameter 

Estimates  

Quantiles   Min.    50%       75%       90%  95%      97.5%    99%    Max 

𝑒2           0.0000   0.0000   0.0006   0.0100   0.0355   0.0870   0.2956  4.4287 

Source: Researcher’s Computation (2021) 

For most simulation settings, the Merge and Reduce technique accurately 

approximates the results of the true linear model. The squared Euclidean 

distance is also lower in many settings. 

In Figure 9, subfigure (a), it can be seen that there are three different 

cases where Euclidean distances are more than 1: error variance of 100, 400 

variables, and block size of 200 data points. In most cases, the associated 

distance is not high enough to make these settings necessary. Other factors such 

as high error variance and a low number of observations are also taken into 

account to determine the optimal settings. If a large data set is divided into 

smaller blocks, there would be a shift from the model’s true design. This is 

because the variance of the error term can be high. An observations-per-variable 

ratio between 10 and 20 depending on continuous response variables is 
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recommended. Harrell (2001) notes that models having lower than normal ratios 

of observations per variable are unreliable. This is because their predictive 

performance for a new observation is low. The simulation study conducted on 

this issue revealed that the use of the Merge and Reduce approach improves the 

reliability of linear models. 

In Figure 10, it is shown that the decision regarding the optimal ratio 

between block size per variable and the squared Euclidean distance is the 

determinant. It can be seen that the values of the squared Euclidean distances 

are higher if the ratio of blocksize to a variable is 2, while the distances decrease 

for a blocksize to a variable ratio of 4. The results of the study suggest that for 

blocksize to the variable ratio between 10 and 25 inclusive, the squared 

distances may be high than 0.1, but for a ratio greater than 25, no deviations 

were observed above 0.1. The reason why the error term variance is important 

is that it increases the likelihood that there would be higher squared distances 

between the two models. Even with the highest error term variance of 100, low 

squared distances are observed. The data set did not suggest that the number of 

observations affects the distance between the two models. 

In most cases, the distance between the estimated intercept and the 

actual intercept is the determinant of the squared Euclidean distances. This is, 

in fact, the case in which the square Euclidean distance is the highest. 

Surprisingly, the influence of the intercept on squared Euclidean distance is not 

related to the number of variables. Considering the artificial data set with 200 

variables, the proportion of Euclidean distances influenced by the intercept term 

is greater than 0.8. Utilizing only the estimates of each variable generates lower 

distances, of which 0.107 is the maximum value. In Figure 10, the effect of 
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block size per variable on the squared Euclidean distance is shown for Merge 

and Reduce approach 1 

 
Figure 10: Scatterplot of the Influence of Block Size Per Variable on Euclidean 

Distances  

After examining the difference between the two estimators, the 

estimated standard errors are considered. The data are drawn as transparent 

points. The black area represents many data points at one location, while the 

grey points represent single observations. To make the correct standard error 

factor, all of the variables are considered. The standard errors tend to behave 

uniformly for the intercepts and variables. 

Subfigure (a) displays the corrected error values for all the simulation 

settings. The peak value of the kernel density estimate for the errors peaked at 

1. However, the corrected standard error values for some settings are higher 

than the estimated standard error. This is because the expected standard error is 

higher in these settings. To gain a better understanding of this issue, the split 

between the values of the corrected standard errors and blocksize per variable 

is used to estimate the true value of the error. 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 
73 

The corrected error factors,  𝑓𝑠𝑒
𝑚, are shown in Figure 11. They are used in all 

simulated settings of the Merge and Reduce approach 1. 

 
Figure 11: Adjusted Standard Error Factors for Simulated Data  

Concerning the number of variables, subfigure (b) reveals the influence of the 

block size. There is a negative relationship between the values of the block size 

per variable and the corrected standard error factor, as the latter tends to be close 

to 1 for a high block size for each variable. As the block's size decreases, the 

value of the corrected standard error factor increases. Some values of the 

corrected standard error factor below 1 are not integer-valued. For instance, if 

the ratio of the sample size to block size is not an integer-valued number, then 

dividing by such ratio is a slight overcorrection. As a result, the significance of 

the variables is more important than the p-values of the associated t-tests. The 

values of the adjusted standard error factor are close to 1. This means that for a 

corrected standard error value of  0.9876, the estimated errors are 1.24% lower 

than the original model. 

The squared distance between the estimate and its approximate estimate 

is analyzed using the corrected standard error factor. This shows that the quality 

of the estimate depends on the block size per variable. The estimated standard 
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errors for block size per variable of fewer than 10 observations are typically 

inflated by around 5% to 40%. If the inflation is less than 2.5%, then the value 

is considered acceptable, which is 20 observations per block for each variable. 

In the case of the corrected standard errors, the various variables and intercept 

behave similarly concerning every entry. On the other hand, the error term 

variance does not seem to have any effect on the computation. 

The standard error factor used in the model reconstruction helped to 

recover the estimated effects of the true models. However, if the number of 

observations is high enough, the estimated errors increases. This is because the 

intercept is distant from the original model's estimate. A minimum block size of 

20 observations per variable must be maintained. 

Results of the Linear Regression Analysis for the Bayesian Merge and 

Reduce Approach 

In the Bayesian framework, the artificial data used in the Classical 

framework was employed. In the MCMC sample, the results of the measure of 

location returned by the method were examined. The difference between the 

median and the posterior quantiles is also corrected. The distance between the 

posterior medians and the mean values of the simulations is shown in Figure 12. 

The distance between these values is computed using the Merge and Reduce 

technique 2 as well as the true Bayesian models. 
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Figure 12: Squared Euclidean Distances Between Posterior Medians  

The distance between the Euclidean distances and the posterior medians 

is studied in the simulation study that uses the Bayesian model and the Merge 

and Reduce approach 2. In the frequentist case, the values of Euclidean 

distances are found to be below 4. Subfigure (b) shows that the difference 

between the Merge and Reduce model, and the original model is not as large as 

it would appear in the frequentist case. The 95% quantile of squared Euclidean 

distances is also very small. In most of the simulations, the differences between 

the two models are very small. 

The plot in Figure 13 shows the distance between the posterior median 

and the squared Euclidean distances of the simulated data sets. This is done 

using the second Merge and Reduce approach and the true Bayesian models. 

 
Figure 13: Relationship Between Block Size Per Variable and Distances 

Between Posterior Medians 
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The data are drawn as transparent points, with the grey ones representing single 

data points. The black area denotes many data points at one location. The results 

of the first merge and reduce approach are similar to those of the second 

approach. The median distance is well recovered by the second approach but is 

unreliable for smaller block sizes per variable. The minimum block size per 

variable must be at least 25 observations 

The characteristics and standard deviations of the various models based 

on the Bayesian linear model and Merge and Reduce models were examined. 

The corrected standard error factors values are shown in Figure 14. They are 

grouped by block size and the number of variables. Subfigure (a) displays the 

connection between the block size and the corrected standard error factor. 

Subfigure (b) presents the influence on the corrected standard error factor by 

the number of variables. 

 

Figure 14: Boxplots of Adjusted Standard Errors 

Most parameter settings of the number of variables and block sizes 

except for block size of 5000 observations exhibit an unacceptably high or low 

value of corrected standard error factor. Where the standard deviations are 

computed according to the number of observations, in the case of frequentist 

regression, the results are highly inflated even when the number of variables is 

low. The standard deviation of the posterior quartiles does not appear to be a 
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reliable and useful summarizer for the Merge and Reduce approaches. For the 

correction, the distance between the mean and median quantiles seems to be 

growing. 

The results show that the square distances between the lower and higher 

quantiles are similar to those in the posterior median and mean. The variables 

and block sizes are significant in the overall results. The values of the low block 

size per variable values may become too high if the distance between the M&R 

result and the original model gets too high. The results of the study revealed that 

the Merge and Reduce models performed well to approximate the original 

distributions of the Bayesian linear models, including those of the 97.5% and 

2.5% quantiles. 

 

Figure 15: Scatterplot of Relationship Between Block Size Per Variable and 

Distances Between Posterior Lower Quartiles  
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Figure 16: Scatterplot of Relationship Block Size Per Variable and Distances 

Between Posterior 97.5% Quantiles. 

In figures 15 and 16, the observations are drawn as transparent points. The black 

area represents several data points at the same location. The grey area represents 

single observations. 

Results of Linear Regression Analysis Involving Outliers 

This section presents the results of the linear regression analysis of big 

data containing some outliers. The data sets are simulated with different values 

and are bound by the same linear model. However, they also contain outlying 

data points that are different from the values X and Y to minimize the effects 

of these outliers.  

Four different ways of merging the data sets were created. The merge 

and reduce principle ensures that the blocks' order does not influence the results 

of a given operation. Changing the position of one of the mixture components 

does not correspond to the order of blocks. The simulated sets may not be 

identical to the observations made in the real world. Also, since the changes are 

not performed according to the same principles, they are not equal to the 

changes in the block order. The values of the "pos" variable affect the degree of 

homogeneity in the blocks. For instance, the random arrangement of the blocks 

results in some of them having a small number of outliers, while the other blocks 
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have a high relative frequency of these outliers. For instance, if the setting is 

first and last, then the behaviour of the data sets will be similar to that of the 

previous setting. On the other hand, if the setting is random, then the behaviour 

of the data sets will vary. 

Results of Linear Regression Analysis Involving Outliers for the Classical 

Merge and Reduce Approach 

The square-wise Euclidean distances shown in Figure 17 are the 

simulated data sets’ absolute values. They are broken down into the outliers’ 

positions. 

 
Figure 17: Boxplot of Squared Euclidean Distances Between M&R 1 Models 

Involving Outliers 

Although the position of the outliers can affect the values of the Euclidean 

distance, they do not have a significant impact on the estimates. For instance, 

the largest square distance of 0.112 is only slightly above our boundary of 0.1. 

The M&R 1 seems to be more effective when extracting the original model 

results from the data sets that contain a random distribution of outliers. Data sets 

with the first or last outlying data points display the maximum values of 

Euclidean distance and hence are less likely to benefit from the M&R method. 
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Figure 18 shows the standard error factors for the simulated linear models with 

different orders of the outliers. 

 

Figure 18: Boxplots of Euclidean Distances Between Standard Errors of M&R 

1 Models Involving Outliers 

Figures 18a and 18b show all models that contain and models that do not have 

an intercept term, respectively. Where a model does not contain any intercept 

term, its consequences are significant. The smallest values of 𝑓𝑠𝑒
𝑚 are found in 

the centre of the data set. The outliers in the study lead to the smallest values. 

For all simulations without any intercepts, the standard error factors are below 

1.025. The standard errors are generally recovered by the M&R 1 technique 

when the data sets have an unusual arrangement of outliers. For instance, in data 

sets where all the outliers are grouped, the standard errors are overestimated by 

the M&R method.  

The M&R 1 technique can recover the estimated errors of the original 

models in all cases where the data sets have an unusual arrangement of outliers. 

Where a model has no intercept term, the standard errors can be overestimated. 

The outlier position also affects the recovery of the model's results. The results 

of the study indicate that the complexity of merging heterogeneous blocks is 

increased due to the data set's homogeneous composition. The results of the 

blocks are not affected by their order. The high similarity between the simulated 
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data sets and observations from distant regions shows that the results of these 

observations are similar to those of the simulated data sets. 

Results of Poisson Linear Regression Analysis 

In this section, a simulation model that considers the data sets that are 

dependent on the Y variable is presented. Poisson regression analysis is 

performed to find out the optimal values for these sets. Compared to previous 

studies, this simulation study is relatively small, with six sets having 50000 and 

100000 numbers of observations. The simulation also employs 5, 10 and 20 

numbers of variables.  The block sizes are 400, 1000 and 5000 observations. 

The standard deviation of the results of a Poisson distribution is not 

chosen because it is equal to the mean for that model. To evaluate the 

effectiveness of the Merge and Reduce approaches in recovering the outcomes 

of the original models, the Euclidean distances between the parameter estimates 

as well as standard errors are used. The standard error factor for the M&R 

methods is used to evaluate their effectiveness. 

Results of Poisson Linear Regression Analysis for the Classical Merge 

and Reduce Approach 

Figure 19 shows the various squared distances taken for different types 

of Poisson models in the simulations. The values of these distances are taken 

into account in the Classical Merge and Reduce approach. Even with the low 

block sizes, the estimates of these models are fairly accurate. 
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Figure 19: Scatterplot of Squared Euclidean Distances Between Poisson Linear 

Regression Models 

Figure 20 displays the adjusted standard error factor for the Poisson models 

using the Merge and Reduce approach 1.  

 
Figure 20: Scatterplot of Euclidean Distances Between Adjusted Standard Error 

Factors for the Poisson Models  

Figure 20 reveals that all but two of the values in the range of 0.975 to 1.025 

are within the acceptable range. However, the two outlying observations are 

from artificial data sets that have 𝑝 =  20 and 𝑛𝑏 = 400, which indicates that 

the standard error factor is more dependent on the value of 
𝑛𝑏

𝑝
 than on the 

parameter estimate. The values of 𝑓𝑠𝑒
 𝑚 which are closest to the acceptable range, 

are around 1.015, and this is within our interval of normal values. 

Results of Poisson Linear Regression Analysis for the Bayesian Merge 

and Reduce Approach 

In this section, the performance of the Bayesian Merge and Reduce 

approach on Poisson regression models is examined. The first step is to look at 

the distance between the original and the approximated posterior means. A 

scatterplot of the Euclidean distances is shown in Figure 21. 
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Figure 21: Scatterplot of the Distances Between the Posterior Means of the 

Poisson Models 

The values in figure 21 are very small, and the largest one is below 0.0001. Due 

to the reduction of the posterior location, the values are well estimated by the 

Merge and Reduce approach 2. Figure 22 shows the distances between the 

Bayesian regression models and the 25% and 97.5% quantiles of the original 

models. 

 

Figure 22: Scatterplot of the Euclidean Distances Between Posterior 25% 

quartile and 97.5% Quantiles of the Poisson Models 

Apart from the location measures, the study also assessed the standard deviation 

of the quantiles for both the Classical and Bayesian models, which were poorly 

performed with the Bayesian Merge and Reduce approach. Because of the 

correction, all of the squared distances get values less than 0.0001. This ensures 

that the Poisson regression models are recovered well in the Classical and 

Bayesian frameworks. 
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Analysis of Empirical Big Data Using the Merge and Reduce Method 

A bicycle rental data set was used to evaluate the various factors that 

affect the quality of life in a community. To do so, the variables that appear in 

the data set, such as the year were considered. This is because the variables 

appear systematically, and they indicate whether the observation is a first or 

second year. The variable that affects the number of bicycle rentals in a 

community stays constant throughout the data set. This makes it difficult to 

estimate the effect of this variable on the number of bike rentals in a given block. 

Also, since the data set is not always complete, it can be hard to identify the 

variable in the data. Since the variables that appear in the data set are not in a 

systematic manner, the various factors that affect the quality of life in a 

community were modelled using two different models. One of these is a linear 

model, while the other is a more similar model without the variables atemp, 

hum, and wind speed. Table 10 shows the results of the M&R analysis that are 

closest to the Classical linear regression model. 

Table 10: Results of the Classical Linear Regression Analyses of the 

Empirical Data 

 

 

          Quantitative Variables               Addition of Factor Variables  

          Logarithmic  Poisson                Logarithmic           Poisson 

   𝑛𝑏          𝑒2          𝑓𝑠𝑒          𝑒2          𝑓𝑠𝑒          𝑒2          𝑓𝑠𝑒           𝑒2          𝑓𝑠𝑒 

10,000   0.0676    1.0078   0.0443    1.0184   0.1595   0.9412    0.0988   1.0139 

5,000     0.0796    1.0279   0.0316    1.0574   0.0898   0.9193    0.0288   1.0182 

1,000     2.6690    1.4216   0.3666    1.5174   1.9845   0.9399    0.7687   1.1529 

400        5.9530    1.5078   0.9500    1.6528   10.2661 1.0118    7.7288   1.2610 

Source: Researcher’s Computation (2021) 
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The column headed 𝑒2 displays the Euclidean distances between the model and 

the block size of the original model. Similarly, the column headed 𝑓𝑠𝑒 displays 

the adjusted standard error factors. This exercise is performed on four different 

models. The two models that use only quantitative variables are compared with 

two other models that use factor variables and have independent variables. 

Linear regression analyses are performed on the four models. The data set used 

for the analysis consists of 17379 observations. Block sizes of 400, 1000, 5000 

and 10000 observations were used to get the correct block sizes. The table below 

shows the results of the M&R analysis of the linear regression model. They are 

compared with the original model. 

Table 11: Results of the Bayesian Linear Regression Analyses on the 

Empirical Data 

Variable   Model   𝑛𝑏      �̃�0.025       �̃�0.25       �̅�           �̃�0.5        �̃�0.75     �̃�0.975       s 

Quan.        Lg.    10000   0.0683    0.0683   0.0678   0.0676   0.0672   0.0665   1.0016 

Quan.       Lg.     5000   0.0781   0.0795   0.0817    0.0803   0.0836    0.0870   1.0146 

Quan.        Lg.    1000     2.4054   2.5725   2.6727   2.6763   2.7802     2.9835   1.3294 

Quan.        Lg.    400       5.4859   5.7775   5.9470   5.9439   6.1245     6.4713   1.3971 

Quan.        Poi.   10000   0.0447   0.0444   0.0442   0.0445    0.0441    0.0441   1.0267 

Quan.        Poi.   5000     0.0319   0.0319   0.0314   0.0314    0.0311    0.0310   1.0633 

Quan.        Poi.   1000     0.3594   0.3640   0.3665   0.3665    0.3690    0.3744   1.5346 

Quan.        Poi.    400      0.9366   0.9457   0.9504   0.9504    0.9545     0.9637  1.6700 

Facto.        Lg.   10000    0.1673   0.1637   0.1617  0.1625     0.1605    0.1570   0.9293 

Facto.        Lg.    5000     0.0991   0.0950   0.0939   0.0932     0.0918   0.0873   0.9126 

Facto.        Poi.  10000    0.0985  0.0985   0.0981   0.0983     0.0986    0.0990   1.0205 

Facto.        Poi.   5000     0.0291  0.0289   0.0288   0.0288     0.0287    0.0286  1.0141 

Source: Researcher’s Computation (2021) 
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Four models are analyzed, with two of these being only quantitative-

variable models and two being factor models. Linear regression analysis is 

performed for each of these models, while a Poisson regression analysis is also 

conducted. The Euclidean distance between the two models is shown in the 

rows. The distance between the model that was originally studied and the one 

that was obtained using the Merge and Reduce approach 2 is also shown. The 

variance and posterior mean values are also given for each model. The two-

factor models that failed to converge resulted in significant deviations from the 

original models. Because of this, they are presented not here. 

The results of both the classical and Bayesian models are similar when 

it comes to Poisson and linear regression. For instance, the model based on 

M&R is generally good for the smaller block sizes (from 5000 to 10000) but 

not for the larger block sizes. On the other hand, the results of the model that 

includes factor variables are different when it comes to the three quantitative 

variables. The results of the model with factors are significantly different when 

compared to the original model when it comes to the block sizes. This issue is 

caused by the variable holiday not being present in all blocks. This leads to 

different models that deal with the conflicting aspects of the posterior 

distribution of 𝛽. Despite the presence of two variables that were excluded due 

to their inappropriateness, the results of the model were still good. This 

demonstrates the importance of carefully selecting the model and ensuring that 

it has enough information. Another important factor that should be considered 

is the number of observations the model should make per variable. Steyerberg 

et al. (2001) recommend a minimum of 20 observations per variable. 
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The number of observations that the model makes per variable is known 

as the effective number. For models that only contain quantitative variables, this 

number can be used. However, if the model includes factor variables, this 

number of observations changes. For instance, given 𝑛𝑖 sample size and k factor 

levels, the effective sample size for a binary variable is 𝑚 =  𝑚𝑖𝑛(𝑛1, 𝑛2) 

while in the case of a factor variable, it is 𝑚 =  𝑛 − 
1

𝑛2
 ∑ 𝑛𝑖

3𝑘
𝑖=1

𝑘 > 2 

(Steyerberg et al., 2001). Table 12 below shows the smallest effective number 

of observations, m, that can be obtained from various blocks of observations 

with the values of observations per variable and block. 

Table 12: Smallest and Minimal Effective Sample Sizes for Different 

Block Sizes  

Block Size 𝑛𝑏      Quantitative  Variables Only        Including Factor Variables   

                            min 𝑛𝑒𝑓𝑓         
min 𝑛𝑒𝑓𝑓

𝑝
                         min 𝑛𝑒𝑓𝑓           

min 𝑛𝑒𝑓𝑓

𝑝
 

         400            179   44.75             0             0        

        1000            379   94.75             0   0 

        5000            2379   594.75            95                    2.64 

        10000                7379   1844.75                     191                  5.31 

Source: Researcher’s Computation (2021) 

For each block, the effective number of observations for all the block sizes is 

calculated. The model that takes into account only quantitative variables has a 

constant effective number of observations. On the other hand, the model with 

factors varies depending on the frequency of the variable levels per block. 

Table 12 shows that the block sizes 400 and 1000 appear inadequate for 

the real data analysis. For instance, when the number of observations per block 

is 400, 50% of the blocks lack the variable holiday. On the other hand, when it 
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is 1000, only one block has a holiday. Even the blocks with a holiday typically 

only have 24 observations. This suggests that the model should be taken into 

account when there are potentially unbalanced binary variables in it. Although 

the results of the smaller models containing continuous variables are not as 

extreme, they show the same pattern for block sizes, 5000 and 10,000 

observations. Some high deviations between the acceptable approximation and 

the actual sizes are revealed for the 400 and 1000 block sizes.  

The number of observations required for each variable to perform the 

analysis is critical to obtain the best results when a complex model is involved. 

The other important factor that can help in recovering the results is the M&R 

technique. It can recover the more complex models even when the ratios of the 

variables are lower than those of the quantitative models. The number of 

observations also plays a role in the recovery of the results. In addition, the 

model's good-of-fit is also important in helping in recovering the results. 

The goal of the Merge and Reduce method was to perform a 

comprehensive analysis of large data sets that are not feasible to analyze on a 

single basis. In this case, choosing the appropriate number of observations for a 

block is not a problem. On the other hand, choosing a small block size would 

be impractical. 

Chapter Summary 

In this chapter, it has been found that the running times of the 

Rademacher (RAD) and Clarkson-Woodruff (CW) random projection 

techniques exhibit no clear pattern. An inconsistent performance difference 

between the two random projection techniques was observed. Nevertheless, 

closer observation shows that the CW technique tends to produce larger 
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sketches and works faster than the RAD technique does. In most instances, the 

CW method produces the lowest square distances between posterior means and 

medians.  

Concerning the merge and reduce techniques, the Bayesian merge and 

reduce models are found to recover the posterior means and medians well. 

Similarly, the Classical merge and reduce models well recovered the parameter 

estimates and their estimated standard errors. For random distribution of 

outliers, the Classical merge and reduce models recorded the lowest Euclidean 

distance values. However, for first or last order of outliers. the models showed 

high Euclidean distance values.  

Empirically, the results of both the Classical and Bayesian merge and 

reduce models are found to be similar for linear and Poisson regression models. 

They showed good approximation for block sizes of 5000 and 10000 

observations, particularly for quantitative variables. However, they showed 

high deviations for blocks of sizes of 400 and 1000 observations. The Bayesian 

merge and reduce models are found to better recover more complex model 

including factor variables. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

This chapter summarizes the findings of the study and draws some 

conclusions based on the results presented in the fourth chapter of the study. 

Some recommendations are then provided for further research studies. 

This study has sought to compare the performances of Random 

Projection and Merge and Reduce methods for estimating regression models for 

big data. The two techniques could be used in performing linear regression 

analysis on large amounts of data. Both techniques apply to high-dimensional 

data with a few numbers of variables and a relatively very high number of data 

points. The JL theorem has been used to construct random projections. In this 

thesis, a data reduction method useful for linear regression analysis through a 

random projection is presented. This method is beneficial for preserving data 

structure.  

By including a sketching phase before the analysis, it is possible to 

efficiently model, using linear regression analysis, big data involving high 

dimensions. This method aims to improve the efficiency of the linear regression 

model by reducing the data set. Theoretically, Random projections provide 

some guarantees for required approximations. The requisite number of data 

points in the reduced set is determined by the number of variables 𝑝 and the 

desired goodness-of-approximation factor. That is, the size of the reduced data 

set is not affected by the size of the original data set. This makes the Random 

Projection techniques particularly important for the linear regression analysis 

of big data sets with a few variables. The technique is comparatively robust to 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

 
91 

prior distribution adjustments. In most cases, only highly informative priors 

or distributions that conflict with the likelihood presents significant concerns as 

a result of the original high-dimensional data set’s projection into the low-

dimensional subspace. Such a condition would be unacceptable as well as 

challenging from a modelling standpoint.  

The performance of the Merge and Reduce method was examined on 

both simulated and empirical data, which ensured an efficient computation-

intensive linear regression analysis on big data streams with a large number 

of observations. The data is partitioned into manageable blocks from which 

individual summaries are computed employing standard data analysis 

procedures. The generated summaries are joined in such a style that the 

working memory requirements of the models stay under an insignificant factor. 

It is important to select suitable statistical summarizers and perform various 

reduction actions to minimize the effects of the model. 

Conclusions 

The conclusions of the study are drawn from the results. The discussion 

around the findings also leads to various conclusions. The Clarkson-Woodruff 

(CW) and the Rademacher (RAD) random projection techniques are good for 

reducing big data sets before performing either Classical or Bayesian multiple 

linear regression analyses. But the Clarkson-Woodruff method performs faster 

and provides more reliable reduced data sets. For the Bayesian multiple linear 

regression analysis, the Clarkson-Woodruff and the Rademacher methods 

performed better on the simulated data. For high variance of the error term, both 

random projection techniques produce results similar to those found in the 

original data set. Therefore, the Clarkson-Woodruff and the Rademacher 
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techniques can be used to reduce a big data set before conducting multiple linear 

analyses. 

For Poisson linear regression models, both the Classical and Bayesian  

Merge and Reduce approach perform better provided that there are enough 

observations per variable per block. Although the Classical Merge and Reduce 

approach show a good approximation of the true linear regression models, the 

standard errors are overestimated when there are outliers in the big data set for 

models without an intercept term. 

The Bayesian Merge and Reduce approach improves the accuracy of the 

linear models by considering enough observations per variable per block. The 

Bayesian Merge and Reduce results are similar to the original linear model’s 

results. The standard deviations of the various Bayesian Poisson Merge and 

Reduce models are close to the same level as the original model's posterior 

standard deviation.  

Given that outliers are evenly distributed across the blocks, the Bayesian 

Merge and Reduce approach approximates the true linear regression models 

better than the Classical Merge and Reduce approach. Also, in the presence of 

unbalanced factor variables, the Bayesian Merge and Reduce models 

approximate the true models better than the Classical Merge and Reduce models.   

Thus, both Classical and Bayesian Merge and Reduce approaches better 

approximate the true linear regression model provided there are enough 

observations per variable per block. Both approaches show a good 

approximation of the true linear models for a block size of 5000 observations.  
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Recommendations 

All the linear regression models considered in this thesis employed non- 

informative prior distributions. Given that the sample size per block could be 

significantly lesser than the overall number of observations, it is imperative to 

ensure that the prior distribution for each block is made less informative. Future 

research can therefore seek to determine the amount of information that the 

prior distribution must contain and how this goal can be accomplished.  

It is difficult to validate the assumptions and run diagnostics on the 

linear regression models considered in this thesis since each block of data is lost 

immediately after the appropriate model is generated. Hence, future studies can 

explore methods to examine the residuals without increasing working memory 

demand.  

Future studies should focus on expanding the tractability of the Merge 

and Reduce statistical models to classifications and clustering. Since the Merge 

and Reduce method needs to have full access to the data set for the linear 

regression analysis, future studies can consider an application of the Merge and 

Reduce technique, in conjunction with some suitable goodness-of-fit measures. 

The thesis focused on a situation where the original model cannot be 

fitted efficiently. The objective was to reduce the size of the data while 

achieving a similar model quality. Future studies can examine the performance 

of the techniques introduced in this study in the case where the big data set 

contains more variables than observations. Future studies could also examine 

the performance of the Merge and Reduce method on multiple response 

variables.  
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APPENDICES 

APPENDIX A: Derivation of Marginal Posteriors of Parameters 

The marginal posteriors for 𝛽 and 𝜎2 can be obtained from the joint 

posterior as follows. 

For 𝛽,  

𝑃(𝛽|𝑌) ∝ 𝑃(𝑌|𝛽, 𝜎2)𝑃(𝛽) 

𝑃(𝛽|𝑌) ∝ 𝑁(𝑋𝛽, 𝜎2𝐼𝑛)𝑁(𝜇𝛽 , Σ𝛽) 

𝑃(𝛽|𝑌) ∝ 𝑒
−

1
2𝜎2[(𝑌−𝑋𝛽)′(𝑌−𝑋𝛽)]

× 𝑒
−

1
2Σ𝛽

[(𝛽−𝜇𝛽)
′
(𝛽−𝜇𝛽)]

 

𝑃(𝛽|𝑌) ∝ 𝑒
−

1
2𝜎2Σ𝛽

[Σ𝛽(𝑌−𝑋𝛽)′(𝑌−𝑋𝛽)+𝜎2(𝛽−𝜇𝛽)
′
(𝛽−𝜇𝛽)]

 

𝑃(𝛽|𝑌) ∝ 𝑒
−

(Σ𝛽𝑋′𝑋+𝜎2𝐼𝑟)

2𝜎2Σ𝛽
[𝛽′𝛽−2𝛽𝐶]

 

where, 

𝐶 =
𝑌′Σ𝛽 + 𝜎2𝜇𝛽

(Σ𝛽𝑋′𝑋 + 𝜎2𝐼𝑟)
 

Completing squares in 𝛽 of the exponent, 

𝑃(𝛽|𝑌) ∝ 𝑒
−

1
2Σ𝛽

∗ [(𝛽−𝜇𝛽
∗ )

′
(𝛽−𝜇𝛽

∗ )]

 

where  

Σ𝛽
∗ =

𝜎2Σ𝛽

Σ𝛽𝑋′𝑋 + 𝜎2𝐼𝑟
 

and 

𝜇𝛽
∗ =

𝑌′Σ𝛽 + 𝜎2𝜇𝛽

Σ𝛽𝑋′𝑋 + 𝜎2𝐼𝑟
 

Thus, 

𝑃(𝛽|𝑌) = 𝑁(𝜇𝛽
∗ , Σ𝛽

∗ ) 
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For 𝜎2,  

𝑃(𝜎2|𝑌) ∝ 𝑃(𝑌|𝛽, 𝜎2)𝑃(𝜎2) 

𝑃(𝜎2|𝑌) ∝ (𝜎2)−
𝑛
2𝑒

−
1

2𝜎2[(𝑌−𝑋𝛽)′(𝑌−𝑋𝛽)]
× (𝜎2)−𝛼−1𝑒

−
𝛾
𝜎2 

𝑃(𝜎2|𝑌) ∝ (𝜎2)−(
𝑛
2
+𝛼)−1 × 𝑒−

1
2
[(𝑌−𝑋𝛽)′(𝑌−𝑋𝛽)]+𝛾

 

Thus, 𝑃(𝜎2|𝑌) is an inverse gamma distribution. 

𝑃(𝜎2|𝑌) = 𝐼𝐺(𝑎∗, 𝑏∗) 

where  

𝑎∗ = (
𝑛

2
+ 𝛼) 

and 

𝑏∗ =
1

2
[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)] + 𝛾 
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APPENDIX B: Running Times for Data Sets With 52 Variables 

    Preprocessing Time 

  n          sktc        ε     σ = 1 σ = 2              σ = 5     σ = 10 

5 × 104     none     0.32   0.41   0.43   0.44  

5 × 104      RAD     0.1      1.60   1.68   1.68               1.73 

5 × 104      CW      0.1    0.01   0.01   0.01   0.01 

5 × 104      RAD     0.2    0.40   0.39   0.42   0.43 

5 × 104      CW      0.2    0.01   0.01   0.01   0.01 

1 × 105       none                0.69               0.83               1.02               1.05 

1 × 105       RAD     0.1     3.27   3.41   3.41   3.27 

1 × 105       CW       0.1     0.02  0.03   0.02   0.02 

1 × 105        RAD    0.2     0.76  0.84   0.84   0.80 

1 × 105        CW      0.2     0.02  0.02   0.02   0.02 

5 × 106        none                5.49  5.16   5.92    5.71 

5 × 106        RAD     0.1     16.88  15.96  16.10  16.36 

5 × 106        CW       0.1       0.09  0.09  0.09    0.10 

5 × 106        RAD     0.2       3.73  4.00  4.03    3.85 

5 × 106        CW       0.2       0.09  0.08  0.09    0.09 

1 × 107        none      18.23 12.88  12.59  14.09 

1 × 107        RAD      0.1      51.77 147.4  33.75  34.71 

1 × 107        CW        0.1      0.19 0.27  0.38   0.46 

1 × 107        RAD      0.2       7.92 8.46  8.38   8.21 

1 × 107        CW        0.2      0.21             0.19  0.45   0.39 
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APPENDIX B CONT’D: Running Times for Data Sets With 52 Variables 

                Analysis Time 

   n           sktc     ε   σ = 1        σ = 2    σ = 5   σ = 10 

5 × 104             none     1096          749.1    616.5  498.7 

5 × 104              RAD   0.1        315.1          213.4           156.8  154.7 

5 × 104              CW   0.1    375.2          293.9           164.6  171.8 

5 × 104              RAD   0.2     23.17          26.00    17.48  21.81 

5 × 104              CW   0.2     26.92          25.77    20.57  22.94 

1 × 105              none         2036  1617 

1 × 105              RAD   0.1      278.97        260.8    167.2  182.9 

1 × 105              CW   0.1      257.56        278.2    187.0  198.8 

1 × 105              RAD   0.2       21.44       23.21            17.52   23.65 

1 × 105              CW   0.2       21.94       26.29            21.22   23.45 

5 × 106              none   

5 × 106              RAD   0.1       279.8      313.3     165.9  198.4 

5 × 106              CW   0.1       335.7      300.3     189.3  166.9 

5 × 106              RAD   0.2       27.37      27.19     17.22  19.58 

5 × 106              CW   0.2       26.03      25.23             24.39              22.86 

1 × 107              none   

1 × 107              RAD   0.1       209.20    279.0     215.8  145.6 

1 × 107              CW   0.1       281.7      232.4     175.5  144.0 

1 × 107              RAD   0.2       21.27      19.93             22.87  23.43 

1 × 107              CW   0.2       28.58      19.50     22.05  9.72 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library




