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ABSTRACT

This research seeks to obtain sufficient conditions for the zero solution of a sys-

tem of non-linear Volterra difference equations with variable delay to be stable.

The Lyapunov’s direct method is employed in the research to establish the suf-

ficient conditions. In the process a suitable Lyapunov function is constructed

which is then used to obtain inequalities that relate the solution of the system of

difference equations.

The obtained inequalities were then utilized to obtain results for which the sys-

tem of non-linear Volterra difference equations has a stable zero solution.

To illustrate the power of the obtained sufficient conditions, an example was

constructed.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

In this chapter, the background of the study, some identified areas of ap-

plication of the difference equations, stability, the problem statement and the

objective of the research will be briefly looked at.

1.2 Background to the Study

Almost everything happening in this physical world can be modelled in

mathematical relationship (equation), and Thomas Malthus in 1798 happened

to be one of those who made earliest attempts to model the human population

growth by mathematical means.

It is most often so fascinating studying the behaviour of most of the real-

life system or phenomenon, be it sociological, physical, or economics in expres-

sions of mathematical terms, that are referred to as mathematical models. The

formulated model is usually made up of time-difference of one or more of the

variables, and so the mathematical expression (model) contains differences with

time making the entire model a difference equation or a system of difference

equations, and mathematicians challenge themselves to solving them.

Sultana (2015), explained that quite a number of parameters are permitted

to assume any suitable amount on given intervals of real line in an attempt to

representing real-life problems by using mathematical concepts. The parame-

ters are referred to as continuous parameters/variables. Difficult computations

are encounted because the parameters sometimes turn out to be discontinuous

for some real-world problems, and an example is an investment with compound

interest. In this case, it is necessary and appropriate to choose discrete variables.

The parameters are then evaluated at discrete times. The values would be the
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same over each period of time and then switch to another period as time pro-

gresses, that is, the time interval becomes±1 to the next. In this case, each of the

parameters under consideration is measured at one time only, at each interval of

time, and a finite result is attained for the measurements that are in-between any

two consecutive periods of time. The result being that, either their own initial

values or other values can represent these parameters and the outcome relation

of this operation is termed a recurrence formula, now called a difference equa-

tion.

Difference equations are said to have numerous uses in all facets of field

of study except for few areas. The applicable areas are in electrical networks,

stochastic time series, genetics, probabilities, economics, number theory, soci-

ology, psychology, and combinatorics (see Sultana (2015)).

According to Elaydi (2005), difference equations describe populations or

objects that develop discretely in which time (or independent variable) is a sub-

set of the set of integers.

The studies on difference equations have received significant improve-

ment and development particularly in recent times due to the advancements in

computerization, and this is due to the fact that approximated difference equa-

tions are used to develop the needed formulation in computer-assisted programs

to solve problems (see Sultana (2015)).

There are times that, it becomes very difficult when solving certain types

of differential equations. Under these circumstaces, a numerical scheme be-

comes necessary to be used in approximating the solution of the differential

equation. An attempt to use numerical approach leads to the construction of a

related difference equation that is more compliant with computations. There-

fore, difference equations as described by scholars is the discrete analogue rep-

2
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resentation for differential equations.

Solving mathmatical problems usually involves equations that lead to com-

puting the value of a function repeatedly using a set of values given, and re-

sulting equations are said to be difference equations. The equations frequently

occur in distinct structures in all aspects of mathematics in theory and uses in dy-

namical systems, electrical circuit analysis, computing, statistics, biology, eco-

nomics, and other related fields.

The study of dynamical systems (systems that vary with time flow, or set

of time-dependent variables) is so fashionable in modern day mathematics and

a lot has been done by scholars to show that indeed mathematics has real-world

uses. Dynamical systems are classified into discrete-time or continuous-time

systems. For the purposes of this thesis we will be concerned with only the

discrete-time dynamical systems. That is, systems in which all the variables are

defined over discrete range of values of time. Some systems have one or more

of their parameters inherently discrete and appropriate difference equations are

used to model such parameters due to their discrete character. De Moivre and

his associates Euler, Lagrange, Laplace, and others in the eighteenth century

developed the fundamental concept of linear difference equations.

One of the famous Italian mathematicians who also doubled as the great

physicist known as Vito Volterra made tremendous contributions to the devel-

opment of difference equations which cannot be overemphasized particularly in

the discovery and development of mathematical biology.

According to Raffoul (2018), Volterra difference equations give a more

pragmatic and practical model for comprehensive scope of occurrences in engi-

neering and natural sciences.

3
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1.3 Some Areas of Application of Difference Equations

In this section, the discussions will be on how difference equations have

been employed to solve problems in other areas of study including sciences,

economics, business, logistics, engineering and many more.

For instance, according to Elaydi (2005) difference equations were used

to model how a drug is administered to a patient once every five hours at a health

facility; let G(i) represent the quantity of drug in the patient’s blood system of a

patient at the ith interval of time. Certain amount d of the drug is eliminated by

the body over each interval of time. It is assumed that G0 represents the amount

administered, and the quantity of drug that is contained in patient’s blood system

at time (i+ 1) is equal to the amount at time i minus the fraction d that has been

eliminated from the body, plus the new dosage G0, then

G(i+ 1) = (1− d)G(i) +G0.

The term Amortization refers to the sequential repayment of a loan over a period

of time. Each instalment constitutes part payment of interest and part payment

of the outstanding principal; If x(i) represents the outstanding principal after

the ith payment h(i). Let us assume that interest is charged compoundedly at

the rate n per payment period. The model formulated here is based on the fact

that the outstanding principal q(i+ 1) after the (i+ 1)st payment is equal to the

outstanding principal x(i) after the ith payment plus the interest nx(i) incurred

during the (i+ 1)st period minus the ith payment h(i). Hence

q(i+ 1) = x(i) + nx(i)− h(i)

represents the modelled difference equation (see Elaydi (2005)).

4
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Electronic transmission of information in signal system can be modelled

with difference equations; Let z1 and z2 be two signals that require exactly η1

and η2 units of time respectively, for transmission. Let T (η) be the number of

possible message sequences of duration η, a signal of duration time η either

ends with an z1 signal or with an z2 signal. If the message ends with z1, the

last signal must start at η − η1 (since z1 takes η1 units of time). Hence there

are M(η − η1) possible messages to which the last z1 may be appended. Hence

there are T (η − η1) messages of duration η that end with z1. In the same vein,

one may conclude that there are T (η− η2) messages of duration η that end with

z2. Eventually, the total number of messages x(η) of duration η may be given

by

T (η) = T (η − η1) + T (η − η2).

If η1 ≥ η2, then the above equation may be written in the familiar form of an

η1th-order equation

T (η + η1)T (η + η1η2)− T (η) = 0.

On the other hand, if η1 ≤ η2, then we obtain the η2th-order equation given by

T (η + η2)− T (η + η2 − η1)T (η) = 0

is obtained.

In inventory analysis, define S(η) to be the number of units of consumer

goods produced for sale in period η, and R(η) be the number of units of con-

sumer goods produced for inventories in period η. Assume that there is a con-

stant noninduced net investment B0 in each period. Then the total income A(η)

produced in time η is given by

A(η) = R(η) + S(η) +B0.

5
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A system or an experiment is said to stable if its behaviour is such that a

little variation in the initial information leads to a little variation for future time.

In other words, if ψ being a solution for a difference equation turns out to be

stable, then it means that all other solutions which have initial information near

to ψ will continue to stay close to ψ in the fullness of time.

1.4 Statement of the Problem

Records show that a good number of research work have been done on

the qualitative belaviour of nonlinear Volterra difference equations or systems

without variable delay. Elaydi et al. (1999), Medina (2001) and Eid et al. (2015)

obtained stability results for discrete Volterra systems with finite delay. The

results obtained however by Elaydi et al. (1999), Medina (2001) and Eid et al.

(2015) do not hold for the discrete Volterra system of equations with variable

delay

x(i+ 1) = Mx(i) +
i−1∑

j=i−γ(i)

F (i, j)g(x(j)). (1.1)

where M is a τ × τ constant matrix, F (i, j) is a τ × τ matrix of functions, g :

Rτ → Rτ , and γ : Z→ R+. Equation (1.1) is referred to as a non-linear system

of Volterra difference equation with variable delay. Against this background,

there is the need to study the non-linear system of Volterra difference equation

with variable delay.

1.5 Research Objectives

The objectives of this thesis are:

i) to construct a suitable Lyapunov function for determining the stability of the

zero solution of (1.1); and

ii) to obtain sufficient conditions that will ensure that the zero solution of equa-

tion (1.1) is stable.

6
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Difference equations and Lyapunov functions in general will be discussed

in this Chapter. Some of the earlier works on difference equations, Lyapunov

functions, Volterra equations, stability, and non-linear equations will also be

looked at in this chapter. A review of some relevant literature on difference

equations will be considered.

2.2 Difference Equations

Elaydi (2005), explained that difference equations customarily outline the

growth of definite occurrences as time goes by. He sited that, choosing a definite

population that has discrete generations, and as a result, x at (i + 1)st, the

generation is x(i + 1). Moreover, the population size defines a function of the

generation x(i) at ith. Consequently, this relation can simply be expressed in

the difference equation as given by

x(i+ 1) = τ(x(i)).

Agarwal (1992), stated that the importance of difference equations has recently

been enhanced by the discretization methods applied to differential equations

when seeking their numerical solution. The theory of non-linear and linear

Volterra difference equations provides significant mathematical models for such

field of study as science, business, sociology, economics and also engineering

for several world-life phenomena. By this, it is very necessary for researchers to

provide insightful analysis on the qualitative behaviour of both non-linear and

linear Volterra difference equations without necessarily figuring out for their so-

lutions.

2.2.1 Linear Difference Equations The following linear difference equa-

7
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tion is of first order

x(i+ 1)−m(i)x(i) = γ(i). (2.1)

This is because it contains the values of x at i and i + 1 only, just as it is in the

first order difference operator

∆x(i) = x(i+ 1)− x(i).

If m(i) = 1 for all i, then equation (2.1) above is as simple as

∆x(i) = γ(i),

and the corresponding solution is

x(i) =
∑

γ(i) + F (i),

where ∆F (i) = 0. For convenience, let us assume that a discrete set,

i = k, k + 1, k + 2, , defines the domain and also a function m(i) with

m(i) 6= 0 ∀ i exists. So the following relation

θ(i+ 1) = m(i)θ(i) (2.2)

defines the linear homogeneous first-order difference equation (See Kelley &

Peterson (2001))

Thus, the following relation is obtained

θ(k + 2) = m(k + 1)θ(k + 1)

= m(k + 1)m(k)θ(k),

...

θ(k + i) = θ(k)
∏i−1

j=0 M(k + j).

8
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In a more convenient form the solution is represented as

θ(i) = θ(k)
i−1∏
j=k

M(j), (i = k, k + 1, ...)

where
∏i−1

j=k ≡ 1 and, for i ≥ k + 1, for which the product is defined over

k, k + 1, ..., i− 1.

Now, the difference equation

z(i+ 1)−m(i)z(i) = γ(i), (2.3)

which is linear and nonhomogeneous is considered.

Applying a technique similar to the variation of parameters (reduction of

order ) used in differential equations, equation (2.3) can then be solved. Let

z(i) = υ(i)ρ(i), and that υ(i) be the solution of the nonhomogeneous difference

equation (2.3), that is, any form of nontrivial solution of (2.3) and ρ(i) is found

as

θ(i+ 1)ρ(i+ 1)−m(i)θ(i)ρ(i) = γ(i). (2.4)

Using equation (2.2) in equation (2.4) gives

m(i)θ(i)ρ(i+ 1)−m(i)θ(i)ρ(i) = γ(i).

which gives

m(i)θ(i)
[
ρ(i+ 1)− ρ(i)

]
= γ(i).

Thus,

m(i)θ(i)∆ρ(i) = γ(i).

9

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



This implies that

θ(i+ 1)∆ρ(i) = γ(i)

It follows that

∆ρ(i) =
∑ γ(i)

Eθ(i)
,

and so

ρ(i) =
∑ γ(i)

Eθ(i)
+ Ω,

where Ω is any arbitrary constant.

Thus,

z(i) = θ(i)
[∑ γ(i)

Eθ(i)
+ Ω

]
= θ(k)

i−1∏
j=k

M(j)
[∑ γ(i)

Eθ(i)
+ Ω

]
.

2.2.2 The Difference Operator According to Kelley & Peterson (2001), the

difference operator is one of the very basic properties which are very crucial

with regard to the study of difference equations. It is the same as the differential

operator which acts as a pivot to the study of the differential calculus.

Definition 2.1 Let us assume that χ(i) is a sequence consisting of real numbers

or complex. The difference operator ∆ as described above is defined by

∆χ(i) = χ(i+ 1)− χ(i),

where i ∈ N0, and N0 = {0, 1, 2, ...}.

It is clearly noticed that higher order differences can be obtained via the usual

iterations of the fundamental difference operator.

Thus, the next order difference (i. e. the 2nd order) can be iteratively obtained

10
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as follows:

∆2χ(i) = ∆(∆χ(i))

= ∆(χ(i+ 1)− χ(i))

= (χ(i+ 2)− χ(i+ 1))− (χ(i+ 1)− χ(i))

= (χ(i+ 2)− 2χ(i+ 1) + χ(i)

Definition 2.2 For any i ∈ N,

∆ih(γ) =
i∑

χ=0

(−1)χ

 i

χ

h(γ + i− χ)

The shift and the identity operators which are also useful in difference calculus

are defined as follows:

Definition 2.3 The Shift operator E is defined by

Eχ(i) = h(i+ 1).

Definition 2.4 The Identity operator I is defined by

Iχ(i) = χ(i)

It is noted that the composition of I and E is the same as multiplication

of numbers. Clearly, ∆ = E − I , therefore, the Definition 2.2 is verified as the

binomial theorem:

∆nx(i) = (E − I)nx(i)

=
n∑
k=0

n
k

 (−I)kEn−kx(i)

=
n∑
k=0

(−I)k

n
k

x(i+ n− k).

11
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It follows that,

Enx(i) =
n∑
k=0

n
k

∆n−kx(i).

The fundamental properties of ∆ are clearly stated in the following theorem.

Theorem 2.1

For any θ, ρ ∈ N and any i ∈ R :

(a) ∆θ(∆ρχ(i)) = ∆θ+ρχ(i).

(b) ∆(x(i) + χ(i)) = ∆x(i) + ∆χ(i).

(c) ∆(iχ(i)) = i∆χ(i).

(d) ∆(x(i)χ(i)) = x(i)∆χ(i) + Eχ(i)∆x(i).

(e) ∆
(
x(i)
χ(i)

)
= χ(i)∆x(i)x(i)∆χ(i)

χ(i)Eχ(i)
.

Proof. The definitions 2.1 - 2.4 can be used to prove parts (a), (b) and (c) of

Theorem 2.1. The following calculation verifies part (d) of Theorem 2.1. Thus,

∆(x(i)χ(i)) = x(i+ 1)χ(i+ 1)x(i)χ(i)

= x(i+ 1)χ(i+ 1)x(i)χ(i+ 1) + x(i)χ(i+ 1)x(i)χ(i)

= χ(i+ 1)(x(i+ 1)x(i)) + x(i)(χ(i+ 1)χ(i))

= x(i)∆χ(i) + Eχ(i)∆x(i).

In a similar marner, part (e) of Theorem 2.1 can also be proven.

2.2.3 Summation: Kelley & Peterson (2001) further explained that it is impor-

tant to introduce an antidifference operator which is termed as the right inverse

operator, here, it is sometimes called the ”indefinite sum” in order to make ef-

fective application of the difference operator.

Definition 2.5 The Indefinite Sum which is also known as Antidifference of

χ(i), represented by
∑
χ(i), is defined as any given function such that

∆
(∑

χ(i)
)

= χ(i)

for all i in the domain of χ.

12

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



As it is in integration of differential calculus, summation in difference calculus

demands what we call a summation constant, though might not be constant all

the time.

Theorem 2.2

Let u(i) be an indefinite sum of χ(i), then every indefinite sum of χ(i) can be

expressed as

∑
χ(i) = u(i) +G(i),

believing that G(i), χ and ∆G(i) = 0 have same domain.

Let χ have the real numbers set domain, then

∆G(i) = 0,

which clearly indicates that

G(i+ 1) = G(i),

and that means G is a one-periodic function.

Definition 2.6 Let χ(i) have its domain set to be the form {β, β+ 1, β+ 2, ....},

and β is any real number, and also u(i) being an indefinite sum of χ(i), then

every indefinite sum of χ(i) will have the form

∑
χ(i) = u(i) +K,

where K is an arbitrary constant.

For the sake of convenience, the following convention is applied

j∑
θ=i

χ(θ) = 0 (2.5)

13
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whenever i > j. Note that if m is fixed and n ≥ m,

∆i

( i−1∑
θ=m

χ(θ)
)

= χ(i), (2.6)

and also if r is fixed and q ≥ p,

∆i

( q∑
θ=p

χ(θ)
)

= −χ(i). (2.7)

Some of the general properties of the indefinite sum can be obtained from The-

orem 2.1.

Theorem 2.3

Given an arbitrary constant c

(a)
∑

(x(i) + χ(i)) =
∑
x(i) +

∑
χ(i).

(b)
∑

(cx(i)) = c
∑
x(i).

(c)
∑

(x(i)∆χ(i)) = x(i)χ(i)−
∑
Eχ(i)∆x(i).

(d)
∑

(Ex(i)∆χ(i)) = x(i)χ(i)−
∑
χ(i)∆x(i).

Remark 2.1. Parts (c) and (d) of Theorem 2.3 are referred to as “summation by

parts” relations.

Proof. Clearly, inductions from Theorem 2.1 lead directly to parts (a) and (b).

From part (d) of Theorem 2.1, it follows that

∆(x(i)χ(i)) = x(i)∆χ(i) + Eχ(i)∆x(i).

Also from Theorem 2.2, it follows that

∆(x(i)∆χ(i) + Eχ(i)∆x(i)) = x(i)χ(i) + F (i).

and so (c) follows from manupulations of (a) and (c) is also manupulated to

yield (d). The proof is complete.

The summation by parts relations in difference calculus could also be uti-

lized to calculate some types of indefinite sums and this appears to same as the

14
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formula for integration by parts which is used to calculate integrals in differ-

ential calculus. Also, these formulas appear to be essential fundamental tools

for difference equations analysis. Now, given r < q, from Definition (2.3) the

following can be deduced

∑
yq =

q−1∑
τ=r

yτ +K (2.8)

for certain constant K and, alternatively, for q ≤ p,

∑
yq = −

p∑
τ=q

yτ +K (2.9)

for some constant K. Indefinite sums can now be related to definite sums from

the above two equations.

The theorem below carries a practical formula for calculating definite

sums, which is analogous to the fundamental theorem of differential calculus.

Theorem 2.4 (The Fundamental Theorem of difference Calculus)

Let j(k) be an indefinite sum of η(k), then for z < k

i−1∑
γ=z

η(γ) =
[
j(γ)

]k
z

= j(k)− j(z).

The next theorem provides a version of the summation by parts formula

for definite sums.

Theorem 2.5 If r < k, then

i−1∑
τ=r

aτ∆bτ =
[
aτbτ

]k
r

=
i−1∑
τ=r

(
∆aτ

)
bτ+1.

Proof. Let xk = ak and hk = bk, then by part (c) of Theorem 2.3, it follows that

∑
ak∆bk = akbk −

∑
(∆ak)bk+1.
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By Theorem 2.4,

i−1∑
τ=r

aτ∆bτ =
[
aτbτ

]k
r
−

i−1∑
τ=r

(
∆aτ

)
bτ+1 +K.

Substituting k = r + 1 in the above equation, we have

∑
ar∆br = ar+1br+1 − (∆ar)br+1 +K.

implying that K = −arbr, and that completes the proof.

Remark 2.2 An equivalent form of Theorem 2.5 is Abel’s summation formula

i−1∑
τ=z

aτbτ = bk

i−1∑
τ=z

aτ −
i−1∑
τ=z

( τ∑
q=z

aq

)
∆bτ , (k > z)

and the alternative form is

η∑
τ=k

aτbτ = bi−1

η∑
τ=i

aτ +

η∑
τ=k

( η∑
q=τ

aq

)
∆bτ−1, (η > k).

2.3 Stability

It is prudent to study the behaviour of a transition of say, the discrete gen-

eration of a certain population at initial time i0 and (i0 + 1). This brings about

the study of stability theory for difference equations.

Definition 2.7 (Stability)

A solution ψ(i) of a difference equation is stable if for α > 0 ∃ β > 0,

β = β(α, i0) such that |x0 − ψ(i0)| 6 β implies that |x(i, i0, x0) − ψ(i)| 6 α

for i ∈ [i0,∞) ∩ Z.

Definition 2.8 (Uniformly Stability)

ψ is said to be uniformly stable provided for α > 0 ∃ β > 0, β(α) such that

|x0 − ψ(i0)| 6 β implies that |x(i, i0, x0)− ψ(i)| 6 α, for i > i0

Definition 2.9 (Asymptotically Stability)

ψ is said to be asymptotically stable provided it is stable and in addition to that

∃ γ(i) > 0 such that |x0 − ψ(i0)| 6 γ(i) implies that
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limi→∞ |x(i, i0, x0)− ψ(i)| = 0

Definition 2.10 (Uniformly Asymptotically Stability)

ψ is said to uniformly asymptotically stable provided it is uniformly stable and

in addition to that ∃ r > 0 such that |x0−φ(i0)| 6 γ implies that limi→∞ |x(i, i0, x0)−

φ(i)| = 0

2.4 Fredholm and Volterra Difference Equations

Any equation which is of the form

x(i+ 1) =
b∑

j=a

τ(x(j)),

where a and b are constants, is called a Fredholm difference equation. Fredholm

difference equations are characterized by fixed/constant limits of summation.

On the other hand, any equation which is represented by the form

x(i+ 1) =
i−1∑
j=a

τ(x(j)),

where a and i are the limits of the summation is called a Volterra difference

equation.

The following are some types of delay Volterra difference equations:

(a) A linear Volterra difference equation with finite delay γ is given by

x(i+ 1) = Mx(i) +
i−1∑
j=i−γ

F (i, j)x(j).

(b) A linear Volterra difference equation with variable delay γ(i) is given by

x(i+ 1) = Mx(i) +
i−1∑

j=i−γ(i)

F (i, j)x(j).
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(c) A nonlinear Volterra difference equation with finite delay γ is given by

x(i+ 1) = Mx(i) +
i−1∑
j=i−γ

F (i, j)g(x(j)).

(d) A nonlinear Volterra difference equation with variable delay γ(i) is given as

x(i+ 1) = Mx(i) +
i−1∑

j=i−γ(i)

F (i, j)g(x(j)),

where g(x(i)) is a non-linear function of x(i) such as g3(x), cos(g(x)) and eg(x).

2.5 Review of Related Literature

Recently, a lot of attention has been devoted to the investigation of dif-

ference equations. For instance, Burton and Mahfoud in (1983) investigated an

integro-differential system of equations of the form

x′ = G(k)x+

∫ i

0

F (i, j)x(j)ds

where G and F are k × k matrices. A few varieties of stability were identi-

fied and defined, and the results were established indicating when one type of

stability is equivalent to another type. Different kinds of Lyapunov functions

were constructed and as a result conditions which are sufficiently enough and

necessary for the above system to be stable were obtained. Finally, many other

results regarding the qualitative behaviour of solutions of the system were found.

Kolmanovskii et al. (1998), investigated stability problem of some Volterra

difference equations and established stability conditions formulated in terms of

the characteristics of equations.

Elaydi et al. (1999), utilized the idea of total stability to establish results

on the asymptotic behaviour of the solutions of discrete Volterra systems. The
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asymptotic equivalence of bounded solutions of the following Volterra differ-

ence systems which has an infinite delay was the target:

ρ(i+ 1) =
i∑

j=−∞

M(i− j)W (i), i0 ≥ 0

and

θ(i+ 1) =
i∑

j=−∞

M(i− j) +D(i, j)θ(j); i0 ≥ 0.

Medina (2001), obtained results for boundednees and stability properties

of some classes of discrete Volterra equations. In the work, the main tool was the

use of a representation formula which allowed the solution of discrete Volterra

equations to be expressed in terms of the resolvent matrix of the corresponding

system of Volterra difference equations.

Medina (2001), Győri and Horváth (2008), Migda and Morchalo (2013),

studied the asymptotic properties of discrete Volterra systems, and also Volterra

difference equations.

Song et al. (2004), used fixed point theory to investigate nonlinear Volterra

difference equations that are perturbed versions of linear equations. Under per-

turbation, sufficient conditions were obtained to ensure that the stability prop-

erties of linear Volterra difference equations were preserved. The existence of

asymptotically periodic solutions of perturbed Volterra difference equations was

also proved.

Also, Song & Baker (2004), utilized the fundamental and resolvent ma-

trices, and under appropriate assumptions, to odtain stability results from the

linear case.
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(K(n, j, x(n)) = B(n, j)x(j))

extracted from the discrete Volterra equation

x(n) = f(n) +
n∑
j=0

(K(n, j, x(n)), (n ≥ 0)

Several necessary and sufficient conditions for stability were obtained for solu-

tions of the linear equation by considering the equations in various choices of

Banach space.

Raffoul (2006), studied the stability of the zero solution of delay differ-

ence equations and the existence of unique periodic solution by utilizing fixed

point theory. The interest was mainly in the qualitative analysis of the com-

pletely delay difference equation

∆x(i) = −a(i)x(i− τ).

Győri & Horvath (2008), analysed the asymptotic behaviour of solutions

of linear Volterra difference equations. Some sufficient conditions were pre-

sented under which the solutions to a general linear equation converged to limits,

which were given by a limit formula. This result was then utilized to establish

the exact asymptotic representation of the solutions of a class of convolution

scalar difference equations, which have real characteristic roots.

Yankson (2009), utilized fixed point theory to analyse the stability of the

zero solution of difference equations with variable delays. In particular the au-

thor considered the scalar delay equation

∆x(n) = −a(n)x(n− τ(n))
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and its generalization

∆x(n) = −
N∑
j=1

aj(n)x(n− τj(n)).

Adivar et al. (2013), invetigated the existence of periodic and asymptot-

ically periodic solutions of a system of nonlinear Volterra difference equations

with infinite delay. Fixed point theory was utilized to establish conditions that

guarantee the existence of such periodic solutions given by



∆xn = hnxn +
n∑

i=−∞

an,if(yi)

∆yn = pnyn +
n∑

i=−∞

bn,ig(xi)

where f and g are real valued and continuous functions, and an,i, bn,i, hn,

and pn are real sequences.

Sultana (2015), studied various types of discrete Volterra equations with

distinct orders. The convergence rate of solutions of scalar linear Volterra sum-

difference equations with delay were addressed. The existence of bounded

solutions on an unbounded domain of more general nonlinear Volterra sum-

difference equations using the Schaefer fixed point theorem and the Lyapunov’s

direct method were also discussed ( See Sultana (2015)).
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Eid et al. (2015), utilized Lyapunov functions and obtained sufficient con-

ditions necessary for the zero solution of the discrete Volterra system of the

form

x(i+ 1) = Nx(i) +
i−1∑
j=i−γ

F (i, j)g(x(j)).

to be stable.

2.6 Chapter Summary

In this chapter, the general structure and concept of difference equations

were identified. Fredholm equations were stated and related them to Volterra

discrete equations. Some relevant theorems and lemmas regarding Lyapunov

method of solving stability of difference equations were proved. Some relevant

literature on various areas of this research were also looked at in this chapter.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

In this chapter, the development and the application of Lyapunov function

will be discussed. The stability property of difference equations will also be

considered in relation to use of Lyapunov function.

3.2 Lyapunov Function

Lyapunov (1892), delth with stability by two distinct methods; these are

the first and second (direct) methods. The first method pre-supposes an explicit

solution known and this is applicble to some restricted but important cases. As

against this, the second method, which is also called the direct method, is of

great generality and power and, above all does not require the knowledge of the

solutions themselves.

Lyapunov proposed a fundamental method for studying the problem of

stability by constructing functions known as Lyapunov functions. This function

is often represented as V (i, x) defined in some region or the whole state phase

that contains the unperturbed solution x = 0 for all i > 0 and which together

with its difference ∆V (i, x) satisfy some sign definiteness.

In this thesis, the stability properties of non-linear difference equations

shall be investigated by stating the conditions for stability. constructing Lya-

punov functions. The constructed suitable Lyapunov function shall be used to

discuss stability properties of the solution of the non-linear system of difference

equations.

Throughout this thesis, the goal is to costruct suitable Lyapunov function

and use it to obtain the results that guarantee the stability of the non-linear dis-
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crete Volterra system considered in (1.1)

The application of the Lyapunov method lies in constructing a scalar func-

tion (say V ) and its differences such that they possess certain properties. When

these properties of V and ∆V are shown, the stability behaviour of the system

is established.

Definition 3.1 (For Difference Equations)

A function W defines a Lyapuvov function on a subset Γ ∈Rk provided that

i) W (0) = 0, and W (x) > 0, for x 6= 0 and

ii) ∆W (x) 6 0, whenever x and f(x) belong to the set Γ.

The function W is said to be a strict Lyapuvov function on a subset Γ of Rk if

∆W (x) < 0.

The considered Lyapunov function must satisfy the following conditions;

• V (i, x) = 0 at x = 0, meaning V must be zero at x = 0;

• V (i, x) ≥ 0 except x = 0, meaning V must be positive definite;

• ∆V (x) 6 0.

It is noteworthy that our constructed Lyapunov function V will need the

existence of a positive definite matrix that will depend on the coefficient matrix

M .

In this thesis, the stability properties of non-linear difference equations

shall be looked into by constructing Lyapunov functions. The constructed suit-

able Lyapunov function shall be used to discuss stability properties of the solu-

tion of the non-linear system of difference equations.

In this thesis, the ultimate goal is to establish stability results for the zero

solution of the non-linear system of Volterra difference equations with variable
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delay. A Lyapunov function is utilized to obtain sufficient conditions that can

be used to achieve stability for the system of Volterra difference equations under

consideration. Consider the following system of non-linear Volterra difference

equations

x(i+ 1) = Mx(i) +
i−1∑

j=i−γ(i)

F (i, j)g(x(j), (3.1)

where γ is a function of time, i, M is a k × k constant matrix and F (i, j) is an

k×k matrix of functions that are defined on−ω ≤ i ≤ j <∞,where γ(i) ≤ ω,

and i, j ∈ [−ω,∞].

A Lyapunov function denoted by V (i, x) = V (i) is constructed and used

to show that along the solutions of equation (3.1), ∆V (i) ≤ 0. In the process,

equation (3.1) is rewritten in order to obtain a suitable Lyapunov function so

that ∆V can easily be calculated along the solutions of (3.1).

Let xi be a function mapping an interval [−ω, 0] ∩ Z into Rk. Therefore,

x(i) ≡ x(i, i0, ψ) is a solution of (3.1) , provided x(i) satisfies (3.1) for i ≤ i0

and xi0 = x(i0 + j) = ψ(j), j ∈ [−ω, 0] ∩ Z.

All through this thesis it is to be understood that the argument of a function is i

unless otherwise it is stated.

3.3 Chapter Summary

This chapter discusses the methodology used in this thesis. The form

and concepts of the Lyapunov function were discussed. The conditions that

justisfy a function to be Lyapunov as well as the conditions for stability were

also dicussed in this chapter.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the main results of the thesis are obtained. The Lyapunov’s

direct method is used to obtain inequalities that guarantee the stability of the

zero solution of the Volterra difference equations with variable delay.

4.2 Preliminary Results

Let

B(i, j) :=

γ∑
π=i−j

F (π + j, j), (4.1)

where 0 < γ ≤ r(i− 1), for all i ∈ Z+.

Also, let x ∈ Rk and W = (w)ij be a k × k matrix and define the norms | x | to

be the Euclidean norm so that

| W |= max
1≤j≤k

k∑
i=1

| wij | .

The norm of a sequence function ψ : [−ω,∞) ∩ Z→ Rk is also denoted by

‖ ψ ‖= sup
−ω≤j≤∞

| ψ(j) | .

It is assumed that there exists a positive definite symmetric and constant

k × k matrix G such that for positive constants µ1,

MTGN +NTG = −µ1I. (4.2)

Also assumed that for some positive constant µ2,

xT
(
MTGB(i+ 1, i) +GB(i+ 1, i)

)
g(x) ≤ −µ2 | x |2, if x 6= 0, (4.3)
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and for some positive constant η,

| g(x) | ≤ η | x | . (4.4)

Conditions (4.3) and (4.4) implies that g(0) = 0 and that x = 0 is a solution for

system (3.1).

In order to construct a suitable Lyapunov function, equation (3.1) is rewrit-

ten in an equivalent form as given in Lemma 4.1.

Lemma 4.1 IfB(i, j) is defined by (4.1), then equation (3.1) is equivalent to the

equation

∆x(i) = Nx(i) + B(i+ 1, i)g(x(i))

− ∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)), (4.5)

where N is a matrix given by N = M − I , and I is the identity k × k matrix.

Proof. Computing the difference of the summation term in equation (4.5) gives,

∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)) =
k∑

j=i−r(i)

B(i+ 1, i)g(x(j))

−
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

= B(i + 1, i)g(x(i))

+
i−1∑

j=i−r(i)

B(i+ 1, i)g(x(j))

−
i−1∑

j=i−r(i)

B(i, j)g(x(j))

− B(i, i− r(i− 1)− 1)

× g(x(i− r(i− 1)− 1)). (4.6)

It follows from equations (4.1) and (2.5) that

B(i, i− r(i− 1)− 1) =

γ∑
π=r(i−1)+1

F (i, i− r(i− 1)− 1) = 0.
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Thus, equation (4.6) becomes,

∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)) = B(i+ 1, i)g((x(i))

+
i−1∑

j=i−r(i)

B(i+ 1, i)g(x(j))

−
i−1∑

j=i−r(i)

B(i, j)g(x(j))

= B(i+ 1, i)g((x(i)) +
i−1∑

j=i−r(i)

[
B(i+ 1, i)−B(i, j)

]
g(x(j)).

Thus,

∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)) = B(i+ 1, i)g(x(i))

+
i−1∑

j=i−r(i)

∆B(i, j)g(x(j)) (4.7)

Now, from equation (4.1),

∆B(i, j) = ∆

γ∑
π=i−j

F (π + j, j)

=

γ∑
π=i−j+1

F (π + j, j)−
γ∑

π=i−j

F (π + j, j)

=

γ∑
π=i−j+1

F (π + j, j)−
γ∑

π=i−j+1

F (π + j, j)− F (i, j)

= −F (i, j).

Thus,

∆B(i, j) = −F (i, j). (4.8)
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Substituting (4.8) into (4.7) gives,

∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)) = B(i+ 1, i)g(x(i))

−
i−1∑

j=i−r(i)

F (i, j)g(x(j)). (4.9)

Using equation (4.9) in equation (4.5) gives

x(i+ 1)− x(i) =Mx(i)− x(i) +B(i+ 1, i)g(x(i))

−
[
B(i+ 1, i)g(x(i))−

i−1∑
j=i−r(i)

F (i, j)g(x(j))
]

Thus,

x(i+ 1) = Mx(i) +
i−1∑

j=i−r(i)

F (i, j)g(x(j)). (4.10)

This completes the proof.

At this point, there is the need to construct a Lyapunov function. In

Lemma 4.2, a Lyapunov function is prosposed.

Lemm 4.2 Let β be a constant such that β > 0. Then the function defined by

V (i, x) =
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ β

−1∑
j=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2 . (4.11)

is a Lyapunov function.

Proof. To verify that equation (4.11) is a Lyapunov function, first, let x = 0,
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then

V (i, 0) =
(

0 +
i−1∑

j=i−r(i−1)−1

B(i, j)g(0)
)T
G

×
(

0 +
i−1∑

j=i−r(i−1)−1

B(i, j)g(0)
)

+ β
−1∑

j=−ω

i−1∑
z=i+j

| B(i, z) || g(0) |2

= 0

Thus V (i, 0) = 0 for x = 0.

From equation (4.11), V (i, x) > 0 for all x except for x = 0. Thus, V (i, x) is

positive definite.

Finally, under appropriate inequalities it is established in Theorem 4.1 that

∆V ≤ −ψ | x |2 for ψ > 0 implying that ∆V ≤ 0. Therefore, equation (4.11)

is a Lyapunov function. This completes the proof.

It must be noted that, if G is a positive definite symmetric matrix, then

there is a positive constant Ω such that

Ω | x |2≤ xTGx, for all x. (4.12)

Lemma 4.3 Let G(i) and x(i) to be two sequences, then

∆G(i)x(i) = G(i+ 1)∆x(i)) + ∆G(i)x(i).

Proof. If G(i) and x(i) are two sequences, then

∆[G(i)x(i)] = G(i+ 1)x(i+ 1)−G(i)x(i), (4.13)

But

∆G(i) = G(i+ 1)−G(i),
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and so

G(i) = G(i+ 1)−∆G(i).

Also,

∆x(i) = x(i+ 1)− x(i)

implies that

x(i+ 1) = ∆x(i) + x(i)

Thus equation

∆[G(i)x(i)] = G(i+ 1)[∆x(i) + x(i)]− [G(i+ 1)−∆τ ]x(i)

= G(i+ 1)∆x(i) +G(i+ 1)x(i)−G(i+ 1)x(i)

+∆G(i)x(i)

implying that,

∆[G(i)x(i)] = G(i+ 1)∆x(i)) + ∆G(i)x(i)

4.3 Main Results

In the next Theorem it is shown that ∆V ≤ 0.

Theorem 4.1 Let (4.2)- (4.4) hold, and suppose there are constants

β > 0 and ψ > 0 such that

−µ1 − µ2 + βωη2B(i+ 1, i) +
(

2η | BT (i+ 1, i) | + | NTG |
)

×
i−1∑

j=i−r(i)

| B(i, j) |

≤ −ψ, (4.14)
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−β + 2η | BT (i+ 1, i)G | + | NTG |6 0, (4.15)

| GN | +η | GB(i+ 1, i) |≤ 0 (4.16)

and

∆ | B(i, z) |≤ 0 (4.17)

then,

∆V (i) ≤ −ψ | (x(i) |2 .

Proof.

Let V (i) = V (i, x) be the Lyapunov function defined by

V (i) =
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ β
−1∑

s=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2 . (4.18)

Thus, taking the difference along the solutions of equation (3.1) gives

∆V (i) = ∆
[(
x(i)+

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ β

−1∑
z=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2
]
. (4.19)
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Applying Lemma 4.3, the following is obtained

∆V (i) =
(
x(i+ 1) +

t∑
j=i−r(i)

B(i+ 1, i)g(x(j))
)T
G

× ∆
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ ∆
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ β

−1∑
j=−ω

[ i∑
z=i+j+1

| B(i+ 1, z) || g(x(z)) |2

−
i−1∑
z=i+j

| B(i, z) || g(x(z)) |2
]
. (4.20)

But

β
−1∑

h=−ω

[ i∑
z=i+j+1

| B(i+ 1, z) || g(x(z)) |2 −
i−1∑
z=i+j

| B(i, z) || g(x(z)) |2
]

= β
−1∑

j=−ω

[
| B(i+ 1, i) || g(x(i)) |2 +

i−1∑
z=i+j+1

| B(i+ 1, z) || g(x(z)) |2

− | B(i, i+ j) || g(x(i+ j)) |2 −
i−1∑

z=i+j+1

| B(i, z) || g(x(z)) |2
]

= β

−1∑
j=−ω

[
| B(i+ 1, i) || g(x(i)) |2 − | B(i, i+ j) || g(x(i+ j)) |2

+
i−1∑

z=i+j+1

∆ | B(i, z) || g(x(z)) |2
]
. (4.21)
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In view of condition (4.17),

i−1∑
z=i+j+1

∆ | B(i, z) || g(x(z)) |2≤ 0

Thus, (4.21) becomes

β
−1∑

j=−ω

[ i∑
z=i+j+1

| B(i+ 1, z) || g(x(z)) |2 −
i−1∑
z=i+j

| B(i, z) || g(x(z)) |2
]

≤ β

−1∑
j=−ω

[
| B(i+ 1, i) || g(x(i)) |2 − | B(i, i+ j) || g(x(i+ j)) |2

]

= β
−1∑

j=−ω

| B(i+ 1, i) || g(x(i)) |2 −β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2

= β
(

(−1) − (−ω) + 1
)
| B(i+ 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2

= βω | B(i + 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2 . (4.22)
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Substituting (4.20) into (4.19) gives

∆V (i) =
(
x(i) +

t∑
j=i−r(i)

B(i, j)g(x(j))
)T
G

× ∆
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ ∆
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ βω | B(i+ 1, i) || g(x(i)) |2

− β

−1∑
j=−ω

| B(i, i+ j) || g(x(i+ j)) |2 . (4.23)

But, reference to Lemma 4.1 indicates that

∆x(i) = Nx(i) +B(i + 1, i)g(x(i))−∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))

= (M − I)x(i) + B(i+ 1, i)g(x(i))

− ∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)).

Thus,

x(i+ 1)− x(i) = Mx(i) − x(i) +B(i+ 1, i)g(x(i))

−
i∑

j=i−r(i)

B(i+ 1, i)g(x(j))

+
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j)).

This implies that

x(i+ 1) = Mx(i) + B(i+ 1, i)g(x(i))−
i∑

j=i−r(i)

B(i+ 1, i)g(x(j))

+
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))
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Thus,

x(i+ 1) +
i∑

j=i−r(i)

B(i+ 1, i)g(x(j)) = Mx(i) +B(i+ 1, i)g(x(i))

+
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

= Mx(i) +B(i + 1, i)g(x(i)) +
i−1∑

j=i−r(i)

B(i, j)

×g(x(j)) + B(i, i− r(i− 1)− 1)

× g(x(i− r(i− 1)− 1)).

Since γ ≤ r(i− 1),

B(i, i− r(i− 1)− 1) =

γ∑
w=r(i−1)+1

F (i, i− r(i− 1)− 1)

= 0.

This gives

x(i+ 1) +
i∑

j=i−r(i)

B(i + 1, i)g(x(j))

= Mx(i) + B(i+ 1, i)g(x(i))

+
i−1∑

j=i−r(i)

B(i, j)g(x(j)). (4.24)

Again, from Lemma 4.1, the following can be obtained

∆x(i) + ∆i

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j)) = Nx(i) +B(i+ 1, i)g(x(i))

and so

∆
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

= Nx(i) +B(i+ 1, i)g(x(i)). (4.25)
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Substituting (4.24) and (4.23) into (4.21) gives

∆V (i) =
(
Mx(i) + B(i+ 1, i)g(x(i)) +

i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
G

×
(
Nx(i) +B(i+ 1, i)g(x(i))

)
+

(
Nx(i) +B(i+ 1, i)g(x(i))

)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ βω | B(i+ 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2

=
[
xTMT + gT (x(i))BT (i+ 1, i) +

( i−1∑
j=i−r(i)

B(i, j)g((x(j))
)T]

×
[
GNx(i) +GB(i+ 1, i)g(x(i))

]
+

[
xTNT + gT (x(i))BT (i+ 1, i)

]
×

[
Gx(i) +G

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
]

+ βω | B(i+ 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2

= xTMTGNx(i) + xTMTGB(i+ 1, i)g(x(i))

+ gT (x(i))BT (i+ 1, i)GNx(i)

+ gT (x(i))BT (i+ 1, i)GB(i+ 1, i)g(x(i))

+
( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GNx(i)

+
( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GB(i+ 1, i)g(x(i))

+ xTNTGx(i) + xTNTG

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))

+ gT (x(i))BT (i+ 1, i)Gx(i)

+ gT (x(i))BT (i+ 1, i)G
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))
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+ βω | B(i+ 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2 .

It then follows that

∆V (i) = xT (i) ×
(
MTGN +NTG

)
x(i) + xTMTGB(i+ 1, i)

× g(x(i)) + gT (x(i))BT (i+ 1, i)Gx(i)

+ gT (x(i))BT (i+ 1, i)GNx(i)

+ gT (x(i))BT (i+ 1, i)GB(i+ 1, i)g(x(i))

+
( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GNx(i)

+ xTNTG
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

+
( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GB(i+ 1, i)

× g(x(i)) + gT (x(i))BT (i+ 1, i)G

×
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

+ βω | B(i+ 1, i) || g(x(i)) |2

− β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2 . (4.26)

It is observed that

[
gT (x(i))BT (i+ 1, i)GMx(i)

]T
= xTMTGB(i+ 1, i)g(x(i)).

Now, considering the sum of the second and third terms on the right

hand side of (4.26) gives

xTMT G B(i+ 1, i)g(x(i)) + gT (x(i))BT (i+ 1, i)Gx(i)

= xTMTGB(i+ 1, i)g(x(i)) +
[
xTGB(i+ 1, i)g(x(i))

]T
= xT

(
MTGB(i+ 1, i) +GB(i+ 1, i)

)
g(x(i)). (4.27)
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Also, considering the sum of the fourth and fifth terms on the right

hand side of equation (4.26) gives

gT (x(i))BT (i + 1, i)GNx(i) + gT (x(i))BT (i+ 1, i)GB(i+ 1, i)g(x(i))

≤| gT (x(i))BT (i + 1, i)GN || x(i) |

+ | gT (x(i))BT (i+ 1, i)GB(i+ 1, i) || g(x(i)) |

≤| gT (x(i))BT (i + 1, i)GN || x(i) |

+ η | gT (x(i))BT (i+ 1, i)DB(i+ 1, i) || (x(i) |

≤| gT (x(i))BT (i + 1, i)GN |
(
| GN | +η | GB(i+ 1, i) |

)
| (x(i) | .(4.28)

Summing the sixth and seventh terms on the right hand side of equation (4.26)

gives

( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GNx(i) + xTNTG

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))

=
[
xTNTG

i−1∑
j=i−r(i)

B(i, j)g(x(j))
]T

+ xTNTG
i−1∑

j=i−r(i)

B(i, j)g(x(j))

= 2xTNTG
i−1∑

j=i−r(i)

B(i, j)g(x(j))

≤ 2T || NTG |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) | . (4.29)

Using the inequality 2ab ≤ a2 + b2, equation (4.28) becomes

2T || NTG |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |

≤| NTG |
i−1∑

j=i−r(i)

| B(i, j) |
(T

(t) |2 + | g(x(j)) |2
)
. (4.30)
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Furthermore, a sum of the eighth and nineth terms on the right

hand side of equation (4.26) gives

( i−1∑
j=i−r(i)

B(i, j)g(x(j))
)T
GB(i+ 1, i)g(x(i)) + gT (x(i))

×BT (i+ 1, i)G
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

=
[
gT (x(i))BT (i+ 1, i)G

i−1∑
j=i−r(i)

B(i, j)g(x(j))
]T

+gT (x(i))BT (i+ 1, i)G
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))

= 2gT (x(i))BT (i+ 1, i)G
i−1∑

j=i−r(i)

B(i, j)g(x(j))

≤ 2 | gT (x(i)) || BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |

≤ 2η | (x(i)) || BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |

≤ 2η | BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) |

×
(
| (x(i)) |2 + | g(x(j)) |2

)
.(4.31)

Finally, the last term of equation (4.26) is simplified by letting π = i+ j.

Thus, the upper limit of the summation becomes π = i− ω. Hence,

β
−1∑

j=−ω

| B(i, i + j) || g(x(i+ j)) |2

= β

i−1∑
j=i−ω

| B(i, π) || g(x(π)) |2

≥ β
i−1∑

π=i−r(i)

| B(i, π) || g(x(π)) |2 . (4.32)

Replacing π with j in the R.H.S of equation (4.32) gives

β

i−1∑
π=i−r(i)

| B(i, π) || g(x(π)) |2= β

i−1∑
j=i−r(i)

| B(i, j) || g(x(j)) |2 .
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Thus,

β
−1∑

j=−ω

| B(i, i+ j) || g(x(i+ j)) |2≥ β

i−1∑
j=i−r(i)

| B(i, j) || g(x(j)) |2 . (4.33)

Substituting equations (4.27) - (4.32) into equation (4.26) gives

∆V (i) ≤ | xT (i) | ×
(
P TGN +NTG

)
| x(i) |

+ xT
(
MTGB(i+ 1, i) +GB(i+ 1, i)

)
× g(x(i))+ | gT (x(i))BT (i+ 1, i)GN |

×
(
| GN | +η | GB(i+ 1, i) |

)
× | (x(i) | + | NTG |

i−1∑
j=i−r(i)

| B(i, j) |

×
(T

(i) |2 + | g(x(j)) |2
)

+ 2η | BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) |

×
(
| x(i) |2 + | g(x(j)) |2

)
+ βω | B(i+ 1, i) || g(x(i)) |2

− β
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |2 . (4.34)
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In view of equations (4.9), (4.10), (4.13), (4.15) and (4.16), inequality

(4.32) becomes

∆V (i) ≤
[
− µ1I

]
| x(i) |2 +

[
− µ2 | x(i) |2

]
+ | gT (x(i))BT (i+ 1, i)GN |

[
0
]
| (x(i) |

+
[
| NTG |

i−1∑
j=i−r(i)

| B(i, j) |
]
| x(i) |2

+
[
| NTG |

i−1∑
j=i−r(i)

| B(i, j) |
]
| g(x(j)) |2

+
[
2η | BT (i+ 1, i)G |

i−1∑
j=i−r(i)

| B(i, j) |
]
| x(i) |2

+
[
2η | BT (i+ 1, i)G |

i−1∑
j=i−r(i)

| B(i, j) |
]
| g(x(j)) |2

+ βω | B(i+ 1, i) || g(x(i)) |2 −β
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |2

≤
[
− µ1 − µ2

]
| x(i) |2 + | NTG |

i−1∑
j=i−r(i)

| B(i, j) || x(i) |2

+ 2η | BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) || x(i) |2

+ βωη2 | B(i+ 1, i) || x(i) |2

+ | NTG |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |2

+ 2η | BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |2

− β
i−1∑

j=i−r(i)

| B(i, j) || g(x(j)) |2 .
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Thus,

∆V (i) ≤
[
− µ1 − µ2 + βωη2 | B(i+ 1, i) |

+ 2η | BT (i+ 1, i)G |
i−1∑

j=i−r(i)

| B(i, j) |

+ | NTG |
i−1∑

j=i−r(i)

| B(i, j) |
]
| x(i) |2

+
[
2η | BT (i+ 1, i)G |

i−1∑
j=i−r(i)

| B(i, j) |

+ | NTG |
i−1∑

j=i−r(i)

| B(i, j) |
]
| g(x(j)) |2

− β

i−1∑
j=i−r(i)

| B(i, j) || g(x(j)) |2

≤
[
− µ1 − µ2 + βωη2 | B(i+ 1, i) |

+
(

2η | BT (i+ 1, i)G | + | NTG |
)

×
i−1∑

j=i−r(i)

| B(i, j) |
]
| x(i) |2

+
[
− β + 2η | BT (i+ 1, i)G | + | NTG |

]
×

i−1∑
j=i−r(i)

| B(i, j) || g(x(j)) |2

≤ − ψ | x(i) |2 +
[
0
] i−1∑
j=i−r(i)

| B(i, j) | .

Therefore,

∆V (i) ≤ −ψ | x(i) |2 . (4.35)

This completes the proof.
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Theorem 4.2 Suppose the hypotheses of Lemmas 4.1 and 4.2 hold and

1− η
i−1∑

j=i−r(i−1)−1

| B(i, j) |> 0, (4.36)

then the zero solution of equation (4.30) is stable.

Proof.

Let

δ <
kε

L

(
1− η

i−1∑
j=i−r(i−1)−1

| B(i, j) |
)

and define

L2 =| G |
(

1 + η

i0−1∑
j=i0−r(i0)

| B(i0, j) |
)2

+ η2β
−1∑

j=−ω

i0−1∑
z=i0+j

| B(i0, j) | . (4.37)

By (4.18),

V (i) =
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)

+ β
−1∑

j=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2

≤| G |
(
| x(i) | +

i−1∑
j=i−r(i−1)−1

| B(i, j)g(x(j)) |
)2

+ β

−1∑
j=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2

≤| G |
(
| x(i) | +

i−1∑
j=i−r(i−1)−1

| B(i, j) || g(x(j)) |
)2

+ β

−1∑
j=−ω

i−1∑
z=i+j

| B(i, z) || g(x(z)) |2 .
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Therefore,

V (i0, φ) ≤| G |
(
| φ(i0) | + η

i0−1∑
j=i0−r(i0−1)−1

| B(i0, j) || g(φ(j)) |
)2

+ η2β
−1∑

j=−ω

i0−1∑
z=i0+j

| B(i0, j) || g(φ(j)) |2

In view of inequality (4.33), the function V is decreasing, and that,

∆V (i) ≤ 0. (4.38)

implying that

V (i+ 1) ≤ V (i). (4.39)

and that for i0 ≥ 0 it follows that V (i, x) ≤ V (i0, φ). Thus,

V (i, x) ≤| φ(i0) |2
[
| G |

(
1 + η

i0−1∑
j=i0−r(i0)

| B(i0, j) |
)2

+ η2β
−1∑

j=−ω

i−1∑
z=i0+j

| B(i0, z) |
]

≤ δ2
[
| G |

(
1 + η

i0−1∑
j=i0−r(i0)

| B(i0, j) |
)2

+ η2β
−1∑

j=−ω

i−1∑
z=i0+j

| B(i0, z) |
]
.

Thus,

V (i, x) ≤ δ2L2. (4.40)

It follows from (4.17) that

V (i, x) ≥
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)T
G

×
(
x(i) +

i−1∑
j=i−r(i−1)−1

B(i, j)g(x(j))
)
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Thus, using the fact that xTGx ≥ K | x |2 for all x, and (m+ n)2 ≥ (m− n)2,

V (i, x) ≥ K| x(i) +
i−1∑

j=i−r(i−1)−1

B(i, j)g(x(j))|
2

.

and also

V (i, x) ≥ K2
(
| x(i) | −

i−1∑
j=i−r(i−1)−1

| B(i, j) || g(x(j)) |
)2

. (4.41)

Combining the two inequalities (4.38) and (4.39) gives

δ2L2 ≥ K2
(
| x(i) | −

i−1∑
j=i−r(i−1)−1

| B(i, j) || g(x(j)) |
)2

δL ≥ K
(
| x(i) | −

i−1∑
j=i−r(i−1)−1

| B(i, j) || g(x(j)) |
)

≥ | x(i) | −
i−1∑

j=i−r(i−1)−1

| B(i, j) || g(x(j)) |

≥ | x(i) | −η
i−1∑

j=i−r(i−1)−1

| B(i, j) || x(j) | .

Thus,

δL

K
≥| x(i) |

(
1− η

i−1∑
j=i−r(i−1)−1

| B(i, j) |
)
.

Therefore,

| x(i) | ≤ ε.

This completes the proof.
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4.4 Example

In this section, the results obtained in the previous section are applied to a

constructed example, and the details are as follows:

Let

M =

1

5
0

0
1

5

 and F (i, j) =

1

4
0

0
1

4


,

such thatx1(n+ 1)

x2(n+ 1)

 =

1

5
0

0
1

5


x1(n)

x2(n)


+

i−1∑
j=i−r(i)

1

4
0

0
1

4


−

16µ2

5µ1γ
x1

−16µ2

5µ1γ
x2

 .

(4.42)

It follows from equation (4.1),

B(i, j) =

γ∑
π=i−j

F (π + j, j),

=
[
γ − (i− j) + 1

]
F (i, j)

=
[
γ − i+ j + 1

]1

4
0

0
1

4


=

1

4
(γ − i+ j + 1) 0

0
1

4
(γ − i+ j + 1)

 , (4.43)
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and so

B(i+ 1, i) = BT (i+ 1, i)

=

1

4
(γ − i− 1 + i+ 1) 0

0
1

4
(γ − i− 1 + i+ 1)


=

1

4
γ 0

0
1

4
γ

 .

Also, N can be evaluated by using the condition below

N = NT = M − I

=

1

5
0

0
1

5

−
1 0

0 1


=

−4

5
0

0 −4

5

 .

The following condition also holds to evaluate G

MTGN +NTG = −µ1I.

Thus,1

5
0

0
1

5

G

−4

5
0

0 −4

5

+

−4

5
0

0 −4

5

G = −µ1

1 0

0 1


.

This implies that− 4

25
0

0 − 4

25

G+

−4

5
0

0 −4

5

G =

−µ1 0

0 −µ1


.
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which gives−24

25
0

0 −24

25

G =

−µ1 0

0 −µ1


.

Thus,

G =

−µ1 0

0 −µ1

(24

25

)−2

−24

25
0

0 −24

25


=
(24

25

)−2

24

25
µ1 0

0
24

25
µ1


=
(25

24

)2

24

25
µ1 0

0
24

25
µ1


=

25

24
µ1 0

0
25

24
µ1

 .

It is noted that the inequality

∣∣∣g(x)
∣∣∣ ≤ η | x | .

can be used to estimate η. That is,

[
(−16µ2

5µ1γ
x1)2 + (−16µ2

5µ1γ
x2)2

]1

2 ≤ η
[
x2

1 + x2
2

]1

2

implying that

16µ2

5µ1γ

[
x2

1 + x2
2

]1

2 ≤ η
[
x2

1 + x2
2

]1

2

and so

η ≥ 16µ2

5µ1γ
.
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It follows from equation (4.43) that,

∣∣∣B(i, j)
∣∣∣ ≤ 1

4

∣∣∣(γ − i+ j + 1
)1 0

0 1

∣∣∣
≤ 1

4

∣∣∣(γ − i+ j + 1
)∣∣∣
∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣
≤ 1

4

∣∣∣(γ − i+ j + 1
)∣∣∣

≤ γ

4
, for j ∈

[
i− γ, i− 1

]
.

Thus,

i−1∑
j=i−r(i−1)−1

| B(i, j) | =
γ

4

[
i− 1−

(
i− r(i− 1)− 1

)
− 1
]

≤ γ

4

(
r(i− 1) + 1

)
≤ γ

4

(
γ + 1

)
, γ ≤ r

(
i− 1

)
.

This implies that

1− η
i−1∑

j=i−r(i−1)−1

| B(i, j) | > 0,

which also implies that

1− ηγ
4

(γ + 1) > 0

Thus,

η <
4

γ(γ + 1)
.

Therefore,

16µ2

5µ1γ
≤ η <

4

γ(γ + 1)
.
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Now, using

K | x |2 ≤ xTGx,

an estimation of K is found. That is,

K
[√(

x2
1 + x2

2

) ]2

≤
(
x1 x2

)25

24
µ1 0

0
25

24
µ1


x1

x2


.

And it follows that,

K
(
x2

1 + x2
2

)
≤ 25

24
µ1x

2
1 +

25

24
µ1x

2
1

≤ 25

24
µ1

[
x2

1 + x2
1

]
.

Thus,

K =
25

24
µ1.

To verify that

−µ1 − µ2 + βωη2 | B(i+ 1, i) | +
(

2η | BT (i+ 1, i)G | + | NTG |
)

×
i−1∑

j=i−r(i)

| B(i, j) | ≤ −ψ,

consider

−µ1 − µ2 + βωη2 | B(i+ 1, i) | +
(

2η | BT (i+ 1, i)G | + | NTG |
)

×
i−1∑

j=i−r(i)

| B(i, j) | .
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Substituting the estimates for B(i+ 1, i), BT (i+ 1, i), G, η and NT gives

−µ1 − µ2 + βωη2
∣∣∣
1

4
γ 0

0
1

4
γ

∣∣∣
+

[
2η
∣∣∣
1

4
γ 0

0
1

4
γ


25

24
µ1 0

0
25

24
µ1

∣∣∣
+

∣∣∣
−4

5
0

0 −4

5


25

24
µ1 0

0
25

24
µ1

∣∣∣]× γ

4

(
γ + 1

)

≤ −µ1 − µ2 + βωη2
∣∣∣1
4
γ

1 0

0 1

∣∣∣
+

[
2η
∣∣∣1
4
γ

1 0

0 1

∣∣∣∣∣∣25

24
µ1

1 0

0 1

∣∣∣
+

∣∣∣− 4

5

1 0

0 1

∣∣∣∣∣∣25

24
µ1

1 0

0 1

∣∣∣]× γ

4

(
γ + 1

)
.

Note that

∣∣∣
1 0

0 1

∣∣∣ = 1.

and so

−µ1 − µ2 +
βωη2γ

4
+
(25ηγ

48
µ1 +

5

6
µ1

)
× γ

4
(γ + 1)

= −µ1 − µ2 +
βωη2γ

4
+
(25ηγ + 40

48

)
× µ1γ

4
(γ + 1)

≤ −ψ. (4.44)

To verify the condition

−β + 2η | BT (i+ 1, i)G | + | NTG | ≤ 0,
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In a similar manner, consider

−β+ 2η
∣∣∣
1

4
γ 0

0
1

4
γ


25

24
µ1 0

0
25

24
µ1

∣∣∣
+

∣∣∣
−4

5
0

0 −4

5


25

24
µ1 0

0
25

24
µ1

∣∣∣

≤ −β+ 2η
∣∣∣1
4
γ

1 0

0 1

∣∣∣∣∣∣25

24
µ1

1 0

0 1

∣∣∣
+

∣∣∣− 4

5

1 0

0 1

∣∣∣∣∣∣25

24
µ1

1 0

0 1

∣∣∣

≤ −β + 2η × 25µ1γ

96
+

5

6
µ1

≤ −β +
25ηµ1γ

48
+

5

6
µ1

≤ 0. (4.45)

Now, to verify

| GN | +η | GB(i+ 1, i) | ≤ 0.

consider

| GN | +η | GB(i+ 1, i) | .

By substtution,

∣∣∣
25

24
µ1 0

0
25

24
µ1


−4

5
0

0 −4

5

∣∣∣+ η
∣∣∣
25

24
µ1 0

0
25

24
µ1


1

4
γ 0

0
1

4
γ

∣∣∣
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≤ 5

6
µ1 +

25ηµ1γ

96

≤ 0.

Now inequalities (4.41) and (4.43) can be satisfied by the choice of appropriate

µ1, µ2 and ω. Thus, it is shown that the zero solution of

x(i+ 1) =

1

5
0

0
1

5

x(i) +
i−1∑

j=i−r(i)

1

4
0

0
1

4


−

16µ2

5µ1γ
x1

−16µ2

5µ1γ
x2

 ,

is stable by invoking Theorem 4.1.

4.5 Chapter Summary

In this chapter the stability concept was discussed. A suitable Lyapunov

function which led to obtaining sufficient inequalities to achieve stability of the

zero solution of the considered system of variable delay difference equation was

constructed. Relevant lemmas, theorems to establish stability of the understud-

ied difference equation werer proved. Further, an example was constructed to

test the validity and power of the obtained results .
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Overview

In this chapter, summaries of results, conclusions, and a few recommen-

dations were provided .

5.2 Summary

In this thesis, as stated in the objectives of the research, a suitable Lya-

punov function was contructed to investigate the qualitative behaviour of the

solution for a system of Volterra difference equations.

Along the line, the constructed Lyapunov function was used to prove that the

zero solution for the system of non-linear Volterra equations was stable and

sufficient conditions for the stability of the zero solution for the system of non-

linear Volterra difference equations with variable delay wre established.

An example was constructed to acertain the power of the obtained results.

5.3 Conclusions

It is concluded that a suitable Lyapunov function for establishing the sta-

bility of a system of non-linear Volterra difference equations with variable delay

has been constructed.

Also, sufficient conditions for the stability of the zero solution of a system of

non-linear Volterra difference equations with variable delay have been obtained.

Finally, the work has been furnished with a suitable example and the strength of

the obtained results has also been tested.

5.4 Recommendations

The Lyapunov function should be used to determine the stability of the

zero solution of a system of non-linear Volterra difference equations.
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