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ABSTRACT 

Graphene and its derivatives have attracted significant attention due to their 

unique electronic, thermal, and mechanical properties which make it a 

promising material for device applications. This work theoretically investigated 

the thermoelectric properties of graphene superlattice which was subjected to a 

combined direct and alternative field. This was done by solving the Boltzmann’s 

kinetic equation within the semiclassical regime with the energy dispersion 

relation of graphene superlattice obtained using tight-binding approximation. 

The expressions for the resistivity, thermo-power as well as thermoelectric 

power factor of this novel material were derived analytical as a function of 

temperature, material parameters, and amplitudes of the external applied field. 

The findings suggest that graphene superlattice exhibits a metallic property, and 

as expected, its resistivity generally rises with temperature. Due to its low 

resistivity and high figure of merit at room temperature, graphene superlattice 

could be served as a suitable material for thermoelectric device applications.  
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CHAPTER ONE 

INTRODUCTION 

Energy crisis and heat management are the two major problems in this 

twenty-first century. The ability to manage waste heat is a major challenge, 

which currently impedes the performance of information technology devices. 

The need to use energy resources more efficiently has become a critical concern 

on a worldwide scale. To solve this problem, there is a need to develop new 

materials and devices, innovative device architectures, and smart integration 

techniques, coupled with new strategies for managing and recycling on-chip 

waste heat.  Researchers and industry are devoting significant time and their 

resources to finding solutions to this increasing energy crisis as well as the threat 

of global warming. One approach to addressing these concerns is to develop 

more effective thermal management systems, which can simultaneously solve 

multiple other issues. Since the introduction of semiconductor materials in the 

application of thermoelectricity, there has been a great deal of effort to help  

improve their normalized figure of merit (ZT) to be close to 3 in order to make 

them commercially feasible  [1]. Understanding carbon-based materials' 

transport and thermoelectric properties can help reduce the amount of energy 

wasted as waste heat. 

A thermoelectric power system tends to transform heat energy into 

electrical energy without using harmful chemicals like chlorofluorocarbons 

(CFCs). However, their inclusion in functional thermoelements has been 

hampered because semiconductor materials are chemically unstable at higher 

temperatures. The use of carbon-based compounds as possible thermoelectric 
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materials has a lot of potential for solving the problems mentioned above 

provided their thermal conductivities can be reduced. 

Background to the Study 

Thermoelectric devices are made up of materials that employ the 

Seebeck effect to convert heat directly into electricity through thermal 

gradient  [2]. When electric current is conducted between two different wires, 

the Peltier effect cools the junction, resulting in similar energy conversion 

processes. Thermoelectric effects are caused by the transport of phonons and 

electrons over a temperature gradient in thermoelectric materials. The thermal 

fluctuation of carriers in the material's hot region is greater than those in the 

cold region. Therefore, the temperature difference causes the charged carriers ( 

i.e. electrons or holes) in the thermoelectric material to flow from the high 

temperature region to a low temperature region, analogues to how classical gas 

expands  [3]. The concentration of these particles defines the diffusion currents. 

The thermoelectric transport parameters are basically expressed using simple 

physical parameters. These are Seebeck coefficient, electrical conductivity as 

well as the thermal conductivity. It is preferable to enhance electronic diffusion 

while minimizing phonon diffusion when applying thermoelectricity to power 

generation  [4]. 

The semiclassical Boltzmann Transport Equation (BTE) is proposed as 

a technique for exploring thermoelectric metrics in two-dimensional graphene 

superlattices, taking into consideration the impacts of carrier dispersion and 

intraminiband transition in producing the best normalized ZT. The ZT is a 

dimensionless parameter that measures the efficiency of a thermoelectric device 
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and it depends on the square of the Seebeck coefficient, the material electrical 

conductivity, the absolute temperature as well as the material thermal 

conductivity which is a contribution of both electrons and phonons.  In addition 

to exploring thermoelectric transport at the nanoscale, the semiclassical BTE 

serves as a basis for analyzing other novel technologies in the field of condensed 

matter physics, where temperature effects on electrons and holes transport are 

particularly severe. Due to the growing importance of nanotechnology in 

industries like medical imaging, microelectronics, and nanocomposite 

materials, the demand for mesoscopic modeling has never been higher. As a 

result, employing the semiclassical approach to investigate carrier and phonon 

transport in nanoscale devices requires a paradigm shift in charge carrier 

transport modeling  [5].  

Graphene  

Graphene is the only true two-dimensional material in the universe  [6]. 

It has outstanding anisotropy properties such as thermal and electrical 

conductivities. These characteristics of graphene have significantly changed the 

face of materials science research for many years. “Graphene has become a 

valuable nanomaterial due to its “high tensile strength, exceptional electrical 

conductivity, transparency, as well as being the thinnest two-dimensional (2D) 

material in the world  [7]. The single atomic layer of carbon shows varieties of 

unusual two-dimensional “Dirac fermions. As a result, graphene presents some 

unique electronic and 2D transport properties such as” an ambipolar field effect, 

quantum Hall effect, breakdown of the Born-Oppenheimer approximation, 

Klein reflectionless tunneling, etc. [8–13]. 
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To be an effective thermoelectric material, its thermal conductivity must 

be low in order to maintain the temperature gradient. On the other hand, to 

obtain a high normalized ZT, a high-power factor is required. In spite of the fact 

that graphene has high electrical conductivity, its application in 

thermoelectricity has not been considered because of its high thermal 

conductivity. Prior to this research, the Seebeck coefficient of graphene was 

investigated by other researchers  [12]. The objective for such efforts was 

primarily to study the physics of the carrier’s dynamiacs in graphene, with little 

focus on its thermoelectric (TE) applications. However, graphene has some 

outstanding properties which could be used for TE applications. Due to its 

planar structure, a million of graphene-based TE devices can be cascaded to 

produce a compact TE device. The one-atomic thick layer of carbon makes it 

flexible to be integrated almost everywhere. Again, the carrier density of 

graphene can be tuned through electrostatic gating rather than chemical doping 

because of its large surface area. 

Graphene is known to have numerous applications in electronic systems 

because of its outstanding electrical characteristics such as high carrier mobility 

and high Fermi velocity. However, the zero gap in graphene inhibits its full 

capacity in electronics  [14, 15]. The gapless graphene has a charge neutral point 

(CNP) call the Dirac point. The Dirac point is a point of zero density of state at 

which the characters of graphene shift from electrons to holes. Graphene 

therefore, requires a bandgap to improve its applicability. One way of 

addressing this problem is to use graphene superlattice for electronic device 

applications. This is possible by patterning the graphene sheet into superlattices. 

Several researches have shown that forming a graphene superlattice can open 
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up a bandgap in graphene and by converting semi-metallic graphene into a 

semiconductor  [15].   

A superlattice structure was first explained in a workshop by Harman, 

Dresselhaus, and Venkatasubramanian  [16] to have composed of alternating 

layers of different materials which exhibit many interesting transport and optical 

properties that are related to the quantum size effect. The thickness of these 

layers is normally measured in nanometers, and the average superlattice is 

exceedingly tiny. These architectures are used to create new types of 

semiconductors with characteristics that are different from the individual 

materials. As this technology becomes more widely available, scientists believe 

it will enable them to design materials with vastly diverse characteristics while 

maintaining their appearance. The structure is made up of layers of different 

materials placed on top of one another. When such small materials are stacked 

on top of one another, their properties combine in unexpected ways.  

There are two main reasons for making superlattice structures. The first 

is to make the material more resistant to shearing effects. The process of creating 

a superlattice improves shear resistant far beyond the resistance of the 

constituent materials. This resistance allows the material to withstand larger 

stresses under higher temperature than traditional materials. The other major 

reason for the construction of a superlattice is to produce new varieties of 

semiconductors. These materials conduct electricity more efficiently than 

insulators, but not as efficiently as conductors. Superlattices are used in almost 

every kind of modern electronics, most often as integrated circuits or 

microchips. Most semiconductors are composed of silicon, superlattice 
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semiconductors can be made of a variety of materials. Figure 1 depicts the 

structure of a superlattice composed of alternate layers. 

 

Figure 1: A schematic representation of: (a) superlattice structure. (b) how a 

  superlattice is made of alternating crystals  [17].  

 

Wang and Zhu have investigated the electronic band structure and the 

transmission of carriers in graphene based one-dimensional (1D) superlattice 

with periodic-potential of square barriers. According to their findings, a new 

Dirac point is formed at the energy level which corresponded to the zero 

averaged wave number in the system. Such new Dirac point location does not 

depend on the lattice, but rather on the ratio of widths of the potential 

barriers  [18]. Graphene has exceptional band structure at this Dirac point which 

gives an excellent conductivity. Electrons in graphene pass through the barrier 

with a hundred percent probability. This is because, the strong force between 

the carbon molecules has no effect on the motion of the electrons. 

(a) 
(b) 
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Statement of the Problem 

Due to global warming, emission of greenhouse gases, and the depletion of 

non-renewable energy (i.e. fossil fuels) sources, there has been a growing trend 

toward greener energy. The subject of thermoelectricity has been regarded long 

time as a potential disruptive power-generating technology, and the field is 

presently expanding widely because of its capacity to directly convert thermal 

energy to electricity by producing cost-effective and pollutant-free forms of 

energy. Various types of semiconductors and superlattice materials have been 

investigated. Thorough studies were done on Bi2Te3 and PbTe semiconductor 

materials due to their outstanding efficiency  [19].  Even though these materials 

improve the TE normalized ZT, superlattices of semiconductors and semimetals 

are very expensive, scarce, toxic, and unstable for mass production, 

necessitating the need to search for novel materials. Nanostructured materials 

have demonstrated significant potential for commercial use due to their high 

remarkable thermoelectric performance. As a result, this research is to 

theoretically study the thermoelectric properties of graphene superlattice. 

Purpose of the Study 

The purpose of the research is to find the thermoelectric power factor of 

GSL for nano-electric applications. 

Research Objectives 

The general objective of the study is to theoretically study thermo-

optical properties of GSL for possible TE applications. 

The research is guided by the following specific objectives, to determine the 

i. Electrical conductivity of GSL. 

ii. TE power in GSL. 
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iii. TE power factor of GSL 

Significance of the Study 

 The results obtained from the research will guide in the synthesis of GSL 

materials for possible TE applications by providing the necessary additional 

theoretical basis for further thermoelectric research in order to promote the 

physics of this material for better understanding of its TE properties.  

Depending on the nature of the variation of the electrical resistivity with 

electric fields and other material parameters of the GSL, high-performance 

thermoelectric devices could be fabricated for practical applications.  

Delimitations  

The fundamental goal of this research is to theoretically study the TE 

properties of GSL under the influence of applied electric field. The scope of this 

research will include the analytical derivation of expressions for the TE metrics 

of GSL, such as carrier current density, electrical resistivity, thermopower as 

well as thermoelectric power factor. The variation of these TE metrics with 

temperature, the material parameters such as the real overlapping integrals for 

jumps, and carrier concentration as well as dc-ac field intensities will be 

investigated. 

Limitations 

 The BTE is solved using a semiclassical technique to get the TE metrics 

of the GSL for constant relaxation time. For the sake of mathematical simplicity, 

time constrain and computational limitations, quantum mechanical phenomena 

such as interband transition, quantum mechanical correction to intraband 

motion, correlation energy, Coulombic correction, and Coulombic interaction 
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will be excluded from this work, as seen in Mensah  [20]. In other words, the 

study will be entirely semi-classical.  

Organization of the Study 

The thesis is composed of five main chapters: Chapter one provides the 

general background to the study with a brief introduction that states the problem 

under study, its relevance, how this research is related to earlier studies, and 

both theoretical and practical implications of the study. This chapter also 

highlighted the purpose of the research as well as its objectives. The chapter 

also covers the scope of work as well as the organization of the thesis. Chapter 

two reviews the literature on TE materials, BTE, electron-phonon interactions, 

electronic transport, and the principles underlying the theories used in this work. 

Chapter three deals with the theoretical formulations and techniques used in 

achieving the results in the research. The BTE together with the energy 

dispersion relation of graphene superlattice will be used to determine the 

electrical current density, electrical conductivity, thermoelectric power, and 

power factor for the GSL. Analysis and discussion of the analytical results are 

provided graphically in chapter four. In chapter five, conclusions are drawn and 

recommendations are provided to help future study in this field. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

  This chapter reviews the thermoelectric effect and the basic physical 

properties of two-dimensional (2D) materials. The dynamics and mechanisms 

of electron transport in the semiclassical region leading to the derivation of 

thermoelectric metrics of graphene superlattice are reviewed. In addition to this, 

the carrier-phonon interactions are also discussed. 

Thermoelectricity  

 Thermoelectricity is the direct conversion of temperature gradient to 

electricity and vice versa. A TE device creates a potential difference when there 

is a temperature different between its two terminals of the device. In the atomic 

scale, the different in temperature causes the charged carriers (electrons or 

holes) in a TE material to move from high temperature region to a low 

temperature region which is analogues to the expansion of classical gases when 

heated. TE materials employed in waste heat recycling and power generation 

are required to have good thermal and mechanical properties. Traditionally, 

thermoelectricity includes three distinct identified effects. These are the 

Seebeck effect, the Peltier effect and the Thomson effect. 

Thomas J. Seebeck discovered in 1821 that when two different wires are 

joined together to form a circuit, a potential difference is created if there is a 

temperature different between these two wires. The potential difference created 

is directly proportional to the temperature gradient between these two junctions, 
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with the proportionality constant given as the Seebeck coefficient   , which is 

derived from the ratio of the potential difference V  produced to the 

temperature gradient T  between the cold and the hot sides of the TE device. 

The strength of the effect is described by the Seebeck coefficient which is given 

by   

V

T


 
= − 

 
           (2.1) 

The negative sign of   is determined by whether the dominant carriers are 

holes or electrons. The Seebeck coefficient could be negative or positive 

depending on which direction the current is flowing and it is expressed in μV/K. 

In the semiconductor industry, thermoelectricity has numerous uses such as 

chip-level carrier cooling, remote telecommunication power generation, 

temperature control technologies in solid-state lasers, and so on. Due to their 

low efficiencies and performances, commercial applications of thermoelectric 

devices are limited. However, the advent of low-cost, high-efficiency 

thermopower generators has helped reduce dependency on non-renewable 

energy sources. 

The Seebeck coefficient is also affected by two material properties such 

as carrier diffusion and phonon diffusion. The magnitude of the Seebeck voltage 

is determined by the entropy transmitted by carrier’s diffusion through a 

material. Phonon drag reduces the V created by raising the effective mass of 

the charge carriers. The contributions of phonon drag to the Seebeck coefficient 

is thought to be significant for particular materials  [21], but has not been 

rigorously explored  [22]. The Seebeck coefficient is limited near a material's 
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melting point due to increasing phonon drag  and extremely low temperatures 

due to reduction in carrier’s diffusion  [8, 9].  

The Peltier effect is the direct reverse to the Seebeck effect. When an 

electrical current is pass through a junction connecting two wires, it will either 

absorb or release heat per unit of time at the junction in order to balance the 

potential difference between the two materials. As a result of this effect, an 

electric refrigerator known as the Peltier Cooler is created. The heat generated 

per unit time per unit the flow of current from conductor 1 to conductor 2 is 

defined as the Peltier coefficient 𝛱12.  As previously stated, this heat generated 

is directly proportional to the current flowing through the junction as described 

by Eqn. (2.1). 

Years later, William Thomson published a paper which explained the 

details of Seebeck and Peltier phenomena, as well as their interaction. The 

Peltier coefficient is just the product of absolute temperature and the Seebeck 

coefficient. Based on this thermodynamic reasoning, Thomson predicted a third 

thermoelectric effect, now known as the Thomson effect. When current flows 

through a conductor with a different temperatures, heat is created or 

absorbed  [23]. The heat created is proportional to the temperature gradient and 

the electric current. The constant of proportionality is the Thomson coefficient, 

and it is related to the Seebeck coefficient through thermodynamics. The 

Thomson coefficient is positive when a positive current flows from a higher 

temperature region  [24]. 
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Figure of Merit 

To examine the efficiency of a TE device in the practical applications of 

converting waste heat directly into electricity, the most used parameter is the 

normalized figure of merit, ZT. The normalized ZT is a dimensionless 

parameter that uses the Seebeck coefficient together with other important 

physical properties to define a material's energy conversion efficiency and it is 

expressed as: 

2

ZT T





=       (2.2) 

Where   denotes the Seebeck coefficient, σ is the material's electrical 

conductivity, T represents thermodynamic temperature, and 𝑘  is the thermal 

conductivity of the material  [25]. Thermal conductivity of a material comprises 

two terms, i.e. electron thermal conductivity and phonon thermal conductivity. 

The electrical thermal conductivity is dominant for metals while the phonon 

thermal conductivity is dominant for semiconductors.  

The figure of merit is a significant metric used in engineering and 

materials science to compare the efficiency of TE materials. It is anticipated that 

ZT must be about 3 for TE devices to compete with other existing 

technologies  [26]. At 300 K, materials such as GaAs and Si have very low ZT 

values which is less than 0.01  [27]. Bi2Te3 and PbTe are the two most prevalent 

TE materials nowadays  [28]. Recently, nanostructure materials, such as silicon 

nanowires with ZT ≈ 0.6 at 300 K  have been developed  [29].  

Again, the Seebeck coefficient and the conductivity of the carriers are 

controlled by the material’s carrier properties. However, thermal conductivity 
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is affected by both carrier and lattice vibrations. The best initially available TE 

device has ZT ≈ 0.99  [22]. Extensive TE research has sought materials with 

higher thermoelectric power but lower heat conductivity, resulting in a higher 

ZT. The difficulty here is that, the parameters that define ZT are interdependent 

of each other, thus changing one changes the others. High atomic weight 

semiconductors are employed to minimize the thermal conductivity in bulk 

materials such as Bi2Te3 and its alloys with Sb, Sn, and Pb without altering the 

Seebeck coefficient and the electrical conductivity. Although it is theoretically 

conceivable to build bulk semiconductors with ZT >3, no promising materials 

are on the horizon  [30]. 

Based on these benefits, the introduction of nanofilm and superlattice 

(SL) nanowire structures in the 1970’s dramatically enhanced the ZT of 

thermoelectric devices, redirecting the attention away from bulk materials 

toward understanding the dynamics of carrier transport in nanodevices. The 

confinement of carriers in quantum nanostructures increases the carrier local 

density of state close to the Fermi level  [31]. Phonon confinement and the 

scattering phonon in material interfaces in SLs boost thermoelectricity  [32] but 

decreases thermal conductivity. This is because the large bandgap and the 

differences between  the phonon and carrier-free mean paths  in the 

semiconductors have little effect on the  electrical conductivity [30, 31].  

Thermoelectric materials 

Thermoelectric processes are caused by the movement of phonons and 

electrons over a temperature gradient in electrically conducting materials. The 

concentration of these particles defines the diffusion currents. The basic TE 
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transport parameters are expressed using simple physical parameters such as 

electrical and thermal conductivities and the Seebeck coefficient. It is preferable 

to enhance electronic diffusion while minimizing phonon diffusion when 

applying thermoelectricity to power generation. 

 Thermoelectricity is a method which is widely used for sensing and 

cooling to ensure thermal management. This applies to materials and structures 

which have sustainable chemical potential difference between their cold and hot 

ends. Although, semiconductors are widely used in optoelectronics and 

microelectronics, it is difficult to imagine that the initial excitement was as the 

result of their promise in refrigeration, but not in electronics  [35]. It was the 

discovery in the 1950s that semiconductor materials can act as efficient heat 

pumps which leads to the premature expectations of environmentally friendly 

solid-state home refrigeration and power generators that contains no moving 

parts. 

 In semiconductors, holes and electrons are charge carriers, while lattice 

phonons or vibrations dominate heat transport. Phonons and electrons (or holes) 

have two lengths associated with their transport which, are free mean path, l  

and wavelength, λ. Nanostructure semiconductors which have sizes comparable 

to the wavelength λ, have sharp edges and peaks at their electronic density of 

state, whose location in energy space depends on their sizes. By matching the 

locations peaks with their shapes to the Fermi energy, one can modify the 

thermopower. Such quantum confinement increases electron mobility, which 

could lead to high values of conductivity. Hence, quantum confinement allows 
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manipulation of electrical power factor 2   that is hard to achieve in bulk 

materials  [36].  

Majority of thermoelectric materials are alloys. This is because alloys 

scatter through short-wavelength acoustic phonons and this reduces thermal 

conductivity without substantially altering 2  . It is possible that increasing 

𝑍𝑇 may be less dependent on quantum confinement of holes and electrons, but 

depends more on phonon dynamics and transport. For example, if the 

semiconductor size is smaller and the mean free path of the phonons is larger 

than that of the electrons or holes, one can reduce thermal conductivity by 

boundary scattering without affecting electrical transport.  

Several questions about quantum effects have received increasing 

attention and their answers hold promise in increasing 𝑍𝑇  [25, 26].  Hicks et al. 

in [35,36] proposed that it may be possible to increase 𝑍𝑇 of certain materials by 

preparing them in quantum-well SL structures. In their paper, calculations were 

carried out to investigate the potential for this approach, and authors also 

evaluated the effect of anisotropy on ZT. Their calculations showed that 

layering has the potential to increase significantly the ZT of a highly anisotropic 

material such as Bi2Te3, provided that the SL multilayers are made in a 

particular orientation. This result opens the possibility of using quantum-well 

SLs structures to enhance the performance of TE coolers. 

 Mensah et al. in  [39] also investigated the TE effect in a semiconductor 

SL placed in a non-quantized electric field. These researchers obtained 

analytical expressions for thermopower and the heat conductivity coefficient as 

functions of the SL’s parameters such as its bandwidth, period, temperature, 
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carrier concentration, and electric field. Their results confirmed the fact that 

depending on the relationship between the bandwidth and the other energies 

characteristics of the charge carriers, the charge carriers can behave either as a 

quasi 2D particle or as a 3D electron gas. They proposed the prospect of using 

a SL as a quality and highly efficient thermoelement.    

Graphene and two-dimensional materials  

The study of the physical properties of 2D materials has emerged as one 

of the most effective and relevant fields in condensed matter physics. The 

interest in  these materials started with the isolation of graphene in 2004 by  

Novoselov and Geim  [40]. In recent years, attention has switched to various 2D 

materials and, more significantly, their combinations  [41, 42]. Multiple layers 

of various 2D materials can be piled on top of one another to produce complex 

structures. These layers are kept together by Van der Waals forces. As a result, 

these structures are known as Van der Waals structures (VdW)  [43]. 

Carbon allotropes form a unique hybridization structure of sp3, sp2 and 

sp networks which are more stable than any other element. The most common 

allotropic form of carbon known since antiquity is graphite and diamond which 

are naturally abundant. Graphite is made up of sp2 hybridization of carbon 

atomic layers that are held together by weak Van der Waals forces. The basic 

unit of graphite is graphene which is a single atomic layer of graphite sheet 

densely packed into a 2D honeycomb-like crystal structure  [10].   

A 2D quantum wire is created from a three-dimensional (3D) crystal in 

such a way that the length of the wire is very long and its diameter is small 

enough to achieve quantum confinement. Graphene, the mother of all graphite 
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which is composed of weakly coupled layers, can be wrapped in all directions 

into a zero-dimensional Bucky ball (0D). When a 2D crystal structure is rolled 

at its longitudinal ends, it forms a one-dimensional (1D) structure, known as 

carbon nanotube,  and when stacked into a (3D) structure it is as known as 

diamond and other carbon compounds  [44, 45], as shown in Figure 2.  

 

Figure 2: Some allotropes of Carbon: Fullerenes (0D) Carbon Nanotubes 

 (1D), Graphene (2D) and Graphite (3D)  [46].  

Graphene as a material was scientifically proved not to exist due to 

thermal expansion  [47]. These scientists argued that, strictly 2D crystals were 

thermodynamically unstable. This is as a result of thermal fluctuations in low-

dimensional crystal structures which will lead to displacements of the atoms 

interatomic distances at finite temperature  [13]. This hypothesis was disproved 

in 2004  [44] by a Manchester group led by Andre Geim and Novoselovs who 

reported a method by creating a single layer graphene on a silicon oxide 
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substrate by mechanical exfoliation [12, 45]. The quasiparticles behave as non-

relativistic electron charge carriers with zero mass.  

The unique band structure of graphene is the results of touching of 

valance and conduction bands at the Dirac point (𝑘 and 𝑘′) on the edge of the 

first Brillouin zone. Near these crossing points, the electron’s energy is linearly 

dependent on the wave vector. This linear dispersion produces massless 

excitons, which are described by the Dirac equation. The Dirac fermions 

(electrons or holes) exhibit unusual characteristics as compared to the ordinary 

electrons which leads to new phenomena such as linear energy dispersion, , 

ballistic conduction, chiral behavior and quantum Hall effect  [48], frequency 

dependent conductivity  [49], gate-tunable optical transitions,  [50] and so on. 

Methods of Fabricating Graphene 

Graphene is currently synthesized using different methods. Depending 

on the desired size, purity, and crystallinity of the finished products, four basic 

methods currently exist in the synthesis of graphene. These are mechanical 

exfoliation, liquid phase exfoliation of graphite, pulse laser deposition, and 

chemical vapor deposition. 

Mechanical Exfoliation 

Mechanical exfoliation was the first and most widely used method of 

producing graphene for research purposes  [51]. This common method uses 

adhesive scotch tape to peel off single layers of graphene by breaking the weak 

Van der Waals forces. The sample may contain mixture of layers, which are 

then peeled off repeatedly to produce predominant single layer of graphene. 
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This method produces high-quality graphene with no grain impurities. 

However, the graphene coverage on the substrate is minimal and uncontrollable. 

As a result, mechanical exfoliation is unsuitable for large-scale production. 

Liquid Phase Exfoliation of Graphite  

 Liquid Phase Exfoliation (LPE) process uses solvent sulfuric acid and 

acetic acid, or hydrogen peroxide to produce graphene materials from graphite 

by ultrasonication  [52]. Sonication is a method used in LPE to produce 

graphene from graphite material, since it involves different layers of graphene 

which are held together by Van der Waals forces. This approach, shown in 

Figure 3, is used to produce graphene nanoribbons. However, large-scale 

graphene growth is problematic in this technique.  

 

 

Figure 3: Schematic diagram of production of graphene using LPE  [50] 
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Pulsed Laser Deposition 

  Pulsed Laser Deposition (PLD) is a commonly used method for 

producing graphene materials for practical application and its schematic is 

shown in Figure 4. During the PLD techniques, the laser source is positioned 

outside the chamber, and the chamber is kept at an ultrahigh vacuum. In this 

approach, the material is deposited at an angle of 45° through stoichiometry 

transfer between the ablated target and substrate material in this technique. 

Throughout this process, substrates are added to the surfaces parallel to the 

target at a distance of (2-10) mm. The main advantage of the PLD process is the 

low temperature growth rate observed, which allows for the production of high-

quality graphene with no flaws  [41, 44]. 

 

Figure 4: Schematic representative of pulsed Laser deposition of graphene 

          [53]. 
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Chemical Vapor Deposition  

As illustrated in Figure 5, Chemical Vapor Deposition (CVD) works by 

depositing volatile gas molecules onto a substrate. This process occurs in the 

reaction chamber, where the substrate is formed on the material surface and the 

waste gases are released. Temperature dependence plays an important role and 

can affect the kind of reaction that will occur. CVD produces high-quality and 

pure graphene films, however, the by-products formed in the process may be 

toxic due to the volatile nature of the precursor gases [54].  

The graphene sheet produced by the CVD technique is divided into two 

phases. The first method includes pyrolysis of a precursor substance in order to 

produce carbon atoms on the substrate material. Pyrolyzing the substrate on the 

material prevents the formation of carbon clusters. Due to the amount of energy 

needed for breaking the carbon bonds, a high temperature may be required, 

necessitating the use of a metal catalyst during the process. The second phase is 

heat-intensive one in  which fragmented  carbon atoms assembled onto a 

substrate in the presence of a catalyst to form a single layer structure  [55]. 

Depending on the arrangement of the atoms in the film, CVD graphene films 

are expected to have strong electrical, chemical, and magnetic characteristics. 

Due to the five-order-of-magnitude disparity between grains and atoms at grain 

boundaries, only a few experiments have been undertaken to examine these 

interactions. Copper is one of the recognized substrates that is used to 

produce high-quality graphene. Copper serves as both a catalyst and a substrate. 

The copper bonds to the carbon atoms which creates strong carbon-substrate 

interactions, that allow a single graphene sheet to grow on the surface. Copper 
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oxide can also be placed between graphene sheets to help facilitate the removal 

of a single layer. 

 

Figure 5: Schematic diagram of chemical vapor deposition Setup  [56]. 

 

Graphene Superlattice  

 GSL is widely known for its ability to  control the electrical structures 

of several common semiconducting materials  [57]. Extensive studies on the 

basic characteristics of SLs, such as carrier transport and energy band structures 

have been widely studied. Novel devices such as infrared detectors, 

semiconductor lasers, modulators and light-emitting diodes (LEDs) have been 

developed using quantum SL structures. A SL structures are said to be formed 

when thin layers (d ≤ 25 nm) of a larger band gap semiconductor (AlGaAs) and 

a smaller band gap semiconductor (GaAs) are grown alternately on a conducting 

or a semi-insulating substrate. The periodic structures are formed by alternately 

depositing thin epitaxial layers of two different band gap materials to produce a 

periodic potential similar to the 1D Kronig–Penney model. 
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Both experimental and theoretical investigations have demonstrated that 

SL structures have significant influence on the characteristics of charge carriers 

in graphene  [53, 56, 57]. This suggests a possible approach for building 

electrical devices on graphene without the requirement for cutting or etching. 

Among the several approaches for producing GSL  [59, 60], partial 

hydrogenation seems very fascinating. Theoretically, a 1D GSL formed by 

partial hydrogenation is expected to have surprising electrical characteristics 

that might be highly beneficial in real-world applications  [60, 61]. Figure 6 

shows the schematic arrangement of 2D GSL substrate (SiO2/h-BN) relating to 

graphene sheet.    
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Figure 6: Schematic representation of 2D GSL showing the arrangement of 

    the substrate (SiO2/h-BN) relative to Graphene sheet   (adapted from 

    Ref.  [62]). The alternate regions provide a periodic structure in the 

    graphene sheet with a period of d1 along one axis (the x-axis in this 

    case) and a period of d2 along the y-axis.  

Two-Dimensional Graphene Nanomaterials 

The isolation of graphene monolayer experimentally has prompted 

numerous attentions in condensed matter physics to investigate its exceptional 

properties, especially with its linear dispersion and massless Dirac fermions. In 
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addition, due to graphene's high electron mobility at ambient temperature 

(>50,000 cm2/Vs), it has natural uses in high-speed electrical devices [63]. 

However, the zero bandgap of graphene presents significant challenges in most 

electronic applications, prompting subsequent efforts to modify graphene by 

opening a bandgap. For example, a bandgap can be formed in graphene by 

breaking the symmetry of (𝑘 and 𝑘′) points in the first Brillouin zone, which 

could lead to research into graphene-related materials like graphene oxide and 

hexagonal boron nitride (h-BN). In this context, h-BN is an extreme case in 

which carbon atoms in the (𝑘 and 𝑘′) locations are replaced with boron and 

nitrogen resulting in a broad bandgap (~6 eV) insulator. 

Real Space Lattice of Graphene  

Graphene is a two-dimensional (2D) single atomic layer of carbon 

allotropes which serves as the fundamental building block for graphite, carbon 

nanotubes, fullerenes, and other carbon-based compounds with hexagonal 

structure which consist of a bi-particle lattice of two triangular sublattice. Figure 

7 shows the hexagonal honeycomb lattice structure, as well as the primitive cell 

denoted by the basis vectors a1 and a2 respectively. The interatomic distance is 

sometimes indicated as ao [52, 53]. To determine the lattice vectors, the structure 

of a graphene sheet with two carbon atoms per unit cell forms two sublattices. 

Sublattices a and b atoms are represented by blue and grey dots, respectively 

(see Figure 7). 
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Figure 7: A representation of graphene honeycomb lattice basic structure in 

    real space. The sublattices a and b are represented in blue and grey, 

    respectively. The interatomic spacing is shown in red, while the   

    primitive cell is shown in blue. Adapted from Ref.  [64]  

The primitive lattice vectors 𝑎⃗1 and 𝑎⃗2 with primitive unit cell oa can be 

derived using plane geometry as specified as follows:  

1

3 3
,

2 2
oa a
 

=  
   

,           
2

3 3
,

2 2
oa a
 

=  
 

      (2.2) 

From Pythagorean theorem, the magnitude of the basic lattice vectors is given 

by;  

      1 2 3oa a a= =       (2.3) 

where the interatomic spacing is indicated by ao and the magnitude of the 

associated lattice vectors 𝑎⃗1 and 𝑎⃗2 is 2.46 Å. 

It is noted that the hexagonal honeycomb lattice of Bravais lattice is 

defined by the next-to-nearest neighbors rather than the basis vectors linking the 

nearest adjacent vectors. The Bravais lattice is hexagonal, with its unit cell 

shown in blue (see Figure 7).  
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Due to the periodicity of the lattice, it follows that any physical 

characteristic f (r) of the lattice will inherit this periodicity, which implies that f 

(r) is translationally symmetric  [64].  

Reciprocal Lattice of Graphene  

According to periodic lattice theory, the periodicity of a lattice is 

inherited by each lattice's physical characteristic f (r). To support this, every 

function in space which is periodic may be characterized by a wavelength (λ). 

Ionic cores in an atomic lattices can alternatively be conceived as two-

dimensional periodic waves  [65]. The primitive lattice vectors 𝑎⃗1 and 𝑎⃗2 

establish the crystal planes inside the lattice. The wavelengths λi of the lattice 

are simply the distance between crystallographic planes calculated from 

primitive lattice vectors.  

 

Figure 8: A representation of the primitive (yellow) and reciprocal (red) lattice 

     vectors in real space. Lattice planes (dashed) are also illustrated so 

     that the reciprocal lattice vectors' directions are intuitive. Adapted 

     from Ref.  [65].       
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Figure 8 shows the primitive and the reciprocal lattice of graphene. A 

wave theory describes the lattice based on its crystal planes which is equally 

justifiable as described by the primitive lattice vectors.  

This is done by identifying the spatial frequency in the lattice planes given by 

the lattice vectors 𝒃𝒊. These vectors point to the direction of the wave 

propagation, and their magnitude |𝒃𝒊| is the wavenumber. The wavenumbers and 

wavelengths of the lattice are related as: 

                                                          𝑏𝑖 =
2𝜋

𝜆𝑖
           (2.4) 

where λi is the space between the crystal planes and the lattice wavelength. 

Using plane geometry, the wavenumbers as well as the wavelengths relating to 

the primitive lattice vectors in the graphene sheet can then be calculated as:  

ˆ ˆi i ja a =      (2.5) 

Thus, for graphene lattice, we obtain 

    ˆ ˆ
i i ja a =   

1 2

4

3 o

b b
a


= =    (2.6) 

The reciprocal vectors of lattice are vectors 𝑏⃗⃗1 and 𝑏⃗⃗2. The direction of 

the wavevector is perpendicular to the lines or planes of constant phase. The 

crystal planes are also defined to be surfaces of constant phase in lattice. This is 

because the vectors 𝑎⃗1 and 𝑎⃗2 define the lines in the planes through which their 

corresponding wavevectors should be normal. In that way, the primitive unit 

vectors are expressed as:  
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1

3 1
ˆ , ,

2 2
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=  
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2

3 1
ˆ ,

2 2
oa a
 

=  
 

               (2.7)                               

Rotating Eqn. (2.7) by 900 and then multiply it by the wavenumber gives the 

vectors corresponding to the primitive lattice vectors as: 

1

4 1 3ˆ , ,
3 2 2o

b
a

  
=  

 
     

2

4 1 3ˆ ,
3 2 2o

b
a

  −
= − 

 
              (2.8) 

The reciprocal lattice vector is symmetric under translation for any physical 

property in k-space, g (k)  [59, 65]. 

g (k) = g (k + G)     (2.9) 

where G is the translational vector which is the integral sum of the reciprocal 

lattice vectors 

i i

i

G n b=      (2.10) 

Figure 9 indicates the points of constructing a graphene reciprocal lattice 

and its reciprocal lattice vectors. The reciprocal primitive lattice cell (red) and 

its first Brillouin zone (light blue) are also shown and the irreducible path 

(purple) in the Brillouin zone. The diagram is considered to exist in k-space, 

where 𝑘𝑥 and 𝑘𝑦  serve as unit vectors. In k-space, two points are regarded 

as comparable if and only if they can be reached by a reciprocal lattice vector 

translation. From a mathematical point of view, the Fourier transform of the 

reciprocal lattice is the primitive lattice  [66,  67]. 
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Figure 9: A diagram showing the reciprocal lattice in graphene along with the 

    first Brillouin zone (red) in momentum space. Adapted 

               from Ref.  [65]. 

 

The Brillouin zone becomes relevant when the wave’s reflection from a 

periodic structure is elastic. According to the de-Broglie theory, this wave may 

be a phonon or an electron. As reported by Bragg's reflection theory, periodic 

reflection happens if and only if the incident 𝑘 wave and the reflected 𝑘′ wave 

constructively interact. Constructive interference occurs if the difference 

between the incident and reflected waves is equal to the reciprocal lattice vector 

G. 

     'k k k = − =G    (2.11) 

The above relationship holds if G is a reciprocal lattice vector. It denotes 

the wavevectors related to the periodicity of the lattice planes. On the other 

hand, an elastic scattering causes the direction momentum to change while 

keeping the magnitude unchanged. 
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  'k k=     (2.12) 

By combining Eqn. (2.11) and Eqn. (2.12), the elastic condition that applies to 

the reflection of a wave from a periodic structure is obtained as: 

k. G 
1

2
= |𝐺|2    (2.13) 

Equation (2.13) above is a vector representation of the well-known 1D 

Bragg condition, 𝑛𝜆𝑖 = 2𝑑𝑐𝑜𝑠𝜃, where    is the wavelength of the incident 

beam, n is an integer, d  is the lattice spacing, and   is the incident angle. The 

aforementioned geometrically specifies the limits of volumes in 𝑘-space. These 

volumes are the Brillouin zones BZ, with the lowest volume being the first BZ 

and so on. Although knowledge of the BZ initially appears in the study of 

Bragg’s reflections, it is applicable to the physical theory of solids  [68, 69]. The 

graphene BZ is of particular importance in the investigation of the band 

structure, its acoustic and electrical characteristics. This is because the location 

of the 𝑘-points in the BZ are considered equivalent and can be accessed by 

reciprocal lattice vector G through translation. The physical properties of every 

lattice structure will be approximately the same at the 𝑘-points. In other words, 

the Physics at the 𝑘-point is the same. However, it is impossible to translate the 

reciprocal lattice vector, G through 𝑘 and 𝑘′. This is because these points are 

inequivalent, resulting in different Physics at the 𝑘 and 𝑘′. This discrepancy 

between the vertices eventually leads to a two-fold valley degeneracy in the 

graphene band structure known as valley isospin or valley degeneracy.  
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Electronic Band Structure of Graphene  

In 1947, Wallace theoretically investigated  the band structure of 

graphene and found that it behaves as a semimetal due to lack of band gap 

between the valence and conduction bands  [70]. The material transport 

properties are intrinsically linked to its energy band structure. The GSL allows 

carriers to move freely in two dimensions. The carriers near the Dirac points are 

important in graphene carrier transport. 

Graphene’s single layer has a honeycomb crystal structure made up of 

two quasi sublattices. This gives a unique band structure for restless-electrons 

that act like massless Dirac fermions close to the Fermi energy. At two separate 

Dirac points known as 𝑘 and 𝑘′ points, the valence and conduction bands join 

together conically by generating a time-reversed pair with opposing polarity. 

The chirality and Berry phase at these points enable uncommon and exciting 2D 

electronic phenomena such as the half-integer quantum Hall effect, the lack of 

backward scattering and phase shift of the Shubnikov–de Haas oscillations  [70, 

71].  

The hexagonal lattice of graphene consists of carbon atoms. Each of 

these carbon atoms has six electrons’ pair in 1s2, 2s2 and 2p2 orbitals. The 

orbitals of different carbon atoms can make bonds by lowering their total energy 

in the valence electrons. The energy band structure of a graphene sheet is 

obtained by first characterizing the basal planes with the tight-binding 

approximation and then superimposing the periodic boundary conditions. The 

electronic structure is determined within these approximations by distinguishing 

interactions within each basal plane (covalent) from in-plane interactions   [53, 

72]. The graphene unit cell in real space is generally known to contain two 
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carbon atoms. Each carbon atom is also known to have four valence electrons. 

According to hybridization theory, each of these three electrons forms a strong 

sp2 σ-bond with its three nearest neighbours who are in the same plane, with a 

bond angle of 1200 and energies of -2.5eV, which is significantly below the 

Fermi level. These bonds have no effect on the conductivity of the graphene 

sheet  [73]. The fourth valence electron is positioned somewhat below the Fermi 

level in the π-orbitals which is perpendicular to the plane of the graphene sheet. 

This π-electron is thought to be in control of the graphene sheet's electrical 

conductivity and transport properties  [49, 58]. The Fermi level is slightly below 

the anti-bonding π*-orbital, and it corresponds to the conduction band in the 

energy band diagram as shown in Figure 10. In other words, the electronic 

properties of graphene are best explained by considering simply the electron 

energy dispersion  [74]. 

 

Figure 10: Electronic dispersion relation (plot of electron energy as a function 

     of wavevector 𝑘 in the xy plane) for single-layer graphene. The   

    single-layer graphene conduction band touches the valence band at 𝑘 

     and 𝑘′ points in the reciprocal space.  Adapted from Ref.  [65].  
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When Wannier functions are combined with the second quantization formalism, 

an intuitive description of the band structure is obtained  [75]. The creation 

operators 
†

i and 
†

i  are in the sublattices a and b. The sublattices are obtained 

in the vacuum state as:                           

                 ;                                           (2.14)  

These relations are interpreted as creating an electron on the 
†

i or 
†

i atom of 

the unit cell indexed with position vector . The tight-binding Hamiltonian 𝐻̂ 

will take the form: 

 † †

,

ˆ
j i j

i j

H     = − +            (2.15) 

The exact solution of Eqn. (2.15) is obtained by summing over all i j , 

since the analytic solution of such a problem is tedious. For first approximation, 

the sum will be taken only over the nearest neighbours. The first term in the sum 

indicates that an electron is annihilated at position iR 
 and subsequently created 

at a nearest neighbor iR 
 [64, 65], which is known as 𝛼/𝛽 hopping. Similarly, 

the second term denotes the hopping from 𝛽 sublattice to sublattice 𝛼. By 

symmetry, the hopping energy is approximately the same in both cases of the 

problem. Experimental measurements have revealed that 𝛾 =2.65 eV   [76]. In 

analogy with quantum mechanics, the eigenvalues of the Hamiltonian are of 

much concern, with special interest in the energy dispersion relation, 𝜀(𝑘) such 

that a change of basis to momentum space is required. So, the creation operators 

are written as: 

† 0i iR  = † 0i iR  =

iR
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.† †

.† †

i

i

iR k

i k

k

iR k

i k

k

e

e





 

 

−

−

=

=




   (2.16) 

The hopping term /   is found from the complex conjugate ( /  ) 

term  [67]. This means H is Hermitian, and performing a change of basis for 

H  then yields 

( ). †

,

. †

j i

n

i R R k

k k

k i j

i k

k k

k n

H e

e

 



  

  

− −

−

= −

 
= −  

 



 
      (2.17) 

where 𝑘 is sum over all the 𝑘′-values within the first BZ. The result for 𝛽/𝛼 is 

shown  [75] as: 

 
. .*( ) ( )n ni k i k

n n

f k e f k e
  − −

= − = −     (2.18) 

This is summed over the nearest neighbour vectors to get the overall 

Hamiltonian in   𝑘-space. A 2 2  anti-diagonal matrix represents this 

Hamiltonian. This matrix results from working on the sublattices' basis. The 

interaction that takes place is only between the 𝛼 and 𝛽 sublattices, which are 

off-diagonal elements. That is,  

† * †( ) ( ) ( )k k k k

n

f k f k f k    = − +   (2.19) 

*

0 ( )
0

( ) 0

f k

f k

 
= 

 
     (2.20) 

Solving the secular equation gives the energy relations  

 0kH I− =      (2.21) 
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 ( )k f k =       (2.22) 

Substituting for the nearest neighbor vectors n yields for ( )f k  and ( )k   [76].  

1 2. . ( )/2 1 2.( )
( ) 2 cos

2
nik i k k

f k e e
    

 + +  
= − +   

  
   

. . /2
3

2 cos
2

x o x o o yik a i k a
a k

e e
  
 = − +  

    

   (2.23) 

 Substituting Eqn. (2.23) into Eqn. (2.22) and simplify to obtain 

33
( ) 3 2cos( 3 ) 4cos cos

2 2

o yo x
o y

a ka k
k a k

  
=  + +      

   

 (2.24) 

The eigenvalues of the Hamiltonian, ( )k  yields the electronic band structure. 

The corresponding normalized eigenvectors are  [77]  

 ( ) ( )

1 11 1
,

2 2
i k i ke e − −

   
+ = − =   

+ −   
   (2.25) 

As shown in Eqn. (2.26), the Hamiltonian can be written in terms of  𝜀(𝑘) by 

identifying that 
( )( ) ( ) . ( )i kf k k e k =  describes the phase associated with the 

Bloch eigenstate that is composed of the wavefunction. 

( )

( )

0ˆ ( )
0

i k

i k

e
H k

e






−

 
=  

 
     (2.26) 

The 𝑘 and 𝑘′ points in the neighborhood of the BZ and have the energy 

( ) ( ' )k k k k   + = +  such that measuring the electron energy close to 𝑘 or 𝑘′ 

will not indicate whether it is in the creation  +  or destruction − states  [66, 

75].The phonon spectrum and band structure of graphene are derived by 

summing the nearest neighbor vectors. The results in both situations are the 
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consequence of considering the coupling between the sublattices. The coupling 

in the former (phonon spectrum) is derived from a harmonic restoring force 

between the nearest neighbors, whereas the coupling in the latter (band 

structure) originates from the assumption that a tightly-bound electron has some 

finite coupling with its nearest neighbors. The physics underlying the quantized 

theory of phonons and band structure is ultimately linked to the periodicity of 

the arrangement of the carbon atoms that constitute the lattice. Any hexagonal 

honeycomb lattice has the same phonon characteristics except the magnitudes 

of the force components. The band structure is as a result of the hexagonal 

arrangement of sp2 carbon atoms. 

Similarly, solving for the off-diagonal element yields the dispersion relation 

3
( ) exp( ) exp( )exp( )

2 2

3
exp( )exp( )

2 2

y x y

x y

a a
k ik a ik ik

a a
ik ik

 = − + − −

+ − −

    

3
( ) exp( ) 2exp( )cos( )

2 2
y y x

a a
k ik a ik k = − +

    (2.27) 

Simplifying further gives the magnitude of  𝜀(𝑘) 

1/2

3
( ) (exp( ) 2exp( )cos( ))

2 2

3
(exp( ) 2exp( )cos( ))

2 2

y y x

y y x

a a
k ik a ik k

a a
ik a ik k




= − +



 + − 


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1/2

2

3 3
( ) 1 2exp( )cos( )

2 2

3 3 3
2exp( )cos( ) 4cos ( )

2 2 2

x x

y x x

a a
k k k

a a a
ik k k




= + −



+ + 



 

2

3 3 3 3
1 2exp(- ) cos( ) 2exp( )cos( )

2 2 2 2

3
4cos ( )

2

x x y x

o

x

a a a a
k k ik k

a
k



+ +



+

 (2.28) 

of which 
2

( ) ( )k f k =  has been employed in the derivation of the band 

structure. 

Visualizing Band Structure of Graphene 

The study of the energy band structure of graphene yields several unique 

physical characteristics, which are particularly helpful in visualizing its band 

structure. The energy ε(k)  associated with each of these vectors is obtained by 

the tight-binding model. Figure 11(a and b) depict the band of graphene 

structure visualized in three dimensions. The solution to 𝜀(𝑘) comprises of each 

two values of 𝑘. The magnitude of the values is the same but opposite in sign. 

In such a scenario, the 3D plot of the band structure of graphene is symmetric 

about the plane 𝜀(𝑘) = 0. This direct result is obtained by considering the 

energy to be equal to zero in the tight-binding approximation  [77,  78]. The 

band structure around the 𝑘 and 𝑘′  in the first Brillouin zone is roughly conical. 

Geometrically, 𝜀(𝑘)  is flat in this region and therefore, its second derivatives 

are zero. As a result, the most important property of an ideal graphene is 

obtained. That is, the effective mass of a Bloch state is zero at 𝑘 and 𝑘′ locations. 

This is because in 𝑘 and 𝑘′ valleys, electrons are massless fermions and require 
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a relativistic quantum mechanical model (Dirac equation) to be solved. For this 

purpose, electrons near the Dirac point (𝑘 and 𝑘′  ) are referred to as massless 

Dirac fermions  [78].  

 

Figure 11: (a) A three-dimensional plot of the band structure of graphene  

       [79]. (b) A three-dimensional visualization of the band structure as 

        it approaches 0E =  at special points 𝑘 and 𝑘′  [79]. 

Applications of Graphene  

Graphene is a promising material for electronics and photonics 

applications as well as for gas sensors. When gas molecules collide with 

graphene, their electrical characteristics are altered in a detectable way, 

allowing for gas detection  [78]. As a result of its large surface area, graphene 

has potential uses as a support material in catalysis  [79], as electrode material 

in electrochemical applications such as batteries and supercapacitors. Graphene 

layer structures act as a barrier to nanoparticle aggregation in the catalyst or 

electrode material. This is because of the enormous surface-to-volume ratio and 

highly conductive nature of graphene. The use of reduced graphene oxide 
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(RGO) or chemically derived graphene (CDG) based materials as anode or 

cathode in Li-ion battery technology stimulates the recent advancement in the 

sector. The development of nanopores and defects in the CDG by chemical 

synthesis promotes lithium insertion active sites, which are critical in Li battery 

technology.  

The Boltzmann Transport Equation 

The semi-classical theories of transport processes are founded on the 

Boltzmann Transport Equation (BTE). The BTE governs the statistical 

distribution of particles in liquid, solid, or gas, and it is the most fundamental 

equations in non-equilibrium statistical mechanics. It is frequently used to study 

heat, mass, charge, and spin transport processes, as well as to derive electrical 

conductivity, thermal conductivity, spin conductivity, and Hall conductivity in 

materials. The BTE is obtained by first defining a parameter known as the 

distribution function and then analyzing its variation over time. The distribution 

function describes how the particles of interest are distributed in real and 

momentum spaces, as well as how the distribution changes over time. The basic 

principle underlying the BTE is charge conservation. Each particle (such as 

phonon or an electron) is assumed to have momentum and space coordinates. A 

distribution function 𝑓(𝑟, 𝑘, 𝑡) counts the number of particles occupying each 

set of coordinates in momentum and space, as defined by either Bose-Einstein 

statistic for bosons (phonons) or Fermi-Dirac statistics for fermions (electrons). 

However, in momentum and space the particles are conserved by equating the 

total rate of change in time to the change in the distribution function caused by 

various scattering mechanisms  [80]. 
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Using the product rule, and expanding the gradient as in  [81] yields; 

𝑑𝑓(𝑟,𝑘,𝑡)

𝑑𝑡
=

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑘

𝜕𝑘

𝜕𝑡
= (

𝜕𝑓

𝜕𝑡
) |𝑠𝑐𝑎𝑡  (2.29) 

The velocity of the electron is given by the time derivative of the position. i.e., 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑘). The velocity is determined by the gradient of the electron band 

structure. 

1 ( )
( )

dE k
v k

dk
=    (2.30) 

The momentum derivative is identified with the effect of the electric field as: 

 
( )dk eF x

dt
=     (2.31)  

where e is the charge of the electron, ( )F x  is the applied electric field at a given 

position.  

The exact solution of the general BTE in Eqn. (2.29) BTE, which can be 

derived by considering more details on electron conservation  [82]. 

𝜕𝑓

𝜕𝑡
+ 𝑣(𝑘)

𝜕𝑓

𝜕𝑥
+

𝑒𝐹(𝑥)

ℏ

𝜕𝑓

𝜕𝑘
= 𝛿𝑓|𝑠𝑐𝑎𝑡    (2.32) 

The BTE in Eqn. (2.29) represents a first-order partial differential equations in 

space, momentum and time dimensions. One advantage of using this 

formulation to solve for the distribution function is that the total charge along 

the transverse direction of the sheet is obtained by simply multiplying the 

electronic charge, e by distribution function and integrate over momentum. 

𝜌(𝑥, 𝑡) = 𝑒 ∫ 𝑓(𝑥, 𝑘, 𝑡)𝑑𝑘   (2.33) 
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The electric field strength along the sheet can now be obtained using the charge 

density. Similarly, the current density is calculated by integrating all of the 

momentum states' velocities, weighted by their distribution. 

𝑗(𝑥, 𝑡) = 𝑒 ∫ 𝑣(𝑘)𝑓(𝑥, 𝑘, 𝑡)𝑑𝑘  (2.34) 

Once the equilibrium state distribution function 𝑓(𝑟, 𝑘, 𝑡)  is known, Eqn. (2.29) 

can be used to calculate the current. The Poisson equation below is used to 

achieve the coupling between externally applied potentials and electronic 

transport as: 

2
2

2

( ) ( )
( )

d v x x
v x

x




 = =


   (2.35) 

Electron Scattering Rates 

The force term in Eqn. (2.30) i.e. 
𝜕𝑘

𝜕𝑡
 is the change in the distribution 

function as a result of collisions. Electron interacts with quantized physical 

vibration as of harmonic nature (phonons), as well as other excitations and other 

electrons. For ballistic transport, the distribution occurs or advert in momentum 

and space under the influence of the velocity of the electron and amplified 

field  [80]. The scattering process brings the distribution function to a stable 

state after some initial transient time. The collision integral is then calculated 

by considering the probability of transitions from one momentum state 𝑘 to 

another state 𝑘′, given by ( , ')S k k  and the reverse is ( ', )S k k .  The probability 

of occupation of these states is dictated by the distribution functions ( )f k  and 

( ')f k . The scattering-out of a state 𝑘 term is ( , ') ( )S k k f k and the scattering-

into a state k  is ( ', ) ( ')S k k f k . Integrating the difference over all the states 𝑘′ 

gives the total change in the distribution function due to the collision  [83] as: 
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( , , )
'[ ( , ') ( , , ) ( ', ) ( , ', )]

df x k t
dk S k k f x k t S k k f x k t

dt
= −         (2.36) 

The probabilities scattering states such as  ( , ')S k k  and ( ', )S k k are obtained 

using perturbation the in the quantum approach, by including the appropriate 

probabilities or scattering statistics  [84]. This calculation can also be extended 

to include Pauli’s exclusion principle, which states that not more than one 

electron can occupy the same quantum mechanical state. This principle 

translates into an additional factor which counts the probability of a final state 

not being available, denoted by (1 ( ))f k− . Substituting this term complicates 

the expression for the scattering integral.  

 | '[ ( , ') ( )(1 ( ')) ( ', )(1 ( ))( ( ')]scat dk S k k f k f k S k k f k f k = − − −          (2.37) 

A tractable form can be derived from Eqn. (2.38) by assuming that the 

distribution function perturbed slightly from its equilibrium position by a small 

factor, denoted by  ( , , )f x k t  is 

( ) '[ ( , ')( ) ( ', )( ')]eq eq eq

d
f f dk S k k f f S k k f f

dt
  + = + − +         (2.38) 

The equilibrium distribution function, given by Fermi-Dirac statistics in a 

steady state is expressed as: 

1

( ) ( )
( , , ) exp 1F

eq

B

E k E x
f x k t

k T

−

  −
= +  

  
          (2.39) 

 However, the overall scattering integral in equilibrium is zero as expressed 

in  [85] as:  

( , , )
'[ ( , ') ( , , ) ( ', ) ( , ' )] 0

eq

eq eq

df x k t
dk S k k f x k t S k k f x k t

dt
= − =     (2.40) 
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This is known as the principle of detailed balance, as each process is 

exactly balanced out by an opposite but equal component, causing no net change 

to the distribution function.  

( , , )
'[ ( , ') ( , , ) ( ', ) ( , ', )

eq

eq eq

d f x k t
dk S k k f x k t S k k f x k t

dt


 = −          (2.41) 

where  ( , , ) ( , , )eq eqf x k t f x k t=  

The perturbed term f , is predominantly an odd function in term of 

momentum i.e. ( , , ) ( , , )f x k t f x k t = − , but the scattering probabilities  

( , ')S k k  and ( , ')S k k−  are even functions i.e. ( , ') ( , ')S k k S k k= − . This gives 

an equal simplified expression for scattering out and into a state.  

( , , )
( , , ) ( , ') '

d f x k t
f x k t S k k dk

dt


=              (2.42) 

The integral taken over all the scattering probabilities produces the total 

scattering rate  

1
( ) ( , ') '

( )m

k S k k dk
k

 = =             (2.43) 

This probability is calculated to first order from Fermi Golden Rule [83, 84] as: 

22
( , ') ' ( , ') ( ( ) ( ') ( ))S k k dk H k k E k E k q


 = −           (2.44) 

 where H is the matrix element, and ( )q  is the phonon frequency.  The plus 

and minus signs ( )
 
denotes absorption and emission respectively. 

 Using the rigid pseudo-ion approximation  [86] for the matrix element, Eqn. 

(2.44) is simplified as: 

2 2( ) ( )2
( , ') '

( )

1 1
( , . ) ( ( ) ( ') ( ))

2 2

D q I q
S k k dk

q

N x q t E k E k q





 

=

 
 +  −  
 

         (2.45) 
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 where 
2

( )D q is the result of matrix element calculation from the Fermi golden 

rule. The application of this formula requires numerical integration over the 

whole momentum space and the inclusion of complete electron and phonon 

dispersion laws [85, 86]. This gives the probability of scattering from each 

position in momentum space. 

From Eqn. (2.46), the slightest perturbation to the equilibrium distribution 

function relaxes the system back to equilibrium state with a time-constant 

approximately equal to the relaxation time,    such that 

 
( , , ) ( , , )( , , ) ( , , )

( ) ( )

eq

m m

f x k t f x k tdf x k t f x k t

dt k k



 

−
= =           (2.46) 

This time dependent solution of the BTE in Eqn. (2.46) denotes a balance 

between drift and diffusion which acts to displace the distribution function from 

equilibrium, and the scattering again acts to return the system back to its 

equilibrium position through the relaxation time  [85, 88, 89]. 

Electron-Phonon Interaction 

 Phonons are the principal medium of energy and momentum exchange 

between electrons and their surrounding excitations in nanostructured materials. 

The exchange of energy and momentum depends on the relaxation time 

approximation 𝜏   [90, 91], where the net transfer rate is determined by the rate 

at which energy flows out of the electron gas by phonon emission  [86] and the 

rate at which energy flows into the electron gas by phonon  [66, 92] from the 

lattice vibrations. The energy exchange between electrons and longitudinal 

acoustic phonons may lead to two major conditions namely: (1) deformation 
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potential scattering  [93, 94] in the material which is a result of the charge 

carriers undergoing inelastic scattering, and (2) piezoelectric interaction  [93]. 

The electron distribution of a system is affected, when phonons impart 

momentum to electrons. Thus, the electron tends to carry energy as they are 

dragged along the axis of the phonon stream which results in a phonon called 

drag. In the case of phonon drag, the BTE for the phonon and electron 

distribution are solved simultaneously coupled by the phonon drag term in  [95]. 

The reverse is also true when the electron impacts momentum to the phonons. 

This results in electron emitting phonons which leads to amplification of the 

phonons when the drift electrons velocity exceeds the sound velocity of the 

material  [96]. The fundamental Hamiltonian for the electron-lattice system is 

given as: 

2 22

' '

'

'

'

1

2 2 2

1
( ) ( )

2

k i

kk ik k

ion i i el ion k i

ii ki

p pe
H

M k k M

v R R v r R−

= + +
−

+ − + −

  

 

   (2.47) 

where the first two terms constitute  electronH , the third and fourth terms ionH   

and the last term is  electron ionH − . The wavefunction is denoted by: 

  1 2 3 1 2 3( , , ...) ( , , ...)r r r R R R  =            (2.48) 

The electron-ion interaction term can be separated into two parts: the interaction 

of electrons with ions in their equilibrium positions, and an additional term due 

to lattice vibrations: 

el ion

o
el ion el phH H H

−− −= −      (2.49) 
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and 

 ( ) [ ( )]o

el ion k i el ion k i i

ki ki

v r R v k R s− −− = − +      (2.50) 

where 
o

iR  is the equilibrium lattice site position and 𝑠𝑖 is the displacement of 

the atoms from their equilibrium positions in a lattice vibration so that; 

( )
el ion

o o

el ion k i

ki

H v r R
− −= −     (2.51) 

 and 

. ( )o

el ph i el ion k i

ki

H s v r R− −= −  −    (2.52) 

In solving the Hamiltonian, an adiabatic approximation, which solves the 

electronic part of the Hamiltonian, is required and considering an ion localized 

at a position iR  and at a displacement iu  from its equilibrium position 
o

iR . 

Combining the interaction Hamiltonian of the electronic charge density with the 

ions, yields; 

 
3 †

int ( ) ( ) ( )i i

i

H d r r r u v r R 


=   −    (2.53) 

For small amplitude vibration, Eqn. (2.53) can be expressed in the power of  iu  

as,  

 

3 †

int

3 †

( ) ( ) ( )

( ) ( ) . ( ) ...o
i i

i i

i

i R i R
i

H d r r r u v r R

d r r r u v v r R

 


 


=   −

+    − +




 (2.54) 
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The field operators   expanded in terms of the Bloch waves by employing 

the Bloch theorem, yields; 

 
,

( ) ( )
k

k

r a r
 =         (2.55) 

where  

.
( ) ( )

o
iik R

k k
r e r


 =        (2.56) 

and  ( )k r  has the same periodicity as the lattice. Employing the periodicity 

of  ( )o o

i iR v r R −   and a shift by a Bravais lattice vector yield; 

3 *

'

3 *

'

( ' ) 3 *

'

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
o

i

o o

k k i i

o o o

k i k i i

i k k R o o

k k i i

d r r r R r R

d r r R r R R r R

e d r r r R r R

 

 

 

−

   −

=  +  +  −

=    −







 (2.57) 

 3 *

'' ( ) ( ) ( )o o

kk k i ik
W d r r r R r R 

=    −    (2.58) 

In the second quantization formalism, the displacement iu  gives 

.1
( ) ( , ) ( )

o
iik R

i

k

u t Q k t e k e
NM





=    

with 

†1
( ) ( ( ) ( ))

2 ( )
Q q b q b q

q



= + −     (2.59) 

The interaction Hamiltonian can be written as; 
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( '). .†

int ' '

'

†

' '

'

† †

'

'

1
( ) ( )

( ( )) ( )

' ( ( ) ( ))

o o
j ji k k R iq R

k k kk

kk j q

k k kk

kk

k k

kk

H a a W e Q q e q e
NM

N
a a W e q Q q

M

gkk a a b q b q



 
 



  
 

   







−
=

=

= + −

  





(2.60) 

where 𝑞 is the momentum conservation interpreted as:  

'q k k G= − +     (2.61) 

and 𝑘 is the wave vector of the incident wave, 𝑘′ is the wave vector of the 

reflected wave, with G  being a vector of the reciprocal lattice  [67,73]. The 

lattice coupling constant is 

 
'' ( ( ))

2 ( )
kk im

pl

N
gkk W e q

M q




=     (2.62) 

Examining the Hamiltonian of the many-body particles and their mutual 

interactions, the interaction between two fields is introduced via minimal 

coupling, ˆ ˆ /p p e cA→ − . The carrier density Hamiltonian is given as: 

 

2
3 2 †

2
3 † † 2

' '

'

ˆ ( , ) ( ) ( , )
2

ˆ ˆ( , ) ( ) ( , ) ( )
2

n n n n

n n

H d r r t v r r t
m

d r b r t v r r t b r
m

+  
=  −  +  

 

 
=  −  +   

 



 

 

 int
ˆ ˆ ˆ ˆ

mp ionH H H H= + +      (2.63) 
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where ˆ
mpH  is the many-particle Hamiltonian and equals ˆ

electronH . The electronic 

states for free-particle Hamiltonian in the presence of a magnetic field Ĥ  is 

described by the Schrödinger equation.  

2
1

, (0, ,0)
2

r r x

e
p A E A H

m c

 
−  =  

 
    (2.64) 

Ignoring the electron spin, the total Hamiltonian in momentum space is 

expressed as: 

2

† † † †

, ,

,

( ) ( )
2

p p k k k pk p k k p k p k

p p k

e
p A

c
H a a b b g a a b b

m
 +

 
− 

 = + + +    (2.65) 

Chapter Summary 

The chapter reviewed the dynamics of electron-phonon transport in the 

semiclassical regime using the BTE. The phenomena of nanoscale transport 

were reviewed as well as the theoretical overview of graphene band structure 

using the tight-binding approach. 
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CHAPTER THREE 

METHODOLOGY 

Introduction 

This chapter outlines the physical concepts, theories, and phenomena 

used in understanding electron transport in graphene superlattices. Electron 

transport in a material has been a major focus of experimental and theoretical 

research since Esaki-Tsu's seminal publication on electron transport in 

semiconductor superlattices. The Boltzmann Transport Equation is solved using 

momentum-independent relaxation time and the semiclassical approach. 

Moreover, the thermoelectric metrics such as the carrier current density xJ , 

electrical charge conductivity x , electrical resistivity x , thermoelectric power 

xa , and electrical power factor xp  of a two-dimensional graphene superlattice 

exposed to combined dc and ac fields are derived analytically. The results of 

these derived quantities were calculated as a function of temperature T, carrier-

phonon interaction 1  and 2 , and the carrier concentration no. The calculation 

is done using the theoretical approach developed by Mensah et al.  [97] based 

on the phenomenological model developed in Ref.  [98]. The results of these 

calculations are analyzed in chapter four.  

Carrier Current Density of GSL 

Consider a GSL placed in an electric field 𝐸⃗⃗(𝑡) parallel to the horizontal 

axis under a temperature gradient T . The current density in the GSL is 
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calculated in the semiclassical approximation by starting with the BTE 

expressed as: 

( , , ) ( )( , , ) ( , , )
( ) of r p t f pdf f r p t f r p t

v p eE
dt r dp 

− 
+ + = −


            (3.1) 

Here, 𝐸⃗⃗(𝑡) = 𝐸⃗⃗𝑜 + 𝐸⃗⃗1𝑐𝑜𝑠𝜔𝑡 and ( ), ,f r p t  is the non-equilibrium distribution 

function, ( )of p is the distribution function at equilibrium, ( )v p  is the electron 

velocity, ( , )o ox oyE E E is the constant electric field, 𝐸⃗⃗1(𝐸⃗⃗𝑥, 𝐸⃗⃗𝑦), and 𝜔 are 

amplitude and frequency of the ac-field, respectively, 𝑡 is time elapsed, 𝑝⃗ is the 

dynamical electron momentum, 𝜏 is the relaxation time of electron and e is the 

charge of an electron. The collision integral is taken in the 𝜏 approximation and 

further assumed to be constant. The direct solution of Equation (3.1) is difficult; 

therefore, it is solved using perturbation theory.  

The solution to the BTE for an electron in the lowest miniband is given in the 

linear approximation of  and T as: 

( ) ( ) ( )
'

1

1

0 '

exp / cos '' ''

t

o o

t t

f p dt t f p e E E t dt  


−

−

 
 = − − +  

 
   

( ) ( )
'

1

1

0 '

exp / cos '' ''

t

o

t t

T
dt t p e E E t dt

T
     



−

−

     
 + − − + − +    

     
   

( ) ( )
'

' '
1 1

0 '

cos cos '' ''
t

o
o o

t t

f
v p e E E t dt p e E E t dt 





−

  
           

   


 − + − +

     (3.2)   

where 𝜀(𝑘) is the electron energy obtained in the tight-binding approximation, 

and  is the chemical potential. 

 (Refer to Appendix A). 

The current density is defined as; 
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( ) ( )
p

J e v p f p= −           (3.3)   

When Eqn. (3.2) is substituted into Eqn. (3.3) it yields; 

( ) ( ) ( )
'

1

1

0 '

exp / cos '' ''

t

o o

p t t

J e v p dt t f p e E E t dt  


−

−

 
 = − − +  

 
    

( ) ( ) ( )
'

1

1

0 '

exp / cos '' ''

t

o

p t t

T
e dt t v p p e E E t dt

T
    



−

−

     
 + − − + +    

     
 

( ) ( )
' '

1 1

' '

cos '' '' cos '' ''

t t

o
o o

t t t t

f
v p e E E t dt p e E E t dt 


− −

   
    − + − +         
             

            (3.4) 

Making the substitution ( )
'

1

'

cos '' ''

t

o

t t

p e E E t dt p
−

 
 − + →  

 
  the current 

density is obtained as: 

( ) ( ) ( )
'

1

1

0 '

exp / cos '' ''

t

o o

p t t

J e dt t v p e E E t dt f p  


−

−

 
 = − − +  

 
   

( ) ( ) ( )1

0

exp /
p

T
e dt t v p p

T
    



−  
+ − − +   

 


 

( ) ( )
'

1

'

cos '' ''

t

o
o

t t

f
v p e E E t dt v p


−

  
  − +    
    (3.5) 

where the integration is carried out over the first Brillouin zone 

 (See Appendix A). 

The dispersion relation of graphene superlattice obtained within the tight-

binding is expressed as  [62] : 

( ) 22 2 21
1 11 cos 1 cos

yx
p dp d

p
  

=  +  − +  −  
   

               (3.6)     

Using the Binomial theorem of half-integers, Eqn. (3.6) is expressed as: 
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( ) 21cos cos
yx

x y

p dp d
p D = −  −      (3.7) 

where 2 2 2

1 2D =  +  +   is the outer-shell energy of the carrier in an isolated 

carbon atom, 
2

1

2
x

D


 =  and 

2

2

2
y

D


 =  are the real overlapping integral for jumps 

along the respective coordinate, xp  and yp  are the components of the 

momentum along the respective graphene superlattice axes. (See Appendix B). 

 The equilibrium distribution function of the carriers is given by the Fermi-Dirac 

statics as: 

1
( )

1 exp[( ( ) ) / ]
o x

x B

f p
p k T 

=
+ −

    (3.8) 

where Bk is the Boltzmann’s constant, and T  is the absolute temperature in 

energy units. Substituting Eqn. (3.7) into Eqn. (3.8) yields an equation with the 

term 1/2 , representing Fermi Dirac integral, which is expressed as:  

1/2

1/2

0

1
( )

(1/ 2) 1 exp( )

f

f

f

d 
 

 



=
 + −    (3.9) 

where ( ) /c B fk T  −  . For non-degenerate carrier gas, where the Fermi 

level is below the conduction band edge, Eqn. (3.8) is simplified as: 

( )
( )

.expo

B

p
f p C

k T

 + 
= − 

 
    (3.10) 

The normalized constant C  is expressed as: 

( ) ( )
1 2

1 2

exp
2

o

o o o B

d d n D
C

a I k I k k T

 −
=  

 
   (3.11) 
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where on is the surface carriers concentration, oa  is the graphene sheet width, 

( )oI x  modified Bessel function, 1
x

B

k
k T


=  and 2

y

B

k
k T


=  

(Refer to Appendix B). 

The miniband velocity of electron along the x-direction is obtained as: 

( )
( ) 1 1sinx x

x

x

p d p d
v p

p

 
= =


 

Making the transformation  ( )
'

1

'

cos '' ''

t

o

t t

p e E E t dt p
−

 
 − + →  

 
     

( ) ( )
' '

1 1
1 1

' '

cos '' '' sin cos '' ''

t t

x
x o o

t t t t

d d
v p e E E t dt p e E E t dt 

− −

   
   − + = − +      

   
 

         (3.12) 

(Refer to Appendix B) 

 The current density along the x-coordinate becomes: 

( ) ( ) ( )
'

1

1

0 '

exp / cos '' ''

t

x x o o

p t t

J e dt t v p e E E t dt f p  


−

−

 
 = − − +  

 
   

( ) ( ) ( )1

0

exp / x
x

p

T
e dt t v p p

T
    



−  
+ − − +   

 


( ) ( )
'

1

'

cos '' ''

t

o
o x

t t

f
v p e E E t dt v p


−

  
  − +    
     (3.13) 

Using the transformation  
( )

1 2

1 2

/ /

2

/ /

2

2

d d

x y

p d d

dp dp

 

  − −

→    (3.13) becomes 

( )
( ) ( ) ( )

1 2

1 2

/ / '1

12

0 / / '

2
exp / cos '' ''

2

d d t

x x y x o o

d d t t

e
J dt t dp dp v p e E E t dt f p

 

 


 



−

− − −

 
 = − − +  

 
   

 
( )

( ) ( )
1 2

1 2

/ /1

2

0 / /

2
exp /

2

d d

x
x y x

d d

Te
dt t dp dp p

T

 

 


  



−

− −

 
+ − − +   

 
  

 ( ) ( )
'

1

'

cos '' ''

t

o
o x

t t

f
v p e E E t dt v p


−

  
  − +    
   (3.14) 
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where the integration is carried out within the first Brillouin zone

1 1/ /xd dp d −    and 2 2/ /yd dp d −   , respectively. Eqn. (3.14) 

is solved explicitly and the current density is obtained as:  

( ) x
x x nJ E E

e




 
= − + 

 
       

 
( )

( )

( )

( )
1 1 2

1 2

1 1 2

1
( )

2

oB
x x

B o

I k I kk D
E k k T

e k T I k I k




  − 
− − + −   

   
 (3.15) 

where 1 /x Bk k T=   and 2 /y Bk k T=  . Hence 

( )

( )

( )

( )
1 1 2

1 2

1 1 2

1
( ) ' ( )

2

oB
x x xn x x

B o

I k I kk D
J E E E k k

e k T I k I k


 

  − 
= − − − + −   

            

 (3.16) 

where 'xnE  is the external electric field along the x-direction given as 

' /xn xn xE E e= + (Refer to Appendix D). 

The electrical conductivity ( )x E  and electrical resistivity ( )x E  are 

respectively obtained as: 

( )
( )

( )

( )

( )

22 2
1 11

22 2
1 1

o nx
x

no o x

n I k Je d
E

a I k n




 



=−

 
= −  

+  +  
  (3.17) 

( )
( )

( )
( )

2 2
21 11

22 2
1 1

1
( )

1

1 /

x

ox
n

no o o

E
n I ke d

J
a I k d eE n





 



=−

= −
 
 
+ +  



  (3.18)  

where x  and  are respectively the Bloch frequency and Bessel function along 

the x direction, and are given as 1 /x od eE =  and 1 /xd eE = . 

(See to Appendix C).  
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In an open circuit, the differential thermo-power is defined as the ratio xn

x

E

T
. 

Thus setting 0xJ =  to zero in Eqn. (3.16), the thermo-power x  along the x-

direction is obtained as:  

( )

( )

( )

( )
1 1 2

1 2

1 1 2

1

2

oxn B
x

x B o

I k I kE k D
k k

T e k T I k I k




  − 
= = − − + −  
            (3.19) 

(Refer to Appendix D)  

When the ac source is switched off, that is, if 0xE =  and 0 = , the electrical 

conductivity in Eqn. (3.17) reduces to: 

( )
( )

( )

( )

( )

22 2
1 11

22

1 1

o nx
x

no o x

n I k Je d
E

a I k








=−

 
= −  

+   
     (3.20)  

The electrical power factor along the x-direction of the GSL is given as: 

2

x x xP  =          (3.21) 
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(See Appendix D)  

Chapter Summary  

In summary, analytical expressions have been derived for the carrier 

current density J , electrical resistivity x , thermoelectrical power x , and 

electrical power factor xP  of graphene superlattice. These analytical 
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expressions were derived using the semiclassical Boltzmann’s Transport 

Equation. It can be seen from these equations that x , x  and x
P  depend on the 

temperature T, carrier concentration on , and the overlapping integrals for jumps 

along the x and y directions.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction  

Expressions for the electrical resistivity x , thermoelectrical power x , 

and electrical power factor x
P  of GSL were derived in chapter three using a 

tractable analytical approach. These derivations were carried out by solving the 

semi-classical BTE together with the energy dispersion relation of GSL 

obtained in the tight-binding approximation. 

In this chapter, graphical representations of the analytical equations 

obtained for 𝜌𝑥, 𝛼𝑥 and 𝑃𝑥 in chapter three will be analyzed numerically using 

MATLAB (219b version). With appropriate values for 𝑑1, 𝑎𝑜, 𝜔 , and 𝜏, the 

dependence of 𝜌𝑥, 𝛼𝑥 and 𝑃𝑥 on temperature T , the dc  field oE , ac field 

intensity xE , the material’s carrier concentration on  and the overlapping 

integrals for jumps 1 2
( a n d )   are investigated. 

Electrical Resistivity of Graphene Superlattice 

 The relationship between the electrical resistivity of GSL and 

temperature given in Eqn. (3.18) is presented numerically as shown in Figures 

(12 ─ 18). With varying values of the of 𝑑𝑐 field intensity oE , the dopant carrier 

concentration on , the ac field intensity xE  and the real overlapping integrals for 

jumps 1,2( ) .  
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 Figure 12 represents the relationship between the electrical resistivity x  and 

temperature T of GSL for different values of the dc field intensity oE .  

 

Figure 12: Dependence of resistivity of graphene superlattice on temperature 

      for various values of oE  with 2 0.024 =  eV, 1 0.012 =  eV,  

     
1310on =  cm-3 and 

210xE =  V/m. 

It is observed from Figure 12 that in the presence of the ac source, 

increasing the 𝑑𝑐 field from oE  to 4 oE  increases the resistivity narrowly at low 

temperatures up to about 100 K and then increases marginally with increasing 

temperature. This behavior is as a result of the interactions of electrons and 

phonons which scatter the charge carriers in the GSL as temperature increases. 

This is to be expected because in high fields, interaction of carriers with the 
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lattice and other impurities increases, and this, increases the resistivity. 

Increasing the dc field energizes the electrons in the GSL to undergo 

intraminiband transport, resulting in low intramimniband current and low 

conductivity and thus high electrical resistivity.  

Figure 13 displays the plot of the resistivity of GSL against temperature 

for a range of values of  1  in the presents of combined dc-ac field. 

 

Figure 13: Dependence of resistivity of graphene superlattice on temperature 

       for various values of 1  with 2 0.024 =  eV, 
1310on = cm-3,  

      
710oE =  V/m,     and 

210xE =  V/m. 

From Figure 13, a significant decrease of the resistivity is observed for 

increasing 1  while keeping 2  constant. The plot shows that as 1  increases, 
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the resistivity decreases. This is because increasing 1  reduces the carrier 

scattering and so the differential conductivity increases and this decreases the 

resistivity. 

 Figure 14 illustrates the dependence of the resistivity of GSL on 

temperature for various values of 2  with 1 0.012 = eV, 
1310on = cm-3, 

710oE =  V/m, and 
210xE =  V/m. 

 

Figure 14: Dependence of resistivity on temperature for various values of 2  

      with 1 0.012 =  eV, 
1310on = cm-3, 

710oE =  V/m, and                    

     
210xE =  V/m  
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It is observed that increasing 2  has very little effect on the x  at temperatures 

below 100 K. However, above 100 K there is a marked increase in resistivity as 

2  increases but in marginally smaller increments as shown in Figure 14. This 

is due to the strong carrier scattering along y-direction of the GSL.  

Figure 15 depicts a plot of the resistivity against temperature with 

various values of carrier concentration.  

 

Figure 15: Dependence of resistivity of graphene superlattice on temperature 

       for various values of on  with 2 0.024 =  eV, 1 0.012 =  eV,  

       
710oE =  V/m, and 

210xE =  V/m 

It can clearly be seen from Figure 15 that the resistivity of the GSL 

decreases with increasing carrier concentration. This is due to the drop-in carrier 
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scattering in the material along the direction where carrier-carrier interaction is 

minimal. 

The dependence of resistivity of GSL on temperature for varying values 

of the amplitude of the external electric is depicted in Figure 16.  

 

Figure 16: Dependence of resistivity of graphene superlattice on temperature 

      for various values of xE  with 2 0.012 =  eV, 1 0.012 =  eV,   

      
1310on =  cm-3 and   

710oE =  V/m. 

 

 

The Figure 16 indicates that the electrical resistivity x  of the GSL 

decreases with increasing Ex. The low resistivity observed is attributed to the 
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influence of charge velocity by the electric field. The resistivity values observed 

in this study are very low as compared to those of other known low-dimensional 

materials  [99] which shows clearly that GSL has metallic properties. 

Thermoelectric Power of Graphene Superlattice 

The differential thermoelectric power of  GSL is analyzed using the 

approach developed in  [100]. An analytical expression (Eqn. (3.19)) was 

derived for the current density in the presence of combined dc-ac field and a 

temperature gradient T . From this relation, expressions were obtained for the 

differential electrical conductivity x  (Eqn. (3.17)) and the thermoelectric 

power x  (Eqn. (3.19)). The thermoelectric power is highly anisotropic, 

depending on temperature T, the real overlapping integrals for jumps along the 

respective coordinates. To better understand the analytical expression obtained 

in Eqn. (3.19), graphical representations of the variation of the thermoelectric 

power on temperature for different values of Δ1 and Δ2 (measured in electron 

volts) have been investigated and results shown in Figures 17 and 18. 
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Figure 17 illustrates the dependence of thermoelectric power of the GSL 

( x ) on temperature T for a fixed value of Δ2 and a range of values of Δ1.  

 

Figure 17: Dependence of thermoelectric power on temperature for various 

       values of 1  with 2 0.024 =  eV. 

 It is noted that, the differential thermoelectric power is high at low 

temperatures, but rapidly decreases as the temperature increases switching from 

a p-type to n-type semiconductor. At high temperatures, it slowly tends to a 

lower constant value. This is to be expected for semiconducting nanostructures 

which in general exhibit the behavior 
1

x T −   [101]. This is attributed to the 

mirror symmetry of the coexisting electrons and holes in the overlapping π-

bands. 
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Figure 18 displays the variation of thermoelectrical power of GSL with 

temperature for various values of 2 . 

 

Figure 18: Dependence of thermoelectric power on temperature for various 

       values of 2  with 1 0.012 = eV. 

From Figure 18, the GSL behaves completely as a p-type semiconductor 

at low temperature, the thermoelectric power decreases rapidly, up to lowest 

(minimum) and then decreases slowly to a constant value. The turning point 

occurs at about 50 K. A similar observation was noted in  [101] but at 100 K, 

where the thermoelectric power of a single walled-carbon nanotube (SWCNT) 

was measured. It is obvious that the material, under these conditions is behaving 

as a semimetal. One also notes that there exists a threshold temperature of 50 K 

for which hole conductivity switches over to electron conductivity, i.e. positive 
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x  becomes negative. This can be explained by the fact that graphite has a pair 

of weakly overlapping electron and hole sp2 or π-bands with near mirror 

symmetry about the Fermi energy EF. The number of electrons and holes are  

approximately equal in these symmetric π-bands which is consistent with the 

negative thermoelectric power observed in  [102]. The threshold value for the 

temperature shifts towards lower temperature as Δ2 increases. 

Electrical Power Factor in Graphene Superlattice 

The electrical power factor of the GSL was calculated using a tractable 

mathematical technique as shown in Eqn. (3.22), which is extremely nonlinear 

in terms of career concentration on , external dc field Eo, temperature T and real 

overlapping integrals for jumps 1  and 2 . To visualize the result of Eqn. (3.22) 

graphically, a numerical analysis was done using MATLAB (219b version). 
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 Figure 19 illustrates the dependence of electrical power factor x
P  of the 

GSL on temperature T for dc field Eo strength varied from Eo to 4Eo. 

 

Figure 19: Dependence of electrical power factor of graphene superlattice on 

       temperature for various values of oE  with 2 0.012 =  eV,  

      1 0.012 =  eV, 
1310on = cm-3 and   

2

x 10E =  V/m. 

It is observed that the relationship between x
P  and T is nonlinear. The 

curves in Figure 19 indicate that the power factor x
P  initially increases sharply 

and attains maximum for all the four cases considered. With further increment 

in the temperature T,  x
P  experiences exponential decrease and then becomes 

independent of T at large values of T. The maximum value of the power factor 

attained varies inversely as the electric field Eo is increased. The peak values of 
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xP  decrease as Eo is increased from Eo to 4Eo.  Thus, the maximum value of x
P  

is higher for Eo than that for 2Eo ,3Eo and has the least value in the case of 4Eo.  

Figure 20 depicts a plot of GSL against temperature for various values 

of Δ1   ranging from 0.010 eV to 0.016 eV with a constant value of Δ2.  

 

Figure 20: Dependence of electrical power factor of graphene superlattice on 

       temperature for various values of 1  with 2 0.024 =  eV,    

        
1310on =   cm-3 710oE =  V/m, and 

2

x 10E =  V/m. 

It is observed that in general x
P  increases sharply and attains a 

maximum peak at low value of Δ1= 0.010 eV and then reduces as the value of 

Δ1 increases from 0.012 eV to 0.016 eV at a resistivity low temperature (~50 

K). However, at high temperatures, i.e., about 400 K and above, the electrical 
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power factor assumes a lower constant exponential decay for all the values of 

Δ1. This is because the majority of the carriers that contribute to the x
P  are 

electrons.  

Figure 21 displays variation of thermoelectrical power factor of GSL 

with temperature for several values of 2 .  

 

Figure 21: Dependence of electrical power factor on temperature for various 

      values of 2  with 1 0.012 =  eV, 
1310on = cm-3, 

7

o 10E =  V/m,     

        and 
2

x 10E =  V/m. 
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As clearly seen in Figure 21, the electrical power factor is independent 

Δ2. 

Comparing the material response to the variation of 1  and 2   under the 

combined dc-ac field, it clearly shows that 1  results in higher peak value of 

electrical power factor than 2 . Again, increasing 1  affects the electrical 

power factor of GSL but 2  does not have any obvious effect on the power 

factor. 
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Figure 22, shows the plot of thermoelectrical power factor of GSL 

against temperature for different values of on  . 

 

Figure 22: Dependence of electrical power factor of graphene superlattice on 

       temperature for various values of on  with 2 0.024 =  eV,  

      1 0.012 =  eV, 
710oE =  V/m, and 

210xE =  V/m. 

It can be clearly observed from Figure 22 that at low temperatures 

increasing on  increases xP  to peak values correspond to approximately 50 K. 

However, as the temperature increases beyond this threshold value, x
P  

decreases exponentially. The highest peak value of x
P  occurs at 

13 -3

on = 4×10 cm , but decreases with decreasing on . This is because increasing 

the carrier concentration increases the mobile electrons and so does the power 
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factor. The negative slopes of the curves at high temperatures show that 

electrons are the dominant carriers. Comparing x
P  of GSL with Bi2Te which is 

currently the preferred material, the xP  of GSL is about 5 times higher than x
P  

of Bi2Te  [103]. Therefore, the results of the present study will provide the 

theoretical basis for the synthesis of high-performance GSL thermoelectric 

materials.              

Chapter Summary  

The chapter presented an analysis of the results of resistivity, electrical 

power and the electrical power factor of GSL. The results of the study were 

visualized graphically and their trends were discussed to make an informed 

decision on electrical properties of GSL. The low resistivity and high 

thermoelectric power factor produced indicate that GSL has a high normalized 

figure of merit ( 2 /ZT T  = ) since it is a direct function of the Seebeck 

coefficient, and inversely related to resistivity. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Overview  

The thermoelectric properties of graphene superlattice were studied 

using the semiclassical Boltzmann transport equation, where the effective 

scattering time, 𝜏 was assumed to be constant. This chapter gives the summary 

and conclusions drawn from the study. It also provides suggestions for further 

research in this field.   

Summary  

This study employed the Boltzmann’s Transport Equation (BTE) in the 

semi-classical regime to investigate the thermoelectric properties of h-BN/SiO2 

graphene superlattice using combined dc-ac fields. 

The study reviewed the relevant theory on the transport properties of 

graphene superlattice as well as thermoelectric materials. The theoretical 

formulation made use of the BTE in the semi-classical regime to derive an 

analytical expression for the Electric resistivity, thermoelectric power and 

thermoelectrical power factor of h-BN/SiO2 GSL using combined dc-ac fields. 

Numerical analysis was performed to visualize the results graphically to better 

understand the variation of these derived quantities with temperature, the 

material parameters as well as the dc-ac field intensities.  

The Electric resistivity of h-BN/SiO2 GSL was plotted as a function of 

temperature for varying the values of the dc-ac field intensities, the dopant 

carrier concentration as well as the real overlapping integrals for jumps (along 

the material’s axes respectively). 
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The thermoelectric power which is the Seebeck coefficient of h-BN/SiO2 

GSL was plotted as a function of temperature for varying the values of the real 

overlapping integrals for jumps. 

Electrical power factor of GSL as a function of temperature for varying 

values of the intensities of dc field, ac fields, carrier density as well as the real 

overlapping integrals for jumps. 

Conclusions  

The thermoelectric properties of GSL were investigated using the 

semiclassical Boltzmann Transport Equation. The results of the study show 

that the electrical resistivity, thermoelectric power, as well as thermoelectric 

power factor of h-BN/SiO2 GSL are influenced by material parameters such as 

overlapping integrals, carrier density, and intensities of the dc-ac fields. The 

low resistivity in our findings show that h-BN/SiO2 GSL is a good conductor 

of electricity and hence exhibit metallic properties. The results reveal that an 

increase in  1 , on , and xE causes a decrease in resistivity which will in turn 

enhances normalized ZT. 

 In the case of TE power, the results show that the h-BN/SiO2 GSL 

exhibit semiconductor properties. It indicates that as temperature increases 

beyond 50 K, the h-BN/SiO2 GSL switches from a p-type to an n-type 

semiconductor material. Varying the overlapping integrals could be used to 

tune the h-BN/SiO2 GSL to ascertain which carriers contributed to the 

thermoelectric power. 
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 The results obtained from the TE power factor was also found to be 

influenced by the GSL parameters, 1  , on  and dc-field. The high normalized 

ZT value obtained at low temperatures shows that h-BN/SiO2 GSL is a good 

conductor of electricity, therefore exhibits metallic properties. Hence, h-

BN/SiO2 GSL could be suitable for thermoelectric applications. The results 

obtained from this research will serve as a guide for synthesis of h-BN/SiO2 

GSL and other materials of high thermoelectric performance. The insights 

gained from this research have the potential to guide the designing and 

development of graphene-based materials for efficient thermoelectric 

applications.    

Recommendation(s) 

 The following are some recommendations for further study: 

i. Similar research could be carried out using the same material (h-

BN/SiO2 GSL) under the influence of combined magnetic and electric 

field.  

ii. A similar study could also be used to investigate the effect of laser on 

acoustoelectric effects in h-BN/SiO2 GSL in the quantum regime.  
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APPENDICES 

APPENDIX A 

SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION 

The Boltzmann transport Eqn. is expressed as: 

( , , ) ( )( , , ) ( , , )
( ) of r p t f pdf f r p t f r p t

v p eE
dt r dp 

− 
+ + = −


  (A1) 

where 𝐸⃗⃗(𝑡) = 𝐸⃗⃗𝑜 + 𝐸⃗⃗1𝑐𝑜𝑠𝜔𝑡 

At equilibrium, the distribution function of an electron is defined by the Fermi-

Dirac statistics as: 

( )
( , ) ( ) ( , )

1
, ,

1

o E r t E p F r tc n
k TB

f r p t

e

 
 
 
 

+ −
=

+

    (A2) 

where ( , )cE r t  is the conduction band edge, ( )E p  is the carrier band structure 

( , )nF r t is the quasi-Fermi level  

Let 

( , ) ( ) ( , )c n

B

E r t E p F r t

k T


+ −
=      (A3) 

And suppose that ( ) ( ) ( ) ( )1, , , , , , ' , ,of r p t f r p t f r p t f r p t= + + , where 

( )1 , ,f r p t  is a small perturbation and 'f  is the hot electron source distribution 

function.  

For  ( )' , , 0f r p t =  and ( )1t of f +  is time independent. 

Eqn. (A1) is expressed as: 

( ) ( ) ( ) 1
1 1 1. . o o

t o r o p o

f f f
f f v f f eE f f



+ −
 + +  + +  + = −   

( ) ( ) 1
1 1. .r o p o

f
v f f eE f f


 + +  + = −    (A4) 

Also, if  ( ) ( )1, , , ,of r p t f r p t  and 1r of f    
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( ) ( )
( )1 , ,

. , , . , ,r o p o

f r p t
v f r p t eE f r p t


 +  = −             (A5) 

Applying the chain rule Eqn. (A5) is expressed as: 

( ) ( ) ( )1
, , , , , ,

. . . .o o

r p

f r p t f r p t f r p t
v eE 

  

 
 +  = −

 
           (A6) 

Differentiating r  and p  in Eqn. (A6) with respect to position and 

momentum respectively yields: 

 
 

( ) ( ) 1
( ) ( ) ( )

( )

r c r n

r c n r

B B

E r F r
E r E p F r

k T k T r


 −  
 = + + −   

 
           (A7) 

( )
p

B

v

k T r
 =                 (A8) 

Substituting Eqn. (A7) and Eqn. (A8) into Eqn. (A6) and simplified gives: 

( )  
 

( ) ( )1

, , ( ) ( ) 1
. ( ) ( ) ( )

( )

, , , ,
.

( )

o r c r n

c n r

B B

o

B

f r p t E r F r
v E r E p F r

k T k T r

f r p t f r p tv
eE

k T r



 

   −   
+ + −   

    


+ = −



    

( )  
 

( )1

, , ( ) ( ) 1
. ( ) ( )

( )

, ,

( )

o r c r n

c n r

B B

B

f r p t E r F r
v E r F r

k T k T r

f r p teE

k T r





   −   
+ −   

    

+ =

           (A9) 

Also, differentiating the electric field potential with respect to r in Eqn. (A9) 

gives: 

( )r cE r eE = −                 (A10) 

Substituting Eqn. (A10) into Eqn. (A9) and simplified further yields: 
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where  ( )( ) ( ) ( ) ( ) /r n c n rF r E r E p F r T T= − + + −   is the generalized 

force  

Substituting Eqn. (A10) into the expression 1of f f= +  yields: 

 ( ) . ( ) ( ) ( ) ( )o r
o B c n r n

B

f Tv
f f p k T E r E p F r F r

k T T





    
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                            (A12) 

From Eqn. (A3)   

( , ) ( ) ( , ) ( )c n BE r t E p F r t k T p + − = =
    

Therefore;   
( )

B

p

k T





 =              (A13) 

Substitute Eqn. (A13) into Eqn. (A12) gives: 

( ) ( ), , , ,of r p t f r p t=
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              (A14)  

Simplifying Eqn. (A14) further  
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0

0

, , exp( / ) , ,

( )
. exp( / ) ( ) ( ) ( ) ( )

( )

o

o

r
B c n r n

B

f r p t t dt f r p t

f p Tv
k T t dt E r E p F r F r

k T p T

 






−

−

−

= −

  
+ − + − − 

  




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( ) ( )1

0

, , exp( / ) , ,of r p t t dtf r p t 
−

−= −

 
0

( )
exp( / ) ( ) ( ) ( ) ( ) .

( )

or
c n r n

f pT
t dt E r E p F r F r v

T p
 



−  
+ − + − − 

 
  

                            (A15) 

If ( ) ( )cE r E p  and the quasi-fermi level r n rF  = , where  is the 

electrochemical potential, then Eqn. (A15) becomes; 

( ) ( )1

0

, , exp( / ) of r p t t dtf p 
−

−= −
   

 
0

( )
exp( / ) ( ) .

( )

or
r

f pT
t dt E p v

T p
   



−  
+ − − − 

 
           (A16)     

Making the transformation   1

'

cos ' '

t

o

t t

p p e E E t dt
−

→ − +    

( )  
'

1

1

0 '

, , exp( / ) cos '' ''

t

o o

t t

f r p t t dt f p p e E E t dt  
−

−

−

 
= − → − + 

 
 

    

 

 

0

'

1

'

exp( / ) ( )

( cos '' '')
( )

o

r
r

t

o

t t

T
t dt E p

T

f
v p p e E E t dt

p

   




−

−

 
+ − − − 

 


 → − +







                 (A17) 

          

In the linear approximation of  and T , the solution to the Boltzmann 

Transport Equation (BTE) for an electron is given as: 

( ) ( )  
'

1

1

0 '

exp / cos '' ''

t

o o

t t

f p dt t f p p e E E t dt  


−

−

 
= − → − + 

 
 

( )  
'

1

1

0 '

exp / cos '' ''

t

o

t t

T
dt t p p e E E t dt

T
    



−

−

     
+ − → − + +   

     
   

'
'

1

'

'

1

'

cos '' ''

cos '' ''

t

o

t t

t

o
o

t t

v p p e E E t dt dt

f
p p e E E t dt






−

−

 
    

 

 
     

 

 → − +


→ − +





           (A18)     
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APPENDIX B 

DERIVATION OF CURRENT DENSITY OF GSL 

The current density is defined as; 

( ) ( )
p

J e v p f p= −                                 (B1) 

Substituting Eqn. (A18) into Eqn. (B1) yields: 

( ) ( )  

( ) ( ) ( )

'

1

1

0 '

'

1

1

0 '

exp / cos '' ''

exp / cos '' ''

t

o o

p t t

t

o

p t t

J e v p dt t f p p e E E t dt

T
e dt t v p p e E E t dt

T

  

     



−

−



−

−

 
= − → − + 

 

     
+ − − + − +     

     

  

 

     

   
' '

1 1

' '

cos '' '' cos '' ''

t t

o
o o

t t t t

f
v p p e E E t dt p p e E E t dt 


− −

   
 → − + → − +   

   
           

    (B2) 

Making the transformation  
'

1

'

cos '' ''

t

o

t t

p p p e E E t dt
−

→ → − +   

Eqn.(B2) becomes 

( )   ( )
'

1

1

0 '

exp / cos '' ''

t

o o

p t t

J e dt t v p p e E E t dt f p  


−

−

 
= − → − + 

 
   

 

( ) ( ) ( )1

0

exp /
p

T
e dt t v p p

T
    



−  
+ − − +   

 


  

   ( )
'

1

'

cos '' ''

t

o
o

t t

f
v p p e E E t dt v p


−

  
 → − + 

 
       (B3) 

If the current is traversing along only the x-component of the sheet, the current 

density is obtained to be as; 

( )   ( )

( ) ( ) ( )

'

1

1

0 '

1

0

exp / cos '' ''

exp /

t

x x o o

p t t

x
x

p

J e dt t v p p e E E t dt f p

T
e dt t v p p

T

  

    



−

−



−

 
= − → − + 

 

 
+ − − +   

 

 



             

   ( )
'

1

'

cos '' ''

t

o
o x

t t

f
v p p e E E t dt v p


−

  
 → − + 

 
                      (B4) 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



100 

 

( )
( ) ( )

 

1 2

1 2

/ /1

2

0 / /

'

1

'

2
exp /

2

cos '' ''

d d

x x y x o

d d

t

o

t t

e
J dt t dp dp v f p

p p e E E t dt

 

 








−

− −

−

= −

 
 → − + 
 

  



( )
( ) ( )

1 2

1 2

/ /1

2

0 / /

2
exp /

2

d d

x
x y x

d d

Te
dt t dp dp p

T

 

 


   



−

− −

 
+ − − +   

 
  

  ( )
'

1

'

cos '' ''

t

o
o x

t t

f
v p p e E E t dt v p


−

  
 → − + 

 
                        (B5) 

where the integration is carried out within the first Brillouin zone   

1 1/ /xd dp d −    and 2 2/ /yd dp d −    

The energy dispersion relation of graphene superlattice in the conduction band 

is based on the tight-binding approximation and is found to be: 

( ) 22 2 21
1 11 cos 1 cos

yx
p dp d

p
  

=  +  − +  −  
   

                             (B6) 

Expanding Eqn. (B6) gives:  

( ) 22 2 2 2 21
1 1 1 2cos cos

yx
p dp d

p =  + + − −
    

( )

1
2 2 2

211 2

2 2
1 cos cos

yx
p dp d

p D
D D


  

= − + 
 

                    (B7) 

where 2 2 2

1 2D =  +  +   

Eqn. (B7) is linearized using the Binomial theorem of half-integers as: 

( ) 21
1 1 ...

2!

n
x nx nx+ = + + +

 

( )
2 2

211 2

2 2

1
1 cos cos

2

yx
p dp d

p D
D D


    

= − +  
     

( ) 21cos cos
yx

x y

p dp d
p D = −  −                                               (B8) 

where 
2

1

2
x

D


 = and 

2

1

2
y

D


 =  

Employing the transformation, Eqn. (B7) becomes 

 
'

1

'

cos '' ''

t

o

t t

p p e E E t dt 
−

 
→ − + = 

 
  

 
'

1
1

'

cos cos '' ''

t

x o

t t

d
D p p e E E t dt

−

 
−  → − + 

 
  

  
'

2
1

'

cos cos '' ''

t

y o

t t

d
p p e E E t dt

−

 
− → − + 

 
  

      (B9) 
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and 

( )
( ) 1 1sinx x

x

x

p d p d
v p

p

 
= =


         

 

 

'

1
1

'

'

1 1 1
1

'

cos cos '' ''

sin cos cos '' ''

t

x x o

t t

t

x
x o

t t

d
v D p p e E E t dt

d d d
D p p e E E t dt





−

−

  
−  → − + =   

  

  
− → − +   

  





  

                         (B10) 

 Expanding the right-hand expression in Eqn. (B10) using the 

trigonometry identity yields: 

 
'

1
1

'

cos cos '' ''

t

x x o

t t

d
v D p p e E E t dt

−

  
−  → − + =   

  


  
'

1 1 1
1

'

sin cos cos '' ''

t

x x
o

t t

d p d d e
E E t dt

−

    
+  

   


 ( )
'

1 1 1cos sin cos ' '

t

x x
o x

t t

d p d d e
E E t dt

−

    
 − +    

   
                   (B11)        

Substituting Eqn. (B11) into Eqn. (B4) gives 

( )
( )

( )

( ) ( )

1 2

1 2

/ /1

1

2

0 / /

'

1 1

'

'

1 1

'

1

2
exp /

2

sin cos cos '' ''

cos sin cos '' ''

2

2

d d

x
x x y

d d

t

x
o o x

t t

t

x
o o x o

t t

de
J dt t dp dp

p d d e
E E E t dt

p d d e
E E E t dt f p

e

 

 














−

− −

−

−

−


= −

      + +    
  

   − + +    
 

−

  





( )
( ) ( )

( )

1 2

1 2

2 / /

1

2

0 / /

'

1 1 1

'

exp /

sin sin cos cos '' ''

d d

x x
x y x

d d

t

x x
o o x

t t

d T
dt t dp dp p

T

p d p d d e
E E E t dt

 

 

   





− −

−

    
− − +     

   

      + +    
  

  



     

 ( )
( )'

1 1

'

cos sin cos '' ''

t

ox
o o x

t t

f pp d d e
E E E t dt


−

    − + +      
                     (B12)     

Eqn. (B12) is difficult to solve analytically. Therefore, it can be expressed as 

1 2xJ J J= +   without loss of generality.  

Therefore; 
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( )
( )

( )

1 2

1 2

/ /1

1
1 2

0 / /

'

1 1

'

2
exp /

2

sin cos cos '' ''

d d

x
x y

d d

t

x
o x

t t

de
J dt t dp dp

p d d e
E E wt dt

 

 






−

− −

−


= −

  
  +   

  

  



 

 ( ) ( )
'

1 1

'

cos sin cos '' ''

t

x
o x o

t t

p d d e
E E wt dt f p

−

 
 − +   

 
           (B13)     

 and   

( )
( ) ( )

( )

1 2

1 2

2 / /1

1
2 2

0 / /

'

1 1 1

'

2
exp /

2

sin sin cos cos '' ''

d d

x x
x y x

d d

t

x x
o x

t t

d Te
J dt t dp dp p

T

p d p d d e
E E wt dt

 

 


   



−

− −

−

    
= − − +     

   

  
  +   

  

  



    

( )
( )'

1 1

'

cos sin cos '' ''

t

ox
o x

t t

f pp d d e
E E wt dt


−

  
 − +     
                 (B14) 

Considering 1J  in Eqn. (B13), ( )of p  is given by:      

( )
( )

.expo

B

p
f p C

k T

 + 
= − 

 
                                                (B15) 

Substituting the expression of the energy dispersion relation of GSL in Eqn. 

(B7) into Eqn. (B14) and simplifying gives  

( )

21cos cos

.exp

yx
x y

o

B

p dp d
D

f p C
k T


 

−  − − 
= − 

 
 
      

( ) 211
.exp cos cos

yx
o x y

B

p dp d
f p C D

k T


  
= − − − −  

  
                     (B16) 

where C  is the normalization constant which is to be calculated from the 

condition 

Therefore,  

( )
( )

1 2

1 2

/ /

2

/ /

2

2

d d

o
o x y o

d d

a
n dp dp f p

 

  − −

=                                           

( )

1 2

1 2

/ /

21

2

/ /

2 1
exp cos cos

2

d d

yo x
x y x y

Bd d

p da C p d
dp dp D

k T

 

 


 − −

  
= − − − −  

  
 

( )

1 2

1 2

/ /

21

2

/ /

2
exp exp cos cos

2

d d

y yo x x
x y

B B Bd d

p da C p dD
dp dp

k T k T k T

 

 



 − −

    −
= +     

    
 
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( )

1 2

1 2

/ /

21
1 22

/ /

2
exp exp cos exp cos

2

d d

yo x
o x y

B d d

p da C p dD
n dp k dp k

k T

 

 



 − −

   −  
=     

    
     

     (B17) 

where  1
x

B

k
k T


=  and 2

y

B

k
k T


=  

 To change the path of integration, let    
1

1 1

1

x x

d
p d dp

d


=  =  

Whenever   1

1

;xdp d
d


 = =  and 1

1

;xdp d
d


 = − = −   

Similarly, 
2

2 2

2

y y

d
p d dp

d


=  =  

For 2 2

2 2

; ;y ydp d dp d
d d

 
   = = = − = −  

Therefore,             

( )
1 2

1 1 2 22

0 01 2

8
exp exp cos exp cos

2

o
o

B

a c D
n d k d k

k Td d

 
 

 


 −    
=      

    
       

     (B18)     

Using the zeroth order modified Bessel function 

( ) ( )
0

1
cos exp cosnI x d n x



  


= 
                                      

 

( ) ( )

( ) ( )

1 1

0

2 2

0

1
exp cos

1
exp cos

o

o

I k d x

I k d x





 


 



= 



=






                                                   

Eqn.(B18) becomes 

( )
( ) ( )2

1 22

1 2

8
exp

2

o
o o o

B

a c D
n I k I k

k Td d


 



 −
=  

 
                           

Making C the subject gives 

( ) ( )
1 2

1 2

exp
2

o

o o o B

d d n D u
C

a I k I k k T

 
 
 

−
=                                                      (B19) 

Substitute Eqn. (B19) into Eqn. (B16) and simplify yields  

( )
( ) ( )

2

1 2

1 2

exp
2

o
o

o o o B

d d n D
f p

a I k I k k T

 −
=  

      

211
exp cos cos

yx
x y

B

p dp d
D

k T


  
 − − − −  

       

( )
( ) ( )

21 2 1
1 2

1 2

.exp cos cos
2

yo x
o

o o o

p dd d n p d
f p k k

a I k I k

 
= + 

 
                   (B20) 
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APPENDIX C 

DERIVATION OF THE ELECTRICAL RESISTIVITY OF GRAPHENE 

SUPERLATTICE 

 

Substitute Eqn. (B20) into Eqn. (B13) gives  

( ) ( ) ( )

( ) ( )

( )

1 2

1 2

/ /1
21 1 2 1

1 1 23

1 2 / /

'

1 1

0 '

1 1

2
exp cos cos

22

    exp / sin cos cos '' ''
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d d

yx o x
x y

o o o d d

t

x
o x

t t

x
o x

p dd d d n p de
J dp dp k k

a I k I k

p d d e
dt t E E wt dt

p d d e
E E wt

 

 







−

− −



−

 
= + 

 

  
  − +   

  

− +

 

 

'

'

''

         

t

t t

dt
−

 
    

 


 

( ) ( ) ( )
( )

( )

( )

1 2

1 2

/ /1

1 1 2

2

1 2 0 / /

'
21 11

1 2

'

1 1

'

2
exp /

22

sin cos cos '' '' exp cos cos

cos sin cos ''

d d

x o
x y

o o o d d

t
yx x

o x

t t

t

x
o x

t t

d d d ne
dt t dp dp

a I k I k

p dp d p dd e
E E wt dt k k

p d d e
E E wt

 

 






−

− −

−

−


= −

    
  +  +     

   

 − + 

  



'
21

1 2'' exp cos cos
yx

p dp d
dt k k

   
 +    

   


                               

          (C1) 

Integrating Eqn. (C1) causes the odd functions to vanish in the first Brillouin 

zone, 1 1/ /xd p d −   .

( ) ( ) ( )
( )

( )

1 2

1 2

/ /1

1 1 2
1 2

1 2 0 / /

'
21 11

1 2

'

2
exp /

22

cos sin cos '' '' exp cos cos

d d

x o
x y

o o o d d

t
yx x

o x

t t

d d d ne
J dt t dp dp

a I k I k

p dp d p dd e
E E wt dt k k

 

 






−

− −

−


= − −

     
  +  +     

    

  



     

                        (C2) 

Rearranging the terms gives: 

( ) ( ) ( )

( ) ( )

1

1 1 2
1 2

1 2

'

1

0 '

2

22

exp / sin cos '' ''

x o

o o o

t

o x

t t

d d d ne
J

a I k I k

d e
dt t E E wt dt







−



−


= −

  
  − +   

  
 

 

 

1 2

1 2

/ /

21 1
1 2

/ /

cos exp cos exp cos

d d

yx x
x y

d d

p dp d p d
k dp dp k

 

 − −

    
    

     
 

     
           (C3) 

Changing the path of the integration becomes 
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( ) ( ) ( )

( ) ( )

1

1 1 2
1 2

1 2

'

1

0 '

4

exp / sin cos '' ''

x o

o o o

t

o x

t t

d d d ne
J

a I k I k

d e
dt t E E wt dt







−



−


= −

  
  − +   

  
 

 

 

1 2

1 2

/ /

1 1 2
1 1 2 2

1 2/ /

1 1
cos exp cos exp cos

d d

d d

d k d k
d d

 

 

  
 

− −

     
     

     
       

           (C4) 

( ) ( ) ( )

( ) ( )

1

1 1 2
1 2

1 2

'

1
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4

exp / sin cos '' ''

x o

o o o

t
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t t

d d d ne
J

a I k I k

d e
dt t E E wt dt







−



−


= −

  
  − +   

  
 

 

1 2

1 2

/ /

1 1 2
1 1 2 2

1 2/ /

1 1
cos exp cos exp cos

d d

d d

d k d k
d d

 

 

  
 

− −

     
     

     
              (C5) 

Simplifying Eqn. (C5) further gives  

( ) ( ) ( )

( ) ( )

1

1
1 2

1 2

'

1

0 '

exp / sin cos '' ''

x o

o o o

t

o x

t t

d ne
J

a I k I k

d e
dt t E E wt dt







−



−


= −

  
  − +   

  
 

 

 1 1 2
1 1 2 2

0 0

1 1
cos exp cos exp cosd k d k

 
  

 
 

     
     

     
              (C6) 

By definition  

( ) ( )1
1

0

1
exp coso

d
I k x







=                                            (C7) 

and 

( ) ( )2
2

0

1
exp coso

d
I k x







=                                           (C8) 

Substituting Eqn. (C7) and Eqn. (C8) into Eqn. (C6) yields 

( )

( )
( ) ( )

'1
1 11 1

1 2

1 0 '

exp / sin cos '' ''

t
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o x

o o t t

n I ke d d e
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

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−

    
 = − − +   

   
     

           (C9)            
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Making use of the identity 

( ) ( )

( )
( )

( )

'

1

0 '

2

12

2 2

1

exp / sin cos '' ''

/

1 /

t

o x
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
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 
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 

 +
=  
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

        

Eqn. (C9) becomes; 
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 


 
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        (C10) 

Let ( )x E  be the conductivity of GSL along the x direction  

( )
( )

( )
( )

( )

2 2
1 1 21
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           (C11)         

The resistivity of the material is therefore  
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               (C12) 

Let 
2

1
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n
E E
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
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                   ( )
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J E E

d e



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1
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APPENDIX D 

 

DERIVATION OF THE THERMOELECTRIC POWER OF 

GRAPHENE SUPERLATTICE 

 

Solving for 2J  in Eqn. (B13) 

( )
( )

( )

( )
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d d
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            (D1) 

Differentiating Eqn. (B19), with respect to the energy dispersion relation gives 

( )
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Substitute Eqn. (D2) into Eqn. (D1) and expand to obtain 
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              (D3) 

Integrating Eqn. (D3) causes the odd functions vanish in the first Brillouin zone, 

1 1/ /xd p d −     
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 22 1 1
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 
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            (D4)

                     

 To change the path of integration, let 

     
1

1 1

1

x x

d
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d


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Whenever   1
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For 2 2
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 
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  
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Using the trig identity ( )2 1
sin 1 cos 2

2
 = − , Eqn. (D5) can be simplified as:  
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                   (D6) 

Making use of the identity 
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                (D7) 
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                   (D8) 

Expanding Eqn. (D8) gives  
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                   (D9)                                          

 

Eqn. (D9) is broken down into 2 21 22 23 24 25 26J J J J J J J= + + + + +  and 

simplified as: 
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Eqn. (D13) obeys the recurrence relation 
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Eqn. (D16) obeys the recurrence relation of second order modified Bessel’s 

function as; 
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              (D19) 

Adding all the terms in 2J  

Thus  2 21 22 23 24 25 26J J J J J J J= + + + + +     
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                 (D20) 

Simplifying Eqn. (D20) further, 
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where ( )x E  is the conductivity. But 1 2xJ J J= +  
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where  ' /xn xn xE E u e= +  

The differential thermoelectric power is defined as the ratio xn

x

E

T
 in an open 

circuit. Thus setting 0J =  to zero, the thermoelectric power x  along the x-

direction is obtained as follows:  
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The electrical power factor along the x-direction is given as: 
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Substituting the expressions obtained in Eqn. (C11) and (C34) into Eqn. (D35) 
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APPENDIX E 

RESISTIVITY AGAINST TEMPERATURE FOR VARYING oE  

clc; 

clear; 

figure; 

T=0:1000;         % Temperature range 

 e =1;           % electronic charge in electron volt 

Eo=10^7;          % dc field intensity 

Ex=10^2;          % ac field intensity 

delta=0.013;     % outer shell energy 

delta_1=0.010;   % overlapping integrals for jump along x-axis 

delta_2=0.024;   % overlapping integrals for jump along y-axis 

no=1e13;          % carrier concentration 

ao=0.345e-9;     % graphene sheet width 

h=6.582e-16;     % reduced Planck's constant in eV 

K=8.617e-5;      % Boltzmann's constant in eV 

d1=2e-8 ;         % graphene periodicity along x-axis 

w=1e14;           % frequency of the field 

t=1e-12;           % relaxation time 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

 

I1=besseli(1,k1); % modified Bessel’s function of order one 

Io=besseli(0,k1); % modified Bessel’s function of order zero 

W=d1*e*Eo/h; 

p=Io./I1; 

jo=-(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2*D*h.^2.*ao); 

X=(d1.*e.*Ex./h*w); 

jb=0; 

for n=-10:10 

  y1=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + n.*w*h).^2.*t^2); 

end 

j2=jo.*y1; 

y2=1./j2; 

ax=(y2).*p; 

plot(T,ax,'r','linewidth',2) 

title('Resistivity Against T for Varying Eo') 

xlabel('Temperature(K)'); 

ylabel('Resistivity(Ohm m)'); 

grid on; 

hold on; 

T=0:1000; 

e=1.6e-19; 

Eo=2*10^7; 

Ex=10^2; 
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delta=0.013; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.582e-16; 

% h=1; 

K=8.617e-5; 

d1=2e-8 ; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

W=d1*e*Eo/h; 

p=Io./I1; 

jo=-(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2*D*h.^2.*ao); 

X=(d1.*e.*Ex./h*w); 

jb=0; 

for n=-10:10 y1=jb+sum(besselj(n,X).^2).*(W+n.*w*h)./(1+(W+ 

n.*w*h).^2.*t^2); 

end 

y2=jo.*y1; 

ax=(1./y2).*p; 

plot(T,ax,'g','linewidth',2) 

title('Resistivity Against T for Varying Eo') 

xlabel('Temperature(K)'); 

ylabel('Resistivity(Ohm m)'); 

grid on; 

hold on; 

T=0:1000; 

eV =1.6e-19; 

Eo=3*10^7; 

Ex=10^2; 

delta=0.013; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.582e-16; 

% h=1; 

K=8.617e-5; 

d1=2e-8; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 
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k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

W=d1*e*Eo/h; 

p=Io./I1; 

jo=-(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2*D*h.^2.*ao); 

X=(d1.*e.*Ex./h*w); 

jb=0; 

for n=-10:10y1=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + 

n.*w*h).^2.*t^2); 

end 

y2=jo.*y1; 

ax=(1./y2).*p; 

plot(T,ax,'b','linewidth',2) 

% title('Resistivity Against T for Varying Eo') 

xlabel('Temperature(K)'); 

ylabel('Resistivity \rho_{x}(\Omega {m})'); 

% grid on; 

hold on; 

T=0:1000; 

eV =1.6e-19; 

Eo=4*10^7; 

Ex=10^2; 

delta=0.013; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.582e-16; 

% h=1; 

K=8.617e-5; 

d1=2e-8 ;wt=0.1; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

W=d1*e*Eo/h; 

p=Io./I1; 

jo=-(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2*D*h.^2.*ao); 

X=(d1.*e.*Ex./h*w); 

jb=0; 

for n=-10:10 

  y1=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + n.*w*h).^2.*t^2); 

end 

y2=jo.*y1; 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



124 

 

ax=(1./y2).*p; 

plot(T,ax,'b','linewidth',2) 

% title('Resistivity Against T for Varying Eo') 

xlabel('Temperature(K)'); 

ylabel('Resistivity \rho_{x}(\Omega {m})'); 

% grid on; 

hold on; 

legend('1E_{o}V/m','2E_{o}V/m','3E_{o}V/m', '4E_{o} V/m','location','best') 

set(gca, 'Fontsize',14,'linewidth',1.5) 

box on 

% grid on 

hold on 

title('') 

grid off 
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APPENDIX F 

THERMOPOWER AGAINST TEMPERATURE FOR VARYING 1  

clear; 

clc; 

figure; 

T=(0:1000); 

meu=1;  % electrochemical potential in electron volt 

delta=0.013; delta_1=0.010; 

delta_2=0.0240;  

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m1=K.*T; 

m2=K./e; 

k1=delta_1^2./(2*D.*m1);   

k2=delta_2^2./(2*D.*m1);Io=besseli(0,k1); % Bessel's function of zero order 

I1=besseli(1,k1); % Bessel's function of first order 

p=Io./I1;  

y1=besseli(1,k2); 

y2=besseli(0,k2); 

y=y1./y2; 

q=(D-meu)./m1; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

ax=m2.*(q+q3); 

plot(T,ax,'r','Linewidth',2) 

xlabel('Temperature(K)'); 

ylabel('a_{zz}(V/K)'); 

hold on 

T=0:1000; 

meu=1;  

delta=0.013; delta_1=0.012; 

delta_2=0.024;  

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m1=K.*T; 

m2=K./e; 

k1=delta_1^2./(2*D.*m1);   

k2=delta_2^2./(2*D.*m1); 

Io=besseli(0,k1); % Bessel's function of zero order 

I1=besseli(1,k1); % Bessel's function of first order 

p=Io./I1;  

y1=besseli(1,k2); 

y2=besseli(0,k2); 

y=y1./y2; 

q=(D-meu)./m1; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

ax=m2.*(q+q3); 

plot(T,ax,'b','Linewidth',2) 

xlabel('Temperature(K)'); 

ylabel('a_{zz}(V/K)'); 

%title('Temopower against Temperature') 

% % grid on 
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hold on 

T=0:1000; 

meu=1;  

delta=0.013; delta_1=0.014; 

delta_2=0.024;  

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m1=K.*T; 

m2=K./e; 

k1=delta_1^2./(2*D.*m1);   

k2=delta_2^2./(2*D.*m1); 

Io=besseli(0,k1); % Bessel's function of zero order 

I1=besseli(1,k1); % Bessel's function of first order 

p=Io./I1;  

y1=besseli(1,k2); 

y2=besseli(0,k2); 

y=y1./y2; 

q=(D-meu)./m1; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

ax=m2.*(q+q3); 

plot(T,ax,'k','Linewidth',2) 

xlabel('Temperature(K)'); 

ylabel('a_{zz}(V/K)'); 

%title('Temopower against Temperature') 

% % grid on 

hold on 

T=0:1000; 

meu=1;  

delta=0.013; delta_1=0.016; 

delta_2=0.024;  

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m1=K.*T; 

m2=K./e; 

k1=delta_1^2./(2*D.*m1);   

k2=delta_2^2./(2*D.*m1); 

Io=besseli(0,k1); % Bessel's function of zero order 

I1=besseli(1,k1); % Bessel's function of first order 

p=Io./I1;  

y1=besseli(1,k2); 

y2=besseli(0,k2); 

y=y1./y2; 

q=(D-meu)./m1; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

ax=m2.*(q+q3); 

plot(T,ax,'g','Linewidth',2) 

axis([-10 1000 -0.4 0.8]) 

xlabel('Temperature(K)'); 

ylabel('a_{x}(V/K)'); 

title('Temopower against Temperature') 

% % grid on 

% title('Thermopower vs Temperature for varrying delta1') 

set(gca, 'Fontsize',14,'linewidth',1.5) 

box on 
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% grid on 

hold on 

legend('\Delta{1}=0.010','\Delta{1}=0.012','\Delta{1}=0.014','\Delta{1}=0.01

6','location','best') 

legend({'\Delta_{1}= 0.010 eV','\Delta_{1}= 0.012 eV','\Delta_{1}= 0.014 

eV','\Delta_{1}= 0.016 eV'}) 

title('') 
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APPENDIX G 

POWER FACTOR AGAINST TEMPERATURE FOR VARYING oE  

clc; 

clear; 

figure; 

T=0:1:1000; 

e=1; meu=1; 

Eo=10^7; 

Ex=10^2; 

delta=0.13; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.52e-16; 

K=8.617e-5; 

d1=2e-8; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

p=I1./Io; 

y1=besseli(1,k2); 

yo=besseli(0,k2); 

y=y1./yo; 

W=d1*e*Eo/h; 

X=(d1.*e.*Ex./h*w); 

jo=(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2.*D.*h.^2.*ao); 

jb=0; 

for n=-10:10Y=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + 

n.*w*h).^2.*t^2); 

end 

Y2=-jo.*Y.*p; 

ax=Y2; 

m2=K./e; 

q=(D-meu)./m; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

a=(-m2.*(q-q2+q3-q4)).^2; 

px=a.*ax; 

plot(T,(px)./10e2,'r','Linewidth',2); 

xlabel('Temperature(K)'); 

ylabel('power factor(W/K)'); 

title('power factor against temperature'); 

hold on 
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%% 

T=0:1:1000; 

e=1; meu=1; 

Eo=2*10^7; 

Ex=10^2; 

delta=0.13; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.52e-16; 

K=8.617e-5; 

d1=2e-8; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

p=I1./Io; 

y1=besseli(1,k2); 

yo=besseli(0,k2); 

y=y1./yo; 

W=d1*e*Eo/h; 

X=(d1.*e.*Ex./h*w); 

jo=(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2.*D.*h.^2.*ao); 

jb=0; 

for n=-10:10 

  Y=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + n.*w*h).^2.*t^2); 

end 

Y2=-jo.*Y.*p; 

ax=Y2; 

m2=K./e; 

q=(D-meu)./m; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

a=(-m2.*(q-q2+q3-q4)).^2; 

px=a.*ax; 

plot(T,(px)./10e2,'b','Linewidth',2); 

xlabel('Temperature(K)'); 

ylabel('power factor(W/K)'); 

title('power factor against temperature'); 

hold on 

 

T=15:1:1000; 

eV =1.6e-19; e=1; meu=1; 

Eo=3*10^7; 

Ex=10^2; 

delta=0.13; 

delta_1=0.012; 
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delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.52e-16; 

K=8.617e-5; 

d1=2e-8; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

p=I1./Io; 

y1=besseli(1,k2); 

yo=besseli(0,k2); 

y=y1./yo; 

W=d1*e*Eo/h; 

X=(d1.*e.*Ex./h*w); 

jo=(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2.*D.*h.^2.*ao); 

jb=0; 

for n=-10:10 

     

  Y=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + n.*w*h).^2.*t^2); 

end 

Y2=-jo.*Y.*p; 

ax=Y2; 

m2=K./e; 

q=(D-meu)./m; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

a=(-m2.*(q-q2+q3-q4)).^2; 

px=a.*ax; 

plot(T,(px)./10e2,'k','Linewidth',2); 

xlabel('Temperature(K)'); 

ylabel('power factor \P_{x}(W/K)'); 

title('power factor against temperature'); 

hold on 

 

T=0:1:1000; 

eV =1.6e-19; e=-1; meu=1; 

Eo=4*10^7; 

Ex=10^2; 

delta=0.13; 

delta_1=0.012; 

delta_2=0.024; 

no=1e13; 

ao=0.345e-9; 

h=6.52e-16; 

% h=1; 

K=8.617e-5; 
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d1=2e-8; 

w=1e14; 

t=1e-12; 

D=(sqrt(delta^2+delta_1^2+delta_2^2)); 

m= (K.*T); 

k1=delta_1^2./(2.*D.*m); 

k2=delta_2^2./(2.*D.*m); 

I1=besseli(1,k1); 

Io=besseli(0,k1); 

p=I1./Io; 

y1=besseli(1,k2); 

yo=besseli(0,k2); 

y=y1./yo; 

W=d1*e*Eo/h; 

X=(d1.*e.*Ex./h*w); 

jo=(e^2.*delta_1.^2.*d1.^2.*no.*t)./(2.*D.*h.^2.*ao); 

jb=0; 

for n=-10:10 Y=jb+sum(besselj(n,X).^2).*(W + n.*w*h)./(1+(W + 

n.*w*h).^2.*t^2); 

end 

Y2=-jo.*Y.*p; 

ax=Y2; 

m2=K./e; 

q=(D-meu)./m; q2=2.*D.*p.*k1./delta_1^2; q3=D./delta_1^2;q4=k2.*y; 

a=(-m2.*(q-q2+q3-q4)).^2; 

px=a.*ax; 

plot(T,(px)./10e2,'g','Linewidth',2); 

xlabel('Temperature(K)'); 

ylabel('Power factor, P_{x} (W/K)'); 

title('power factor against temperature for varying delta1'); 

hold on 

legend('E_{o} V/m','2E_{o} V/m','3E_{o} V/m','4E_{o} V/m','location','best') 

set(gca, 'Fontsize',14,'linewidth',1.5) 

box on 

% grid on 

hold on  

  title('') 

    grid off 
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