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ABSTRACT

The numerical solution of the linear system Ax = b, arises in many

branches of applied mathematics, sciences, engineering and statistics. The

most common source of these problems is in the numerical solutions of or-

dinary and partial differential equations, as well as integral equations. The

process of discretization by means of finite differences often leads to the solu-

tion of linear systems, whose solution is an approximation to the solution of

the original differential equation. If the coefficient matrix is ill-conditioned

or rank-deficient, then the computed solution is often a meaningless approx-

imation to the unknown solution. Regularization methods are often used to

obtain reasonable approximations to ill-conditioned systems.

However, the methods for choosing an optimal regularization parameter

is not always clearly defined. In this dissertation, we have studied various

methods for solving ill-conditioned linear systems, using the Hilbert system

as a prototype. These systems are highly ill-conditioned. We have examined

various regularization methods for obtaining meaningfully approximations

to such systems. Tikhonov Regularization method proved to be the method

of choice for regularizing rank deficient and discrete ill-posed problems com-

pared to the Truncated Singular Values decomposition and the Jacobi and

Gauss-Seidel Preconditioner’s for boundary values problems. The truncated

singular value decomposition truncate the harmful effect of the small singu-

lar values on the solution by replacing them with exact zero. The truncation

improves the solution to an extent and the solution deteriorates again. The

maximum error in the solution occurs at the cut-off level λ = 2.2520×10−10.

The optimal solution was obtained at λ = 2.2520× 10−10 . The Jacobi and

the Gauss-Seidel preconditioner’s for sparse systems also gave an optimal

solution.
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Our results using Tikhonov method, shows that in order 0 regularization,

the accuracy of the solution increases with increasing values of the regular-

ization parameter, with optimal regularization parameter of 100, giving an

accuracy of 15 digits. Order 2 regularization gave an accuracy of about 13

digits, with optimal parameter of 10−9, while order 1 regularization gave an

accuracy of only 3 digits, corresponding to an optimal parameter of 10−13. In

all the three cases, the optimal regularization parameters were determined

by inspection, using the minimum error. The L-Curve method failed to in-

dicate the optimal regularization parameter. We applied regularization to

the solution of an ill-conditioned discretized Fredholm integral equation of

the first kind.

First, we transformed the integral equation into a linear system Ax = b,

where A is a 17 × 17 positive definite matrix. None of the standard meth-

ods for solving linear systems gave the desired solution. The accuracy of

the solution increases with increasing values of the regularization parame-

ter. The regularized solutions of order one and two, gave an accuracy of

about 3 digits accuracy, with parameter values λ = 10−1 and λ = 10−3 re-

spectively, while order zero shows no accuracy in the regularized solutions.

The L-curve was applied to determine the optimal regularization parameter.

The optimal regularization parameter corresponding to the optimal solution

was determined at the corner part of the L-curve. The L-curve for order

two regularization gave us the optimal solution with a regularization param-

eter value λ = 10−3. For order zero and one, the regularization parameter

concentrated at the sharp corner of the L-curve did not approximate to the

exact solution. Order zero and one in this case has no optimal regularization

parameter on the L-curve.
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CHAPTER ONE

INTRODUCTION

Background of the Study

The concept of ill-posed problems goes back to Hadamard, at the begin-

ning of the 19th century, Hadamard(1923). Hadamard essentially defined a

problem as ill-posed if the solution is not unique, or if it is not a continuous

function of a given data. That is, if an arbitrary small perturbation of a data

can cause an arbitrarily large perturbation of the solution. Hadamard be-

lieved that ill-posed problems were “artificial”, in the sense that they could

not describe physical systems. However, this analogy was wrong according

to Hansen(1992). Ill-posed problems arise in many areas of science and engi-

neering in the form of inverse problems. Inverse problems arise naturally in

determining an unknown input that gives rise to a measured output signal.

Rank-deficient or discrete ill-posed problems are characterized by having a

coefficient matrix that is very ill-conditioned.

Given an m× n matrix A, for m ≥ n and a vector b ∈ Rn, the linear

systems problem is to find a vector x̂ ∈ R satisfying the linear equation

Ax = b. (1.1)

The linear system in Equation 1.1 arises in many branches of applied math-

ematics, sciences, engineering and statistics. If the matrix is ill-conditioned

or rank-deficient, then the computed solution is often a meaningless

approximation to the exact solution. The need arises to find answers to the

following questions : What kind of ill-conditioning system do we have at
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hand and how do we deal with it? Is the problem rank deficient problem or

ill-posed ? Is it possible to include additional information to stabilize the

solution? Which additional information is available and is it suitable for

stabilization purposes? How much stabilization should be added?

Purpose of the Study

Ill-conditioned linear systems arise naturally in many applications, es-

pecially in the numerical solution of ordinary and partial differential equa-

tions. Such systems are typically ill-conditioned. Regularization methods

are therefore needed in order to obtain meaningful solutions to them.

The aim of this thesis is to study various methods for solving ill-conditioned

linear systems, including Hilbert systems, as well as those arising from the

discretization of differential and integral equations. The study will also cover

different regularization methods for stabilizing computations and methods

for selecting an optimal regularization parameter.

The purpose of the study is summarized as follows:

1. To study various ill-conditioned linear systems, using the Hilbert sys-

tem as a prototype.

2. To investigate various methods for stabilizing the computation of a

Hilbert system.

3. To study various regularization methods.

4. To apply the methods to stabilize the solutions of boundary-value

problems, and integral equations.
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Mathematical Background

Matrix and Vector Norms

A vector space V is said to be a normed linear space if for each vector

v ∈ V, there exist a real number ‖v‖ called the norm of v, satisfying

1. ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0

2. ‖λv‖ = |λ| ‖v‖ for any scalar λ ∈ R

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v,w ∈ V (triangle inequality)

Examples of Vector Norms

Let x = [x1, x2, · · · , xn]
T be a vector in Rn. Then, each of the following

defines a norm on Rn. In fact, they are the most commonly used norms on

Rn.

‖x‖1 =
n∑

i=1

|xi| = |x1|+ |x2|+ · · ·+ |xn| (l1 norm) (1.2)

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

=
√

x2
1 + x2

2 + · · ·+ x2
n (l2 norm) (1.3)

‖x‖∞ = max
i
|xi| (l∞ norm) (1.4)

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

p ≥ 1, (lp norm). (1.5)

Example 1.1. Let x = [2,−3, 0, 1,−4] ∈ R5. Then

(a) ‖x‖1 = |2|+ | − 3|+ |0|+ |1|+ | − 4| = 10.

(b) ‖x‖2 =
√

22 + (−3)2 + (0)2 + (1)2 + (−4)2 =
√

30

(c) ‖x‖∞ = 4.
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It can be verified that Equations 1.2—1.4 satisfies the definition of a

norm. However, the proof of the Triangle Inequality for ‖ · ‖2 requires the

following well-known inequality.

Theorem 1.1 (Cauchy-Schwartz Inequality). For each x = [x1, x2, · · · , xn]
T

and

y = [y1, y2, · · · , yn]
T ∈ Rn,

n∑
i

|xiyi| ≤
[(

n∑
i=1

x2
i

) (
n∑

i=1

y2
i

)]1/2

= ‖x‖2 ‖y‖2 (1.6)

Definition 1.1 (Equivalent Norms). Two vector norms ‖ · ‖p and ‖ · ‖q

are said to be equivalent if the ratio of a vector’s length in one norm to

a vector’s length in another norm is bounded from above and below by

constants, say c1 and c2. Thus, are independent of the vectors.

For example, it can be shown that

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ (1.7)

The inequality above shows that ‖ · ‖∞ and ‖ · ‖1 are equivalent, since

1 ≤ ‖x‖1

‖x‖∞ ≤ n

In general, if p ≥ q then

‖x‖p ≤ ‖x‖q ≤ n(p−q)/(pq) ‖x‖p (1.8)

Since, 1 ≤ ‖x‖q/‖x‖p ≤ n(p−q)/(pq).

Definition 1.2. A sequence of vectors, {xk}∞1 is said to converge to a vector

x with respect to the norm ‖ · ‖, if and only if

lim
k→∞

‖xk − x‖ = 0. (1.9)
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For example, a sequence of vectors {xk}∞1 in Rn converges to the vector

x with respect to the norm ‖ · ‖∞, if and only if

lim
k→∞

xk
i = xi for 1 ≤ i ≤ n.

In Definition 1.2, the norm was not specified. This is because, in Rn,

all norm are equivalent. Therefore convergence in one norm automatically

implies convergence in another norm.

Example 1.2. The sequence {xk} where

xk =

[
e−k, k sin

1

k
, 2 + k−2

]T

converges to x = (1, 1, 2)T .

Matrix Norms

In the previous section, norms were used to measure the length of vectors.

In this section we study some of the standard matrix norms defined on the

vector space Mnn, of n× n matrices. Matrix norms play a crucial role in

numerical linear algebra. For instance, the norm of an m× n matrix A is

useful in determining the accuracy of the computed solution of the linear

system Ax = b.

Since Mnn is isomorphic to Rn2
, the vector norms we used in the previous

section can also be used, in a limited way, to measure the size of matrices.

In addition to the standard vector space operations on Mnn, the operation

of multiplication is also defined. There is therefore the need to relate the

norm of the product AB to the norms of A and B.

Definition 1.3. A matrix norm on Mnn is a real-valued function ‖ · ‖
from Mnn into R with the following properties:
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‖A‖ ≥ 0 for all A ∈ Mn,n, and ‖A‖ = 0, iff A = 0. (1.10)

‖αA‖ = |α| ‖A‖ for all α ∈ R and A ∈ Mnn. (1.11)

‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Mnn. (1.12)

‖AB‖ ≤ ‖A‖ ‖B‖. (1.13)

There are many ways in which we can construct matrix norms to satisfy

the properties given above. However, since matrices operate on vectors, we

define a matrix norm ‖ · ‖ so as to be compatible with a vector norm by

imposing the requirement that

‖Ax‖ ≤ ‖A‖ ‖x‖, (1.14)

for all A ∈ Mnn and for all x ∈ Rn.

We now derive a matrix norm form a given vector norm. For any

x ∈ Rn, the matrix A transforms the vector x into another vector Ax. One

way of measuring the “size” of A is by comparing ‖x‖ with ‖Ax‖ using

any convenient vector norm. The ratio ‖Ax‖
‖x‖ is a measure of the stretching

capability of A. We also expect the matrix norm ‖A‖, to be compatible

with the vector norm being used, see Equation 1.14. Therefore, we must

have

‖Ax‖ ≤ ‖A‖ ‖x‖ or
‖Ax‖
‖x‖ ≤ ‖A‖.

The maximum stretch over all possible x can then be taken as the definition

of ‖A‖. That is,

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖ . (1.15)

This matrix norm is often referred to as a compatible matrix norm

or a natural norm. Thus, if let y = x/‖x‖ for any nonzero vector x ∈ Rn,

then ‖y‖ = 1 and ‖Ay‖ = ‖Ax‖/‖x‖. The definition in Equation 1.15 is

equivalent to ‖Ay‖, and can be prove by the theorem below.

6



Theorem 1.2. The norm defined by

‖A‖ = max
‖y‖=1

‖Ay‖ (1.16)

defines a matrix norm.

Proof. We verify properties 1.10 — 1.13.

(i) Since ‖y‖ = 1, y 6= 0, and if A 6= 0, then ‖A‖ = max
‖y‖=1

‖Ay‖ ≥ 0.

If A = 0, then Ay = 0 for all y = 1, and so ‖Ay‖ = 0 for all ‖y‖ = 1.

Hence ‖A‖ = max
y=1

‖Ay‖ = 0.

Conversely, ‖A‖ = 0 ⇒ max
y=1

‖Ay‖ = 0, ⇒ ‖Ay‖ = 0 ⇒ Ay = 0

for ally, ⇒ A = 0.

(ii) ‖αA‖ = max
y=1

‖αAy‖ = max
y=1

|α| ‖Ay‖ = |α|max
y=1

‖Ay‖ = |α| ‖A‖

(iii) ‖A + B‖ = max
y=1

‖(A + B)y‖ = max
y=1

‖Ay + By‖

≤ max
y=1

(‖Ay‖+ ‖By‖) ≤ max
y=1

‖Ay‖+ max
y=1

‖Ay‖ = ‖A‖+ ‖B‖
This implies that ‖A + B‖ ≤ ‖A‖+ ‖B‖.

(iv) ‖AB‖ = max
y=1

‖AB(y)‖ = max
y=1

‖A (By)‖ ≤ max
y=1

(‖A‖ ‖By‖)
That is ‖AB‖ ≤ max

y=1
(‖A‖ ‖B‖‖y‖)

Hence, ‖AB‖ ≤ ‖A‖ ‖B‖.

This shows that Equation 1.16 defines a matrix norm.

Examples of Matrix Norms

The most commonly used norms on an n× n matrix A are

(a) ‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| (max column-sum).

(b) ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| (max row-sum).
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(c) ‖A‖2 =
√

max eigenvalue(ATA).

(d) ‖A‖F =

(
n∑

j=1

m∑
i=1

a2
ij

)1/2

( Frobenius norm).

Example 1.3. Let A =




1 1

1 2

−1 1




Then,

•‖A‖1 = 4,

•‖A‖∞ = 3,

•‖A‖F =
√

12 + (1)2 + 12 + 22 + (−1)2 + 12 = 3 and

‖A‖2 =
√

max eigenvalue(ATA) =
√

max(7, 2) = ‖A‖2 =
√

7.

Since the eigenvalues of ATA are 7 and 2.

Note that the Frobenius norm is analogous to the Euclidean norm

‖x‖2 =

(
n∑

i=1

x2
i

)1/2

for x ∈ Rn.

Theorem 1.3. Let A be an n× n matrix. Then

‖A‖2 =
√
ρ(AT A)

Proof. Let x = [x1, x2, · · · , xn]
T. Then

‖x‖2
2 = x2

1 + x2
2 + · · ·+ x2

n. (1.17)

Also

‖Ax‖2
2 = (Ax)T (Ax) = xT

(
AT A

)
x ≥ 0. (1.18)

Since AT A is symmetric, it has an orthonormal set of eigenvectors,

v1,v2, · · · ,vn; that is vT
i vj = δij and

(
AT A

)
vi = λivi, (1.19)

8



where λi is an eigenvalue of AT A corresponding to the eigenvector vi.

Multiplying both sides of 1.19, on the left by vT
i gives

vT
i

(
ATA

)
vi = λiv

T
i vi = λi ≥ 0.

Express the vector x as linear combination of the vi’s:

x =
n∑

i=1

αivi, (α′is constants) (1.20)

Substituting 1.20 into 1.18 gives

‖Ax‖2
2 = (Ax)T (Ax) = xT AT Ax =

n∑
i=1

αiv
T
i (AT A)

n∑
i=1

αivi,

=
n∑

i=1

αiv
T
i

n∑
i=1

(AT A)αivi =
n∑

i=1

αiv
T
i

n∑
i=1

αiλivi,

=
n∑

i=1

α2
i λi ≤ max

i
|λi|

n∑
i=1

α2
i ,

= max
i
|λi| (since ‖x‖2

2 = 1).

Thus

‖A‖2
2 = max

‖x‖=1
‖Ax‖2 ≤

√
max

i
|λi|. (1.21)

Now if the vector x = vk corresponds to

max
k
λk,

then

‖Ax‖2
2 = vT

k AT Avk = vTλkvk = max
i
λi.

This shows that equality is attained in (1.21). Hence,

‖A‖2 =
√

max
i

λi =
√
ρ(ATA).

Literature Review

Studies into Regularization Techniques for ill-posed problems have been

researched into by many researchers, and many contributions have been

made by them.
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In the 19th century, Hadamard introduced the concepts of ill-conditioned

or ill-posed problems, but his submission that they were “artificial problems”

have been proved wrong. In fact, many problems in engineering and science

such as image processing, signal processing and biomedical engineering are

ill-posed problems. Regularization methods are therefore needed in order to

obtain meaningful solutions to these problems.

In recent times, some work has been done in this field of study as a modifi-

cation of what already is in existence. In a book published by Hansen(1997),

a critical look at ill-posed problems were discussed. He focused on two main

issues, the first is reliability and efficiency, both of which are important as

the size and complexity of the computational problems grow and the de-

mand for advanced real-time processing increases. The second issue is to

characterize the regularizing effect of various methods. Hansen stipulated

in his book that the development of robust and efficient implementation of

numerical regularization methods and algorithms lies outside the scope of

his research. In numerical regularization, one cannot expect to deal satisfac-

torily with ill-conditioned problems without both theoretical and numerical

insight. Moreover, this topic has been extensively studied during the last few

decades, and an impressive results have been achieved in many publications.

A typical example is the book by Goncharisky and Bakushinsky(1994), titled

Ill-posed problems: Theory and applications. In their study, Goncharisky

and Bakushinsky made constructive iterative regularization procedures for

solving both linear and non linear ill-posed problems.

However, other researchers have also contributed in this area of study.

Benyah and Jennings(1998), have shown that optimal control computations

are naturally ill-conditioned. These computations, can be stabilize by Regu-

larization methods, Benyah and Jennings(1998). Nair and Pereverzev(2006),

also used “A collocation method” to regularized an ill-posed problems. Thus

10



in short, appreciable work has been done in this field of study.

Outline of the Thesis

Chapter one of the thesis talks about the background of the study, the

purpose or objective of the Study, some mathematical concepts necessary

for the study and a detailed literature review.

Chapter two deals with preliminary concepts of linear algebra. Here, a

critical look at conditioning of a problem and practical situations where they

occur is considered.

Chapter three discusses least squares solutions of linear systems and sin-

gular value decomposition(SVD) as a numerical tool and establish the fact

that the computed solution is usually meaningless when approximated to

the exact solution.

In Chapter four, we study regularization methods for ill-conditioned lin-

ear systems. We looked at Truncated Singular Value Decomposition, fol-

lowed by Preconditioning, and then Tikhonov Regularization method. The

Tikhonov method turns out to be a good method for improving the accuracy

of the solution of ill-conditioned system.

In Chapter five, we present a new approach for solving the Fredholm inte-

gral equation of the first kind using regularization methods coupled with the

parameter-choice methods. A numerical analysis for this study shows that a

better solution is possible when the correct regularization method is applied.

Finally, we examine the new approach with an example to determine how

best the approach works.

Chapter six talks about the summary of the work and observations that

came out of the study. Some of the observations were discussed and appro-

priate conclusions drawn based on the result of the study.

11



CHAPTER TWO

PRELIMINARY CONCEPTS

Conditioning

Conditioning refers to the sensitivity of the solution of a problem to

small changes in the input data. Let P(x) denote the value of a problem

corresponding to input data x and δx denotes a small perturbation in x,

then P is said to be ill-conditioned, if the relative error in the solution is

much larger than the relative error in the data. That is :

|P(x + δx)− P(x)|
|P(x)| À |δx|

|x| ·

For many problems, a condition number can be defined. If the con-

dition number is large, then the problem is said to be ill-conditioned. On

the other hand, if the condition number is small, then the problem is said

to be well-conditioned. Consider the problem of computing a function

y = f(x), where

f : X −→ Y, (2.1)

is a function from a normed vector space X to a normed vector space Y.

Here X represents the input to the problem (the data), f the problem itself,

and Y its solution. Suppose we are interested in the effects on y ∈ Y when

a given x ∈ X is perturbed slightly by a small amount δx, then the relative

size of the perturbation in x is
|δx|
|x| , and it’s corresponding relative size of

the perturbation in f(x) can be written as

|f(x + δx)− f(x)|
|f(x)| ≈ |δx f ′(x)|

|f(x)| =
|x f ′(x)|
|f(x)| × |δx|

|x| .
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The quantity

κ =
| x f ′(x)|
|f(x)| (2.2)

is called the condition number for the problem. If the quantity is large

(κ >> 1), the problem is ill-conditioned; on the other hand , if it is small

(κ ≈ 1) , the problem is well-conditioned.

Example 2.1. Consider the problem of computing f(x) =
√

x for x > 0 .

Using the relation for a condition number of a problem defined above,

we have κ =
|x f ′(x)|
|f(x)| =

1/(2
√

x)√
x/x

=
1

2
< 1 .

This problem is well-conditioned, since the condition number is very

small.

Conditioning of a Matrix-Vector Multiplication

Consider the case where the function f in Equation 2.2 is a linear function,

that is f : x −→ Ax. From 2.2

κ =
| x f ′(x)|
|f(x)| ,

κ = lim
δx→0

[‖A(x + δx)− Ax‖
‖Ax‖

/‖δx‖
‖x‖

]
. (2.3)

Using Taylor’s expansion, A(x + δx) can be simplify as:

A(x + δx) ∼= Ax + Aδx + 0(δx2) ∼= Ax + Aδx. (2.4)

By substituting 2.4 into 2.3, we obtain

κ = lim
δx→0

[‖Aδx‖
‖δx‖

/‖Ax‖
‖x‖

]
= ‖A‖ ‖x‖‖Ax‖· (2.5)

But

‖x‖ = ‖Ix‖ = ‖AA−1x‖ = ‖A−1Ax‖ ≤ ‖A−1‖‖Ax‖·

That is

‖x‖ ≤ ‖A−1‖‖Ax‖ ,
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or further

‖x‖
‖Ax‖ ≤ ‖A−1‖. (2.6)

Combining Equations 2.6 and 2.5 we obtain

κ ≤ ‖A‖‖A−1‖.

But for certain value of α, it can be deduced that

κ = α‖A‖‖A−1‖ ,

where α is a proportionality constant.

Condition Number of a Matrix

Definition 2.1. Let A be an n× n non-singular matrix, then the condition

number of A denoted by κ(A) is defined as the product of the norm of A

and the norm of the inverse of A. That is

κ(A) = ‖A‖‖A−1‖.

Here the assumed value of α is one. For any n× n non-singular matrix A

and the natural norm ‖ · ‖,

1 = ‖In‖ = ‖A ·A−1‖ ≤ ‖A‖‖A−1‖ = κ(A).

If κ(A) is small (close to 1) then the matrix is said to be well-conditioned.

On the other hand, if κ(A) is large, that is, if it is significantly larger than

one, then it is said to be ill-conditioned.

Example 2.2. Consider the linear system Ax = b with A given by

A =




1 2

1.0001 2


 .

Using infinity norm, the condition number κ(A) = ‖A‖‖A−1‖ = 5.0001×104.

In this example, κ(A) is large since κ(A) >> 1. Hence, A is ill-conditioned.
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Existence and Uniqueness of Solutions of Linear Systems

The fundamental theorem of existence and uniqueness of solutions of lin-

ear systems answers the following questions: Does a solution exist, and is

the solution unique. If at least one solution can be determined for a given

problem, then a solution to that problem is said to exist. Most often, we

try to prove the existence of solutions by means of the “so-called” existence

theorem and then investigate their uniqueness by means of uniqueness the-

orem.

Definition 2.2. Consider the linear system

Ax = b. (2.7)

If A is an m× n matrix and b a right hand vector with rank of A defined

as the dimension of the largest square non-singular sub-matrix, then x is said

to exist, if A is invertible or if m = n, and the rank of A is equal to n. Thus,

if x exist then the linear system Ax = b has a solution and the solution

must be unique.

On the other hand, if A is not invertible or the rank of A ≤ n , then

x cannot have a unique solution. The unique solution must remain valid

through a given interval. If the solution is not unique or not valid for a given

system of equations, there is the need to verify the error in the systems and

correct it where possible.

Error Analysis of Linear Systems

Let A be an n× n nonsingular matrix, and let x̂ be the computed solution

to the linear system

Ax = b. (2.8)
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The error vector is given by e = x− x̂. If ‖ · ‖ is a norm on Rn, then ‖e‖ is

a measure of the absolute error, and ‖e‖/‖x‖ is a measure of the relative

error.

Generally, we have no way of determining the exact value of ‖e‖ and

‖e‖/‖x‖, since in most practical problems, the exact solution is not known.

One way of testing the accuracy of the computed solution x̂ is to compute

the residual vector, r = b−Ax̂ and see how small the relative residual

‖r‖
‖b‖ = ‖b−Ax̂‖

‖b‖ is. Unfortunately, a small residual does not always guarantee

the accuracy of the solution, as the following example shows.

Example 2.3. Consider the linear system Ax = b given by




1 4

1.0001 4






x1

x2


 =




5

5.0001


 .

If the exact solution of the system is [1, 1]T , and asume its computed solution

is x̂ = [5, 0]T , then residual vector is given by

r = b−Ax̂ =




5

5.0001


−




1 4

1.0001 4







5

0


 =




0

−0.0004


 .

The relative residual is

‖r‖∞
‖b‖∞ =

‖ − 0.0004‖
‖5.0001‖ =

0.0004

5.0001
= 7.99984× 10−4 .

This is very small even though the solution x̂ = [5, 0]T is no where near the

exact solution x = [1, 1]T . The above phenomena can be explained by the

following Theorem.

Theorem 2.1 (The Residual Theorem). Let x′ be the computed solution

to the linear system Ax = b. Then
‖x′ − x‖
‖x‖ ≤ ‖A‖‖A−1‖ ‖r‖‖b‖

Proof.

From r = b−Ax′ = Ax−Ax′ = A(x− x′),
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we have

x− x′ = A−1r (since A is nonsingular).

Taking norms give,

‖x− x′‖ ≤ ‖A−1‖ ‖r‖ (2.9)

Also from b = Ax, we have ‖b‖ ≤ ‖A‖ ‖x‖, that is,

1

‖x‖ ≤ ‖A‖
‖b‖ .

This combines with Equation 2.9 to give

‖x− x′‖
‖x‖ ≤ ‖A‖‖A−1‖ ‖r‖‖b‖ . (2.10)

The above Theorem tells that the relative error in the computed solu-

tion x̂ depends not only on the relative residual, but also on the quantity

‖A‖‖A−1‖. A computed solution can be guaranteed to be accurate only

when the product ‖A‖‖A−1‖ ‖r‖‖b‖ is small.

Example 2.4. In Example 2.2, κ(A) = 5.0001 × 104 and the relative

residual

‖r‖/‖b‖ = 0.000066664. The inequality in 2.10 becomes

‖x− x′‖
‖x‖ ≤ ‖A‖‖A−1‖ ‖r‖‖b‖ = (5.0001× 104) · (0.000066664) = 3.3333.

Example 2.5. Consider the system of equations Ax = b, where

A =




1.01 0.99

0.99 1.01


 and b =




2.02

1.98


 .

It is obvious that the exact solution x, of the system is [2, 0]T . Suppose we

perturb the right hand vector b slightly to b′ = [2, 2]T , the linear system

Ax′ = b′ has solution x′ = [1, 1]T . The relative error in b using the infinity

norm is given by

‖b− b′‖∞
‖b‖∞ =

0.02

2.02
= 0.01 .
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The relative error in the solution is also given by

‖x− x′‖∞
‖x‖∞ =

1

1
= 1 ,

where

‖A‖∞ = 2, ‖A−1‖∞ = 0.50, ‖r‖∞ = 0.02, and ‖A‖∞‖A−1‖∞ = 1.0 .

The residual vector is

r = b−Ax′ =




2.02

1.98


−




1.01 0.99

0.99 1.01







1

1


 =




0.02

−0.02


 ,

and its relative residual is given by

‖r‖∞
‖b‖∞ =

0.02

2.02
= 0.01 .

Hence the inequality

‖x− x̂‖∞
‖x‖∞ ≤ ‖A‖‖A−1‖ ‖r‖‖b‖ = (1.0)(0.01) = 0.01 .

From above, the value of the relative error in x is much more smaller

than the value of the relative residual. This indicates that the computed

solution is accurate and close to the exact solution.

Ill- Conditioning in Linear Systems

Consider the linear system Ax = b, it is observed that some linear sys-

tems give good solutions even under round-off(scaling) or co-efficient inaccu-

racies, whereas others give bad solutions under round-off. These inaccuracies

affect the solution strongly. The extent to which it affects the solution is

very important to this study.

Generally, if the coefficient matrix A is ill-conditioned, the relative

residual may be much smaller than the relative error. On the other hand,

if a matrix is well-conditioned, the relative residual and the relative error

will be very close.
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Definition 2.3. The linear system Ax = b , where A is a matrix and b is

a right-hand vector is said to be ill-conditioned if a small change in the

entries of matrix A or a small change in the right-hand vector b results in

a large change in the vector solution of x

Example 2.6. Consider the linear system Ax = b, where

A =




1.1353 0.1859

0.7237 0.1185


 and b =




1.3212

0.8422


 .

The exact solution of the system is x = [1, 1]T .

If b is perturbed slightly to b′ =




1.3210

0.8420


, the system Ax′ = b′ has

solution x′ = [−3.8489, 30.6115]T .

The residual vector r = b − Ax′ = [0.0002, 0.0002]T , and the relative

residual using the infinity norm is

‖r‖∞
‖b‖∞ =

0.0002

1.3212
= 0.00015 .

The relative error in the solution using infinity norm is given by

‖e‖∞
‖x‖∞ =

‖x− x′‖∞
‖x‖∞ =

29.6115

1
= 29.6115

Hence, the relative error is more than 190000 times the relative residual.

Also the condition number κ(A) = 1.244559e10, is large indicating that the

matrix is ill-conditioned.

Perturbation Analysis of Linear Systems

Consider the linear system Ax = b. The entries of the coefficient matrix

A and the right hand vector b of the linear system are assumed accurately

represented. In practice, the entries contains small errors due to limitations

in the accuracy of the data. Even if there are no errors in either of A or b,

round-off errors will occur when their entries are translated into the finite
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precision number system of the computer. Thus, we generally expect that

the coefficient matrix and the right hand vector will contain some errors.

The system the computer solves is a slightly perturbed version of the original

system. If the system is very sensitive, the solution could differ greatly from

the solution of the perturbed system.

Example 2.7. Consider the following linear system

x1 + 3x2 = 4

2x1 + 5.999x2 = 7.999 ,
(2.11)

has the exact solution x = [1, 1]T . Now, perturb the right-hand side to

obtain the system

x1 + 3x2 = 4

2x1 + 5.999x2 = 8 .
(2.12)

Then, the solution to Ax′ = b′ with b′ =]4, 8]T , using Gaussian elimi-

nation with partial pivoting (considered to be a stable algorithm) is

x′ = [4, 0]T , which is no where near the true solution x = [1, 1]T .

Example 2.8. Consider the linear system

x1 − x2 = 1

x1 − 1.01x2 = 0 ,
(2.13)

which has the exact solution x1 = 101, and x2 = 100. Now, the slightly

modified system

x1 − x2 = 1

x1 − 0.99x2 = 0 ,
(2.14)

has exact solution x1 = −99 and x2 = −100. The systems in 2.13 and

2.14 agree except for the small variation in the entry a22 of the matrix A,

but the solutions are completely different.
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Example 2.9. Consider the system Ax = b where,

A =




3 0.999

3.999 2.002


 and b =




3.999

6.001




The exact solution to Ax = b is x =




1

1


 . Now let b′ = b + δb =




4

6


.

The solution to Ax′ = b′ is x′ =




1.00149

0.99652


 ≈ x =




1

1


.

Definition 2.4. A linear system Ax = b is said to be ill-conditioned if

relatively small changes in the entries of the augmented matrix

[A : b] causes relatively large changes in the solution. A is said to be

well-conditioned if relatively small changes in the entries of A and/or b

results in relatively small changes in the solutions to Ax = b.

If the system is ill-conditioned, the computed solution to Ax = b will

generally not be very accurate. Even if the entries of A can be represented

exactly as floating-point numbers, small round-off errors occurring in the

reduction process can have very drastic effect on the computed solution.

The systems in Example 2.7 and 2.8 are ill-conditioned systems. On the

other hand, the system in Equation 2.9 is a well-conditioned system.

Effect of Perturbation in the Right-Hand Vector b

Consider the linear system Ax = b , suppose the error in the computed

solution of the system when the data is perturbed slightly, are error in b

but not the matrix A, then we can assess the degree of error in the system,

by the theorem below.

Theorem 2.2. (Right Perturbation Theorem) Let δb be the perturbation

in b and δx be the resulting perturbation in the solution x of the linear

21



system Ax = b. If A is assumed to be non-singular and b 6= 0, then

1

‖κ(A)‖ ×
‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ κ(A)× ‖δb‖
‖b‖ .

Proof. Let

Ax = b , (2.15)

then for a small perturbation in x, there exist a corresponding perturbation

in b, such that A(x + δx) = b + δb.

Using Taylor expansion and ignoring 0(δx2), we obtain

Aδx = δb or δx = A−1δb.

Taking norm of equation above, we have

‖δx‖ ≤ ‖A−1‖‖δb‖. (2.16)

Also from Equation 2.15, we have

‖b‖ ≤ ‖A‖‖x‖. (2.17)

Using the Equations 2.16 and 2.17 above, we obtain

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖ × ‖δb‖

‖b‖ . (2.18)

On the other hand, from Aδx = δb we get

‖δx‖ ≥ ‖δb‖
‖A‖ . (2.19)

Similarly, from Ax = b, it can be deduced that x = A−1b, from which we

get

‖A−1‖‖b‖ ≥ ‖x‖ . (2.20)

Combining the Equations 2.19 and 2.20 above, we obtain

‖δx‖
‖x‖ ≥ ‖δb‖

‖b‖ × 1

‖A‖‖A−1‖ . (2.21)
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From the Equations 2.18 and 2.21 above we get the result

1

‖A‖‖A−1‖ ×
‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ ‖A‖‖A−1‖ × ‖δb‖
‖b‖ . (2.22)

But

κ(A) = ‖A‖‖A−1‖.

Therefore,

1

κ(A)
× ‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ κ(A)× ‖δb‖
‖b‖

Remark 2.1. If κ(A) is large, then a small perturbation in b can change

the solution drastically, making the problem an ill-conditioned one. On the

other hand, if κ(A) is small (close to 1), then a small perturbation in b will

have little effect on the solution. This is said to be well-conditioned.

Example 2.10. Consider the linear system Ax = b, where

A =




1.01 0.99

0.99 1.01


 and b =




2.0

2.0


 .

The exact solution x of the system Ax = b is [1, 1]T .

However, if b is perturbed slightly to b′ = [2.02, 1.98]T , it has

solution x′ = [2, 0]T . The relative error in both b and x are respectively

‖b− b′‖∞
‖b‖∞ = 0.1 (2.23)

and

‖x− x′‖∞
‖x‖∞ = 1 . (2.24)

Thus using the infinity norm on A, we have

‖A‖∞ = 2.0 , ‖A−1‖∞ = 50 ,

and

‖A‖∞‖A−1‖∞ = [2.0][50] = 100. (2.25)
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Hence by the right perturbation theorem we find that

1

‖A‖‖A−1‖ ×
‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ ‖A‖‖A−1‖ × ‖δb‖
‖b‖ . (2.26)

Substituting Equations 2.23, 2.24, and 2.25 , into 2.26 , we obtain

0.0001 ≤ ‖x− x′‖
‖x‖ ≤ 10.

Remark 2.2. The actual relative change in x is equal to 1, which lies in

the above interval. However, the relative error is bounded above by 10, but

there is no precision in the accuracy of the computed solution.

Effect of Perturbation in the Matrix A

Consider the linear system Ax = b, suppose there are errors in the

matrix A only and that b is exact, then we can assess the degree of error in

the system by the theorem below.

Theorem 2.3. (Left Perturbation Theorem) Let δA be the perturbation in

A and δx be the resulting perturbation in x, in the solution of the linear

system Ax = b, where A is non-singular and b is not equal to zero. Then

‖δx‖
‖x‖ ≤

κ(A)× ‖δA‖
‖A‖

1− κ(A)× ‖δA‖
‖A‖

.

Proof. Given the linear system Ax = b, for small perturbations in A,

there is a corresponding perturbation in x such that (A+ δA)(x+ δx) = b.

Subtracting Ax = b from (A + δA)(x + δx) = b, we obtain

δx = −A−1δA(x + δx).

Taking norms of both side, we get

‖δx‖ ≤ ‖A−1‖‖δA‖.(‖x‖+ ‖δx‖) =
‖A−1‖‖A‖δA‖

‖A‖ .(‖x‖+ ‖δx‖),
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which can be simplified as

(
1− ‖A−1‖‖A‖‖δA‖

‖A‖
)
‖δx‖ ≤ ‖A−1‖‖A‖‖δA‖

‖A‖ ‖x||.

Dividing through by the expression in parentheses we have

‖δx‖
‖x‖ ≤

‖A−1‖‖A‖‖δA‖‖A‖
1− ‖A−1‖‖A‖‖δA‖‖A‖

,

or further

‖δx‖
‖x‖ =

κ(A)
‖δA‖
‖A‖

1− κ(A)
‖δA‖
‖A‖

.

Remark 2.3. The denominator of the equation above is less than 1. Thus

even if ‖δA‖/‖A‖ is small, there could be a drastic change in the solution

if κ(A) is large.

Example 2.11. Consider the linear systems of the equations below:

2.0012x1 + 2.0000x2 = 12.0060

1.0000x1 + 1.0000x2 = 6.0000

If we solve the system above using five digit decimal floating point arithmetic,

the exact solution is x = [5, 1]T . On the other hand if we perturb the digit

to four digit floating point arithmetic, the system of equations changes to

2.001x1 + 2.000x2 = 12.006 and

1.000x1 + 1.000x2 = 6.000.

The computed solution then becomes x′ = [6, 0]T and the relative error in

the solution is

‖x′ − x‖∞
‖x‖∞ = 0.2.
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The coefficient matrices A and A′ of the systems are respectively

A =




2.0012 2.0000

1.0000 1.0000


 and A′ =




2.001 2.000

1.000 1, 000


 .

Hence

δA = A′ −A =



−0.0002 0.0

0.0 0.0


 .

The computed A−1 of A is

A−1 =




833
1

3
−1666

2

3

−833
1

3
1667

2

3


 ,

and its ‖A−1‖∞ = 2501.

Also

κ(A) = ‖A‖∞‖A−1‖∞ = (2501)(4.0012) = 10007.0012, ‖δA‖∞ = 0.0002,

with

‖A‖∞ = 4.0012

and

‖δA‖∞
‖A‖∞ = 0.0000499850.

Thus

‖δA‖∞‖A−1‖∞ = (0.0002)(4.0012) = 0.0008,

which is less than one. Hence using the left perturbation theorem, that is

‖δx‖
‖x‖ ≤

κ(A)
‖δA‖
‖A‖

1− κ(A)
‖δA‖
‖A‖

,

we have

‖x− x̂‖
‖x‖ ≤

κ(A)
‖δA‖
‖A‖

1− κ(A)
‖δA‖
‖A‖

=
0.5002

1− 0.5002
= 1.0.
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Effect of perturbation in the Matrix A and the Vector b

Here, we assume there are errors in both the matrix A and the right-hand

vector b. Using the left and right perturbation theorems, we can establish

the theorem below.

Theorem 2.4. Let δA and δb be small perturbation in A and b respec-

tively, and let δx be the resulting perturbation in x. Assume that A is

nonsingular, b 6= 0 and

‖δA‖ < 1

‖A−1‖ ,

then

‖δx‖
‖x‖ ≤




κ(A)

1− κ(A)
‖δA‖
‖A‖




(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
.

Proof. Let

Ax = b. (2.27)

For small perturbation in A and b, we have

(A + δA)(x+ δx) = (b + δb). (2.28)

Subtracting Equation 2.27 from 2.28, we get

(A + δA)(δx) + (δA)x = δb,

which can further be simplified as

A[I + A−1(δA)]δx + (δA)x = δb,

or

A[I−A−1(−δA)]δx = δb− (δA)x. (2.29)

Now, suppose we let G = A−1(−δA). Then we can say that

‖G‖ = ‖A−1(−δA)‖ ≤ ‖A−1‖‖δA‖ < 1.
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Since ‖G‖ < 1, it implies G is invertible and

‖(I−G)−1‖ ≤ 1

1− ‖G‖ , with ‖I‖ = 1.

From 2.29, we have

A[I−G]δx = δb− (δA)x,

or

δx = (I−G)−1A−1(δb− δAx). (2.30)

If we take the norm of both sides of Equation 2.30, and simplify, we obtain

‖δx‖ ≤ ‖A−1

1− ‖G‖
(
‖δb‖+ ‖δA‖‖x‖

)
,

or further

‖δx‖
‖x‖ ≤ ‖A−1

1− ‖G‖
(‖δb‖
‖x‖ + ‖δA‖

)
.

Using the fact that
1

‖x‖ ≤
‖A‖
‖b‖ , the inequality above becomes

‖δx‖
‖x‖ ≤ ‖A−1

1− ‖G‖
(‖δb‖‖A‖

‖b‖ + ‖δA‖
)
.

Upon simplification, it gives

‖δx‖
‖x‖ ≤ ‖A−1‖‖A‖

1− ‖G‖
(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
. (2.31)

But,

‖G‖ = ‖A−1(−δA)‖ ≤ ‖A−1‖‖δA‖ =
‖A−1‖‖A‖δA‖

‖A‖
or

‖G‖ = κ(A)
‖δA‖
‖A‖ (2.32)

Substituting Equation 2.31 into Equation 2.32, we get

‖δx‖
‖x‖ ≤




‖A−1‖‖A‖
1− κ(A)

‖δA‖
‖A‖




(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
,

further

‖δx‖
‖x‖ ≤




κ(A)

1− κ(A)
‖δA‖
‖A‖




(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
. (2.33)
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Remark 2.4. The inequality 2.33 stipulate that if the matrix A is

well-conditioned, small changes in A and b will produce a corresponding

small changes in the solution x.

On the other hand, if the matrix is ill-conditioned, then small changes

in A and b may produce a large change in x. It must be noted that if the

perturbations
‖δb‖
‖b‖ and

‖δA‖
‖A‖ are small, there will be a drastic change in

the solution if k(A) is large.

Corollary 2.1. Suppose the linear system Ax = b has a relative error of

10−d, then it can be inferred that the perturbation

‖δA‖
‖A‖ =

‖δb‖
‖b‖ = 10−d.

Thus from Equation 2.33, we have

‖δx‖
‖x‖ ≤




κ(A)

1− κ(A)
‖δA‖
‖A‖


× 2(10−d). (2.34)

If κ(A) ≈ 10k, then the quantity κ(A)
‖δA‖
‖A‖ becomes very small and

approximately equal to zero.

Hence from Equation 2.34 we get

‖δx‖
‖x‖ ≤ 2× κ(A)× 10−κ ≈ 10κ−d = 10−(d−κ).

This shows that if the entries of A and b are accurate to about d-significant

digits, and if the condition number of A is approximately 10k, then the

computed solution x is accurate to about (d− k) significant digits.

Examples of Ill-Conditioned Systems

Ill-conditioned systems have many applications. A typical one is seen in

polynomial data fitting using Vandermonde System and in least squares

polynomial approximation using Hilbert Matrix.
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Polynomial Data Fitting:Vandermonde System

Let Pn(x) be an interpolating nth degree polynomial with (n + 1) data

points (xi, yi). The interpolating polynomial Pn(x) can be obtained by solv-

ing the (n + 1)× (n + 1) linear system

yi = a0 + a1xi + a2x
2
i + a3x

3
i + ...+ anx

n
i , where i = 0, 1, ..., n for ao, a1, ..., an.

In matrix form we have


1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

...
. . .

...

1 xn x2
n · · · xn

n







a0

a1

a2

...

an




=




y0

y1

y2

...

yn




.

The coefficient matrix for the linear system above is called Vandermonde

matrix and it is non-singular, since x′is are distinct. Therefore the system

has unique solution and the a′is can be solved uniquely. However the numer-

ical solution for small n can be solved easily without any difficulty, but for

large n, the system becomes increasingly difficult to solve, that is becomes

increasingly ill-conditioned.

Example 2.12. Let the x′is be the (n+ 1) equally spaced points in the

interval [0 ,1]. For example the Vandermonde matrix for n = 5 is

V5 =




1 0 0 0 0 0

1 (1/5) (1/5)2 (1/5)3 (1/5)4 (1/5)5

1 (2/5) (2/5)2 (2/5)3 (2/5)4 (2/5)5

1 (3/5) (3/5)2 (3/5)3 (3/5)4 (3/5)5

1 (4/5) (4/5)2 (4/5)3 (4/5)4 (4/5)5

1 1 1 1 1 1




.

The condition number for Vandermonde matrix of order five is given by

cond(V5) = 4.92e+3. As n increases from five onward, the condition numbers
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increases and the matrix becomes increasingly ill-conditioned. The table

below shows the condition numbers of the Vandermonde matrix for

n = 5 to 12.

Table 1: Condition Numbers of Vandermonde Matrices

n Cond(Vn)

5 4.9244× 10+3

6 3.6061× 10+4

7 2.6782× 10+5

8 2.0094× 10+6

9 1.5193× 10+7

10 1.1558× 10+8

11 8.8348× 10+8

12 6.67806× 10+9

The Hilbert Matrix

The n× n matrix Hn with entries

hij =
1

i + j− 1
, where 1 ≤ i ≤ n, and 1 ≤ j ≤ n

is called the Hilbert Matrix of order n.

The Hilbert matrix arises in least squares polynomial approximation of

continuous functions on the interval [0, 1], using the basis 1, x, xn..., xn for Pn.

Suppose a continuous function f(x) is defined on the interval [0, 1] and is to

be approximated by a polynomial of degree (n− 1), then

Pn−1(x) =
n∑

i=1

(aix
i−1),

such that the error(E) defined as

E = ‖Pn−1 − f‖2
2 =

∫ 1

0

(
n∑

i=1

aix
i−1 − f(x))2dx
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is minimized.

The coefficient ai of the polynomial are determined by equating the par-

tial derivative of E with respect to ai to zero, to obtain the normal equation.

∂E

∂ai

= 2

∫ 1

0

(
n∑

j=1

aix
j−1 − f(x))xi−1dx, i = 1, 2, ..., n.

If
∂E

∂ai

= 0, for all i = 0, 1, ...n,

we obtain

n∑
j=1

(ai)

∫ 1

0

xi+j−2dx =

∫ 1

0

f(x)xi−1dx, i = 1, 2, ..., n.

With

hij =

∫ 1

0

xi+j−2dx and bi =

∫ 1

0

dx, (i = 1, 2, ..., n).

we obtain
n∑

j=1

hijaj = bi, for i, j = 1, 2, ..., n.

This is exactly the linear system Hna = b, given by




h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

hn1 hn2 · · · hnn



×




a1

a2

...

an




=




b1

b2
...

bn



,

with

Hn = [hij], a =




a1

a2

...

an




and b =




b1

b2
...

bn



.

Thus the matrix H = [hij] is easily identified as the Hilbert matrix since

hij =

∫ 1

0

xi+j−2dx =
1

i + j− 1
.
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Example 2.13. Consider the Hilbert matrix of order six H6, defined below

H6 =




1 1/2 1/3 1/4 1/5 1/6

1/2 1/3 1/4 1/5 1/6 1/7

1/3 1/4 1/5 1/6 1/7 1/8

1/4 1/5 1/6 1/7 1/8 1/9

1/5 1/6 1/7 1/8 1/9 1/10

1/6 1/7 1/8 1/9 1/10 1/11




,

with inverse H−1
6 given by

H−1
6 =




36 −630 3360 −750 7560 −2772

−630 14700 −88200 211680 −220500 83160

3360 −88200 564480 −1411200 1512000 −582120

−7560 211680 −1411200 3628800 −396900 1552320

7560 −220500 1512000 −3969000 4410000 −1746360

−2772 83160 −582120 1552320 −1746360 698544




.

It is observed that the entries of H−1
6 are large compared with the entries of

H6.

When the right-hand vector b is multiplied by H−1
6 , the entries become

magnified.

The condition number of H6 is cond(H6) = 1.495106e+7, which increases

rapidly with n, thus making the matrix increasingly ill-conditioned.

The relation k∞(Hn) = ce3.5n can be used to determine the condition number

of the Hilbert matrix. It increases rapidly with n, due to the ill-conditioned

nature of the Hilbert matrix. The table below gives the condition numbers

for n = 5, 6...12.
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Table 2: Condition Numbers of Hilbert Matrices

n cond(Hn)

5 4.766072× 10+05

6 1.495106× 10+07

7 4.753674× 10+08

8 1.525758× 10+10

9 4.931544× 10+11

10 1.602529× 10+13

11 5.223945× 10+14

12 1.794510× 10+16

Example 2.14. Consider the linear system Ax = b , where A is a 12× 12

Hilbert matrix, and b chosen such that the linear system has the exact

solution xi = i2, for i = 1 , 2 , 3 , ..., 12. If the system is solved, using the

back slash method x̂ = A/b, we realized that for small n, the computed

solution x̂ is reasonably accurate.

However as n increases the precision degenerates very rapidly and has no

significance. The Table 3 below illustrate the computed values for relative

error, condition number and the number of digits lost for n = 5 up to 12.

We realize from Table 3 that the machine precision is about 16 digit of

accuracy. This signifies that the exact solution of the system is accurate

to about 16 significant digits. For n = 5, 6, 7, 8, 9, 10 and 11, we have

respectively 11, 9, 8, 6, 5, 3 and 2 digits of accuracy.

When n ≥ 12, the computed solution x̂ has no significant digit of accuracy.

This can be explain by the increasingly nature of the condition number of

the matrix A from n = 5 to 12.
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Table 3: Accuracy of a Hilbert Systems

n
‖x− x̂‖∞
‖x‖∞ Cond(A) No. of Digits Lost

5 7.135919719e−12 4.766072502e+05 4

6 1.540944388e−11 1.495105864e+07 5

7 3.016719939e−10 4.753673562e+08 6

8 4.623435736e−08 1.525757542e+10 8

9 5.409071818e−06 4.931538214e+11 10

11 1.80367381e−04 1.602515828e+12 12

11 6.28747466e−03 5.221040338e+14 13

12 7.42237815e−04 1.794510255e+16 16

Examining Accuracy of Hilbert System Using Different Methods

Consider the linear system Ax = b, where A is a 12× 12 Hilbert matrix

H12 with

bi =
n∑

j=1

(hij),

and has exact solution x = [1, 1, ..., 1]T . If the linear system Ax = b is

solved using standard methods for solving linear systems such as the

QR-factorization(QR), LU-factorization(LU) and Choleskey factorization for

positive index, we obtain various solutions, as shown below.

From Table 4, we observe that the relative error increases as n increases in

all the methods. The number of digits lost in each case also increases relative

to the error. For instance, the QR-factorization method is a typical case.

Here, the errors increases with n from E = 12, to E = 01 respectively. The

number of digits lost from n = 5 to 12 are 4, 6, 7, 8, 10, 12, 13 and 15

respectively. The condition numbers (Cond(n)) in all the methods also show

a lot of resemblance.
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Table 4: Various Solutions of the Hilbert System

n QR Choleskey LU Cond(n)

5 4.92922205e−12 1.12608245e−11 1.17773406−11 4.76607250e+05

6 2.75982022e−10 1.20268228e−10 2.18522312e−10 1.49510584e+07

7 7.79173750e−09 1.28701202e−09 1.85017132e−10 4.75367356e+08

8 5.11039341e−08 1.04032552e−07 7.39361953e−08 1.52575754e+10

9 4.03744625e−06 4.50884240e−06 3.76765864e−06 4.93153832e+11

10 2.07679375e−04 6.71064175e−06 8.85489699e−05 1.60251582e+13

11 1.30527625e−03 2.45715014e−03 1.06459286e−03 5.22104933e+14

12 1.41364200e−01 3.67288989e−02 1.73584356e−02 1.79451025e+16

It can be inferred that if the condition number of a matrix A is to

the order of 10k, that is about k significant figures, and the entries of A

and b are accurate to d-significant digits, then the computed solution x̂ is

accurate to about (d− k) significant digits. This confirms the corollary 2.1.

Thus in effect, the errors in the computed solutions can be attributed to

the ill-conditioned nature of the matrix but not the vector b. It is therefore

necessary to decompose the matrix to investigate the errors in the solution.
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CHAPTER THREE

Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is perhaps, the most numer-

ically effective approach for solving linear systems, and least-squares prob-

lems. The decomposition also enables us to determine the condition number

of a matrix. Thus, every square symmetric matrix A can be factored as

A = PDPT , where P is an orthogonal matrix and D is a diagonal matrix

whose entries are the eigenvalues of A. If A is not symmetric, then such

a factorization is not always possible, but we may still be able to factorize

A as A = PDP−1, where D is a diagonal matrix whose entries are the

eigenvalues of A, and P is just an invertible matrix.

However, not every square matrix can be diagonalized, but every m× n

matrix has a factorization of the form A = UΣVT , where U and V are

orthogonal, and Σ is an m× n “diagonal” matrix whose entries are the

singular values of A. This factorization is called the singular value

decomposition of A.

The Singular Values of a Matrix

To obtain the SVD of the matrix A, we need the eigenvalues and the

eigenvectors of the symmetric matrices ATA and AAT . These eigenvalues

are non-negative. If we denote the eigenvalues of A by λi ≥ 0, i = 1, · · · n,

then their square roots,
√
λi = σi, i = 1, · · · , n are called

the singular values of A.
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Theorem 3.1. : Let A be an m× n matrix with m ≥ n then

1. The eigenvalues of ATA and AAT are real and non-negative .

2. If λ is a non-zero eigenvalue of ATA corresponding to the eigenvector

x, then λ is also eigenvalue of AAT with corresponding eigenvector Ax.

In other words, ATA and AAT have the same non-zero eigenvalues.

Proof. 1. (ATA)T = AT(AT)T = ATA, and so ATA is symmetric. Sim-

ilarly for AAT

2. Let x be an eigenvector of ATA corresponding to a non-zero eigenvalue

λ. Then

ATAx = λx. (3.1)

Multiplying through equation above on the left by xT yields

xTATAx = λxTx,

(Ax)T (Ax) = λ‖x‖2
2,

‖Ax‖2
2 = λ‖x‖2

2 ≥ 0.

Hence

λ =
‖Ax‖2

2

‖x‖2
2

≥ 0 .

Similarly, applying the same steps to AAT , it can be deduced that

ATA and AAT are real and non-zero.

3. Using the Equation 3.1 above, and pre-multiplying through the equa-

tion by A, we have

A(ATA)x = A(λx).

Further AAT (Ax) = λ(Ax). This implies that Ax is an eigenvector

of AAT corresponding to the eigenvalue λ , where x is an eigenvector

of ATA corresponding to the eigenvalue λ.
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Example 3.1. Given the matrix

A =




1 −1

−2 2

2 −2



,

we obtain the eigenvalues of the matrices (i) ATA (ii) AAT as below

ATA =




1 −2 2

−1 2 −2







1 −1

−2 2

2 −2




=




9 −9

−9 9


 .

For eigenvalues, we use

det(ATA− λI) = 0.

That is 


9− λ −9

−9 9− λ


 = 0,

or

(9− λ)(9− λ)− 81 = 0

λ2 − 18λ = 0.

Solving we find that the eigenvalues of ATA are λ1 = 0 or λ2 = 18.

Similarly,

AAT =




1 −1

−2 2

2 −2







1 −2 2

−1 2 −2


 =




9 −9

−9 9


 .

Hence, the determinant for AAT = det(AAT − λI) is



9 −9

−9 9


 = 0,

which implies

(9− λ)(9− λ)− 81 = 0
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λ2 − 18λ = 0

λ1 = 0 or λ2 = 18.

Remark 3.1. This confirms Theorem 1.1, which stipulate that ATA and

AAT have the same non-zero eigenvalues.

Construction of SVD of a Matrix

Given a matrix A, we can construct the SVD of A by going through

the following steps:

1. Find an orthogonal diagonalization of ATA.

2. Set up V and Σ.

3. Construct U , the normalization vector obtained from AVn,

where n = 1, 2, 3, ..., r.

Example 3.2. Find the singular value decomposition of the matrix A in

Example 3.1.

From Example 3.1 above,

ATA =




9 −9

−9 9


 .

The eigenvalues of ATA are

λ1 = 18 and λ2 = 0,

with corresponding unit eigenvectors

V1 =




1√
2

−1√
2


 and V2 =




1√
2

1√
2


 .

These unit vectors form the columns of V as
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V = [v1, v2] =
1√
2




1 1

−1 1


 .

The singular values are σ1 = 3
√

2 and σ2 = 0. Since there is only one

non-zero singular value, the diagonal matrix D may be written as a single

number in terms of σ1. The matrix Σ has the same size as A, with D in its

upper left corner as shown below

Σ =




D 0

0 0

0 0




=




3
√

2 0

0 0

0 0



.

Next we construct U, but since U depends on AV, it’s necessary to find first

AV1 and AV2. Thus

AV1 =




2√
2

−4√
2

4√
2




and AV2 =




0

0

0



.

But ‖AV1‖ = σ1 = 3
√

2 and ‖AV2‖ = σ2 = 0.

From AVi = σiUi, where i = 1, 2, ..., r, it can can deduced that

U1 =
AV1

σ1

=
1

3
√

2
×AV1 =




1/3

−2/3

2/3



.

U1 is the only column for U since the value of σ2 is zero. But other column

of U can be deduced by extending the set U1 to an orthonormal basis for

R3. The two orthonormal unit vectors of U2 and U3 which are orthogonal to

U1 are found such that UT
1 = 0, and have basis

x1 =




2

1

0




and x2 =




−2

0

1



.
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Applying the Gram-Schmidt process with normalization to x1 and x2,

gives

U2 =




2/
√

5

1/
√

5

0




and U3 =




−2/
√

45

4
√

45

5
√

45



.

If we set U = [U1,U2,U3], then the 3by3 orthogonal matrix is given by

U =




1/3 2/
√

5 −2
√

45

−2/3 1
√

5 4/
√

45

2/3 0 5/
√

45



.

It can be verified that

UΣVT =




1/3 2/
√

5 −2/
√

45

−2/
√

3 1/
√

5 4/
√

45

2/3 0 5
√

45







3/
√

2 0

0 0

0 0







1/
√

2 −1/
√

2

1/
√

2 1/
√


 .

Therefore UΣVT =




1 −1

−2 2

2 −2




= A,

where U and V are the left and right singular vectors of A respectively.

The SVD and the Structure of a Matrix

The structure of a matrix and its associated properties such as the rank,

the 2-norm, F-norm, the infinity-norm, the condition number, as well as

the orthonormal basis for the null space and the range of a matrix can be

determine using SVD.

Theorem 3.2. Let σ1 ≥ σ2 ≥, ...,≥ σn be the singular values of an m× n

matrix A, then

1. ‖A‖2 = σ1 = σmax .
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2. If A is n× n and nonsingular, then ‖A−1‖2 =
1

σn

=
1

σmin

.

3. Cond2(A) = ‖A‖2‖A−1‖2 =
σ1

σn

=
σmax

σmin

.

4. ‖A‖F = (σ2
1 + σ2

2 + ...+ σ2
n) .

Proof. :

Given that the SVD of A = UΣVT, since ‖.‖2 and ‖.‖F are invariant

under orthogonal transformation, we have

1. ‖A‖2 = ‖UΣVT‖2 = ‖Σ‖2 = maxσi = σ1.

2. Since A is invertible, its smallest singular value σn 6= 0. From the SVD

of A−1, the largest singular value of A−1 is
1

σn

. Hence ‖A−1‖2 =
1

σn

.

3. The result follows from (1) and (2) .

4. F = (σ2
1 + σ2

2 + ...+ σ2
n)

1/2.

Remark 3.2. For an m× n matrix A, we define cond(A) =
σmax

σmin

. However,

when A is rank deficient, then σmin = 0. In this case, we say that cond(A)

is infinite.

The Linear Least Square Problem

The linear system Ax = b where A is singular or not necessarily a square

matrix have infinitely many solutions or the solution does not exist at all.

For an m× n matrix A, if m > n, the linear system of equations is said to be

an overdetermined linear system of m equations in n unknowns, and have no

solution. An overdetermined system have the number of equations greater

than the number of unknowns.

Similarly, if m < n, the system is said to be under-determined and have

infinite number of solutions. In situations where the linear system Ax = b
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has no solution, one tries to find a value for x for which the residual vector

r = b−Ax is as small as possible.

If r = 0, it can be inferred that Ax = b, but for a general overdetermined

system r 6= 0. To minimize ‖b−Ax‖ for a vector solution x, we make use of

the Euclidean norm . If we choose the 2-norm, the problem can be stated as

min‖b−Ax‖2
2 and its solution is called the linear Least Square solution

of the overdetermined system Ax = b, Hansen(1987).

Thus, the least squares solution x̂, for the linear system Ax = b is

obtained by minimizing the 2-norm square of the residual of Ax = b. The

2-norm residual factor ‖Ax− b‖2
2 can be expressed as

‖Ax− b‖2
2 = (Ax− b)T (Ax− b) (3.2)

and further be written as

‖Ax− b‖2
2 = (Ax)T (Ax)− bTAx− (Ax)Tb− bTb (3.3)

The terms bT (Ax) and (Ax)Tb are equal, and the derivative with respect

to x at zero is minimum. Thus the equation reduce to

2ATAx̂− 2ATb = 0 ,

or

ATAx̂ = ATb.

Hence the least square solution is

x̂ = (ATA)−1ATb.

Definition 3.1. Let A be an m× n matrix and b ∈ Rm, then a solution

x ∈ Rn of the least square problem can only exist if the norm of the residual

vector ‖Ax−b‖2
2 is as small as possible and the solution of the least square

problem with dimension at most n is

x̂ = (ATA)−1ATb.
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Reduced Singular Value Decomposition and the Pseudoinverse

Let A be an m× n matrix, then the singular value decomposition of A

is given by A = UΣVT. When Σ contains rows or columns of zeros, a more

compact decomposition of A is possible.

Suppose rank(A) = r < m, then U and V can be partitioned into sub-

matrices whose first blocks contain r columns as

U =

[
Ur Um−r

]
and V =

[
Vr Vn−r

]
,

where Ur = U1,U2, ...,Ur, Vr = V1,V2, ...,Vr and Ur,Vr are m× r and

n× r sub-matrices respectively. The partition matrix multiplication of A

becomes

A = UΣVT =

[
Ur Um−r

]


Dr 0

0 0






V T

r

Vn−r


 = UrDrV

T
r . (3.4)

A factorization of A in 3.4 above by Mathews(1992), is called a reduced

singular value decomposition of A. The diagonal entries of Dr are nonzero

and Dr is invertible. The Pseudoinverse (A+) of reduced SVD of A is given

by A+ = VrD
−1
r UT

r .

Example 3.3. For example, consider the problem of finding the Pseudoin-

verse of the matrix

A =




1 −1

−2 2

2 −2



.

The eigenvalues of the matrix ATA above are λ1 = 18 and λ2 = 0, and its

singular values are σ1 =
√

18 = 3
√

2, and σ2 = 0 respectively. The

corresponding eigenvectors are also given by

V1 =

[
1√
2

−1√
2

]
and V2 =

[
1√
2

1√
2

]
.
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The 2 × 2 orthogonal matrix V and the 3 × 2 diagonal matrix Σ are given

by

V = [V1,V2] =




1√
2

1√
2

−1√
2

1√
2


 ,

and

Σ =




3
√

2 0

0 0

0 0



.

To construct the 3× 3 orthogonal matrix U , we first construct

U1 =
1

σ1

AV1 =
1

3
√

2




1 −1

−2 2

2 −2







1√
2

−1√
2


 =




1/3

−2/3

2/3



.

The second and third columns of U are obtained from the orthogonal

complement of U1, by applying the Gram-Schmidt process to the linearly

independent set

U1 =




1/3

−2/3

2/3




with basis e2 =




2

1

0




and e3 =




−2

0

1



,

to give

U2 =




2√
5

1√
5

0




and U3 =




−6√
5

12√
5

15√
5




respectively.

Thus

U = [U1,U2,U3] =




1/3 2/
√

5 −6/
√

5

−2/3 1/
√

5 12/
√

5

2/3 0 15/
√

5



.
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With rank A = r = 1, the reduced SVD of

A = UrDrV
T
r = U1D1V

T
1 =




1/3

−2/3

−2/3




[3
√

2]

[
1√
2

−1

2

]
=




1 −1

−2 2

2 −2



.

The Pseudoinverse of A for r = 1 is

A+ = VrD
−1
r UT

r = V1D1U
T
1 =




1√
2

−1√
2




[
1

3
√

2

] [
1/3 −2/3 2/3

]
.

Hence,

A+ =




1/18 −1/9 1/9

−1/18 1/9 −1/9


 .

Singular Value Decomposition and Linear Systems

Consider the least squares solution of overdetermined linear system of

equation Ax = b, where A ∈ Rm×n, x ∈ Rn, b ∈ Rm, and m ≥ n. Suppose

the singular values are arranged such that σ1 ≥ σ2 ≥ ... ≥ σn > 0 and the

rank of A is equal to n, then the least-square solution x̂ to the problem

Ax = b is given by x̂ = (ATA)−1ATb , or

ATAx̂ = ATb. (3.5)

But the singular value decomposition of A = UΣVT, where U is an m×m

orthogonal matrix, V is an n × n orthogonal matrix, and Σ is an n× n

diagonal matrix, whose diagonal entries are the singular values defined by

σ1 ≥ σ2 ≥ ... ≥ σn > 0. Substituting A = UΣVT into Equation 3.5 we get

(UΣVT)TUΣVTx̂ = UΣVT)Tb,

VΣTUTUΣVTx̂ = VΣTUTb.

By orthogonality,

UTU = I and VVT = I.
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Hence,

VΣTΣVTx̂ = VΣTUTb.

If we pre-multiple both side by V T , we obtain

VTVΣTΣVTx̂ = VTVΣTUTb ,

ΣTΣVTx̂ = ΣTUTb.

Dividing through by ΣT , the equations become

ΣVTx̂ = UTb or VTx̂ = Σ−1UTb,

which can be simplified as

x̂ = VΣ−1UTb ,

and further as

x̂ =
UTb

Σ
V.

Therefore, for each ui ∈ U, vi ∈ V and σi ∈ Σ

x̂ =
uT

i b

σi

vi. (3.6)

Thus,

x̂ =
n∑

i=1

uT
i b

αi

vi.

Equation 3.6 shows that small singular values can considerably magnify

round-off errors, resulting in large errors in the solution.

Example 3.4. Use the singular value decomposition of the matrix A to

find the least-squares solution of the system Ax = b, where A is the Hilbert
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matrix of order six defined as

A =




1 1/2 1/3 1/4 1/5 1/6

1/2 1/3 1/4 1/5 1/6 1/7

1/3 1/4 1/5 1/6 1/7 1/8

1/4 1/5 1/6 1/7 1/8 1/9

1/5 1/6 1/7 1/8 1/9 1/10

1/6 1/7 1/8 1/9 1/10 1/11




,

with b chosen such that the exact solution x is given by x = [1 1 1 1 1 1]T

and

b = [2.4500 1.5929 1.2179 0.99563 0.84563 0.73654]T.

The singular values and the rank of A are : σ1 = 1.61890, σ2 = 0.24236,

σ3 = 0.01632, σ4 = 0.00062, σ5 = 0.00001, σ6 = 0.00000, and rank(A) = 6

respectively. If the system Ax = b is solved using singular value decompo-

sition, the computed solution obtained is far from the exact solution. The

m-file for implementing the least-squares solution for a system using SVD is

shown below:

function = [A,b,x];

svd(A) = [USV ];

b ∗ p = U(:, i)′ ∗ b;

n = length(b);

s = diag(S);

for i = 1 : n;

(3.7)

x(:, i) = bp(i)/S(i, i) ∗ V(:, i);

Least Squares Solution = sum(x′)′;

end;
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Remark 3.3. The computed solution x̂ is:

x̂ =

[
1.1281 −2.4402 23.25212 −54.9612 61.1856 −22.2314

]T

.

The exact solution of x = ones(6, 1), an indication of a wide disparity be-

tween the two solutions. The error in the computed solution is attributed

to the small singular values. To reduce the drastic effect of the small sin-

gular values on the solution, we choose a cut-off level α , such that σi < α.

This eliminate the small singular values on the solution. The cutting off of

the small singular values to obtain a better solution is called Truncated

Singular Value Decomposition.

SVD and Stability of a Computed Solution

Let A ∈ Rm×n be a rectangular or square matrix for the system Ax = b

and assume for ease of presentation that m ≥ n. Then the SVD of A is a

decomposition of the form

A = UΣVT =
n∑

i=1

UiΣiV
T
i .

If A is invertible, then it’s inverse is given by

A =
n∑

i=1

viσ
−1
i uT

i ,

where

U = [u1, ..., un], V = [v1, ..., vn], and Σ = diag[σ1, ..., σn].

Therefore the solution to Ax = b can be defined as

x =
n∑
i

σ−1
i (uT

i b)vi. (3.8)

The pseudo-inverse (A+) is also given by

A+ =

rank(A)∑
i=1

viσ
−1
i uT

i , (3.9)
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and the least squares solution x̂ to the least squares problem is given by

x̂ls =
n∑

i=1

uT
i b

σi

vi. (3.10)

The sensitivity or stability of the solution x and xls to perturbations of A

and b can be measured by the 2-norm condition Number of A, and is defined

by

cond(A) = ‖A‖2‖A−1‖2 =
σl

σs

. (3.11)

Thus, the condition number of A can be defined as the ratio of the largest

singular values(σl) and the smallest singular values(σs) of A. For Hilbert

matrix of order 12, given it’s singular values as shown in table below, the

condition number can be determined.

Table 5: Singular Values for Hilbert Matrix of Order Twelve

Number SVD-Values

1 1.79537206e+000

2 3.80275246e−001

3 4.47385488e−002

4 3.72231222e−003

5 2.33089089e−004

6 1.11633574e−005

7 4.08237611e−007

8 1.12286107e−008

9 2.25196452e−010

10 3.11134562e−012

11 2.64930826e−014

12 1.03967207e−016

The condition number from table 2.1, is cond(A) =
σl

σs

=1.726864e16.

This shows how ill-conditioned (or unstable) the solution is and the need
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to rectify it. In order to improve the solution, we try to truncate (cut off)

the small singular values for a better solution.
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CHAPTER FOUR

Regularization Methods for Linear Ill-posed Problems

Regularization techniques are used to obtain meaningful estimates for dis-

crete ill-posed problems or rank-deficient linear problems. In cases where

some parameters are ill-determined either by least-square methods or in sit-

uations where the number of parameter is larger than the number of available

measurements, it is necessary to stabilize the system by using regularization

methods. Some of these methods are:

1. Truncated Singular Value Decomposition(TSVD).

2. Preconditioning .

3. Tikhonov Regularization Method.

Truncated Singular Value Decomposition(TSVD)

The idea behind truncated singular value decomposition is to replace all

nonzero singular value less than certain threshold say, α with exact zeros.

Thus, if σk is the smallest singular value greater than or equal to α, then

σk+1 = σk+2 = σk+3 = ... = 0.

Let α be the cut-off level, then all singular values smaller than α will be

replaced by zero. The solution of a truncated problem at certain cut-off

level say α is denoted by xα and defined as

xα =
k∑

i=1

uT
i b

σi

vi.

53



Example 4.1. Consider the linear system Ax = b, where A is a 12 × 12

Hilbert matrix H12 and b defined as

b =
n∑

j=1

hijxj.

This linear system has the exact solution

x = [1 1 1 1 1 1 1 1 1 1 1 1]T ,

with 16 digits of accuracy. The computed solution using

x̂ =
n∑

i=1

uT
i b

σi

vi ,

is shown below.

Table 6: Accuracy of a Computed Solution.

(k) Exact Solution(x) Computed Solution(x̂)

1 1.0000000000000000 0.999999984903960

2 1.0000000000000000 1.000001882544423

3 1.0000000000000000 0.999941439900766

4 1.0000000000000000 1.000791780820418

5 1.0000000000000000 1.000791780820418

6 1.0000000000000000 1.025258190023834

7 1.0000000000000000 0.929842667541179

8 1.0000000000000000 1.126690208270141

9 1.0000000000000000 0.851749330982105

10 1.0000000000000000 1.108415121437981

11 1.0000000000000000 0.954977579488462

12 1.0000000000000000 1.008104137234545

The maximum error is

‖x− x̂‖∞ = 1.322341312564e00.

54



This shows there is no precision. The error in the solution is associated with

the smaller singular values in the solutions .

However, if we truncate (cut-off) the smaller singular values (σ) to reduce

the drastic effect on the solution at various cut-off levels (α), we obtain

Table 7: Truncated Singular Values

i σi α Rank r max. error

1 1.7954× 100 1

2 3.8028× 10−01 2

3 4.4739× 10−02 3

4 3.7223× 10−03 4

5 2.3309× 10−04 5

6 1.1163× 10−05 1.1163× 10−05 6 1.09× 10−3

7 4.0824× 10−07 4.0824× 10−07 7 1.63× 10−4

8 1.1229× 10−08 1.1229× 10−08 8 2.91× 10−5

9 2.2520× 10−10 2.2520× 10−10 9 3.57× 10−6

10 3.1113× 10−12 3.1113× 10−12 10 4.51× 10−5

11 2.6492× 10−14 2.6492× 10−14 11 1.19× 10−3

12 1.0772× 10−16 1.0772× 10−16 12 3.31× 10−1

From Table 7, it is observe that the solution of the Hilbert matrix of order

12 has no significant digit of accuracy. If we truncate it to α = 2.6492× 10−14,

we gain some significant digits of accuracy. This significance increases to five

for α = 3.1113×10−12 and six for α = 2.2520× 10−10. As we truncate further

to α = 2.2520× 10−10 and beyond, the solution deteriorates again. The min-

imum error in the solutions occurs at the cut-off level α = 2.2520× 10−10.

The optimal solution(Sol) for α = 2.2520× 10−10 is shown in the Table 8

below.
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Table 8: Optimal Truncated Solution

Exact solution Sol. with r = 12, α = 0 Sol. with r = 9, α = 2.25e−10

1.0000000000000e+00 9.9999996705141e-01 1.0000000000328e+00

1.0000000000000e+00 1.0000041370137e+00 9.9999999700270e-01

1.0000000000000e+00 9.9987071398844e-01 1.0000000607111e+00

1.0000000000000e+00 1.0017537108519e+00 9.9999951417830e-01

1.0000000000000e+00 9.8718532993339e-01 1.0000018473071e+00

1.0000000000000e+00 1.0561684056900e+00 9.9999665243828e-01

1.0000000000000e+00 8.4379161569956e-01 1.0000018848108e+00

1.0000000000000e+00 1.2823440776789e+00 1.0000021835864e+00

1.0000000000000e+00 6.6937445118911e-01 9.9999768413185e-01

1.0000000000000e+00 1.2419130000125e+00 9.9999787257888e-01

1.0000000000000e+00 8.9949871252080e-01 1.0000035737227e+00

1.0000000000000e+00 1.0180958999351e+00 9.9999872943484e-01

Preconditioning

The use of iterative methods for solving symmetric positive definite sys-

tems of linear equations, require some form of preconditioning M to improve

the convergence of the solution by manipulating the spectrum of the coeffi-

cient matrix. Given the linear system Ax = b, we transform it into an equiv-

alent system of the form MAx = Mb, such that the conditioned number of

MA is far less than that of A, that is κ(MA) << κ(A). Basically, there

are two types of preconditioner’s, the left and the right preconditioner’s, but

for this study we will restrict ourself to only the left preconditioner.
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The Jacobi and Gauss-Seidel Preconditioner

The method of jacobi and Gauss-Seidel for solving Ax = b, split the

matrix A into A = L + D + U , where L is a lower triangular matrix, U is

an upper triangular matrix and D a diagonal matrix. The Jacobi scheme is

given by

xk+1 = −D−1(U + L)xk + D−1b, k = 0, 1, 2, · · ·

and the Gauss-Seidel scheme is also given by

xk+1 = −(L + D)−1Uxk + (L + D)−1b.

Both scheme converge to the solution if the matrix is strictly diagonally

dominant.

In the Jacobi iteration, the matrix D−1 is used to rescale all the non-

diagonal entries of the matrix A, to obtain a good preconditioner, known as

the Jacobi Preconditioner. Thus, if A is ill-conditioned then M = D−1A

is better conditioned than A.

A Gauss-Seidel preconditioner can be used to solve the same problem.

Here, the preconditioning matrix is lower triangular, and is defined as

M = (L + D)−1, from the Gauss-Seidel iteration. Solving a linear

system with a Gauss-Seidel preconditioner is computationally expensive, but

at times yield a better result than the Jacobi Preconditioner. Both the

Jacobi and the Gauss-Seidel schemes are used for linear systems where the

coefficient matrix is sparse, consist mainly of zeros. Such matrices occur in

the numerical solution of boundary-value problems. The following examples

illustrate the use of these preconditioner’s.

57



Example 4.2. Consider the boundary-value problem

uxx + uyy = 0, (4.1)

in the rectangle

R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4},
where u(x, y) denotes the temperature at the point u(x, y), with boundary

values

u(x, 0) = 180, u(x, 4) = 20, for 0 < x < 4

u(0, y) = 80, u(4, y) = 0, for 0 < y < 4.

Central-difference approximation for uxx and uyy are given by

uxx =
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2
(4.2)

uyy =
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
. (4.3)

Then,

uxx(x, y) + uyy(x, y) ≈ u(x+ h, y) + u(x− h, y) + u(x, y + g) +

u(x, y − g)− 4u(x, y) = 0.

Choosing h = g = 1, corresponds to approximating the temperature u(x, y)

at nine interior points in the rectangle shown in Figure 4.
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Figure 1: The grid for Example (4.2)

Using the central difference formula for second derivative, to approximate

the partial derivatives at each of the nine interior points, results in a series of

linear systems. Thus uxx and uyy together with the five-point formula gives
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the following linear systems,

−4p1 +p2 +p4 = −100

p1 −4p2 +p3 +p5 = −20

p2 −4p3 +p6 = −20

1 4 5 7

p2 +p4 −4p5 +p6 +p8 = 0

p3 +p5 −4p6 +p9 = 0

p4 −4p7 +p8 = −260

p5 p7 −4p8 +p9 = −180

6 8 9

symmetric positive definite matrix.

A =




−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4




, b =




−100

−20

−20

−80

0

0

−260

−180

−180




and

p =

[
p1 p2 p3 p4 p5 p6 p7 p8 p9

]T

.

The solution of the above system gives a crude approximation to the tem-

perature distribution u(xi, yj) in the interior of the rectangular region. A

more accurate estimate of the temperature distribution can be obtain by

using smaller step size.
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For instance with h = g = 1/2, we obtain a linear system Ap = b, where A

is a 49×49 symmetric positive definite matrix. Similarly, using h = g = 1/4

gives a linear system Ap = b, where A is a 225×225 symmetric positive def-

inite matrix. The coefficient matrix A becomes increasingly ill-conditioned

as the step size becomes smaller, and the dimension of the coefficient matrix

becomes larger. The system is sparse and the coefficient matrix is strictly

diagonally dominant, and so the Jacobi and the Gauss-Seidel scheme’s can

be used to solve the systems. For relatively small values of the matrix A

the solution vector p can be obtained relatively easily.

We solve the linear system Ap = b using the Gauss-Seidel and the

Jacobi method without preconditioning. The solutions obtained shows some

convergence to the exact solutions. If the system is regularized using the

Gauss-Seidel and Jacobi preconditioner’s, the optimal solutions approximate

accurately to the exact solutions. The optimal solutions for the Jacobi Pre-

conditioner (XJpred) and the Gauss-Seidel preconditioner (XGSpred) are shown

in the Table 9 below.

Table 9: Optimal Solutions For Jacobi and Gauss-Seidel Preconditioner’s.

XJ XG XJpred XGSpred Exact

55.6630161963 55.7141486236 55.7142857142 55.7142857142 55.7143

43.1459263712 43.2141486236 43.2142857142 43.2142857142 43.2143

27.0915876515 27.1427885975 27.1428571428 27.1428571428 27.1429

79.5744977518 79.6427200521 79.6428571428 79.6428571428 79.6429

69.8974609375 69.9998629093 70.0000000000 70.0000000000 70.0000

45.2887834981 45.3570743118 45.3571428571 45.3571428571 45.3571

112.805873285 112.857074311 112.857142857 112.857142857 112.857

111.717354878 111.785645740 111.785714285 111.785714285 111.786

84.2344447411 84.2856800130 84.2857142857 84.2857142857 84.2857
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From Table 9, we can conclude that the solution from preconditioning

gives better accuracy. There is no much difference in the accuracy obtained

from either preconditioner’s. This explains why the cheaper Jacobi precon-

ditioner is more popular.

Tikhonov Regularization Method

Regularization methods for least square problems are the most commonly

used method for obtaining stable and smooth solution to rank deficient and

ill-posed problems, Hansen(1992). In solving such problems, it is necessary

to incorporate additional information as smoothness, continuity and the size

of the residual to obtain the desired solution for x. Such additional informa-

tion is then used as a constraint to control the smoothness of the solution.

The side constraint is usually of the form

Cλ(x) = λ‖Lx‖2
2, (4.4)

where L is the identity matrix (In) or an (n− p)× n discrete approxima-

tion of the pth derivative operator. The side constraint gives a fair balance

between minimizing Cλ(x) and minimizing the residual norm ‖Ax− b‖2
2

instead of giving us the solution of Ax = b. The basic idea is that a regu-

larized solution x should give a small residual and also be small in 2− norm

to give a desired solution. One of the most important form of regularization

of ill-posed least squares problems is the Tikhonov regularization. This

method is often used to regularize ill-posed problems. It involves obtain-

ing the exact or least squares solution of linear systems by minimizing the

function

φλ(x) = ‖Ax− b‖2
2, (4.5)

subject to the side constraint ‖Lx‖, where the matrix L is either an identity

matrix, a diagonal weighting matrix or an (n− p)× n discrete approxima-

tion of the pth derivative operator.
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Since standard Algorithms normally fails to provide suitable solution to sta-

bilize the system, the regularized solution xλ, is defined as the minimizer of

the weighted combination of the residual and the side constraint according

to Wang and Linz(2003). The minimized expression is

φλ(x) = ‖Ax− b‖2
2 + λ‖Lx‖2

2, (4.6)

where λ is greater than zero and is called a regularization parameter.

Regularization of Order Zero

If we let L = In, the minimizing function becomes

φλ(x) = ‖Ax− b‖2
2 + λ‖x‖2

2. (4.7)

This signifies that it can be expressed as a balance between the quantities,

‖Ax− b‖2
2 and ‖x‖. Here, the regularization parameter controls the weights

given to minimization of the side constraint relative to the minimization of

the residual norm. But we can show that the minimizing solution(xλ) is

given by the non-singular linear system as (A′A + λI)xλ = A′b . From

φλ(x) = ‖Ax− b‖2
2 + λ‖x‖2

2, (4.8)

it follows that

φλ = (Ax)′(Ax)− (Ax)′b− b′(Ax) + b′b + λx′x. (4.9)

But (Ax)′b and b′(Ax) are equal since they are scalars. So

φλ = (Ax)′(Ax)− 2(Ax)′b + λx′x + b′b, (4.10)

φλ = x′(A′A)′x− 2A′x′b + λx′x + b′b, (4.11)

Differentiating the function φλ(x) for the minimizing solution xλ, we obtain

∂φλ(x)

∂x
|x=xλ

= 0. (4.12)
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It implies that

∂φλ(x)

∂x
|x=xλ

= 2A′Axλ − 2A′b + 2λxλ = 0, (4.13)

or

(A′A + λI)xλ = A′b, (4.14)

that is

xλ = (A′A + λI)−1(A′b). (4.15)

This regularization method above penalizes large components in the solution

and is called regularization of order Zero. Using singular value decomposi-

tion, we can simplify further the minimizer xλ.

From xλ = (A′A + λI)−1(A′b), substituting

A = UΣVT =
n∑

i=1

uiσivi

into the solution(xλ), we obtain

xλ =
n∑

i=1

[(uiσiv
T
i )T(uiσiv

T
i ) + λI]−1(uiσiv

T
i )Tb, (4.16)

xλ =
n∑

i=1

[(viσ
T
i uT

i uiσiv
T
i ) + λI]−1(viσ

T
i uT

i )b. (4.17)

But uiu
T
i = uT

i ui = In and viv
T
i = vT

i vi = In. Hence

xλ =
n∑

i=1

[(viσ
T
i Iσiv

T
i ) + λI]−1(viσ

T
i uT

i )b. (4.18)

Also σi and σT
i are scalars and equal. So we have

xλ =
n∑

i=1

[(viσ
2
i v

T
i ) + λI]−1(viσiu

T
i )b, (4.19)

xλ =
n∑

i=1

[σ2
i + λ]−1(viσiu

T
i )b, (4.20)

xλ =
n∑

i=1

[
σi

σ2
i + λ

](viu
T
i )b, (4.21)

xλ =
n∑

i=1

(
σ2

i

σ2
i + λ

)(
uT

i b

σi

)vi. (4.22)
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where σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σn > 0 are the singular values of A, and u,v

are respectively the left and right singular vectors of A. Thus the effect of

the addition of λ‖x‖2
2 to the equation φλ(x) = ‖Ax− b‖2

2 is to dampen the

contributions of the terms involving small singular values so that instead

of cutting them off totally we modify the methods to reduce its impact. A

small λ has very little effect on the component associated with large singular

values. If λ is far smaller than σ2
i , then

σi

σ2
i + λ

∼= 1

σi

, (4.23)

and Equation 4.22 becomes

xλ =
n∑

i=1

(
uT

i b

σi

)vi. (4.24)

On the other hand, if σ2
i is much more smaller than λ, then

σi

σ2
i + λ

∼= σi

λ
<<

1

σi

, (4.25)

such that the magnification of the components associated with small

singular values are reduced. With a good choice of λ one can then hope to

get a relatively smooth solution which is a good approximation to the true

solution. This is called SVD with damping.

Regularization of Linear Systems

We have realized that if the coefficient matrix Ab of the linear system

Abx = b is ill-conditioned, then the computed solution x̂, is usually a

meaningless approximation to x. Regularization methods are often used to

obtain stable and smooth solutions to ill-conditioned problems. To regularize

the solution, we solve instead the perturbed system

Mby = b, (4.26)

where Mb = (Ab + kIbn), and k is a small positive number.
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Since Ab is positive-definite, the eigenvalues of Ab must satisfy

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin > 0.

The condition number of Ab is given by

κ(Ab) =
λmax

λmin

.

Similarly

κ(Mb) =
λmax + k

λmin + k
for all k > 0 .

Theorem 4.1. For all positive values of k, the matrix Mb in Equation 4.26

is better conditioned than Ab, in the sense that

κ(Mb) < κ(Ab).

Proof. For any k > 0, kλmax ≥ kλmin, and so

λmaxλmin + kλmax ≥ λmaxλmin + kλmim

λmax (λmin + k) ≥ λmin (λmax + k)

λmax

λmin

≥ λmax + k

λmin + k

This shows that κ(Ab) ≥ κ(Mb).

Theorem 4.2. κ(Mb) is a decreasing function of k, that is

k1 < k2 ⇒ λmax + k2

λmin + k2

≤ λmax + k1

λmin + k1

The Table 10 below illustrates Theorem (4.2).
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Table 10: Decreasing Condition Number with Parameter k

Regularization Parameter (k) κ(Mb)

1.00000000000000e-15 1.62732922269604e+15

1.00000000000000e-14 1.77544770319155e+14

1.00000000000000e-13 1.79341052915694e+13

1.00000000000000e-12 1.79517106478186e+12

1.00000000000000e-11 1.79535290832870e+11

1.00000000000000e-10 1.79537017493371e+10

1.00000000000000e-09 1.79537186699643e+09

1.00000000000000e-08 1.79537205075106e+08

1.00000000000000e-07 1.79537215756213e+07

1.00000000000000e-06 1.79537305937215e+06

1.00000000000000e-05 1.79538205954236e+05

1.00000000000000e-04 1.79547205956003e+04

1.00000000000000e-03 1.79637205956180e+03

1.00000000000000e-02 1.80537205956198e+02

1.00000000000000e-01 1.89537205956199e+01

1.00000000000000e+00 2.79537205956199e+00

1.00000000000000e+01 1.17953720595620e+00

1.00000000000000e+02 1.01795372059562e+00

1.00000000000000e+03 1.00179537205956e+00

1.00000000000000e+04 1.00017953720596e+00
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Regularization of Order One

Regularization of Equation 4.7 in most cases dampens components that

are large in magnitudes, since the component in a solution oscillate with

moderate amplitudes. Such component are undesirable and may need a

penalty term that is large for rapid change in the solution. This penalty

term result in another form of regularization called “Order One”. For this

reason the penalty term is added to Equation 4.7 to obtain

φλ(x) = ‖Ax− b‖2
2 + λ

n∑
i=2

(|x|i − |x|i−1)
2. (4.27)

The above expression is minimized by the solution of (ATA + λLT
1 L1)xλ = ATb

, where L1 is an (n− 1)× n first derivative operator defined as

L1 =




1 −1 0 · · · o

0 1 −1
. . .

...

...
. . . 1

. . . 0

0 · · · 0 1 −1



.

The m-file for implementing L1 is shown below:

function M = L1(n);

create an m-file for computing an (n− 1)× n first derivative operator M.

M = zeros(n− 1, n);

for i = 1 : n− 1

for j = 1 : n

if i == j,M(i, j) = 1;

else if i == j− 1, M(i, j) = −1;

else M(i, j) = 0;

end.

The first derivative operator L1 helps us to compute xλ for order one

regularization using matlab or octave script files for regularization.
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Regularization of Order Two

This type of regularization is not far from order one regularization. Here,

the penalty term is much stronger than that in order one. Thus regulariza-

tion of order two is based on minimizing

φλ(x) = ‖Ax− b‖2
2 + λ

n∑
i=2

(|x|i+1 − 2|x|+ |x|i−1)
2, (4.28)

which lead to the system (ATA + λLT
1L1)xλ = ATb . Here L2 is an

(n− 2)× n second derivative operator defined as

L2 =




1 −2 1 0 · · · 0

0 1 −2 1
. . .

...

...
. . . . . . . . . . . . 0

0 · · · 0 1 −2 1



.

The second derivative operator L2 also helps us to compute xλ for order two

regularization using matlab or octave script files for regularization.

Example 4.3. Consider the system Ax = b, where A is a 12× 12 Hilbert

system and b chosen such that the system has exact solution x = ones(12, 1).

If the linear system Ax = b is solved using any of the standard methods

(LU-factorization, QR-factorization, Cholesky and Singular Value Decompo-

sition), we realize that the computed solution x̂ shows a little resemblance

to the exact solution. The exact solution, and the computed solution are

shown in the Table 11 below. The maximum error in the solution using

infinity norm is ||x− x̂||∞ = 1.89056261650000e− 004.

However, if the same linear system is solved using regularization methods

of order zero, one or two for a given range of values of the regularization

parameter λ , we obtain convergent solutions for various orders which

approximate the exact solution. The detailed regularized solutions of order

zero, one and two are shown in appendix B.
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Table 11: Comparison of Solutions

Exact Solution(x) Computed Solution(x̂)

1.000000000000000 1.000000000361744

1.000000000000000 0.999999967356196

1.000000000000000 1.000000750743523

1.000000000000000 0.999992519342171

1.000000000000000 1.000039112701456

1.000000000000000 0.999884579842439

1.000000000000000 1.000189056261650

1.000000000000000 0.999864632593107

1.000000000000000 0.999946095450604

1.000000000000000 1.000177724682646

1.000000000000000 0.999874569344744

1.000000000000000 1.000030991570177

The regularized solutions for some selected values of λ for order one,

which clearly shows the convergence to the exact solution, is shown in the

Table 12 below. From Table 12, the regularized solutions for the parameter

λ, from 10−10 onward, shows a tremendous improvement in the regularized

solutions compared to the unregularized. For λ = 103, the regularized solu-

tion, converge close to the exact solution. The maximum error at each regu-

larization parameter helps us to identity the optimal solution of the system.

The Table 13 below, illustrate the maximum error and their corresponding

regularization parameter. The optimal solution of the system correspond

to the regularization parameter with the least maximum error. From Table

13, the least error is λ = 6.66133814775094e−16. Hence the optimal solution

occurs at λ = 100 with the solution shown in Table 12.
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Table 12: Some Selected Solutions and their Regularization Parameters.

Unregularized Solution(x̂) x at λ = 10−15 x at λ = 10−10

1.000000000361744 0.999966246960022 0.999999987662394

0.999999967356196 1.001226252624526 1.000000242617692

1.000000750743523 0.990021092332578 0.999998962191316

0.999992519342171 1.026750479592941 1.000001181241874

1.000039112701456 0.986324452717069 1.000000467702928

0.999884579842439 0.976656405745774 0.999999383875175

1.000189056261650 0.972026382861084 0.999999042356027

0.999864632593107 1.086991975538807 1.000000432616368

0.999946095450604 1.018763248686092 1.000000375736882

1.000177724682646 0.919011410428752 0.999999748504047

0.999874569344744 0.995178142675670 1.000000228535360

1.000030991570177 1.027115874077475 0.999999953867416

x at λ = 10−5 x at λ = 100 x at λ = 102

0.999999999998463 1.000000000000001 0.999999999999999

1.000000000010832 1.000000000000001 0.999999999999999

0.999999999983163 1.000000000000000 0.999999999999999

1.000000000007078 1.000000000000000 0.999999999999998

1.000000000006437 0.999999999999999 0.999999999999998

0.999999999995342 0.999999999999999 0.999999999999998

0.999999999987873 0.999999999999999 0.999999999999998

1.000000000001512 1.000000000000000 0.999999999999998

1.000000000001211 1.000000000000000 0.999999999999998

0.999999999997879 1.000000000000000 0.999999999999998

1.000000000006480 1.000000000000000 0.999999999999997

1.000000000005793 1.000000000000000 0.999999999999997
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Table 13: Regularization Parameter for Optimal Solution

Unregularization Parameter (λ) Maximum error

10e-16 2.98722262889516e-01

10e-15 8.69919755388067e-02

10e-14 8.65490837008687e-03

10e-13 9.35832178475593e-04

10e-12 1.02242916088624e-04

10e-11 1.2481417730488oe-05

10e-10 1.18124187364899e-06

10e-09 1.06160033430669e-07

10e-08 1.58048437064400e-08

10e-07 1.50154999545293e-09

10e-06 1.94635751959993e-10

10e-05 1.68371983022553e-11

10e-04 1.74105174727170e-12

10e-03 2.18491891246231e-13

10e-02 4.90718576884319e-14

10e-01 5.99520433297585e-15

10e+00 6.66133814775094e-16

10e+01 2.44249065417534e-15

10e+02 2.77555756156289e-15

10e+03 1.3766765053519e-14
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Parameter-Choice Methods

In regularization, various algorithms are used for computing a regularized

solution, but these algorithms have their advantages and disadvantages in

terms of implementation issues, filter properties and others.

However no regularization method is complete without a method for

choosing the regularization parameters. In all cases either the continuous

parameter λ or the discrete parameter k must be chosen. Most of these

parameter choice methods are based on residual norms. Basically, some of

these parameter choice methods for regularization are the L-Curve method

and Discrepancy principle, by Hansen(1989) and Benyah(2005). A good reg-

ularization parameter should yield a fair balance between the perturbation

error and the regularization error in the regularized solution.

These parameter choice methods can be roughly divided into two classes de-

pending on their assumptions about error and the norm of the perturbation

at the right-hand side. These two classes can be characterized as follows:

1. Methods based on Knowledge on good estimate of the error norms.

2. Methods that do not require error norms, but instead seek to extract

the necessary information from the given right hand side.

For many of these methods, the convergence rate for the solution is very

necessary.

Choosing the Regularization Parameter for Tikhonov

For Tikhonov regularization,we have to make two choices :

1. The order of the regularization.

2. The regularization parameter λ .
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The regularization parameter λ controls the weight given to the minimization

of ‖Lx‖2
2 relative to the minimization of the residual norm ‖Ax− b‖2

2. A

large λ favors a small solution norm at the expense of a large residual norm,

while a small λ favors a large solution norm at the expense of a small residual

norm. Normally when the solution have a great deal of smoothness, second

order regularization is preferred. This is because it improves the solution

than the lower orders.

However, when the exact solution have points where it’s value or it’s

derivative changes rapidly, second order regularization has the tendency to

smooth the solution too much. In such cases, a lower order regularization

is better, although in some cases none of the orders may give a very good

result.

Here, a number of strategies can be used to select λ such that the regular-

ized solution xλ is both acceptable and plausible. A simple way of choosing

the regularization parameter is to compute the results for various λ and

inspect the results. If λ decreases, the residual of xλ decreases, while if λ

increases, the residual of xλ increases.

Suppose we find λ for which the residual is sufficiently small and satisfies

our intuitive idea of an acceptable solution, then we can accept that solution.

In many cases, the behavior of ‖Axλ−b‖ gives a good indication of a proper

choices of λ. If ‖Axλ − b‖ increase or decrease steadily with λ, until some

critical value λ0 after which further increase or decrease in λ have little effect

on the residual norm, then λ0 can be chosen as the optimal regularization

parameter. The solution corresponding to λ0 becomes the acceptable or the

optimal solution xλ. Also a decreasing λ will make ‖Lxλ‖ larger, that is,

reduce the plausibility of the solution and vice versa. This method is by

inspection.
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The L-Curve Method

The L-curve is a graphical plot for all valid regularization parameters

of the discrete smoothing norm. It’s the most convenient graphical tool for

analysis of discrete ill-posed problems, Hansen(1997). For example norm

‖Lx‖2
2 of the regularized solution of a problem versus it’s corresponding

residual norm ‖Ax−b‖2
2. Thus the L-curve clearly displays the relationship

between minimization of the quantities ‖Lx‖2
2 and ‖Ax− b‖2

2, which is the

basic idea for any regularization method. For discrete ill-posed problems,

it turns out that the L-curve has the characteristic L-shaped appearance,

hence it’s name. This shape has a distinct corner separating the vertical

and the horizontal parts of the curve.

The Tikhonov L-curve for regularization plays an important role in reg-

ularization of discrete ill-posed problems. It’s divides the first quadrant into

two regions. Thus, with the Tikhonov L-curve, any regularized solution

must lie on or above the curve. The L-curve basically consist of a vertical

part and an adjacent horizontal part. The horizontal part correspond to

over-smoothed solution where the regularization parameter is too large and

the solution is dominated by regularization errors. The vertical part corre-

sponds to under-regularized solutions where the regularization parameter is

too small and the solution is dominated by perturbation errors.

It is important to plot the L-curve in log-log scale in order to emphasize

the two different parts of the curve. The purpose of this, is to show the

behavior of the L-curve which is more easily seen in such a log-log scale.

In addition, the log-log scale emphasizes “flat” parts of the L-curve where

the variation in ‖Axreg − b‖ is small compared to the variation in other

variables. Also the log-log scale helps in scaling of x and b which simply

shift the L-curve vertically and horizontally.
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The Discrepancy Principle

The Discrepancy Principle, attributed to Morozov by Wing and

Zahart(1991), is the most widespread error based method for regularizing

ill-conditioned linear systems. Thus, if a computational and data error of

an ill-posed problem is represented by a term of size ε, then the solution x

satisfies the relation

‖Ax− b‖ ≤ ε, (4.29)

which is very close to the exact solution and therefore acceptable.

Here, the idea is simple, to choose the regularization parameter such

that the residual norm is equal to the upper bound(ε). Normally it’s not too

difficult to find an acceptable solution to the problem. But if the problem

is ill-conditioned, it becomes necessary to choose a regularization matrix B,

such that ‖Bx‖ is very large for all undesirable x. We formalize this by

making sure that a solution x is plausible only if ‖Bx‖ ≤ M, where M is a

chosen positive number. We then select a regularization parameter (λ) such

that the regularized solution (xλ) is both acceptable and plausible.

Generally this requirement is not enough to give a unique solution, and

some more choices are necessary. One of such choices is to minimize the

residual

ρ(x) = ‖Ax− b‖ , (4.30)

subject to

‖Bx‖ ≤ M. (4.31)

This is a constrained optimization problem, whose solution is the best

plausible solution. Alternatively, we can find a solution x that minimizes

the functional

φB = ‖Bx‖, (4.32)
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subject to

‖Ax− b‖ ≤ ε. (4.33)

This is referred to as the most plausible acceptable solution. The extremum

of the functional to be minimized is unique and occurs on the boundary

defined by the constraints. The minimization of the residual in 4.30 subject

to 4.31 can be replaced by finding λ and xλ such that

(ATA + λBTB)xλ = ATb , (4.34)

with

‖Bxλ‖ = M. (4.35)

Also the minimization problem in Equation 4.34 and 4.35 is equivalent to

solving

(ATA + λBTB)xλ = ATb, (4.36)

subject to

‖Axλ − b‖ = ε. (4.37)

Thus in practice, if we have a value for M, we can solve Equations 4.34

repeatedly with various values of the regularization parameter (λ) until we

find a suitable value for λ such that Equation 4.35 is satisfied. This process

is repeated for Equations 4.36 and 4.37, but starting with a given value of ε

which is easier to obtain than M. The second method is often preferred to

the first, and for a given λ satisfied by Equation 4.37, is referred to as the

Morozov Discrepancy Principle.
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CHAPTER FIVE

APPLICATION TO THE SOLUTION OF FREDHOLM

INTEGRAL EQUATION OF THE FIRST KIND

Integral Equations

An integral equation is an equation for an unknown function f , where

f appears under the integral sign. The regular occurrence of various types

of these equations that exhibit ill-conditioned nature analytically is suffi-

cient to explore them to find a solution to it. Integral equations basically

occurs in two forms, namely Linear and Non-Linear integral equations, by

Hobson(1998).

However, under this study we will restrict ourselves to only Linear

integral equations, which has the general form:

g(x)f(x) = y(x) + λ

∫ b

a

k(x, z)f(z)dz. (5.1)

The function f(x) is an unknown function, while the function y(x) , g(x)

and k(x, z) are assumed known. k(x, z) is called the kernel of the integral

equation. The integral limits a and b are also assumed known and constants,

with λ being a known constant or parameter.

Types of Integral Equations

The Linear integral Equation in 5.1 generate various kinds of equations

if the functions g and f are altered. If g(x) = 0, the unknown function f

appears only under the integral sign and the equation obtained is called
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the Linear integral equation of the first kind. Alternatively, if g(x) = 1,

f appears twice, one inside the integral sign and the other outside. The

integral equation obtained here is also called integral equation of the second

kind. If y(x) = 0, the equation is called homogeneous and if y(x) 6= 0, it is

called inhomogeneous. Integral equations of the first and second kind can

further be distinguished by the form of the integration limits “a” and “b”. If

the limits are fixed constant, then the equation is called Fredholm equation.

However, if the upper limit b = x, that is a variable, the equation is

called Volterra equation. The Volterra equation is analogous to one with

fixed limits, but for which k(x, z) = 0 for z > x. Also for cases where either

or both limits of integration are infinite, or for which k(x, z) is infinite in a

given range of integration, the equation is called Singular Integral Equation.

Examples of Linear Integral equations where g is a given function and f

the function to be determined, are illustrated below.

1. Linear Fredholm Integral equation of the First kind.

g(x) =

∫ b

a

k(x, z)y(z)dz for x ∈ [a, b] (5.2)

2. Linear Fredholm Integral equation of the Second kind.

f(x) = g(x) +

∫ b

a

k(x, z)y(z)dz for x ∈ [a, b] (5.3)

3. Linear Volterra Integral equation of the First kind.

g(x) =

∫ x

a

k(x, z)y(z)dz for x > a (5.4)

4. Linear Volterra Integral equation of the Second kind.

f(x) = g(x) +

∫ x

a

k(x, z)y(z)dz for x > a (5.5)
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Fredholm Integral Equation as an Ill-Posed or Inverse Problem

Fredholm Integral equations of the first and second kind are typical

examples of ill-posed or inverse problems. These problems arises naturally in

determining the natural structure of the physical systems, from the system’s

measured behavior, or in determining the unknown input that gives rise to

a measured output signal.

Suppose a linear inverse problem is to be formulated to compute an

output signal, given the input signal and a mathematical description of the

problem, then we can formulate it as :

∫

Γ

Input× System = Output.

In order to be able to solve such problem, it is appropriate to discretized the

system into a linear equation .

Example 5.1. Consider the integral equation

∫ 1

0

sin(nt)dt =
1

−n
cos(nt).

This is an example of Fredholm integral equation of the first kind with

k(x, y) = 1, f(y) = sin(nt), a = o and b = 1.

The function f(y) of order unity produces a function g(x) of order
1

−n . This

is true for large n, since a small change on the right hand side of the integral

equation g(x) =
∫ b

a
k(x, y)f(y)dy

for x ∈ [a, b], can create an undesirable effect on the left hand side, thus

making the system ill-conditioned.

Example 5.2. Consider also the Fredholm integral equation of second kind

given by

y(x) = x + λ

∫ 1

0

(xz + z2)y(z)dz.
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The kernel for the equation is k(x, z) = x(z + z2), which is clearly separa-

ble. Using Fredholm integral equation of the second kind with separable or

degenerate kernel of the form

k(x, y) =
n∑

i=1

φi(x)ψi(z), where φ1(x) = x, φ2(x) = 1, ψ1(x) = z,

ψ2(x) = z2, and writing the kernel in its separated form, the function φi(x)

may be taken outside the integral over z to obtain

y(x) = f(x) + λ

n∑
i=1

φix

∫ b

a

ψi(z)y(z)dz for x ∈ [a, b].

Since the integration limits a and b are constant for a Fredholm equation,

the integral over z in each term of the sum is a constant. Denoting the

constant by

ci =

∫ b

a

ψi(z)y(z)dz,

the solution to the equation now becomes

y(x) = f(x) + λ

n∑
i=1

ciφi(x).

Hence the solution to the problem

y(x) = x + λ
∫ 1

0
(xz + z2)y(z)dz is

y(x) = x + λ(c1x + c2), (5.6)

with c1 and c2 defined as

c1 =

∫ 1

0

z[z + λ(c1z + c2)]dz =
1

3
+

1

3
λc1 +

1

2
λc2,

and

c2 =

∫ 1

0

z2[z + λ(c1z + c2)]dz =
1

4
+

1

4
λc1 +

1

3
λc2.

That is

c1 =
1

3
+

1

3
λc1 +

1

2
λc2, (5.7)
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and

c2 =
1

4
+

1

4
λc1 +

1

3
λc2. (5.8)

Solving the Equations 5.7 and 5.8 simultaneously for c1 and c2, we have

c1 =
24 + λ

72− 48λ− λ2
and c2 =

18

72− 48λ− λ2
.

Substituting c1 and c2 into Equation 5.6, the solution becomes

y(x) =
(72− 24λ)x + 18

72− 48λ− λ2
.

Hence the solution y(x) has a finite unique solution when λ is not equal to

either roots. If λ is equal to either roots of the quadratic in the denominator,

the solution becomes increasingly ill-conditioned.

Numerical Solution of Fredholm Integral Equation of the First

Kind

When a rank-deficient or ill-posed problem is discretized, the inherent

problem in the coefficient matrix decay gradually to zero. Thus in practice,

it is important to discretize integral equations in other to solve them nu-

merically. Although, there are many ways of discretizing integral equations

or ill-posed problems, two main methods for discretizing integral equations

are the Quadrature methods and the Galerkin methods, by Hamming(1989)

and Hansen(1998). Both methods compute an approximation f to f. In the

Quadrature method, a quadrature rule with abscissas t1, t2, t3, ..., tn, and

corresponding weights w1,w2,w3, ...,wn, can be used to approximate an in-

tegral equation. The approximated integral equation is

∫ 1

0

φ(t)dt =
n∑

j=1

wjφ(tj). (5.9)

If the approximation is applied to an integral equation with m distinct point

values s1, s2, s3, ...sm, we obtain an m× n matrix A given by aij = wjk(si, tj)
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and a right hand side vector b also by bi = g(si). The equation Ax = b

becomes:

g(si) =
n∑

j=1

wjk(si, tj)x(tj). (5.10)

To make this equation a finite solvable system, we modify the equation

by satisfying it exactly at the quadrature point to obtain the new equation.

g(ti) =
n∑

j=1

k(ti, tj)xj, (5.11)

where x1, x2, x3, ..., xn are unknown parameters for i = 1, 2, 3...n.

In the Galerkin method, we chose two sets of basis function φi and ψj

such that the matrix A and the vector b can be defined as

aij =

∫ 1

0

k(s, t)φi(s)ψjdsdt, and bi =

∫ 1

0

g(s)φi(s)ds.

Solving the equation Ax = b, for the vector x, we obtain the solution

f(t) =
n∑

j=1

xiψi(t) ,

which satisfy the integral Equation 5.9. If the kernel k is symmetric and the

two set of basis functions are equal, then the matrix A is symmetric and the

Galerkin’s method is called Rayleigh Ritz Method.

Example 5.3. Consider the integral equation

∫ 1

0

e(s+1)tx(t)dt =
es+1 − 1

s + 1
. (5.12)

To solve the equation numerically, we discretized the equation into a linear

system
∑

wjk(si, tj)xj = g(si),

by using Equation 5.10, with an n-point composite trapezoidal rule and with

uniformly spaced quadrature points.

From 5.10, the kernel of the integral equation is
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k(ti, tj) = e(ti+1)tj , with it’s weight function as wj, the computed solution as

xj , and the function g(ti) also given by

g(ti) =
e(ti+1) − 1

ti + 1
.

Where s = ti, t = tj for i = 1, 2, 3, ..., n and j = 1, 2, 3, ..., n.

Thus, for a five point composite trapezoidal rule, we divide the integral

limits from 0 to 1 into a number of strip’s of size n = 4 , to obtain the five

points. The Equation 5.10 is further expressed as:

y(t1) = w1k(t1, t1)x1 + w2k(t1, t2)x2 + w3k(t1, t3)x3+

w4k(t1, t4)x4 + w5k(t1, t5)x5

y(t2) = w1k(t2, t1)x1 + w2k(t2, t2)x2 + w3k(t2, t3)x3+

w4k(t2, t4)x4 + w5k(t2, t5)x5

y(t3) = w1k(t3, t1)x1 + w2k(t3, t2)x2 + w3k(t3, t3)x3+

w4k(t3, t4)x4 + w5k(t3, t5)x5

y(t4) = w1k(t4, t1)x1 + w2k(t4, t2)x2 + w3k(t4, t3)x3+

w4k(t4, t4)x4 + w5k(t4, t5)x5

y(t5) = w1k(t5, t1)x1 + w2k(t5, t2)x2 + w3k(t5, t3)x3+

w4k(t5, t4)x4 + w5k(t5, t5)x5.

Using the Composite Trapezoidal rule with it’s weight functions de-

fined as w1 = w5 = 1/8 and w2 = w3 = w4 = 1/4, at the quadrature points

t1 = 0, t2 = 0.25, t3 = 0.50, t4 = 0.75, and t5 = 1.0 respectively, the five

equations represented by y(t1), y(t2), y(t3), y(t4) and y(t5) further becomes:

1

8
x1 +

1

4
x2e

1/4 +
1

4
x3e

1/2 +
1

4
x4e

3/4 +
1

8
x5e

1 = e1 − 1, (5.13)
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1

8
x1 +

1

4
x2e

5/16 +
1

4
x3e

5/8 +
1

4
x4e

5/16 +
1

8
x5e

5/4 =
e1.25 − 1

1.25
, (5.14)

1

8
x1 +

1

4
x2e

3/8 +
1

4
x3e

3/4 +
1

4
x4e

9/8 +
1

8
x5e

3/2 =
e1.5 − 1

1.5
, (5.15)

1

8
x1 +

1

4
x2e

7/16 +
1

4
x3e

7/8 +
1

4
x4e

21/16 +
1

8
x5e

7/4 =
e1.75 − 1

1.75
, (5.16)

1

8
x1 +

1

4
x2e

1/2 +
1

4
x3e

1 +
1

4
x4e

3/2 +
1

8
x5e

2 =
e2 − 1

2
. (5.17)

Thus discretizing the Equations 5.13 to 5.17 into a linear system Ax = b,

we have




1

8

1

4
e1/4 1

4
e1/2 1

4
e3/4 1

8
e1

1

8

1

4
e5/16 1

4
e5/8 1

4
e15/16 1

8
e5/4

1

8

1

4
e3/8 1

4
e3/4 1

4
e9/8 1

8
e3/2

1

8

1

4
e7/16 1

4
e7/8 1

4
e21/16 1

8
e7/4

1

8

1

4
e1/2 1

4
e1

1

4
e3/2 1

8
e2







x1

x2

x3

x4

x5




=




(e1 − 1)

(e1.25 − 1)

1.25
(e1.5 − 1)

1.5
(e1.75 − 1)

1.75
(e2 − 1)

2




,

which can further be simplified as



0.125 0.321006 0.412180 0.529250 0.339785

0.125 0.341709 0.467061 0.638397 0.436292

0.125 0.363748 0.529250 0.770054 0.560211

0.125 0.387208 0.599719 0.928863 0.719325

0.125 0.412180 0.679570 1.120422 0.923632







x1

x2

x3

x4

x5




=




1.718282

1.992274

2.321126

2.716915

3.194528




.

Here A is a 5 by 5 square matrix and b a 5 by 1 vector. If the system

Ax = b is solved using any of the standard methods, we have x1 = 0.56015,

x2 = 1.51820, x3 = 0.42125, x4 = 1.4807, and x5 = 0.59914. The computed

solution differs from the exact solution but shows a little resemblance.

If the integral equation in Example 5.3 is repeated for different values of

n, for instance, for n = 8, we obtain

e1 − 1 =
1

16
x1 +

1

8
x2e

1/8 +
1

8
x3e

1/4 +
1

8
x4e

3/8 +
1

8
x5e

1/2 +
1

8
x6e

5/8+

1

8
x7e

3/4 +
1

8
x8e

7/8 +
1

16
x9e

1,
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e9/8 − 1

9/8
=

1

16
x1 +

1

8
x2e

9/64 +
1

8
x3e

9/32 +
1

8
x4e

27/64 +
1

8
x5e

9/16 +
1

8
x6e

45/64

+
1

4
x7e

27/32 +
1

8
x8e

63/64 +
1

16
x9e

9/8,

e5/4 − 1

5/4
=

1

16
x1 +

1

8
x2e

5/32 +
1

8
x3e

5/16 +
1

8
x4e

15/32 +
1

8
x5e

5/8 +
1

8
x6e

25/32

+
1

8
x7e

15/16 +
1

8
x8e

35/32 +
1

16
x9e

5/4,

e11/8 − 1

11/8
=

1

16
x1 +

1

8
x2e

11/64 +
1

8
x3e

11/32 +
1

8
x4e

33/64 +
1

8
x5e

11/16 +
1

8
x6e

35/64

+
1

8
x7e

33/32 +
1

8
x8e

77/64 +
1

16
x9e

11/8,

e3/2 − 1

3/2
=

1

16
x1 +

1

8
x2e

3/16 +
1

8
x3e

3/8 +
1

8
x4e

9/16 +
1

8
x5e

3/4 +
1

8
x6e

15/16

+
1

8
x7e

9/8 +
1

8
x8e

21/16 +
1

16
x9e

3/2,

e13/8 − 1

13/8
=

1

16
x1 +

1

8
x2e

13/64 +
1

8
x3e

13/32 +
1

8
x4e

39/64 +
1

8
x5e

13/16 +
1

8
x6e

65/64

+
1

8
x7e

39/32 +
1

8
x8e

91/64 +
1

16
x9e

13/8,

e7/4 − 1

7/4
=

1

16
x1 +

1

8
x2e

7/32 +
1

8
x3e

7/16 +
1

8
x4e

21/32 +
1

8
x5e

7/8 +
1

8
x6e

35/32

+
1

8
x7e

21/16 +
1

8
x8e

49/32 +
1

16
x9e

7/4,

e15/8 − 1

15/8
=

1

16
x1 +

1

8
x2e

15/64 +
1

8
x3e

15/32 +
1

8
x4e

45/64 +
1

8
x5e

15/16 +
1

8
x6e

75/64

+
1

8
x7e

45/32 +
1

8
x8e

105/64 +
1

16
x9e

15/8,

e2 − 1

2
=

1

16
x1 +

1

8
x2e

1/4 +
1

8
x3e

1/2 +
1

8
x4e

3/4 +
1

8
x5e

1 +
1

8
x6e

5/4+

1

8
x7e

3/2 +
1

8
x8e

7/4 +
1

16
x9e

2.

Discretizing the nine equations above into a linear system Ax = b, our

matrix A becomes
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


1

16

1

8
e1/8 1

8
e1/4 1

8
e3/8 1

8
e1/2 1

8
e5/8 1

8
e3/4 1

8
e7/8 1

16
e1

1

16

1

8
e9/64 1

8
e9/32 1

8
e27/64 1

8
e9/16 1

8
e45/64 1

4
e27/32 1

8
e63/64 1

16
e9/8

1

16

1

8
e5/32 1

8
e5/16 1

8
e15/32 1

8
e5/8 1

8
e25/32 1

8
e15/16 1

8
e35/32 1

16
e5/4

1

16

1

8
e11/64 1

8
e11/32 1

8
e33/64 1

8
e11/16 1

8
e35/64 1

8
e33/32 1

8
e77/64 1

16
e11/8

1

16

1

8
e3/16 1

8
e3/8 1

8
e9/16 1

8
e3/4 1

8
e15/16 1

8
e9/8 1

8
e21/16 1

16
e3/2

1

16

1

8
e13/64 1

8
e13/32 1

8
e39/64 1

8
e13/16 1

8
e65/64 1

8
e39/32 1

8
e91/64 1

16
e13/8

1

16

1

8
e7/32 1

8
e7/16 1

8
e21/32 1

8
e7/8 1

8
e35/32 1

8
e21/16 1

8
e49/32 1

16
e7/4

1

16

1

8
e15/64 1

8
e15/32 1

8
e45/64 1

8
e15/16 1

8
e75/64 1

8
e45/32 1

8
e105/64 1

16
e15/8

1

16

1

8
e1/4 1

8
e1/2 1

8
e3/4 1

8
e1

1

8
e5/4 1

8
e3/2 1

8
e7/4 1

16
e2




,

and that of the right-hand vector b, and the solution vector x becomes

[
1.7183 1.8491 1.9923 2.1492 2.3211 2.5098 2.7169 2.9444 3.1945

]T

and

[
x1 x2 x3 x4 x5 x6 x7 x8 x9

]T

respectively .

Solving the linear system of equation Ax = b , where A is a 9 by 9 square

matrix and b a 9 by 1 vector, we obtain the computed solution x̂. The values

of the computed solution is said to deviate the more from the exact solution.

The Table 14 below shows the computed and the exact solutions for some

selected values of n.

It is observed that the computed solution has contaminated errors com-

pared to that of the exact solution. While for small values of n, the computed

solution has some resemblance to the true or exact solution, the error in-

creases rapidly with n, and we cannot get any value of the computed solution

that approximates the exact solution with acceptable accuracy. The reason

for this anomaly is quite clear when we look at the condition numbers of

some selected values of n, shown in the Table 15 below.
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Table 14: Computed Solutions(C.S) for n-point Composite Trapezoidal

Rule.

Points C.S C.S C.S Exact Solution

t n = 4 n = 8 n = 16 Exact

0.0000 0.56015 0.5306 −47.3089 1.0000

0.1250 − 1.7584 −316.2421 1.0000

0.2500 1.51820 −0.5601 102.0745 1.0000

0.3750 − 3.4871 49.3657 1.0000

0.5000 0.42125 −1.8604 −8.5007 1.0000

0.6250 − 3.3715 −24.4726 1.0000

0.7500 1.4807 −0.4432 −33.7697 1.0000

0.8750 − 1.7075 30.1161 1.0000

1.0000 0.59914 0.5480 3.0331 1.0000

Table 15: Condition Numbers for Selected Values of n.

n Condition Number

4 3.2845× 105

8 1.7263× 107

16 5.7636× 1015

From the table, as n increases from 4 onward, we expect the discretization

error to reduce, that is the accuracy with which Equation 5.12 represents

5.10 gets better. Unfortunately this is not so, the condition numbers rather

increases rapidly destroying any gain from the more accurate discretization.

This makes it quite clear that any computations with n greater than sixteen

will make the solution worse.
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Applying Regularization Methods in Solving Problem 5.3

Generally, when we solve ill-posed problems by discretizing the equation,

the matrix we get is inherently ill-conditioned, and the condition numbers

increases rapidly with n. Thus, there is the need to apply some form of regu-

larization in order to obtain reasonable approximations. Basically, there are

two main approaches to solving ill-posed problems. The first approach is to

regularize the problem to obtain a well-posed equation and then discretized.

This has many theoretical advantages but poses some problem. The second

approach is to discretized first, and then apply regularization methods to

the resulting finite systems. The second approach is better and produce

satisfactory results.

When order zero, one and two was applied to Example 5.3 for n = 16,

the solutions for order one and two converges approximately to the exact

solution, but that of order zero shows little convergence to the exact solution.

The detailed solutions for order zero, one and two, for a given range of

values of the regularization parameter λ can be seen in Appendix C. These

convergent solutions are not the same as the optimal solution. Rather, it

gives us a fair idea of the nature of the optimal solution. The respective

convergent solutions for order zero, one and two are shown in Table 16

below.
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Table 16: Convergent Regularized Solutions for n = 16.

Order Zero Order One Order Two Exact

0.40206 0.99886 0.9984229 1.0000

0.84232 0.99886 0.9984659 1.0000

0.88038 0.99886 0.9985090 1.0000

0.91211 0.99886 0.9985521 1.oooo

0.95428 0.99886 0.9985951 1.0000

0.98904 0.99886 0.9986382 1.0000

1.00440 0.99886 0.9986812 1.0000

1.05060 0.99886 0.9987243 1.0000

1.07560 0.99886 0.9987673 1.0000

1.09520 0.99886 0.9988104 1.0000

1.10810 0.99886 0.9988535 1.0000

1.11260 0.99886 0.9988965 1.0000

1.10710 0.99886 0.9989396 1.0000

1.08930 0.99886 0.9989826 1.0000

1.05670 0.99886 0.9990257 1.0000

1.01090 0.99886 0.9990687 1.0000

0.46762 0.99886 0.9991118 1.0000
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Determination of Optimal Solution

In determining the optimal regularization parameter λ corresponding to

the optimal solution, two methods can be applied. The first is by inspection

and the second is the L-curve approach. For the method by inspection, we

compute the residual norm, the solution norm and inspect the result for

a range of values of the parameter λ . The behaviour of the residual norm

gives a good indication of a proper choice of λ. If the residual norm increases

or decreases steadily with λ, until a critical value λ0, where further increases

or decreases have no effect on the residual norm, then λ0 is chosen as the

optimal regularization parameter and its corresponding value becomes the

optimal solution. But the method by inspection, is a times very difficult to

use to locate the optimal regularization parameter.

However, it is more appropriate to use the L-curve method to determine

the critical value for the optimal solution, since it helps us to identify clearly

all the parameter points. Here, we plot the solution norm against the residual

norm to obtain the L-curve. The optimal regularization parameter λ0 is

usually identified at the sharp corner of the L-curve.

Normally, we make use of the scatter plot of the L-curve to identify the

points concentrated at the sharp corner, to enable us determine the optimal

regularization parameter λ0 . The optimal solution corresponding to the

optimal regularization parameter λ0 is obtained in column form in Appendix

C. The first column correspond to λ1 = 10−16, the second λ2 = 10−15, and

the rest continues in that order. The L-curve for order zero, one and two for

the problem 5.3, are shown in the Figures 2, 3 and 4 below.

91



-1

-0.5

0

0.5

1

1.5

2

-1 0 1 2 3 4 5

Figure 2: L-Curve for Order Zero Regularization

For order zero regularization, the regularization parameters concentrated

at the sharp corner of the L-curve are λ3 = 10−14 and λ4 = 10−13 . The

regularized solutions corresponding to these parameters can be seen in

Appendix C. These regularized solutions do not approximate in any way to

the exact solutions. Therefore, order zero regularization in this case, has no

optimal solution.
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Figure 3: L-Curve for Order One Regularization

For order one regularization, the regularization parameters concentrated

at the sharp corner of the L-curve are λ7 = 10−10 and λ8 = 10−9 . The

regularized solutions corresponding to these parameters in Appendix C do

not approximate to the exact solutions. Hence, order one regularization for

this problem has no optimal solution.
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Figure 4: L-Curve for Order Two Regularization

For order two regularization, the regularization parameters concentrated

at the corner of the L-curve are λ12 = 10−5, λ13 = 10−4 and λ14 = 10−3

respectively. The regularized solutions corresponding to these parameters

are in Appendix C. All the solutions approximate to the exact solution,

but the entries of the solution for λ13 = 10−4 are well skewed and better

approximate to the exact solution compared to the solutions of λ12 = 10−5

and λ14 = 10−3 .

Therefore the optimal regularization parameter is λ13 = 10−4 and the

corresponding optimal solution xλ13 is shown in Table 17 below.
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Table 17: The Optimal Solution

Exact solution x xλ13 = 10−13

1.000000 0.9984226

1.000000 0.9984656

1.000000 0.9985087

1.000000 0.9985517

1.000000 0.9985947

1.000000 0.9986377

1.000000 0.9986807

1.000000 0.9987237

1.000000 0.9987667

1.000000 0.9988097

1.000000 0.9988527

1.000000 0.9988957

1.000000 0.9989387

1.000000 0.9989816

1.000000 0.9990245

1.000000 0.9990675

1.000000 0.9991094

In conclusion, the optimal solution for the problem approximate accu-

rately to the exact solution, compared to the unregularized solution which

shows no resemblance to the exact solution. The maximum error in the com-

puted solution is reduced drastically to 1.6001e+01 in the optimal solution.
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CHAPTER SIX

Summary, Discussion, Conclusion and Recommendation

Summary

The focus of the thesis has been on the numerical regularization methods

for ill-conditioned linear systems. The study examined the concept of Dis-

crete ill-posed problems. Several observations were made in relation to the

effect of perturbation of a linear system and the accuracy of a computed so-

lution. The singular value decomposition is an important tool in numerical

linear algebra for solving rank deficient or Discrete ill-posed problems. The

singular value decomposition of a matrix shows that, it is the small singular

values that contaminate the solution. Based on this analysis of the decompo-

sition, certain numerical methods were employed to solve the problem. Some

of the method employed are the Truncated Singular value Decomposition,

Preconditioning and Tikhonov Regularization. The Tikhonov regularization

methods was then applied to solve the Fredholm integral equation of the

First kind. The method of Pre-conditioning was applied successfully to the

regularization of the solution to a boundary-value problem. The truncated

singular value decomposition was applied to the Hilbert system of order 12.

A review of these methods shows that the Tikhonov Regularization method

is the method of choice for regularizing rank deficient and discrete ill-posed

problems.
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Discussion

The goal to give a numerical treatment of efficient and reliable method

for regularizing ill-conditioned or ill-posed problems have been thoroughly

discussed in this thesis. The numerical solution of the Hilbert and the Van-

dermonde matrices which are practical examples of an ill-conditioned or

ill-posed problems, attest to the fact that the accuracy of the solution of a

linear system is very important and depends on the matrix A or the right

hand vector b. Thus in effect, if the entries of A and b of the linear system

Ax = b, are accurate to about d-significant digits, and the condition num-

ber of A is approximately 10k, then the computed solution x̂ is accurate to

about (d− k) significant digits. Various standard method (LU-factorization,

QR-factorization, Exact inverse, and the Cholesky factorization for positive

index) were all applied to solve the problem but there was virtually no im-

provement in the computed solutions. This compels us to decomposed the

matrix using singular value decomposition. The decomposition reveals to us

that the error in the computed solution is as a results of the drastic effect of

the small singular values. Certain regularization methods (Truncated Singu-

lar value Decomposition, Preconditioning and Tikhonov Regularization) for

solving ill-posed problems were applied to correct the effect of the small sin-

gular values. The motive behind truncation is to replace the small nonzero

singular values with exact zero.

Although this gives a better solution, it does not solve the problem to-

tally. As we truncate the small singular values, the error in the solution

reduces drastically and a better result obtained. Further truncation was

done with the aim of obtaining a desired result, but the solution deterio-

rated again. We then survey the concepts of preconditioning .

Here we preconditioned the system using the Jacobi or Gauss-Seidel pre-

conditioner. The condition number of the preconditioned matrix was better
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than the original matrix. The reduction of the condition number of the

system improves the accuracy of the solution and solve the problem to our

satisfaction. The Tikhonov regularization method for order zero, one and

two were used to regularized the problem. The various orders gave an in-

sight into how stabilizing or regularizing effect of a particular regulariza-

tion method influences the solution, and how the solution depends on the

regularization parameter. To obtain a desired solution , we introduce the

Parameter-Choice Methods (the L-curve method and the Discrepancy prin-

ciple) for determining the optimal solution. The L-curve clearly displays

the relationship between the minimization of the quantity ||Lx||2 against

||Ax−b||2, which is the basic idea for any regularization method. The cor-

ner part of the curve helps us to determine the optimal solution.

Finally , we present a numerical result of the Fredholm integral equation

of the first kind as an ill-conditioned problem. The integral equation was first

discretized into a linear system Ax = b using the quadrature method. The

problem was examined using Tikhonov regularization methods couple with

the parameter-choice methods. Both methods proved to be very effective in

determining the optimal solution.

Conclusion and Recommendation

Ill-conditioned linear systems can be solved using numerical regulariza-

tion methods despite it’s robustness. A classical example considered in this

thesis to justify our claim was the Fredholm integral equation of the first

kind. The discretization of the problem into a linear system Ax = b shows

how the matrix A was inherently ill-conditioned. Appropriate regularization

method was employed to regularize the problem, after which the parameter-

choice methods was used to obtain the optimal solution successfully.

In conclusion, we justify that in the absence of computational errors and
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with proper regularization, a convergent discretization error leads to a con-

vergent solution. One hopes that this work could later be extended further

to solve practical problems such as: Image restoration problems, Image de-

blurring problems, Inverse Laplace transformation, inverse heat problems

and Deconvolution (discontinuous solutions).
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APPENDIX A

OCTAVE CODE FOR TRUNCATED SINGULAR VALUE DECOMPOSITION,

JACOBI AND GAUSS-SEIDEL PRECONDITIONER’S

TSVD:

Function xsvd = TSVD(A, b, n).

Format long;

A = Hibert matrix of any order;

[m,n] = size(A);

x = ones(n, 1);

b = A ∗ x

[U, S, V ] = svd(A);

s = diag(S);

for i = 1 : n

xsvd(:, i) = (U(:, i)′ ∗ b/s(i)) ∗ V(:, i);

endfunction.

xsvd = The Truncated Solution.

JACOBI:

Function xJ = precond(A, b, n).

Format long;

A = Sparse Matrix of a defined order;

[m,n] = size(A);

x = ones(n, 1);

b = A ∗ x

D = diag(diag(A));

b1 = inv(D) ∗ b;
M = inv(D) ∗ A;
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xJ = M b1;

endfunction.

xJ = The Preconditioned System.

NB: D is diagonal matrix and M is a preconditioned matrix.

GAUSS-SEIDEL:

Function xG = precond(A, b, n).

Format long;

A = Sparse Matrix of a defined order;

[m, n] = size(A);

x = ones(n, 1);

b = A ∗ x

D = diag(diag(A));

L = tril(A,−1);

U = tril(A, 1)

b1 = inv(L+D)−1 ∗ A;

M = inv(L+D)−1 ∗ A;

xG = M b1;

endfunction.

xJ = The Preconditioned System.

NB: U is an upper trianglar matrix, L a lower triangular matrix and M is a

preconditioned matrix.
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APPENDIX B

OCTAVE CODE FOR REGULARIZING ILL-CONDITIONED

LINEAR SYSTEMS AND ITS RESULT

Function = Regularize(A,b, n)

format long

A = hilb(12);

[m, n] = size(A);

x = ones(n, 1);

b = A ∗ x;

AtA = A′ ∗A;

Atb = A′ ∗ b;

Create the regularization parameters t = [10−16, ..., 103].

t = zeros(20, 1);

t(1) = 10−16;

for i = 1 : 19

t(i + 1) = t(i) ∗ 10;

end

if order == 0

D = eye(n);

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg0 = zeros(n, length(t));

for i = 1 : length(t)

x reg0(i, :) = (At + t(i) ∗D) \Atb;

res0 norm(i) = norm(A ∗ x− reg(:, i)− b);

sol0 norm(i) = norm(D ∗ x− reg(:, i));

end.

x reg0

res0 norm = res0 norm;
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sol0 norm = sol0 norm;

[res0 norm′ sol0 norm′]

end.

if order == 1

h = 1;

D1 = DiffOpr(1, n);

L1 = D1′ ∗D1;

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg1 = zeros(n, length(t));

for i = 1 : length(t)

x reg1(i, :) = (At + t(i) ∗ L1) \Atb;

res1 norm(i) = norm(A ∗ x reg(:, i)− b);

sol1 norm(i) = norm(D1 ∗ x reg(:, i));

end.

x reg1

res1 norm = res1 norm;

sol1 norm = sol1 norm;

[res1 norm′ sol1 norm′]

end.

if order == 2

h 2 = 0.01;

D2 = DiffOpr(2, n);

B2 = (1/h2) ∗D2;

L2 = B2′ ∗ B2;

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg2 = zeros(n, length(t));

for i = 1 : length(t)

x reg2(i, :) = (At + t(i) ∗ L2) \Atb;
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res2 norm(i) = norm(A ∗ x reg(:, i)− b);

sol2 norm(i) = norm(D2 ∗ x reg(:, i));

end.

x reg2

res2 norm = res2 norm;

sol2 norm = sol2 norm;

[res2 norm′ sol2 norm′]

end.

Reg0=

Columns 1 through 4:

0.99999558987635 0.99994129023543 0.99998956985858 0.99999501375901

0.00011484865408 1.00228840365990 1.00034842281497 1.00014037359154

0.99935815149903 0.97907402327410 0.99731501326943 0.99911916254794

1.00100811961802 1.07220199315852 1.00718065055867 1.00175691516681

1.00019117552870 0.89646910614765 0.99477692842340 0.99954281646107

0.99930647480609 1.07105307745711 0.99772593042956 0.99897772783852

0.99926911621657 0.89481974776813 0.99243789306522 0.99871647970600

0.99986924867098 1.15903339015223 1.01909696856479 1.00195214836498

1.00056880031464 0.99583522180340 1.00214131598349 1.00081607916663

1.00086976910633 0.88274830784933 0.98157967762364 0.99885014402034

1.00042159314940 1.02058294249397 1.00521494238652 1.00051427245869

0.99902212127644 1.02599988063476 1.00219456080894 0.99961477752346
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Columns 5 through 8:

0.99999615796750 1.00000318399316 1.00004130287354 1.00006131485466

1.00010848696029 0.99998750395035 0.99932365732858 0.99878578966688

0.99935237030420 0.99976119914157 1.00199815830281 1.00428967063261

1.00110451016100 1.00086685938894 0.99971327688416 0.99814580846151

1.00008702233818 0.99983446257614 0.99809676133742 0.99607061590091

0.99927322529281 0.99911489105196 0.99843604336012 0.99783218666863

0.99915381983932 0.99933468952182 0.99991860111740 1.00085485188883

1.00007839949585 1.00015395147201 1.00146545297977 1.00324893413169

1.00065495922924 1.00088611046582 1.00226540354118 1.00401421008992

1.00075058038528 1.00105671618175 1.00185610317171 1.00276561106508

1.00045878461151 1.00037669386380 1.00003906203083 0.99947245551507

0.99897539434665 0.99860802813603 0.99677653144355 0.99428511343493

Columns 9 through 12:

0.99982759461036 0.99904344396020 0.99981057623282 1.00716677462353

1.00106279761382 1.00940333807493 1.00819859002563 0.97025534101148

1.00119904725954 0.98810959943146 0.98136775960316 0.98859493280536

0.99597555081377 0.98951959648705 0.98954127544851 1.01380648105732

0.99621823053867 0.99865463846272 1.00413559777337 1.02920091397204

0.99967042598279 1.00712409128657 1.01460372120102 1.03346328116079

1.00334123531302 1.01185940941616 1.01858139556544 1.02876949406568

1.00546849361466 1.01223102866891 1.01645835518161 1.01759012100603

1.00530320873138 1.00857502313142 1.00936535936713 1.00196081529613

1.00269365271897 1.00153959816867 0.99848281466878 0.98341117933417

0.99779150595072 0.99181247690929 0.98483040942298 0.96304966181660

0.99087962380398 0.98001700545144 0.96922767091293 0.94166610656110
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Reg1=

Columns 1 through 4:

0.99984337030413 0.99996624696002 0.99999360011168 0.99999769246978

1.00629382044492 1.00122625262452 1.00020913422909 1.00006457528071

0.94053380032538 0.99002109233257 0.99843882973683 0.99959894674583

1.21192240065814 1.02675047959294 1.00390068391728 1.00076599977069

0.70127773711048 0.98632445271706 0.99814421193350 0.99995872397917

1.09581827413185 0.97665640574577 0.99648826215166 0.99924398486644

1.02336722877166 0.97202638286108 0.99817900385086 0.99954855825103

1.17106319302461 1.08699197553880 1.00865490837008 1.00093583217847

0.84388833351742 1.01876324868609 1.00180799203745 1.00046269820878

1.05873976538266 0.91901141042875 0.99201372691240 0.99947025166967

0.83656328596098 0.99517814267567 0.99982038442358 0.99994904674245

1.11081398434722 1.02711587407747 1.00235015067332 1.00000204938269

Columns 5 through 8:

0.99999961854621 0.99999994094735 0.99999998766239 0.99999999855073

1.00001011207963 1.00000144010224 1.00000024261769 1.00000002686453

0.99994111240620 0.99999219043793 0.99999896219131 0.99999989383996

1.00010224291608 1.00001248184177 1.00000118124187 1.00000010269591

1.00000127796084 1.00000145928561 1.00000046770292 1.00000005717119

0.99992911053781 0.99999047692878 0.99999938387517 0.99999996654903

0.99991178843626 0.99999025422639 0.99999904235602 0.99999990205978

1.00006888183899 1.00000750419835 1.00000043261636 1.00000003347395

1.00007635754385 1.00000795151244 1.00000037573688 1.00000001654656

0.99998930540261 0.99999936242353 0.99999974850404 0.99999996053368

1.00000531729495 1.00000115395127 1.00000022853536 1.00000002945979

0.99996455824570 0.99999575955749 0.99999995386741 1.00000001329310
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Columns 9 through 12:

0.99999999968290 0.99999999995858 0.99999999999142 0.99999999999846

1.00000000486121 1.00000000054150 1.00000000009099 1.00000000001083

0.99999998419515 0.99999999849845 0.99999999980536 0.99999999998316

1.00000001082632 1.00000000080921 1.00000000005150 1.00000000000707

1.00000000910318 1.00000000083262 1.00000000008191 1.00000000000643

0.99999999908118 0.99999999991561 1.00000000001540 0.99999999999534

0.99999999156213 0.99999999916125 0.99999999995489 0.99999999998787

1.00000000114667 1.00000000034830 1.00000000006071 1.00000000000151

0.99999999898599 1.00000000021764 1.00000000002200 1.00000000000121

0.99999999296541 0.99999999952729 0.99999999994473 0.99999999999787

1.00000000254603 1.00000000017743 0.99999999999241 1.00000000000648

1.00000000512875 0.99999999999575 0.99999999998501 1.00000000000579

Columns 13 through 16:

0.99999999999967 0.99999999999997 1.00000000000009 1.00000000000005

1.00000000000174 1.00000000000020 1.00000000000017 1.00000000000001

0.99999999999907 0.99999999999885 0.99999999999972 0.99999999999995

1.00000000000006 0.99999999999996 0.99999999999980 0.99999999999995

0.99999999999914 0.99999999999990 0.99999999999974 0.99999999999995

0.99999999999850 0.99999999999984 0.99999999999970 0.99999999999995

0.99999999999859 0.99999999999981 0.99999999999978 0.99999999999997

1.00000000000019 1.00000000000000 1.00000000000003 1.00000000000000

1.00000000000060 1.00000000000006 1.00000000000016 1.00000000000002

1.00000000000040 1.00000000000007 1.00000000000024 1.00000000000003

1.00000000000132 1.00000000000020 1.00000000000043 1.00000000000005

1.00000000000136 1.00000000000021 1.00000000000049 1.00000000000006
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Columns 17 through 20:

1.00000000000001 1.00000000000001 0.99999999999999 1.00000000000014

1.00000000000001 1.00000000000001 0.99999999999999 1.00000000000014

1.00000000000000 1.00000000000000 0.99999999999999 1.00000000000014

1.00000000000000 1.00000000000000 0.99999999999998 1.00000000000014

0.99999999999999 1.00000000000000 0.99999999999998 1.00000000000014

0.99999999999999 0.99999999999999 0.99999999999998 1.00000000000014

0.99999999999999 0.99999999999999 0.99999999999998 1.00000000000014

1.00000000000000 0.99999999999999 0.99999999999998 1.00000000000014

1.00000000000000 0.99999999999999 0.99999999999998 1.00000000000014

1.00000000000000 0.99999999999998 0.99999999999998 1.00000000000014

1.00000000000000 0.99999999999998 0.99999999999998 1.00000000000014

1.00000000000000 0.99999999999998 0.99999999999997 1.00000000000014
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Reg2=

Columns 1 through 4:

0.99999999986089 0.99999999999180 0.99999999999582 0.99999999999896

1.00000000204049 1.00000000015693 1.00000000003530 1.00000000000411

0.99999999402540 0.99999999942425 0.99999999994176 0.99999999999851

1.00000000242300 1.00000000031104 1.00000000000847 1.00000000000393

1.00000000452605 1.00000000058822 1.00000000002027 1.00000000000206

1.00000000083251 1.00000000011132 0.99999999998567 0.99999999999339

0.99999999843441 0.99999999959019 0.99999999997943 0.99999999998801

1.00000000008947 0.99999999982236 1.00000000003921 0.99999999999324

0.99999999773037 0.99999999972420 1.00000000003265 0.99999999999675

0.99999999523447 0.99999999958226 0.99999999998959 0.99999999999996

0.99999999951229 1.00000000011753 0.99999999999194 1.00000000000844

1.00000000535442 1.00000000060201 0.99999999997985 1.00000000001594

Columns 5 through 8:

0.99999999999964 0.99999999999997 1.00000000000002 1.00000000000001

1.00000000000128 1.00000000000017 1.00000000000000 0.99999999999999

1.00000000000057 1.00000000000007 0.99999999999997 0.99999999999998

1.00000000000036 0.99999999999999 0.99999999999995 0.99999999999998

0.99999999999923 0.99999999999982 0.99999999999993 0.99999999999998

0.99999999999783 0.99999999999966 0.99999999999992 0.99999999999998

0.99999999999729 0.99999999999960 0.99999999999993 0.99999999999999

0.99999999999811 0.99999999999972 0.99999999999996 0.99999999999999

0.99999999999918 0.99999999999989 1.00000000000000 1.00000000000000

1.00000000000048 1.00000000000012 1.00000000000005 1.00000000000001

1.00000000000255 1.00000000000044 1.00000000000012 1.00000000000002

1.00000000000459 1.00000000000075 1.00000000000019 1.00000000000003
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Columns 9 through 12:

0.99999999999999 0.99999999999999 0.99999999999985 0.99999999999934

0.99999999999999 0.99999999999999 0.99999999999989 0.99999999999950

1.00000000000000 0.99999999999999 0.99999999999993 0.99999999999966

1.00000000000000 0.99999999999999 0.99999999999997 0.99999999999983

1.00000000000000 0.99999999999999 1.00000000000001 0.99999999999999

1.00000000000000 0.99999999999999 1.00000000000005 1.00000000000016

1.00000000000000 1.00000000000000 1.00000000000010 1.00000000000033

1.00000000000000 1.00000000000000 1.00000000000014 1.00000000000050

1.00000000000000 1.00000000000001 1.00000000000019 1.00000000000067

0.99999999999999 1.00000000000002 1.00000000000023 1.00000000000085

0.99999999999999 1.00000000000003 1.00000000000028 1.000000000001032

0.99999999999998 1.00000000000004 1.00000000000032 1.00000000000120

Columns 13 through 16:

1.00000000002429 1.00000000030304 0.99999999893369 0.99999999361121

1.00000000001694 1.00000000022115 0.99999999928457 0.99999999522508

1.00000000000960 1.00000000013926 0.99999999963545 0.99999999683896

1.00000000000225 1.00000000005737 0.99999999998633 0.99999999845284

0.99999999999491 0.99999999997547 1.00000000033720 1.00000000006672

0.99999999998757 0.99999999989357 1.00000000068808 1.00000000168060

0.99999999998023 0.99999999981167 1.00000000103894 1.00000000329448

0.99999999997290 0.99999999972976 1.00000000138980 1.00000000490836

0.99999999996556 0.99999999964785 1.00000000174066 1.00000000652224

0.99999999995823 0.99999999956594 1.00000000209152 1.00000000813612

0.99999999995090 0.99999999948402 1.00000000244237 1.00000000975000

0.99999999994356 0.99999999940210 1.00000000279323 1.00000001136388
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APPENDIX C

OCTAVE CODE FOR REGULARIZING FREDHOLM INTEGRAL

EQUATION OF THE FIRST KIND AND ITS RESULT

Function = Regularize(A,b, n).

A =Generated matrix from an integral equation of size seventeen.

[m, n] = size(A);

x = ones(n, 1);

b = A ∗ x;

AtA = A′ ∗A;

Atb = A′ ∗ b;

Create the regularization parameters t = [10−16, ..., 103].

t = zeros(20, 1);

t(1) = 10−16;

for i = 1 : 19

t(i + 1) = t(i) ∗ 10;

end.

if order == 0

D = eye(n);

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg0 = zeros(n, length(t));

for i = 1 : length(t)

x reg0(i, :) = (At + t(i) ∗D) \Atb;

res0 norm(i) = norm(A ∗ x− reg(:, i)− b);

sol0 norm(i) = norm(D ∗ x− reg(:, i));

end.

x reg0

plot(−log10(res0 norm),−log10(sol0 norm));

end.
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if order == 1

h = 1;

D1 = DiffOpr(1, n);

L1 = D1′ ∗D1;

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg1 = zeros(n, length(t));

for i = 1 : length(t)

x reg1(i, :) = (At + t(i) ∗ L1) \Atb;

res1 norm(i) = norm(A ∗ x reg(:, i)− b);

sol1 norm(i) = norm(D1 ∗ x reg(:, i));

end.

x reg1

plot(−log10(res1 norm),−log10(sol1 norm))

end.

if order == 2

h 2 = 0.01;

D2 = DiffOpr(2, n);

B2 = (1/h2) ∗D2;

L2 = B2′ ∗ B2;

Compute the regularized solutions corresponding to each regularization pa-

rameter. x reg2 = zeros(n, length(t));

for i = 1 : length(t)

x reg2(i, :) = (At + t(i) ∗ L2) \Atb;

res2 norm(i) = norm(A ∗ x reg(:, i)− b);

sol2 norm(i) = norm(D2 ∗ x reg(:, i));

x reg2

plot(−log10(res2 norm),−log10(sol2 norm))

end.
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x Reg1 =

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

-8.9437e+0 -2.8742e+0 5.2110e-1 -4.4836e-1 4.3307e-1 1.5411e+0

3.4315e+1 1.6576e+1 3.1678e+0 1.8536e+0 1.6785e+0 1.7170e+0

-2.5763e+1 -1.1872e+1 -4.3959e-1 1.6881e+0 1.3564e+0 1.1540e+0

-8.1029e-3 -5.4719e-3 -2.8565e-3 -1.7156e-3 -1.1120e-3 -1.6808e-4

1.5684e+0 3.1900e-1 -1.0315e-1 8.5582e-1 1.3725e+0 8.2317e-1

-2.0151e+1 -6.2096e+0 3.5506e+0 2.9824e+0 1.8544e+0 8.8795e-1

-3.0313e-3 -1.6476e-3 -6.6537e-4 -7.3133e-4 -8.9552e-4 -1.0003e-3

4.9852e+0 1.5110e+0 -6.5348e-1 4.9395e-2 6.7894e-1 8.6305e-1

4.4937e+1 2.3933e+1 5.7945e+0 1.0486e+0 4.7272e-1 1.1316e+0

-2.4875e+1 -1.4818e+1 -4.9543e+0 -9.2321e-1 2.1452e-1 1.3426e+0

1.2109e+0 2.0287e+0 2.0587e+0 1.2644e+0 1.4579e+0 1.8075e+0

8.8293e+0 5.7723e+0 3.4963e+0 3.2145e+0 2.6884e+0 2.0446e+0

-7.1561e+0 -1.7755e+0 2.3208e+0 2.7563e+0 2.4968e+0 1.6931e+0

-2.6143e-1 -7.1066e-2 6.9475e-2 7.0345e-2 8.6132e-2 2.1866e-1

-4.9130e-2 -2.5449e-2 -6.3015e-3 -2.9768e-3 -3.0347e-3 -3.5252e-3

-1.5204e-2 -6.8933e-3 -7.2102e-4 -5.0457e-4 -6.3954e-4 -1.9306e-4

5.9559e+0 4.2383e+0 2.9013e+0 2.7469e+0 2.8764e+0 3.1254e+0
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Column 7 Column 8 Column 9 Column 10 Column 11 Column 12

1.7848e+0 1.7698e+0 2.0501e+0 2.4069e+0 1.9569e+0 1.3621e+0

1.6946e+0 1.6723e+0 1.8768e+0 2.1336e+0 1.7876e+0 1.3214e+0

1.1362e+0 1.1406e+0 1.2279e+0 1.3479e+0 1.2998e+0 1.1897e+0

7.4886e-5 1.2341e-3 1.2826e-2 9.3873e-2 5.1579e-1 9.5870e-1

6.6482e-1 7.3600e-1 5.8606e-1 3.7633e-1 5.8895e-1 8.3219e-1

6.7660e-1 7.3082e-1 5.6407e-1 3.1818e-1 4.2156e-1 5.9281e-1

-8.7150e-4 -1.7358e-3 -8.6222e-3 -9.840e-3 4.2898e-2 2.3592e-1

9.5228e-1 9.6995e-1 7.8760e-1 5.3930e-1 6.0629e-1 6.9293e-1

1.4348e+0 1.4429e+0 1.2363e+0 9.5903e-1 1.0164e+0 1.0298e+0

1.6501e+0 1.5907e+0 1.4629e+0 1.2997e+0 1.2970e+0 1.2492e+0

1.7285e+0 1.5734e+0 1.5738e+0 1.5791e+0 1.4633e+0 1.3568e+0

1.6663e+0 1.4954e+0 1.6226e+0 1.7676e+0 1.5186e+0 1.3619e+0

1.3811e+0 1.3594e+0 1.5684e+0 1.7711e+0 1.4511e+0 1.2782e+0

5.9848e-1 9.6500e-1 1.1961e+0 1.3929e+0 1.2235e+0 1.1239e+0

-2.6799e-3 2.5916e-3 4.3946e-2 2.9142e-1 7.6219e-1 9.2083e-1

9.9413e-4 3.3414e-3 1.9827e-2 1.7465e-1 5.9036e-1 7.7890e-1

3.0781e+0 2.8980e+0 2.4931e+0 1.6765e+0 9.6202e-1 7.5094e-1
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Column 13 Column 14 Column 15 Column 16 Column 17 Column 18

0.99952 0.96646 0.99395 0.99807 0.99864 0.99882

0.99780 0.96816 0.99420 0.99810 0.99864 0.99882

0.98473 0.97125 0.99471 0.99816 0.99865 0.99882

0.95240 0.97367 0.99523 0.99823 0.99867 0.99883

0.91635 0.97657 0.99586 0.99832 0.99869 0.99883

0.84607 0.97473 0.99600 0.99836 0.99871 0.99883

0.73491 0.96626 9.9542 0.99834 0.99872 0.99883

0.92990 1.00290 0.99965 0.99881 0.99879 0.99884

1.0742 1.02980 1.0028 0.99917 0.99884 0.99885

1.1654 1.04600 1.0046 0.99940 0.99889 0.99886

1.2035 1.05110 1.0052 0.99950 0.99892 0.99886

1.1914 1.04530 1.0045 0.99947 0.99894 0.99887

1.1362 1.03010 1.0027 0.99933 0.99894 0.99887

1.0491 1.00800 1.0000 0.99910 0.99894 0.99887

0.94725 0.98278 0.99700 0.99882 0.99893 0.99887

0.86209 0.96075 0.99433 0.99857 0.99891 0.99887

0.81990 0.94973 0.99300 0.99844 0.99890 0.99887
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x Reg2 =

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

3.2434353 3.8698193 3.5831519 2.6307741 1.7127983 0.9228078

2.1195973 2.4507759 2.3495901 1.9444993 1.4169926 0.9143018

0.9746398 1.1016834 1.1790306 1.2779945 1.1251945 0.9060205

0.0129868 0.0464812 0.2488778 0.6925389 0.8527269 0.8995588

-0.1272902 -0.3343805 -0.1619312 0.2926023 0.6294548 0.8987991

-0.1219766 -0.3072576 -0.2154045 0.0736196 0.4839333 0.9086499

-0.0131434 -0.0227473 -0.0041868 0.0758580 0.4651249 0.9380455

0.7928620 0.4515691 0.4326341 0.3846340 0.6448897 1.0007187

1.5567492 1.0133085 0.9472347 0.8161117 0.9073638 1.0709604

1.9766777 1.5633650 1.4181065 1.2302218 1.1629245 1.1290077

2.0270492 1.9782635 1.7433220 1.5293400 1.3487780 1.1613351

1.7929152 2.1085105 1.8430321 1.6567490 1.4285634 1.1606735

1.3439432 1.8190411 1.6743448 1.5949241 1.3907668 1.1256928

0.7051324 1.0912175 1.2623432 1.3636640 1.2456226 1.0602511

0.0201782 0.2235134 0.7558206 1.0188199 1.0202938 0.9721249

0.0226790 0.1787181 0.5182579 0.6525046 0.7521472 0.8711335

2.7138733 1.6365075 0.6651896 0.3094552 0.4704665 0.7656677
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Column 7 Column 8 Column 9 Column 10 Column 11 Column 12

0.8995849 0.9825752 0.9967444 0.9982540 0.9984059 0.9984211

0.9192529 0.9859340 0.9971402 0.9983325 0.9984524 0.9984644

0.9387790 0.9892679 0.9975334 0.9984107 0.9984989 0.9985078

0.9579232 0.9925257 0.9979184 0.9984881 0.9985454 0.9985511

0.9765372 0.9956553 0.9982893 0.9985641 0.9985917 0.9985944

0.9944527 0.9985929 0.9986392 0.9986379 0.9986377 0.9986377

1.0119667 1.0013228 0.9989656 0.9987094 0.9986836 0.9986810

1.0300149 1.0039006 0.9992735 0.9987790 0.9987292 0.9987242

1.0448963 1.0058981 0.9995193 0.9988423 0.9987742 0.9987674

1.0538310 1.0069971 0.9996705 0.9988962 0.9988183 0.9988105

1.0550497 1.0070018 0.9997072 0.9989385 0.9988612 0.9988535

1.0478315 1.0058451 0.9996227 0.9989687 0.9989029 0.9988964

1.0324728 1.0035859 0.9994236 0.9989873 0.9989435 0.9989391

1.0101701 1.0003948 0.9991275 0.9989962 0.9989831 0.9989817

0.9827919 0.9965257 0.9987609 0.9989981 0.9990219 0.9990243

0.9525174 0.9922694 0.9983542 0.9989959 0.9990604 0.9990668

0.9212665 0.9878839 0.9979340 0.9989923 0.9990987 0.9991094
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Column 13 Column 14 Column 15 Column 16 Column 17 Column 18

0.9984226 0.9984228 0.9984228 0.9984228 0.9984219 0.9984245

0.9984656 0.9984658 0.9984658 0.9984658 0.9984650 0.9984673

0.9985087 0.9985087 0.9985088 0.9985087 0.9985081 0.9985101

0.9985517 0.9985517 0.9985517 0.9985517 0.9985511 0.9985529

0.9985947 0.9985947 0.9985947 0.9985947 0.9985942 0.9985957

0.9986377 0.9986377 0.9986377 0.9986377 0.9986373 0.9986386

0.9986807 0.9986807 0.9986807 0.9986807 0.9986803 0.9986814

0.9987237 0.9987237 0.9987237 0.9987237 0.9987234 0.9987242

0.9987667 0.9987667 0.9987667 0.9987667 0.9987665 0.9987670

0.9988097 0.9988097 0.9988097 0.9988096 0.9988096 0.9988098

0.9988527 0.9988526 0.9988526 0.9988526 0.9988526 0.9988527

0.9988957 0.9988956 0.9988956 0.9988956 0.9988957 0.9988955

0.9989387 0.9989386 0.9989386 0.9989386 0.9989388 0.9989383

0.9989816 0.9989816 0.9989816 0.9989816 0.9989818 0.9989811

0.9990245 0.9990246 0.9990246 0.9990246 0.9990249 0.9990239

0.9990675 0.9990676 0.9990676 0.9990676 0.9990680 0.9990668

0.9991104 0.9991105 0.9991105 0.9991105 0.9991111 0.9991096
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