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ABSTRACT 

 

 In this dissertation, Markov chain was used to model the rainfall pattern 

and sunshine duration for three regional capitals in Ghana (Tamale, Kumasi and 

Accra). Data on mean monthly averages and daily figures of measured parameters 

(sunshine duration and rainfall) for five years were used. To achieve these goals, a 

statistical basis was presented before adopting the three main approaches for 

modeling. Transition Matrix shows the short-run behavior of Markov chain; the 

steady-state probability, indicating the long-run behavior of Markov chain; and 

finally, the mean first passage times. The chain for the transition matrix for each 

region was found to be ergodic. The steady-state probability gave the possibility 

of weather change in a particular day on the condition that it was rainy or sunny 

for the last two days or the previous day. The mean first passage times of the 

weather gave the average number of daily rainfall before sunshine and an average 

number of daily sunshine before rainfall. 

 The study showed that among the three towns, Kumasi has the highest 

probability of rainfall followed by Tamale and then Accra. Secondly, Tamale has 

the highest probability of duration of sunshine followed by Accra and then 

Kumasi. Kumasi has the highest average number of occurrence of daily rainfall 

compared to Tamale and Accra. Finally, Tamale has the highest average number 

of occurrence of daily sunshine compared to Accra and Kumasi. 
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CHAPTER ONE 

 

INTRODUCTION 

Background 

Weather change has been of great concern to policy makers. Changes of 

weather conditions have resulted in a lot of media reports in recent times. People 

of all walks of life have added their voice to the problem by trying to find the 

causes and solutions. Governments of developing countries like Ghana have 

relied solely on Ghana Meteorological Agency for their weather forecast. Because 

Ghana Meteorological Agency is not well resourced, it has become difficult for 

the country to predict the weather conditions in the long-run. 

Weather change affects natural resources and economic activities. The 

bio-productive systems can be affected by changes in temperature, rainfall and 

sea-level rise. Effects will vary from one region to another. Studies elsewhere 

have established expected responses of bio-productive systems to changes in 

carbon dioxide, temperature and rainfall. Temperature influences plant growth 

and development, and the higher the temperature, the faster the plants grow and 

mature. Increased temperature will enhance the growth and productivity of plants. 

However, high temperature leads to high evaporation and evapotranspiration. This 

increases water demand for plant growth. Under such circumstances, dry land 

1 
 



farming will be limited and irrigation schemes will suffer from the problems of 

salinisation and water loss through evaporation. 

 High temperatures and high atmospheric humidity will favour 

development of animal and crop pests and diseases. It is therefore expected that 

increase in temperatures would lead to increase in animal and plant pests and 

decreases. This is likely to lead to a reduction in agricultural production. It is 

generally expected that an increase in precipitation in the humid regions would 

lead to an increase in agricultural and forest production. However, more rainfall, 

high temperatures and higher concentration of carbon dioxide could aggravate the 

production of weeds in cultivated areas, and the resultant competition could 

reduce crop yields. High rainfall, especially in the humid regions, would increase 

nutrient leaching, problems of soil erosion, flooding and soil losses. Decreased 

rainfall will lead to a reduction in soil moisture thereby affecting dry land farming 

potential, fuel wood availability and forage material for livestock and wildlife. 

Weather change, high population growth rates and a lack of significant investment 

have made Africa most vulnerable to the impacts of projected changes as 

widespread poverty limits adaptation capabilities. 

         Lakes and major dams have reached low levels, thus threatening industrial 

activity. Power rationing in Ghana in 2007 was due to the low level of the 

Akosombo Dam. This affected many industries, leading to high cost of 

production, lost of jobs and low profit. It also increased the government 

expenditure on energy, increase in inflation rate and security problems. Climate 

change will increase the frequency of such low storage events. 
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          The academic interest in the topic originates primarily from the country 

climate changes that have remained high on the government agenda. 

 

Objectives of Study 

There have been several statistical and mathematical approaches in 

modeling weather conditions in Ghana. This shows the level of importance 

government and researchers have placed on the climate in the region. 

The objectives of the research are as follows: 

(i) To use Markov chain to model the rainfall and sunshine pattern in 

Accra, Kumasi and Tamale. 

(ii) To determine transient (or short-run) behavior of a Markov chain of 

rainfall and sunshine in the three regions. 

(iii) To use the steady-state probabilities to describe the long-run behavior 

of rainfall and sunshine patterns in the three regions. 

(iv) To use the mean first passage time to find how long it takes to move 

from one state to another. That is, how long it takes rainfall to occur before 

sunshine and vice versa. 

The identified pattern could then be used to predict future rainfall and 

sunshine in each of the three regions. 
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Literature Review 

      Research on various applications of Markov chains on rainfall, sunshine, 

marketing, student admission, work-force planning, accounts receivable situation, 

and others have been carried out by many researchers. 

      According to Winston (1993), a random variable which changes over time 

may be applied in knowing how the price of a share of stock or a firm’s market 

price evolves over time. He explained how types of Markov chains have been 

applied in areas such as education, marketing, health services, finance, accounting 

and production.  

       Bessent and Bessent (1980) applied Markov chain to model the path of a 

student admission through the State College. Each student was observed at the 

beginning of each Fall semester. For example, if a student is a junior at the 

beginning of the Fall semester, there is percentage chance that he will be a senior 

at the beginning of the next Fall semester, a percentage chance that he will still be 

a junior and a percentage chance that he will quit. This was modeled with the use 

of Markov chain. 

        Pegels and Jelmert (1970), talks on how fresh blood obtained by a hospital 

will spoil if it is not transfused within the same day. Markov chain was used to 

determine two policies that were possible for determining the order in which 

blood is transfused. Thompson and McNeal (1967) were also able to model sales 

planning and control using absorbing Markov chains. 

         In a work-force planning, for example, a law firm of Mason and Burger 

employs three types of lawyers: junior lawyers, senior lawyers and partners. What 
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is the probability that a newly hired junior lawyer will leave the firm before 

becoming a partner? How long does a newly hired junior lawyer stay with the 

firm? The answers to these were obtained with the use of Markov chain. Hence, 

the firm was able to predict the number of employees of each type who will be 

available from the steady-state probabilities. 

         In Deming and Glassers (1968) article, a markovian analysis of the life of 

newspaper subscriptions was conducted. This enabled them to predict those who 

would cancel the subscription, those who would subscribe for one year and new 

entries. 

        The accounts receivable situation of a firm (Cyert, Davidson and Thompson 

1963) is often modeled as an absorbing Markov chain. Suppose a firm assumes 

that an amount is uncollectable if the account is more than three months over due. 

Then at the beginning of each month, each account may be collapsed into one of 

the following areas: 

     State 1: New account. 

     State 2: Payment on account is one month over due. 

     State 3: Payment on account is two month’s over due. 

     State 4: Payment on account is three month’s over due. 

     State 5:  Account has been paid. 

     State 6:  Account is written off as bad debt. 

The Markov chain was applied to describe how the status of an account 

changes from one month to the next month. 
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     From the literature review, it can be seen that various researchers have made 

use of Markov chains to model different areas of interest. These have informed 

the use of Markov chain to model rainfall and its corresponding duration of 

sunshine in Ghana (a case study of Accra, Kumasi and Tamale). 

 

Data Collection 

        The relevant data for the research are rainfall and sunshine figures (refer to 

appendix). Below is the mean monthly rainfall of Kumasi from January 2003 to 

December 2007. 

Kumasi Monthly Rainfall Total (mm)

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 32.9  74.5  73.1  129.5  188.8 254.6 95.3 26.8 99.5 180.1  163.2 30.9

2004 25.8  70.8  164.3  101  72.3 41.1 229.4 115 243.5 232.4  43.5 76.5

2005 12.5  48.9  84.2  146.4  272.1 121.3 18.3 36.7 174.1 236.9  49.8 29.8

2006 111.1  98.4  112.8  66.9  187.3 145.4 66.7 65.2 111.4 158.4  32.5 3.7

2007 0.2  16.4  56.2  310.9  164.2 176.0 192.9 117.7 534.5 153.9  51.7 19.8

 

 The data which were gathered from the Ghana Meteorological Agency are 

secondary type. They included daily and mean monthly rainfall and sunshine 

duration from 2003 to 2007. This data covered only three regions: Greater Accra 

was selected to represent the southern belt. This also represents coastal scrub, 

grassland, and strand and mangrove zone. Kumasi was selected to represent the 

middle belt of the country. It also represents moist-semi deciduous forest and rain 
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forest. Tamale was selected to represent the Northern belt. It also represents the 

Guinea and Sudan savanna. 

 

Outline of Dissertation 

The dissertation is outlined as follows: 

Chapter one gave the background of the study, the objectives of study, 

literature review, data collection and outline of dissertation. 

Chapter Two deals with the review of basic theory and methods of 

Markov chain. The aims are: the transient (short run) behavior of Markov chain, 

the steady-state probabilities to describe the long-run behavior or a Markov chain. 

The mean first passage time was used to find how long it takes to move from one 

state to another. Other statistical methods that can be used to model the weather 

for the three regions were also discussed. 

           Chapter Three is concerned with preliminary analysis of daily and monthly 

rainfall and sunshine in the five year period, from 2003 to 2007. The probability 

of occurrence of rainfall and duration of sunshine is put into a transition matrix 

which describes the short run behavior of the Markov chain. 

       In Chapter Four, both the management science software and MATLAB 

software were used to determine the steady-state probabilities and mean first 

passage times respectively of daily and monthly rainfall pattern and sunshine 

duration in the three towns. 

       Chapter Five looks at the summary of the report, the relevant discussion and 

necessary conclusions. All the important points concerning the objectives of the 
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report are summarized in this chapter. That apart, the chapter tackles the 

probability of rainfall and sunshine in each of the three regions. Conclusion gives 

the justification of the use of Markov chain in modeling and analyzing the 

sunshine and rainfall patterns in Ghana.  
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CHAPTER TWO 

 

REVIEW OF BASIC THEORY AND METHODS 

Introduction 

This chapter covers the basic theory and methods that would be used in 

modelling the rainfall and sunshine in the three regions. Other statistical methods 

that can also be used to model the data would also be discussed. These are Monte 

Carlo, Likelihood Estimation, Bayesian methods and Time Series- ARIMA. 

  

Stochastic Process 

Stochastic means random and probability models that describe a quantity 

that evolves randomly in time. A stochastic process is a sequence of random 

variables ሼܺ௨ , א ݑ  ሽ which we will sometimes denote by X. u is called the ܫ 

index and most commonly denotes time. Thus we say,  is the state system in 

time 

uX

u. I  is the index set. This is the set of times we wish to define for the 

particular process under consideration. The index set I will be either a discrete or 

a continuous set. If it is discrete (e.g. I = {0, 1, 2……………}) then we say that X 

is a discrete time stochastic process. If it is continuous (e.g.  I = [0, ∞)) then we 

say X is a continuous time stochastic process. Whether the index set I is discrete 

or continuous is important in determining how we mathematically study the 

process. 
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 State Space 

The other fundamental component (besides the index set I) in defining the 

structure of a stochastic process is the state space.  This is the set of all values that 

the process can take on. The concept of the sample space of a random variable is 

the sequence making up the process, which is denoted by S. 

 

Expectation of a Random 

Let X be a discrete random variable defined on a sample space S with 

probability mass function f(x). The expected value of X, also called the mean of X 

and denoted by E [X], is given by  

E [X] =  = ∑
∈sx

xxf )( ∑
∈sx

x P (X = x),     

if the sum is absolutely convergent. Note that the sample space of a quantitative 

random variable is always a subset of   R, the real line. Expectation is a very 

important quantity when evaluating a stochastic system. In financial markets, 

expected return is often to determine a ‘fair price’ for financial derivatives and 

other equalities (based on the notion of a fair game, for which a fair price to enter 

the game is where the expected net return is zero). When devising strategies for 

investment, expected profit is often used as a guide for developing optional 

strategies (e.g. a financial portfolio). 
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Conditional Expectation 

Given two events A and B with P (B) > 0, the conditional probability of A 

given B is written, P (A /B) = 
)(

)(
BP

BAP ∩
    

Given two (discrete) random variables X  and Y  the conditional expectation of X 

given , where yY = )( yYP =  > 0 is defined to be                  

 ∑ ==
x

yXE ))( = YxXxP /(= yY/

Note that this is just the mean of the conditional distribution of X given yY = . 

Conditioning on an event has the interpretation in that knowing the event 

 occurred gives us information about the likelihood of the outcomes of X.   }{ yY =

 

 Markov Chains 

A discrete-time stochastic process X is said to be a Markov chain if it has 

the Markov Property. 

Markov Property (Version 1) 

For any s, and any n ≥ 1 sii n ∈−10...

∑
∈SJ

ijP =∑
∈SJ

1)/( 01 === iXjXP   

Each row of P has entries that sum to one. In other words, we say the distribution 

of  given the entire past of process only depends on the immediate past. nX

Note that we are not saying that, for example X10 and X1 are independent. They 

are not. However, given X , for example, X
10

 is conditionally independent of X . 9 1
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The Markov property is that the distribution of where one goes to next depends 

only on where one is now, not on where one has been.  This property is a 

reasonable assumption for many, though certainly not all, real world processes. 

Note that, as with the notion of independence, in applied modeling the Markov 

property is not something we usually try to prove mathematically. It usually 

comes in the model as an assumption.  

Markov Property (Version 2) 

For any s,    siii n ∈−11,0 ...     and any n> 1 and m > 0 

)/(
)...,/(

11

11,00

−−+

−−+

===

===

nnmn

nnmn

iXsXP
iXiXsXP

 

In words, this says that the distribution of the process at any time point in the 

future given the moist recent past is independent of the earlier past.  

 

Classification of States 

       Some basic definitions are outlined below: 

(i) A state j is reachable from state i if there is a path leading from state i 

to state j. 

(ii)  Two states i and j are said to communicate if state j is reachable from           

state i, and state i is reachable from state j. 

(iii)  A set of states S in a Markov chain is a closed set if no state outside of 

is   reachable from any state in S. 

(iv)   A state i is an absorbing state if  1=ijP  . 
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(v) A state i is a transient state if there exists a state j that is reachable 

from state i, but the state i is not reachable from state j. 

(vi) If a state is not transient; it is called a recurrent state. 

(vii) A state j is periodic within period K> 1 if K is the smallest number 

such that all paths leading from state i back to state i have a length that 

is a multiple of K.  If a recurrent state is not periodic, it is referred to 

as aperiodic. 

(viii) If all states in a chain are recurrent, aperiodic, and communicate with 

each other the chain is a said to be ergodic. 

An example on how to describe the states in a markov chain is shown 

below. The Winston’s approach would be used to find the recurrent, transient 

and absorbing states for the following transition matrix. 

                                 1  2   3      4   5   6       7   8   9   10 

      

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000000001
0100000000
002.0000008.00
1000000000
01.000009.0000
00003.00007.00
00005.005.0000
004.000006.000
000003.01.03.03.00
0001000000

10
9
8
7
6
5
4
3
2
1
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Below is the state transition diagram for the transition probability matrix. 
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Figure 1: Graphical Representation of Transition Matrix. 

From Figure 1, the graphical representation of the transition matrix, of the 

given the states 1 and 10, a path from 1 to 10 is a sequence of transitions that 

begins in state and ends in state 10, such that each transition in the sequence has a 

probability of occurring.  

From the transition probability matrix as represented in Figure 1, state 9 is 

reachable from state 3 (via the path 3-8-2-5-6-9), thus states 2,3,5,6 and 8 are 

transient states. Also it is possible to go along the path 2-3-8-2-5 but state 5 is not 

reachable from state 6. Similarly, there is no way to return to state 2 from state 4. 

States 4 and 6 are said to communicate because, state 4 is reachable from 6, and 

state 6 is reachable from 4.  

Also, from the Markov Chain with transition matrix in Figure 1, the states 

1, 7 and 10 are closed states because, from observation once we enter a closed set 

we can never leave the closed set. The states 1, 7 and 10 also form a periodic 
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chain because, each state has period 3. For example if we begin in state 1, the 

only way to return to state 1 is to follow the path 1-7-10-1 for some number of 

times ( say, m). Hence, any return to state 1 will take 3m transitions, so state 1 has 

period 3. Wherever we are, we are sure to return three periods later. Hence states 

1, 7 and 10 is periodic markov chain with k=3. 

  State 9 is an absorbing state because Pii=1. Whenever enter an absorbing 

state, we never leave the state. State 9 can also be said to be a closed state 

containing only one state. State 9 is not transient hence; it is called a recurrent 

state. Finally, it can be said that the chain is not ergodic. 

An Ergodic Chain 

The transition matrix below represen s an example of an ergodic chain. t

   ܴ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵ
ଶ

ଶ
ଷ

0
ଵ
ଶ

0 ଵ
ଶ

0 ଵ
ସ

ଷ
ସے

ۑ
ۑ
ۑ
ې
 

 

321 3

12

1

1 1

/

//

/

/ /

4

23

3

2 4  

Figure 2: Graphical Representation of Transition Matrix R of an ergodic chain 

Firstly, the three states 1, 2 and 3 are said to communicate because, state 1 

is reachable from 2 and 3. State 2 is reachable from 1 and 3 while state 3 is 

reachable from 1 and 3. Secondly, none of the states is a transient state because 

state 1 is reachable from state 2, and state 2 is reachable from state 1. Hence, the 
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states are a recurrent state. Thirdly, because the states are not periodic, they are 

referred to as aperiodic. In conclusion since all the states in the chain are 

recurrent, aperiodic and communicate with each other the chain is said to be 

ergodic. 

A Nonergodic Chain 

 The transition matrix below represents an example of a nonergodic chain.  

 

  ܶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

4
3

4
100

3
1

3
200

00
2
1

2
1

00
2
1

2
1

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

21 3 4

1 1

3

1 1

1 21

/ /

/

/ /

/ //

2 3

4

2 4

2 32

 

Figure 3: Graphical Representation of Transition Matrix T of a nonergodic chain 

Firstly, the two states 1 and 2 are said to communicate because, state 1 is 

reachable from 2 while state 2 is reachable from 1. States 1 and 2 are not 

reachable from 3 and 4 and vice versa. Secondly, the states 1, 2, 3 and 4 are not a 

transient state because state 1 is not reachable from state 3, and state 2 is 

reachable from state 4. Hence, the states are not recurrent state. In conclusion 
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since all the states in the chain are not recurrent and communicate with each other 

the chain is said to be nonergodic. 

 

 The One-Step Transition Matrix 

We think of putting the 1-step transition probabilities  into a square 

matrix called the   1– step transition matrix, also called the transition probability 

matrix of the Markov chain. We will usually denote this matrix by P. The  

entry of P is .  

ijp

thji ),(

ijp

Furthermore, since  

∑
∈SJ

ijP =∑
∈SJ

1)/( 01 === iXjXP   

each row of P has entries that sum to one. In other words, each row of P is 

probability distribution over s (indeed, the  row of P is the conditional 

distribution of  =j given that

thi

nX iXn =−1 ). For this reason we say that P is a 

stochastic matrix. 

 It turns out that the transition matrix P gives an almost complete 

mathematical specification of the Markov Chain. In general, we would say that a 

stochastic process is specified mathematically, once we specify the state space 

and the joint distribution of any subset of random variables in the sequence 

making up the stochastic process. These are called the Finite-dimensional 

distribution of the stochastic process. So for a Markov chain, there is quite a lot of 

information we can determine from the transition matrix P. 
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the Chapman- Kolmogorov equation holds everywhere. It can shown that such 

selections exist whenever the time parameter set is countable whenever the joint 

distribution of any two of the random variables is absolutely continuous with 

respect to the product of the marginal distributions. Although the latter condition 

is always satisfied when the state space is countable, or more generally, when 

each random variable assumes a countable number of values with probability one, 

this case, being especially sample, is treated separately. The results are based on 

exploiting the device of using the marginal distribution when in doubt about what 

the conditional probability distribution should be. 

 

Steady-State Probabilities Theorem 

Let P be the transition matrix for an s-state ergodic chain. Then there exists a 

vector ]...[ 21 sππππ =  such that 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∞→

s

s

s

n

nP

πππ

πππ
πππ

...
......
......
......

...

...

21

21

21

lim

 

 Recall that the element of thij nP is  ).(nPij

The above theorem tells us that, for any initial state jijn
nP π=

∞→
)(lim  

Observe that for large n, nP  approaches a matrix with identical rows. This means 

that after a long time, the Markov chain settles down, and (independent of the 

initial state i ) there is a probability jπ  that we are in state j. That vector 
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]...[ 21 sππππ =

ij nP

 is often called the steady-state distribution, or equilibrium 

distribution for the Markov chain. 

From the theorem above, it can be observed that for large n and all i, 

jij nP π≅≅ )()+1(                                        (1) 

Since =+ )1(nijP (row i of nP ) (column j of P) 

We may write 

kj

sk

k
nik PP∑

=

=

=
1

)()ij nP +1(

sk

k
j ∑

=

=

=
1

π

P

                                                        (2) 

If n is large, substituting (1) into (2) yields 

kjkPπ                                                                        (3) 

In matrix form, the equation (3) may be written as 

ππ =

)()( 21

                                                                                (4) 

Unfortunately, the system of equations specified in (3) has an infinite 

number of solutions, because the rank of the P matrix always turns out to be less 

than s-1. 

To obtain unique values of the steady–state probabilities, it should that 

noted that for any n and any i, 

++ nPnP ii

....21 +++

1)(... =+ nPis                                                         (5) 

Letting n approach infinity in (5), we obtain  

1=sπππ                                                                        (6) 
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Thus, after replacing any of the equations in (4) by (6), we may use (4) to solve 

for the steady-state probabilities. 

 

Mean First Passage Times 

For an ergodic chain, let = expected number of transitions before we 

first reach state j , given that we are currently in state i ,  is called the mean 

first passage time from state i to state j . Assume that we currently in state i. Then 

with probability  , it will take one transition to go from state i to state j. For k≠j, 

we next go with probability  to state k. In this case, it will take an average of 

1+  transitions to go from i to j. This implies that 

ijM

ijM

ijP

ikP

kjM

)1()1( ∑
≠

++=
jk

kjikijij MPPM  

Since 1=+∑
≠ jk

ikij PP  

We may rewrite the last equation as 

kj
jk

ikij MPM ∑
≠

+=1               (7) 

By solving equation (7), we may find all the mean first passage times. It can be 

shown that            
i

iiM
π
1

=
         

 

This can simplify the use of (7). 

The equations below show the mean first passage times for the four-state 

matrix for Tamale, Kumasi and Accra. Because the four-state matrix will involve 
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16 equations with 16 unknown variables, the MATLAB software will be used to 

determine the mean first passage times. 

 

Mean First Passage Times for Two-State Ergodic Chain 

The analysis using the mean first passage times for a two-state chain will 

enable us to determine the average number of rainfall or number of sunshine 

duration tomorrow with respect to the average number of rainfall or number of 

sunshine duration today.  

 The equations below show how the mean passage time is calculated for a 

two-state chain. 

  Since kj
jk

ijij MPM ∑
≠

+= 1  

For   i=1; j=1; k=2 

     
 

211211 1 MPM +=            

For    i= 1; j= 2; k=1 

     
 

121112 1 MPM +=          

For    i=2; j=2; k=1 

     
 

121122 1 MPM +=       

For   i= 2; j= 1; j = 2 

       
  

212221 1 MPM +=         

Also  
 11

11
1
π

=M           
22

22
1
π

=M
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  Mean First Passage Times for Four-State Ergodic Chain  

The equations below show how the mean first passage time is calculated. 

 
kj

jk
ijij MPM ∑

≠

+= 1         

           For, i=1; j=1; k=2, 3, and 4: 

     
41143113211211 1 MPMPMPM +++=

       
 

           For, i=1; j=2; k=1, 3, and 4:  

   
42143213121112 1 MPMPMPM +++=

   
     

           For, i=1; j=3; k=1, 2, and 4: 

   
43142312131113 1 MPMPMPM +++=

   
      

For, i=1; j=4; k=1, 2, and 3: 

   
34132412141114 1 MPMPMPM +++=

   
      

For i=2; j=1; k=2, 3, and 4: 

   
41243123212221 1 MPMPMPM +++=

   
      

         For, i=2; j=2; k=1, 3, and 4: 

   
42343223122122 1 MPMPMPM +++=

   
      

 For, i=2; j=3; k=1, 2, and 4: 

   
43242322132123 1 MPMPMPM +++=

   
      

           For, i=2; j=4; k=1, 2, and 3: 

   
34232422142124 1 MPMPMPM +++=

   
      

  For, i=3; j=1; k=2, 3, and 4: 

   
41343133213231 1 MPMPMPM +++=

   
      

           For, i=3; j=2; k=1, 3, and 4: 
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33123132 1 MPMPM 423432 MP++= +
      

      

           For, i=3; j=3; k=1, 2, and 4: 

   
32133133 1 MPMPM 423423 MP++= +

   
      

           For, i=3; j=4; k=1, 2, and 3: 

   
32143134 1 MPMPM 343324 MP++= +

   
      

           For, i=4; j=1; k=2, 3, and 4: 

   
43214241 1 MPMPM 414431 MP++= +

   
      

           For, i=4; j=2; k=1, 3, and 4: 

   
43124142 1 MPMPM 424432 MP++= +

   
      

 For, i=4; j=3; k=1, 2, and 4: 

   
2342134142 1 MPMPM 4344 MP++= +

   
      

 For, i=2; j=3; k=1, 2 and 4:
  

   
42144144 1 MPMPM 344324 MP++= +

   
      

Also  
 1

so  
 3

33
1

=           
1
π

=           
2

22
1
π

=M  Al11M
π

M
4

44
1

=M  
π

To determine the Mean First Passage Tim  for the weather of each of the three 

 

e

regional capitals (Tamale, Kumasi and Accra) the MATLAB software were used 

to compute for each month by solving as system of equations. 
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Other Statistical Methods that can be used to Model the data 

Apart from Markov chains, there are other statistical methods that can be 

 Carlo Method, 

 method of maximum likelihood. He also 

demons

ive in somebody’s morning mail, 

but unf  to 

 

2 1

 

used in this research. Some are Maximum likelihood, Monte

ARIMA-Time series and Bayesian Estimation. 

The method of Maximum Likelihood 

In two papers published by R.A.Fisher, the prominent statistician proposed 

a general method of estimation called the

trated the advantages of this method by showing that it yields sufficient 

estimators whenever they exist and that maximum likelihood estimators are 

asymptotically minimum variance estimators. 

To help understand the principle on which the method of maximum 

likelihood is based, suppose that four letters arr

ortunately one of them is misplaced before the recipient has a chance

open it. If, among the remaining three letters, two contain credit card billings and 

the other one does not, what might be a good estimate of k, the total number of 

credit-card billings among the four letters received? Clearly, k must be two or 

three, and if we assume that each letter had the same chance of being misplaced,

we find that the probability of the observed data (two of the remaining letters 

contain credit-card billings) is 

ቀ2ቁ ቀ2ቁ
ൌ 2

1

ቀ4
3ቁ

 

for k = 2      and 
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ቀ3
2ቁ ቀ1

1ቁ

ቀ4
3ቁ

ൌ
3
4 

as our estimate of k the value which mfor k = 3. Therefore, if we choose aximizes 

dom sample from a 

 is 

a 

 

 of maximum likelihood c

f 

e 1: Given x ‘successes’ in n trails, and we want to find the maximum 

likeliho

Thus, we get      ூ௡ ௅
ௗఏ

the probability of getting the observed data, we obtain k = 3.We call this estimate 

a maximum likelihood estimate, and the method by which it is obtained, the 

method of maximum likelihood.    

Definition: If  are the values of a ranݔଵ, ,ଶݔ … , ௡ݔ

population with the parameter ߠ, the likelihood function of the sample

given by                          ܮሺߠሻ ൌ ݂ሺݔଵ, ,ଶݔ … , ;௡ݔ  within ߠ ሻ  for values ofߠ

given domain. Here ݂ሺݔଵ, ,ଶݔ … , ;௡ݔ  ሻ  in the value of the jointߠ

probability density of the random variables ଵܺ, ܺଶ , … , ܺ௡ at ଵܺ ൌ ,ଵݔ ܺଶ ൌ

,ଶݔ … , ܺ௡ ൌ  ௡ݔ

Thus, the method onsists of maximizing the 

likelihood function with respect to ߠ, and we refer the value of ߠ which 

maximizes the likelihood function as the maximum likelihood estimate o

 .ߠ

Cas
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od estimate of the parameter ߠ of the corresponding binomial distribution. 

Firstly, we find the value of  ߠ which maximizes ܮሺߠሻ ൌ ቀ݊
ቁݔ ௫ሺ1ߠ െ  ሻ௡ି௫  itߠ

will be convenient to make use of the fact that the value of ߠ which maximizes 

ሻߠ)ሻ will also maximize  In Lߠሺܮ ൌInቀ݊
ቁݔ ൅  ሻߠ-In(1.(n-x) + ߠIn.ݔ

ௗሾ ሺఏሻሿ ؠ ௫
ఏ

െ ௡ି௫
ଵିఏ

 .  



Second  for ߠ, we find that the 

likelihood function has a m u

ly, equating this derivative to 0 and solving

axim m at ߠ ൌ ௫
௡
 . This is t  maximum likelihood 

௫

he

estimate of the binominal parameter ߠ, and we refer to ൌ
௡ ఏ

^   as the correspondi

maximum likelihood estimator. 

ଵ ଶ ௡

ng 

Case 2: If ݔ , ݔ , . . , ݔ  are the values of a random sample from an 

experimental population, and we are to find the maximum likelihood estimator of 

its parameter ߠ.  

Firstly, since the likelihood function is given by                                 

ሻߠሺܮ      ൌ ݂ሺݔ , ݔ , … , ݔ ;  ሻߠ

    

ଵ ଶ ௡

 =  ∏ ݂ሺݔ௜ ;௡
௜ୀଵ  ሻߠ

    = ቀଵ
ఏ

ቁ
௡

. ݁
భ
ഇሺ∑೙

೔సభ  
ೣ೔ ሻ

differentiation of In ܮሺߠሻ with respect to ߠ yields  

ௗሾூ௡ ௅ ∑ ௜ୀଵݔ         
ሺఏሻሿ

ௗఏ
 = ൅

ఏ
ି௡ ଵ
ఏ మ ௜

Secondly, equating this derivative to zero and solv

e ߠ෠ ଵ

௡

ing for  ߠ, we get the maximum 

likelihood estimat ൌ
௡

.

෠ߠ ൌ  ҧݔ

Case 3: If ܺ te a r ple from a uniform 

population with ߙ n tha mple value (that is, the nth 

order statistic, Y timator of the parameter ߚ. Also, we can modify 

this estimator ߚ  it unbiased. 

∑ ௡ݔ ൌ ҧ ௜௜ୀଵݔ

Hence, the maximum likelihood estimator is 

ଵ, ܺଶ, … , ܺ௡  constitu andom sam

t largest saൌ 0, we can be show

n) is a biased es

to make
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Firstly, substituting into the formula for 

           ݃௡ሺݕ௡ሻ ൌ ݊. ݂ሺݕ௡ሻሾ׬ ݂ሺݔሻ݀ݔሿ௬೙
ିஶ

n-1 for െ∞ ൏ ௡ݕ ൏ ∞ we find that 

the sampling distribution of Yn is given by    

݃௡ሺݕ௡ሻ ൌ ݊. ଵ
ఉ

ሺ׬ ଵ
ఉ

ሻ௬೙ݔ݀
଴

n-1 

     ൌ ௡
ఉ೙ ௡ݕ

௡ିଵ            for 0 ൏ ௡ݕ ൏ ௡ሻݕand   ݃௡ሺ ߚ ൌ 0 elsewhere, and 

hence that   E( ௡ܻሻ ൌ ௡
೙ ׬ ௡ݕ

௡ఉ
଴  ௡ݕ݀

ఉ

   = ௡
௡ାଵ

 ߚ

Thus, ܧሺ ௡ܻሻ ്  and the nth order statistic is a biased estimator of the   ߚ

parameter ߚ. However, since ܧ ௡ାଵ
௡

ቀ . ௡ܻቁ ൌ ௡ାଵ
௡

. ௡
௡ାଵ

.  ߚ

                        ߚ =                                               

  It follows that ௡ାଵ
௡

 times the largest sample value is an unbiased estimator of the 

parameter ߚ. 

Finally, from the results above we can say that maximum likelihood estimators 

need not be unbiased. 

 

Monte Carlo method 

A Monte Carlo method is a technique that involves using random     

numbers and probability to solve problems. The term Monte Carlo method was 

coined by S. Ulam and Nicholas Metropolis in reference to games of chance, a 

popular attraction in Monte Carlo, Monaco (Hoffman, 1998; Metropolis and 

Ulam, 1949). 
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Monte Carlo simulation is a method for iteratively evaluating a 

deterministic model using sets of random numbers as inputs. This method is often 

used when the model is complex, nonlinear, or involves more than just a couple 

uncertain parameters. 

A Simulation can typically involve over 10000 evaluations of the model, a 

task which in the past was only practical using super computers. 

By using random inputs, you are essentially model into a stochastic model. 

The Monte Carlo method is just one of many methods for analyzing uncertainty 

propagation, where the goal is to determine how random variation, lack of 

knowledge, or error affects the sensitivity, performance, or reliability of the 

system that is being modelled. Monte Carlo simulation is categorized as a 

sampling method because the inputs are randomly generated from probability 

distributions to simulate the process of sampling from an actual population. So we 

try to choose a distribution for the inputs that most closely matches data we 

already have, or best represents our current state of knowledge. The data 

generated from the simulation can be represented as probability distributions (or 

histograms) or converted to error bars, reliability predictions, tolerance zones, and 

confidence intervals. 

STEPS: The Steps in Monte Carlo simulation corresponding to the uncertainty 

propagation are fairly simple, and can be easily implemented in Excel for simple 

models. All we need to do is to follow the five simple steps listed below: 

        Step 1: Create a parametric model, ),,..,,( 21 qxxxfy =  

       Step 2: Generate a set of random inputs,  .21 ,...,, iqii XXX
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        Step 3: Evaluate the model and store the results as  .iY

        Step 4: Repeat steps 2 and 3 for 1=i to n 

Step 5: Analyze the results using histograms, summary statistics,   

confidence intervals, etc. 

Monte Carlo Sampling: Random variations are represented using probability 

distributions. The procedure for generating random variables from given 

probability distributions is known as random variable generation or Monte Carlo 

Sampling. The principle of sampling is based on the frequency interpretation of 

probability and requires a steady stream of random numbers. We generate random 

numbers for this procedure using congruential methods. The most commonly used 

of the methods is the linear congruential method. Random numbers generated 

from a linear congruential generator use the following relation. 

 ) modulo m (i=0,1,2,…) ( 11 caxx ii += ++

This gives us the remainder from the division of )( 1 caxi ++ by m. The random 

numbers are delivered using the relation ,...)3,2,1( =i=
m
x

R i
i . 

For discrete distributions Monte Carlo sampling is achieved by allowing ranges of 

the random numbers according to the probabilities in the distribution. 

For continuous distributions, we generate random variables using one several 

algorithms, using the inverse transformation method and the acceptance-rejection 

method. The inverse transformation method requires a cumulative distribution 

function (c.d.f.) in closed form and consists of the following steps: 
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 Step 1:  Given a probability density function f(x), develop the cumulative 

distribution function as  ܨሺݔሻ ൌ ׬ ݂ሺݐሻ݀ݐ௫
ିஶ  

 Step 2:  Generate a random number r. 

 Step 3:    Set F(x) = r and solve for x. The variable x is then a random 

variate from the distribution whose probability density function (p.d.f.) is given 

by f(x). 

 

 The acceptance-rejection method requires the p.d.f. to be defined over a 

finite interval. Thus, given a probability density function f(x) over the interval 

ܽ ൑ ݔ ൑ ܾ, we execute the acceptance-rejection algorithm as follows: 

 Step 1:   Select a constant M such that M is the largest value of f(x) over 

the interval [a, b]. 

 Step 2:  Generate tw ra ,ଶ. o ndom numbersݎ ଵandݎ 

             Step 3:   Compute   כݔ ൌ ܽ ൅ ሺܾ െ ܽሻݎଵ. 

             Step 4:   Evaluate the function f(x) at the point כݔ. Let this be ݂ሺכݔሻ. 

              Step 5:   If ݎଶ ൏ ௙ሺ௫כሻ
ெ

, deliver כݔ as a random variate. Otherwise, reject כݔ 

and go back to step 2. 

Between these two methods, it is possible to generate random variates from 

almost all of the commonly used distributions. The one exception is the normal 

distribution. For the normal distribution, we generate random variates directly by 

transforming the random numbers ݎଵand ݎଶ into standardized variates, 

             ܼଵ ൌ ሺെ2 ݎ ݊ܫଵሻଵ
ଶൗ sin ଶݎߨ2      ܽ݊݀     ܼଶ ൌ ሺെ2 ݎ ݊ܫଵሻଵ

ଶൗ cos  ଶݎߨ2
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ARIMA-Time Series  

The concept of time series is a time dependent sequence Y1 , Y 2 …Y or 

{Y t },t

n

ε N where 1, 2…..N denote time steps. 

If a time series can be expressed as a known function then, it is said to be a 

deterministic time series, that is Y t  = F (t) 

If a time series can be expressed as Y t  = X (t), where X is a random variable then 

{Y t } is a stochastic time series. 

There are several possible objectives analyzing a time series. These objectives 

may be classified as description, explanation prediction and control. 

Traditional methods of time series analysis are mainly concerned with 

decomposing the variation in a series into the various components of trend, 

periodic and stochastic.  

If Y t  = Y  + et  Tt +
Nt∈∀   then the time series has a periodic component of 

period T. 

If Yt = y + βt + et   then there exists a linear trend with the slope being β. 

If Yt = y+ e t  the e t is the stochastic component of the time series 

A time series is said to be strictly stationary if the joint distribution of  

Xt1….Xtn   is the same as the joint distribution of   for all   TtnTt XX ++ ...1 TnT tt ++ ...1

In other words, shifting the time origin by an amount T has no effects on the joint 

distributions, which must therefore depend only on the intervals between t 1 ….t . n
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If there is trend in the mean then differencing the time series data will remove the 

trend and seasonality will be achieved. For non- seasonal data, first order 

differencing is usually sufficient to attain seasonality, so that the new series. 

         Y1 Y ……Y  is formed from the original series 2

1

1−n

}{ 1++ ∇== tt Xy − tXtX  

First- order difference is widely used. Occasionally second- order differencing is 

required using the order, where 2∇

   tttttt XXXXXX +−=∇−∇=∇ +++++ 12122
2 2

If there is a trend in variance, the series is made stationary by transforming the 

data as follows. 

Y t = U t  where U t = log X t  

Autoregression 

An Autoregression is a regression where the right- hand side variables are 

merely the values of the dependents variable in provision periods; they are time- 

logged observations. A complete random or white noise series has no discernible 

pattern or structure. By measuring and examining auto correlations for time tags 

of more than one period, evidence is provided on how values of a given series are 

related. 

   If a time series is stationary, we can easily model it via an equation with 

fixed coefficients estimated from horizontal observations. A non stationary is one 

where the structural relationships of the model change over time. If a 

nonstationary series is differenced one or more times and the differenced series 

become stationary, the series is said to be homogeneous. 
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        The autocorrelation function is extremely useful for describing the 

generating process used to develop a forecasting model. First-order 

autocorrelation is the autocorrelation of a time series in period t with time series 

observation in period t-1. Similarly, autocorrelation of higher orders refers to 

correlation with periods t-2, t-3 etc. 

        Important questions to ask about a time series are as follows 

1. Are the data random? Randomness 

2.   Are the data non stationary? If non stationary, the level of differencing at 

which the series become stationary. 

3.   Are the data seasonal? If seasonal, the length of seasonality 

Knowledge of these properties will permit us to produce better forecast. 

Autocorrelation Function 

Autocorrelation function measures the degree of correlation between 

neighboring observations in a time series.  

The autocorrelation function at lag k is defined as 

  ρ
])()([

)])([(
22

YktYt

YktYt
k YYE

YYE
μμ
μμ

−−
−−

=
+

+  

     ρ
KY

ktt
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YY

+

+=
σ

)cov( ,

 

The autocorrelation coefficient is estimated from sample observations using the 

formula         

∑
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Partial Autocorrelation Function   

Partial Autocorrelation function measures the degree of association 

between Y t  and Y   when the effects of other time lags on Y are held constant. 

We study partial autocorrelation when we are unaware of the appropriate order of 

the autoregressive process to fit the time series.  

kt+

The partial auto correlation function PACF denoted by ,...}2,1:{ =Φ kkk  the set 

of partial auto correlation at various lags are defined by 

  
k

k
kk P

P ∗

=Φ  

where P  is the k x k auto correlation matrix and  is  with the last column 

replaced by      and 

k
∗

kP kP

T
k ]...[ 21 ρρρ

  

 ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

−

−

1
....
....
....

1
1

321

211

121

kkk

k

k

k

ρρρ

ρρρ
ρρρ

ρ

And estimates of 1111 ρφφ == and 2
1

2
12

1

1

21

1

22 1
1

1

1

ρ
ρρ

ρ
ρ
ρρ
ρ

φ
−
−

==       and estimates of 

kkφ  can be obtained by replacing the 1ρ  by r . 1

Moving Average Models 

A moving-average (MA) model provides predictions based on a linear 

combination of past forecast errors and thus is similar to experimental smoothing 
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models. The order of the MA model refers to the number of parameters of the 

model. If the autocorrelation pattern in the time series residual requires a more 

complete model, a mixed model can be estimated. An auto regressive moving- 

average (ARMA) model of order (p, q) has auto correlation that diminish as the 

distance between residuals increase. Also, the patterns in the time series that can 

be described by ARMA processed are more general than those of either AR (p) or 

MA (q) models.  

Identification of AR (p), MA (q) and mixed ARMA (p,q) time series 

requires the computation and plotting of the sample auto correlation function ( 

ACF) (coefficients) of the time series data. Of the sample ACFs and PAFCFs for 

a time series appear to be generated by a particular time series model, then it is 

likely model generated the time series data. 

Examining plots of theoretical models will enable for actual time series to 

be identified better. Through careful examination of the ACF plots we can discern 

the true underling ARIMA process that gives rise to the time series. For example, 

the influence of the constant term can be found when the ACF and PACF are 

drawn. 

Differencing of time series for the purposes of identification Forecasters 

need only to identify the lowest level of differencing for which a stationary model 

is apparent seasonal time series often exhibit non stationary. In these situations, a 

forecaster must transform the time series to a stationary one by a mathematical 

transformation. One very useful transformation is natural logarithms. 
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AR (p) model cannot isolate certain data pattern when P is small. 

However, an alternative model the moving average model may isolate the pattern 

when AR (p) models fail. 

Word (1954) showed that any discrete time series can be expressed as an 

AR model, an MA model, or a combination called an ARMA model.MA models 

provide predictions of ௧ܻ  based on linear combinations of past forecast errors. In 

contrast, AR model expres ܻ e ctio ctua es of ௧ܻ .   s ௧  as a lin ar fun n of a l past valu

The general MA model is ௧ܻ ൌ ௧ ௜ ௘݁௧ିଶ െ ڮ െ ߤ ௤݁௧ି௤ߠ ൅ ݁ െ ߠ ݁௧ିଵ െ ߠ

݂ܫ   ߤ     ൌ 0, ݁ݒ݄ܽ ݁ݓ

 ௧ܻ ൌ ݁௧ െ ଵ݁௧ିଵߠ െ ଶ݁௧ିଶߠ െ ڮ െ  ௤݁௧ି௤ߠ

 Autoregressive Integrated Moving Average Model (ARIMA) 

ARIMA models can be purely seasonal in that only seasonal parameters 

are present examples include SAR, SMA and seasonal ARIMA models where the 

model includes parameters for the seasonal terms. Identification of purely 

seasonal models is similar to the identification process.   

For purely seasonal models only coefficients at the seasonal lags are 

examined. If a non-stationary time series which has variation in the mean is 

differenced to remove the variation the resulting time series is called an integrated 

time series. It is called an integrated model because the stationary model which is 

fitted to the differenced data has to be summed or integrated to provide a model 

for the non- stationary data.  
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Notational, all AR (p) and MA (q) models can be represented as ARIMA 

models: for example an AR (1) can be represented as ARIMA (1,0,0); that is no 

differencing and no MA part. 

The general model is ARIMA (p,d,q), where p is the order of the AR part, 

d the degree of differencing and q the order of the MA part 

Writing,  t
d

t
d

t YBYW )1( −=∇=

the general ARIMA process is of the form 
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An example of ARIMA (p,d,q,) is the ARIMA (1,1,1) which has one 

autoregressive parameter, one level of differencing and one MA parameter is 
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Autoregressive Moving Average 

A more general model is a mixture of the AR (p) and MA (q) models and 

is called an Autoregressive moving average model (ARMA) model. 

൅ ׎ ଶ ൅ ڮ ൅ ௣׎ ௧ܻି௣ ൅ ݁௧ െ ଵ݁௧ିଵߠ െ ଶ݁௧ିଶߠ െ ڮ െ ௤݁௧ି௤ ௧ܻߠ ൌ ߤ ଵ ௧ܻିଵ ൅ ଶ׎ ௧ܻି

݂ܫ  ݄݁݊ ߤ ݁ݒܽ  ൌ 0, ݐ ݁ݓ  ݄  

௧ܻ ൌ ଵ׎ ௧ܻିଵ ൅ ଶ׎ ௧ܻିଶ ൅ ڮ ൅ ௣׎ ௧ܻି௣ ൅ ݁௧ െ ଵ݁௧ିଵߠ െ ଶ݁௧ିଶߠ െ ڮ െ  ௤݁௧ି௤ߠ
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Like the AR (p) model, the ARMA (p, q) model has autocorrelation that diminish 

as that distance between residuals increases. However, the patterns in the time 

series that can be described by ARMA (p, q) processes are more general than 

o  AR   (q  models. th se of either  (p) or MA )

ିଵ ଵߠ               ARIMA (1, 0, 1) ௧ܻ ൌ ߤ ൅ ଵ׎ ௧ܻ ൅ ݁௧ െ ݁௧ିଵ           

௧ܻ ൌ ߤ ൅ ଵ׎ ௧ܻିଵ ൅ ଶ׎ ௧ܻିଶ ൅ ݁௧ െ  ଵ݁௧ିଵ          ARIMA (2, 0, 1)ߠ

It can be shown tha  i d MA (1, 1) model is stationary if െ1 ൏ ଵ׎ ൏ 1 t the m xe  ARI

and is invertible if    െ ׎ ൏ 1. 1 ൏ ଵ

The constant model is      ఓ
ሺଵି׎భሻ

     

The order of the model is Qs 

For a mixed seasonal autoregressive moving average model, both SAR 

and SMA parameters are used in the same way that non seasonal AR and MA 

parameters are used. A mixed SAR and S od e  as fo s MA m el is writt n llow

௧ܻ ൌ ௦׎ ௧ܻି௦ ൅ ڮ ൅ ௣௦׎ ௧ܻି௣௦ െ ௦݁௧ି௦ߠ െ ڮ െ ௘௦݁௧ିொ௦ߠ ൅ ݁௧ 

The order of the seasonal ARMA model is expressed in terms of both Ps 

and Qs. The identification of seasonal parameters is accomplished by the plotting 

and careful examination of the autocorrelation and partial autocorrelation of the 

stationary time series. First the autocorrelation patterns associated with purely 

seasonal analogous to those for nonseasonal models. The only difference is that 

none zero autocorrelations that forms the patterns occur at lags that are multiples 

of the number of periods per season. 

For purely SAR models, the autocorrelation die down and partial 

autocorrelation cut off after one seasonal lag of an SAR (2) model. Similarly the 
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partial autocorrelation die down for SMA models. Also the autocorrelation cut-off 

after one lag of an SMA (1) model and after two lag for an SMA (2) model. 

Finally for a mixed model with one SAR and one SMA parameter, both the 

theoretical correlation function and the partial autocorrelation function die down.   

In Table 1, the stationary and Invertibility conditions of specific time 

series models and the behaviour of their theoretical ACF and PACF functions are 

summarized. 

      Table 1:    Stationary and Invertibility conditions of Specific Time Series         

Model             Stationary            Invertibility       Auto correlation         Partial 

                        condition            conditions           coefficients        autocorrelation 

                                                                                                              coefficients 

ARIMA(1,d,0)   11 1<− <φ         none                  dies down        cuts off after one lag  

ARIMA(2,d,0)     
11

1
1

2

21

21

<<−
<−
<+

θ
φφ
φφ

     none                   dies down      cuts off after two lags 

ARIMA(0,d,1)       none              11 <θ          cuts off after one lag            dies down 

ARIMA(0,d,2)       none           
1

1
1

2

12

21

<
<−
<+

θ
θθ
θθ

      cuts off after two lags         dies down 

ARIMA(1,d,1)     11 1 <<− θ     11 1 <<− θ        dies down                         dies down 

 

 

It can be seen in the table 1 that the theoretical ACFs of both AR (1) and R (2) 

processes can die down in a damped exponential manner. Hence it is difficult to 
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distinguish between AR (1) and AR (2) models without examining the sample 

PACF(s). 

To whether distinguish between AR (1) and AR (2) models, it is important to 

determine   sample PACF(s) after one of two lags.  

In a similar way, we cannot look at only the sample PACF(s) of MA processes to 

distinguish between an MA(1) and an MA (2) process. Only by examining the 

behaviour of the sample ACF(s) to see when they cut off can we distinguish 

between them.  

In general, to identify the particular AR (p) MA (q) or ARIMA (p,q) process 

which generated the time series, we must examine the behaviour of both the 

sample ACFs and the sample PACFs. We must try to determine whether the 

function is decaying or cuts off. Finally the number of lags of coefficients 

examined must be large enough to identify whether a particular pattern in the 

coefficients dominates the movements. In general, at least ten lags should be 

examined. 

The seasonal part of an ARIMA model has the same structure as the non-

seasonal part; it may have an AR factor, an MA factor, and or an order of 

differencing. In the seasonal part of the model, all of these factors operate across 

multiples of lags (the number of periods in a season). 

 A seasonal ARIMA model classified as an ARIMA (p,d,q) x (P,D,Q) model, 

where  P = number of seasonal autoregressive (SAR) terms. 

           D = number of seasonal differences 

           Q = number of seasonal moving average (SMA) terms. 
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In identifying a seasonal model, the first step is to determine whether or not a 

seasonal difference is needed, in addition to or perhaps instead of a non-seasonal 

difference. One should look at time series plots and ACF and PACF for all 

possible combination of zero and one non- seasonal difference and zero or one 

seasonal difference. 

Box-Jenkins Method and ARIMA Modeling 

The Box-Jenkins Method of Modelling Time Series is a statistically 

sophisticated way of analyzing and building a forecasting model which best 

represents a time series. This technique has a number of advantages over other 

methods of time series analysis. 

Firstly it is logical and statistically accurate. Secondly, the method extracts 

a great deal of information from the historical time series data. Finally, the 

method result in an increase in forecast accuracy while keeping the number of 

parameters to a minimum in comparison with similar processes. At least 50 

observations are usually required for Box- Jenkins estimation. Even more 

observation is recommended for a seasonal model. 

Stage 1: Identification 

The first stage is the identification of the appropriate ARIMA models 

through the study of the Autocorrelation and Partial Autocorrelation functions for 

raw data. When the autocorrelations is very large at first and do not trail off 

towards zero quickly. Secondly, when they appear to be forming a sine wave 

pattern, but because the damping process is so slow, we can conclude that the 

process is nonstationary. Upon differencing to achieve stationary ARIMA process 

42 
 



forecasting, new diagrams of autocorrelation coefficients and partial 

autocorrelation coefficient are drawn. When these autocorrelations rapidly trail 

off towards zero and the partial autocorrelations out off after lag 1 then, both 

these patterns would indicate an ARIMA (p,r,q) model. However, this is only a 

tentative choice. 

The purpose of the identification phase is to choose a specific ARIMA 

mod  el from the general class of ARIMA (p, q) models donated as  

௧ܻ ൌ ଵ׎ ௧ܻିଵ ൅ ଶ׎ ௧ܻିଶ ൅ ڮ ൅ ௣׎ ௧ܻିଵ ൅ ݁௧ െ ଵ݁௧ିଵߠ െ  ଶ݁௧ିଶ               ሺ8ሻߠ

The selection of the appropriate p and q values requires examining the 

autocorrelation and partial autocorrelation coefficient calculated for the data 

If in equation 8, we let q=0 and p=0, 1, 2, 3…p                                       

Consec iut ve, equation 8 then becomes the equations stated below 

  ௧ܻ ൌ ݁௧                                                                                                          

 ଵ ൅       ௧ܻ ൌ ׎ ௧ܻି ݁௧                                                                                    

 ିଵ ିଶ௧ܻ ൌ ଵ׎ ௧ܻ ൅ ଶ׎ ௧ܻ ൅ ݁௧                                                                 

 ௧ܻ ൌ ଵ׎ ௧ܻିଵ ൅ ଶ׎ ௧ܻିଶ ൅ ଷ׎ ௧ܻିଷ ൅ ݁௧                                               

When the time order of equation (8) is p=0, the parameter ׎ଵ will have a 

value that is not stat tic different from zero. Thus the result would be an  is ally 

AR (0) process and ׎ଵ ൌ 0 . Alternatively, if the true order is p=1, ׎ଶ  will not be 

statistically different from zero. Finally, in general, the pth  parameter of an AR (p) 

process will only be statistically different from zero when the auto regressive 

(AR) process is at least of order p or higher. Identically the order of an AR 

process can be done by examining its partial autocorrelation coefficient. The order 
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is simply the same as the number of partial autocorrelation statistically different 

from zero. The partial autocorrelation up through p time lags will be statistically 

significant, while the remaining coefficients will be approximately equal to zero. 

This resulting value of p will be the order of the AR process. 

Stage 2: Estimation 

Once the preliminary model is chosen, the estimation stage begins. The 

estimates must be of the following model:ሺ1 െ ሻሺ1ܤ െ ሻܤଵ׎ ௧ܻ ൌ ݁௧  where the 

ሺ1 െ ሻܤ ௧ܻ are the differences of the original values expressed in terms of 

deviations? The purpose of estimates is to find the parameter estimates that 

minimize the mean square error (MSE). The process is iterative, and the final 

value of the parameter estimates may be significantly different from the initialized 

values of the estimation procedure. However, the estimates will usually converge 

on an optimal value for the parameters with a small number of iterations. ARIMA 

models can be can be fitted by least squares. An iterative non linear least squares 

procedure is applied to parameter estimates of an ARMA (p, q) model. 

The method minimizes the sum of squares of errors,∑ ݁௧
ଶ, given the form 

of the model and the data. This is the least squares method for fitting a modal to 

data. Since the procedure in general is non linear because of the moving average 

terms, the least squares process is non linear. 

Stage 3 : Diagnostic Testing 

Before the model is used for forecasting, it should be checked for 

adequacy. This diagnostic checking is done by examining the error terms et to be 

sure that they are random. If the error terms are statistically different from zero, 
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the modal is not considered adequate. If several auto-correlations are large we 

should return to the initial stage to select an alternative model, and then continue 

the analysis. 

To check for adequacy the autocorrelations of the residuals are 

diagnostically examined by calculating an X2 statistic 

 i the ܳ statistic The test statistic s 

 ܳ ൌ ݊ሺ݊ ൅ 2ሻ ∑ ሺ ೝ೔
మ

೙షೖ
௞
௜ ) 

Which is approximately distributed as a X2 with k-p-q degrees of freedom. 

 In this equation, n is the length of the time series 

 k= the first k autocorrelation being checked 

P= the order of the AR process  

q= order of the MA process 

r = the estimated autocorrelation coefficient of the ith residual term 

When the first k=24 autocorrelations are used for the test, the null and alternative 

hypothesis are as follows respectively: 

H0: the model is adequate  

H1: the model is not adequate 

The number of degrees of freedom (d.f.) = k-p-q. 

When the calculated value is less than the tabulated value we accept the 

null hypothesis at the 0.05 level and conclude that the model is adequate 

If the calculated value of Q is greater than X2 for k-p-q degrees of 

freedom, then the model should be considered inadequate. The forecaster should 

then return to selecting an alternative model and continue the Box-Jenkins 
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analysis until a satisfactory model is found.  

 Both diagnostic procedures aid the analysis to arrive at a final forecasting 

model batter neither procedure can be considered the final word. For example, if 

some large deviation from the forecast adequately can be explained as unusual 

and unrepeatable circumstances, these deviations can be ignored. 

 Finally if two or more models are judged to be about equal although no 

model is an exact fit, the principle of parsimony should be prevail. 

Stage 4: Forecasting    

We forecast for five steps ahead using the arrived ARIMA model with any 

observation number as the starting value. It is also where the analysis uses the 

model chosen to forecast the process ends. 
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Figure 4:  Schematic representation of Box- Jenkins Process 

 

Tools for Arima Model Identification  

 Two tools for model identification were identified Akaike’s information 

criteria and Schwarz’s Bayesian information criterion. 

Akaike’s Information 

The AIC which was proposed by Akaike uses sum of square error (SSE) 

method. In the implementation of the approach, a range of potential ARIMA 
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models is estimated by sum of square error (SSE), and for each, the AIC is 

calculated given by 

 ଶ௄݊ܫሺܵܵܧሻ ൅
௡

     where n is the 

 ݇ ൌ ݌ ൅ ݍ ൅ ܲ ൅ ܳ ൅ ݀ ൅  ܦܵ

total number of observation 

k = number of estimates + order of regular difference + product of 

seasonality and seasonal difference 

Given two or more competing models the one with the smaller AIC value 

will be selected. 

Schwarz’s Bayesian Information Criterion(BIC) 

 Schwar  AIC uses the sum of square error (SSE). It is given by z’s BIC like

ሻܧሺܵܵ݊ܫ   ൅ ௄ ூ௡ሺ௡ሻ
௡

 

 ber of observation  where n is the total num

 ݇ ൌ ݌ ൅ ݍ ൅ ܲ ൅ ܳ ൅ ݀ ൅  ܦܵ

 k = number of estimates + order of regular difference + product of 

seasonality and seasonal difference 

 

Bayesian Estimation 
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In Bayesian estimation the parameters are looked upon as random 

variables having prior distribution, usually reflecting the strength of ones belief 

about the possible values they can assume. The main problem of Bayesian 

estimation is that of combining prior feelings about a parameter with direct 

feelings about a parameter with direct sample evidence. This can be accomplished 

by determining ߮ሺݔ/ߠሻ, the conditional density of ߠ given ܺ ൌ  In contrast to .ݔ



the prior distribution of ߠ, this conditional distribution (which also reflects the 

direct sample evidence) is called the posterior distribution of  ߠ. 

  In general, if h(ߠሻ is the value of the prior distribution of ߠ at  ߠ ݈݈ܽ݉ݏ 

and we want to combine the information which it conveys with direct sample 

evidence about ߠ, for instance, the value of a statistic ܹ ൌ ሺݑ ଵܺ,ܺଶ, … , ܺ௡ሻ we 

determine the posterior distribution  me mula  of ߠby ans of the for

߮ሺݓ/ߠሻ ൌ
݂ሺߠ, ሻݓ

݃ሺݓሻ ൌ
݄ሺߠሻ. ݂ሺߠ/ݓሻ

݃ሺݓሻ  

Here ݂ሺߠ /ݓሻ is the value of the sampling distribution of w given  ߠ ൌ  at ߠ ݈݈ܽ݉ݏ

w, ݂ሺߠ,  and w, and ߠ ݈݈ܽ݉ݏ and W at ߠ ሻ is the value of the joint distribution ofݓ

g(w) is the value of the marginal distribution of W at w. Note that the above 

formula for ߮ሺݓ/ߠሻ is, in fact, an extension of Bayes’ theorem, which states that  

If B1,B2,…,Bk  constitute a partition of the sample space S and P(Bi)≠0 for 

i=1,2,…k then for any event A in S suc th tha  P(A)≠0 

ܲሺܤ௥ /ܣሻ ൌ
ܲሺܤ௥ሻ. ܲሺܤ/ܣ௥ሻ

∑ ܲሺܤ௜ሻ. ܲሺܤ/ܣ௜ሻ௞
௜ୀଵ

 

for r =1,2,…,k  to the continuous case. Hence, the term ‘Bayesian estimation’. 

Once the posterior distribution of a parameter has been obtained, it can be used to 

make probability statements about the parameter. 
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CHAPTER THREE 

 

PRELIMINARY ANALYSIS  

Introduction 

In this chapter, the various probabilities for each regional town will be 

transformed into a transition matrix. This will be used to analyze the short-run 

behavior of the Markov chain.  

Two-State Transition Matrix Representation of Tamale weather 

Analyzing Tamale weather for the five years, from 2003 to 2007, where 

the weather on the day depends on the previous day’s weather, for the months of 

January to December. 

The table 1 describes the two-state transition matrix of Tamale weather. 

From the table 1 below, state 1(RR) represents the probability of rainy today 

given that it rained yesterday. RS represents the probability of sunny today given 

that it rained yesterday. SR represents the probability of rainy today given that it 

was sandy yesterday. State (2) SS represents the probability of sunny today given 

that it was sunny yesterday. 
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Table 2: Two-State Transition Matrix of Tamale weather 

STATES PROBABILITY 

MONTH                               RR                RS                SR                  SS 

January                               0. 0060            0. 9940          0. 9136           0. 0864 

February                             0. 0050            0.9550           0. 9067           0.0933 

March                                 0. 0320            0.9680           0.9190            0. 0809 

April                                   0.0840             0.9160           0.9154            0.0846 

May                                    0.1150             0.8850           0.9110            0.0890 

June                                    0.1140             0.8660           0.9207            0.0793 

July                                     0.1870             0.8130            0.9340           0.0660 

August                                0.1900             0.8100            0.9420           0.0580 

September                           0.1800             0.8200           0.9333            0.0667 

October                               0.0680             0.9320           0.9026            0.0974 

November                           0.0110             0.9890           0.8998            0.1002 

December                           0.0070              0.9930           0.9019            0.0981 

Analysis of Figure 5 shows that the two-state 1 and 2 are reachable. They 

communicate with each other, form a closed set and there is no absorbing state. 

Also, the states are not periodic; hence, they are recurrent and aperiodic. Finally, 

since all the states in the chain are recurrent with each other, the graphical 

representation of transition matrix for each month is said to be ergodic. 
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Graphical representation of transition matrix for January and December of 

Tamale weather respectively 

                 January

0.994 

      

 

 

 

 

 

 

 

Figure 5: Markov chain for January and December of Tamale weather 

 

Two-State Transition Matrix Representation of Kumasi weather 

Analyzing Kumasi weather for the five years from 2003 to 2007, where 

the weather on the day depends on the previous day’s weather.   
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    Table 3: The Two-State Transition Matrix of Kumasi weather 

STATES PROBABILITY 

MONTH                          RR                      RS                    SR                SS 

January                         0. 0263                0. 9737          0. 9155          0. 0845 

February                       0. 0445                0.9555            0. 9011         0.0989 

March                           0. 0706                0.9294            0.9039          0. 0961 

April                             0.1086                 0.8914            0.8977          0.1023 

May                              0.1273                 0.8727            0.8983          0.1017 

June                              0.1062                0.8938             0.9284          0.0716 

July                               0.0867                0.9133             0.9481          0.0579 

August                          0.0520                0.9480             0.9579          0.0421 

September                     0.1673                0.8327             0.9438          0.0562 

October                         0.1384                0.8616             0.9039          0.0961 

November                     0.0490                0.9510             0.8925          0.1075 

December                     0.0231                0.9737             0.9088           0.0912 

 

Preliminary analysis of the Kumasi weather using the graphical 

presentation of the transition matrix shows that all the states are recurrent, 

aperiodic and communicate with each other. Hence, the states are said to be 

ergodic. 
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Graphical representation of transition of transition matrix for January and 

December of Kumasi weather are as shown. 
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Figure 6: Markov chain for January and December of Kumasi weather 

 

 

Two-State Transition Matrix Representation of Accra weather 

 Two-State analysis of Accra weather for five years has been represented 

in the transition matrix in the table 4 
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Table 4: The Two-State Transition Matrix of Accra Weather                               

STATES PROBABILITY 

MONTH                                  RR                RS                SR                SS 

January                                 0. 0069          0. 9931        0. 9275       0. 0725

February                               0. 0154          0.9486         0. 9579       0.0421 

March                                   0. 0654          0.9346         0.9160        0.0840 

April                                      0.1052          0.8948         0.9075        0.0925 

May                                       0.1822          0.8178         0.9088        0.0912 

June                                      0.2316           0.7684         0.9337        0.0663 

July                                       0.0751           0.9249         0.9420        0.0688 

August                                   0.0421          0.9579         0.9402        0.0598 

September                            0.0814           0.9126         0.9230         0.0770 

October                                0.0520           0.9480         0.9579         0.0421 

November                            0.0545           0.9455         0.8973         0.1027 

December                             0.0215          0.9785          0.9045         0.0925 

  

Analyzing Table 4 above, the two-state chain is ergodic. This is because 

the two states 1 and 2 are reachable. They communicate with each other. 

Secondly, they form a closed set and there is no absorbing state. Finally, the states 

are recurrent state and aperiodic, which implies that they are transition and not 

periodic. Hence, the states are said to be ergodic. 
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 Graphical Representation of trans

       

Figure 7: Markov chain for Januar

our-State Representation of Transition Matrix of Tamale weather 

here the 

wea

time, tomorrow will be 

rain

 the next page:  

represents 

state 1,

ition matrix for the Greater Accra 

January

 

y and December of Accra weather. 

 

F

Analyzing Tamale weather for the five years from 2003 to 2007, w
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tomorrow will be sunny. If yesterday was sunny and today is rainy, then 53% of 

the time, tomorrow will be rainy. Finally if yesterday was sunny and today is 

sunny, then 75% of the time, tomorrow will be sunny. 

 The transition matrix of the weather is shown in

Let RS denote that yesterday was rainy and today is sunny. RR 

 RS represents state 2, SR represents state 3 and SS represents state 4. 
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 SSSRRSRR  

SS
SR
RS
RR

⎥
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Figure 8: Markov chain of Tamale weather. 

Relatio ed. From the transition 

probab

nships between states 1, 2, 3 and 4 are outlin

ility of Tamale Weather, states 4 and 3 are reachable from state 1 (through 

the paths 1 – 2 – 3 and, 1 – 2 – 4 respectively). States 2 and 3 communicate (from 

2 to 3 and from 3 to 2). States 1, 2.3 and 4 form a closed set. There are no 

absorbing states; the states are not transient and periodic. Therefore the states are 

not recurrent and aperiodic. Since all the states are recurrent, aperiodic and 

communicate with each other, the chain is said to be ergodic. 
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Four-State Representation of Transition Matrix of Kumasi weather 

             here the 

trix of the weather is shown below: 

           

    Figure 9: Markov chain of Kumasi weather 

 A study of Kumasi weather for five years from 2003 to 2007, w

weather for the day depends on the last two previous day’s weather. If the last two 

days have been rainy, then 67% of the time, tomorrow will be rainy. If yesterday 

was rainy and today is sunny, then 60% of the time, tomorrow will be sunny. If 

yesterday was sunny and today is rainy, then 65% of the time, tomorrow will be 

rainy. Finally, if yesterday was sunny and today is sunny, then 55% of the time, 

tomorrow will be sunny. 

The transition ma
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Analyzing the transition matrix, there exits a relationship between states 1, 

2, 3 and 4. From the transition probability, states 4 and 3 are reachable from state 

1(through the path 1 – 2 – 3, 1 – 2 – 4). States 2 and 3 communicate (from 2 to 3 

and from 3 to 2). From the Markov Chain with transition matrix, states 1, 2, 3 and 

4 are closed sets. There are no absorbing states; the states are not transient and not 

periodic. Therefore the states are recurrent and aperiodic. Since all the states are 

recurrent, aperiodic and communicate with each other, the chain is said to be 

ergodic. 

 

 Four-State Representation of Transition Matrix of Accra weather 

The Accra weather for five years from 2003 to 2007, the weather for the 

day depends on the last two days weather. If the last two days have been rainy, 

then 41% of the time tomorrow will be rainy. If yesterday was rainy and today is 

sunny, then 57% tomorrow will be sunny. If yesterday was sunny and today is 

rainy, then 42% tomorrow will be rainy. Finally if yesterday was sunny and today 

is sunny, then 66% tomorrow will be sunny. Below is the transition matrix of 

ACCRA 

    SSSRRSRR

  

 SS
SR
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RR

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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  Figure 10: Markov chain of Accra weather 

From the transition probability matrix of Accra weather, states 4 and 3 are 

reachable from state 1(through the path 1 – 2 – 3, 1 – 2 – 4). States 2 and 3 

communicate (from 2 to 3 and from 3 to 2). From the Markov Chain with 

transition matrix, states 1, 2.3 and 4 are closed sets. There is no absorbing state. 

The states are not transient and not periodic. Therefore states are recurrent and 

aperiodic. Since all the states are recurrent, aperiodic and communicate with each 

other the chain are said to be ergodic. 

 

Summary: The Markov chain for the two-state transition matrix (where the 

weather of the day depends on the previous day) for Tamale, Kumasi and Accra 

weather indicated an ergodic chain. Also, the Markov chain for the four-state 

transition matrix (where the weather of the day depends on the last two days 

weather) indicated an ergodic chain for Tamale, Kumasi and Accra weather. 
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    CHAPTER FOUR 

 

FURTHER ANALYSIS 

Introduction 

 The understanding of steady state probabilities and the long–run behavior 

of Markov chains is vital. Hence, further analysis was conducted with the use of 

software (management science application software) to determine the steady state 

probabilities for the two-state and four-state for the Markov chain, and finally the 

use of MATLAB software to determine the mean first passage times. This chapter 

shall provide the steady-state probabilities and mean passage times for each of the 

three regional towns’ rainfall pattern and sunshine duration.  

Two-State steady State Probabilities of Tamale weather  

The table 5 describes the two-state steady states probability of Tamale 

weather. From the table 5 below, state 1(RR) represents the long run probability 

of rainy today given that it rained yesterday. RS represents the long run 

probability of sunny today given that it rained yesterday. SR represents the long 

run probability of rainy today given that it was sandy yesterday. State (2) SS 

represents the long run probability of sunny today given that it was sunny 

yesterday. 
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Table 5: Two-State Steady State Probabilities of Tamale Weather  

STEADY STATES PROBABILITY 

MONTH                                RR               RS                  SR                    SS

January                               0. 479           0. 521            0. 479             0. 521

February                             0. 477           0.523              0. 477             0.523 

March                                 0. 487           0.515              0.487              0. 515 

April                                   0.500            0.500              0.500              0.500 

May                                    0.507            0.493              0.507              0.493 

June                                    0.510            0.490              0.510             0.490 

July                                     0.535            0. 465             0.535             0.465 

August                                0.538            0.462               0.538            0.462 

September                           0.532            0.468              0.532             0.468 

October                               0.492            0.508              0.492             0.508 

November                           0.476            0.524              0.476             0.524 

December                           0.476             0.524              0.476             0.524 

  

Analyzing the Probabilities, it can be said that in the long run, the probability 

of it being rainy in any given day in the month of January is 0.479. The month of 

August has the highest probability, 0.538, of daily rainfall. Also, the months of 

November and December have the highest probability, 0.524, of sunshine. To the 

farmer in Tamale the month of August would be the appropriate month for 

planting and November or December the appropriate month for harvesting, 

storing of crops or cultivating of land.  
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Mean First Passage Times of Two-State of Tamale weather 

Below shows how the mean first passage times of Tamale weather for the month 

of January were computed. From Table 1 in chapter 3, the transition matrix of 

Tamale weather is obtained as 

ܲ ൌ ቀ0.0060 0.9940
0.9136 0.0864ቁ 

From Table 5, we obtain the steady state probability 

ଵߨ ൌ ଶߨ        0.479 ൌ 0.521 

where  ߨଵand  ߨଶ  ste y stat f onth of January are the ad e or the m

݉ଵଵ ൌ ଵ
గ

ൌ ଵ
଴.ସ଻ଽ

ൌ 2.0877 
భ

݉ଶଶ ൌ ଵ
గమ

ൌ ଵ
଴.ହଶଵ

ൌ 1.9194 

 

݉ଵଶ ൌ 1 ൅ 0.006݉              ,            0.994݉ଵଶ ൌ 1 ଵଶ

׵ ݉ଵଶ ൌ
1

0.994 ൌ 1.006 

 

݉ଶଵ ൌ 1 ൅ 0.0864݉ଶଵ           ,        0.9136݉ଶଵ ൌ 1 

׵  ݉ଶଵ ൌ
1

0.9136 ൌ 1.0946 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9194.10946.1
006.10877.2

M  

The rest of the months were generated by the same application as shown above.  
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The table 6 describes the Mean First Passage Time of two-state of Tamale 

weather. From the table 6 below, state 1(M11) represents the average number of 

days of rainfall before any rainfall in a particular month. State 2 (M22) represents 

the average number of days sunshine before any sunshine in a particular month.  

Table 6: Mean First Passage Times of Two-State of Tamale weather 

Mean First Passage Time 

MONTH         M11                  M12                       M21                       M22 

January         2.0877        1.006           1.0946          1.9194 

February       2.0964        1.005           1.1029          1.9120 

March           2.0533        1.0331         1.1029          1.9493 

April             2.0000        1.0917         1.0924          2.0000 

May              1.9724        1.1299          1.0977         2.0284 

June              1.9608        1.1287         1.0861        2.0408 

July               1.8692        1.2300         1.0707         2.1505 

August          1.8587        1.0616         1.2346         2.1645 

September    1.8797        1.0870          1.0715        2.1368 

October         2.0325       1.0730          1.1097          1.9685 

November     2.1008       1.0111          1.1114         1.9084 

December     2.1008        1.0070         1.0880          1.9084 

 

From table 6, M21 for January is 1.0946. This implies that there will be an average 

of 1.0946 days sunshine duration before any rainfall in the month of January, 

whilst an average of 1.007 days rainfall before sunshine duration in the month of 
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December. From the findings, Tamale will experience rainfall in the month of 

January if the region have experience bright sunshine for a day in the month. 

 

Two-State steady State Probabilities of Kumasi weather     

Table 7: Steady State Probabilities of the two-state chain of Kumasi weather 

STEADY STATE PROBABILITY 

MONTH                                  RR               RS               SR                  SS 

January                                 0. 485           0. 515         0. 485             0. 515

February                               0. 485           0.515          0. 485             0.515 

March                                   0. 493           0.501          0.493              0. 507 

April                                     0.502            0.498          0.502              0.498 

May                                      0.507            0.493          0.507              0.493 

June                                      0.509            0.491          0.509              0.491 

July                                       0.509           0. 497          0.509              0.491 

August                                   0.503           0.497           0.503             0.497 

September                             0.503           0.497            0.503            0.497 

October                                 0.512           0.488            0.512             0.488 

November                             0.484           0.516            0.484             0.516 

December                             0.482            0.518           0.482             0.520 

 

From the table 7, it can be said that the month of October has the highest 

probability of rain in a given day, whilst the month of December has the highest 

probability of sunshine in a particular day. From the findings the month of 

October will be appropriate for any individual or organization that needs rainfall 
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in its activities, whilst the month of December for harvesting, drying and storing 

of crops in the region.  

 

Mean First Passage Time of Two-State of Kumasi weather 

Below shows the mean passage times of Kumasi weather for the month of 

January. From table 2 in chapter 3, the transition matrix of Kumasi weather is 

obtained as 

ܲ ൌ ቀ0.0263 0.9737
0.9155 0.0845ቁ 

From table 7, we obtain the ste y t itiad  s ate probabil es 

ଵ ൌ ଶߨ        0.485 ൌ ߨ 0.515

where  ߨଵand  ߨଶ e steady sta  onth of January   are th te for the m

݉ଵଵ ൌ ଵ
గ

ൌ ଵ
଴.ସ଼ହ

ൌ 2.0619 
భ

݉ଶଶ ൌ
గ

ൌ
଴.ହଵହ

ଵ

మ

ଵ ൌ 1.9417 

݉ଵଶ ൌ 1 ൅ 0.0263݉ ଶ           ,              0.9737݉ଵଶ ൌ 1 ଵ

׵ ݉ଵଶ ൌ
1

0.9737 ൌ 1.0270 

 

݉ଶଵ ൌ 1 ൅ 0.0845݉ଶଵ            ,       0.9155݉ଶଵ ൌ 1 

׵  ݉ଶଵ ൌ
1

0.9155 ൌ 1.0923 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9417.10923.1
0270.10619.2

M  

The rest of the months were generated by the same application as shown above. 
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       Table 8:  Mean First Passage Time of Two-State of Kumasi weather  

Mean First Passage Time 

MONTH           M11                        M12                          M21                           M22 

January          2.0619        1.0270          1.0923          1.9417 

February         2.0619       1.0466           1.1098         1.9417 

March             2.0284       1.0996           1.1063         1.9724 

April               1.9920       1.1218           1.1140         2.0080 

May                1.9724       1.1406           1.1132         2.0284 

June                1.9646       1.1188           1.0771         2.0367 

July                 1.9460       1.0949           1.0547         2.0367 

August             1.9880      1.0549           1.0440         2.0367 

September       1.8832       1.2009           1.0595         2.1322 

October           1.9531       1.1606           1.1063         2.0492 

November       2.0661       1.0515           1.1204         1.9380 

December        2.0747       1.0236           1.1004        1.9305 

 

 From the table 8, M11 for January is 2.0619. This implies that, there will 

be an average of 2.0619 days rainfall before another rainfall in the month of 

January, while average of 1.9305 days sunshine duration before sunshine in the 

month of December. From the findings it will take an average of 2 days of bright 

sunshine in the month of December before bright sunshine in the next day in the 

region.  
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Two-State Steady State Probabilities of Accra weather       

 Table 9: Steady State Probabilities of the two-state chain of Accra weather 

STEADY STATES PROBABILITY 

MONTH                             RR                RS                  SR                SS 

January                            0. 483          0. 517             0. 483            0. 517 

February                          0. 480          0.520              0. 480            0.520 

March                              0. 495          0.505              0.495             0. 505 

April                                0.504           0.496              0.504             0.496 

May                                 0.526           0.474              0.526             0.474 

June                                 0.549          0.451               0.549             0.451 

July                                 0.502           0.498               0.502            0.498 

August                             0.495           0.503              0.495             0.497 

September                       0.503           0.497               0.503             0.497 

October                           0.504           0.496               0.504             0.496 

November                       0.487           0.513               0.487             0.513 

December                       0.480            0.520              0.480             0.520 

  

   The Steady State probabilities present a unique opportunity to streaming the 

long run behaviour of the weather of Accra. The month of April and October, 

have the highest probability, 0.504, of rainfall in a given day whilst the months of 

February and December have the highest probability, 0.520, of sunny conditions 

on a given day. From the findings the month of April and October will be 

appropriate month for the fisherman in the region in other to record a bumper 

harvest. 
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Mean First Passage Times of Two-State of Accra weather 

The mean passage time of Accra weather for the month of January is 

shown below. From table 3 in chapter, the transition matrix of Accra weather is 

obtained as 

ܲ ൌ ቀ0.0069 0.9931
0.9275 0.0725ቁ 

From table 9, we obtain the ste y t itiad  s ate probabil es 

ଵߨ ൌ ଶߨ        0.483 ൌ 0.517 

where  ߨଵand  ߨଶ  ste y stat f onth of January are the ad e or the m

݉ଵଵ ൌ ଵ
గ

ൌ ଵ
଴.ସ଼ଷ

ൌ 2.0704 
భ

݉ଶଶ ൌ ଵ
గమ

ൌ ଵ
଴.ହଵ଻

ൌ 1.9342 

 

݉ଵଶ ൌ 1 ൅ 0.0069݉ ଶ         ,                0.9931݉ଵଶ ൌ 1 ଵ

׵ ݉ଵଶ ൌ
1

0.9931 ൌ 1.0069 

 

݉ଶଵ ൌ 1 ൅ 0.0725݉ଶଵ          ,         0.9275݉ଶଵ ൌ 1 

׵  ݉ଶଵ ൌ
1

0.9275 ൌ 1.0782 

  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9342.10782.1
0069.10704.2

M  

The rest of the months were generated by the same application as shown above. 
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      Table 10: Mean First Passage Time of Accra weather 

 

 

 

Mean First Passage Time 

MONTH           M11                          M12                              M21                        M22 

January           2.0704         1.0069           1.0782         1.9342 

February          2.0833         1.0156          1.1001         1.9231 

March              2.0202         1.0670          1.0917         1.9802 

April                1.9841         1.1176          1.1019         2.0161 

May                 1.9011         1.2228          1.1004         2.1097 

June                 1.8215        1.3014          1.0710          2.2173 

July                  1.9920        1.0812          1.0759          2.0080 

August              2.0202        1.0440         1.0636          1.9802 

September        1.9881        1.0982          1.0934          2.0121 

October            1.9841        1.1269          1.1088          2.0161 

November         2.0534        1.0516         1.1145          1.9493 

December         2.0833        1.0220         1.1056           1.9231 

From the table 10, M12 for January is 1.0069. This implies that after a long 

time, there will be an average of 1.0069 days of rainfall before sunshine, while an 

average of 1.0813 days sunshine duration before rainfall for the month of January. 

From the findings Accra will experience an average of 1 day of rainfall before 

bright sunshine in the month of January. 
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Four-State Steady State Probabilities of Tamale weather 

We shall find the steady-state probabilities of Tamale weather given the 

transition matrix. The four-state representation of transition of Tamale weather 

was obtained in chapter three as 

       RR     RS       SR       SS      

           

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

75.025.000.000.0
00.000.047.053.0
52.048.000.000.0
00.000.042.058.0

SS
SR
RS
RR

   
From equation 4 (in chapter two) we obtain 
 

[ ]4321 ππππ = [ ]4321 ππππ
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Using the management science software, we obtain

ଵߨ ൌ 0.236,     ଶ ଷߨ      ൌ ସߨ       ݀݊ܽ      0.187 ൌ 0.390. 

 

ߨ ൌ 0.187, 

The value of ߨଵ ൌ 0.236   means that, if  it rained today, the probability of  

raining tomorrow is 0.236, regardless of whether it rained or was sunny yesterday.  
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Similarly,   ߨଶ ൌ 0.187  means that, if it rained today, the probability of a sunny 

tomorrow is 0.187, regardless of whether it rained or was sunny yesterday. 

Also,   ߨଷ ൌ 0.187   means that, if it is sunny today, the probability of a rainy 

tomorrow is 0.187, regardless of whether it rained or was sunny yesterday. 

Finally,    ߨସ ൌ 0.390  means that, if it is sunny today, the probability of a sunny 

tomorrow is 0.389, regardless of whether it rained or was sunny yesterday. 

 

Mean First Passage Times of Four-State of Tamale weather 

Using the transition matrix and steady state probabilities of Tamale 

eather, the mean first passage time can be calculated as follows. w

 

ଵଵܯ ൌ
1

0.236 ൌ 4.34 

ଶଶܯ ൌ
1

0.187 ൌ 5.35 

ଷଷܯ ൌ
1

0.187 ൌ 5.35 

ସସܯ ൌ
1

0.390 ൌ 2.56 
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Solving the matrix above as system of equations above using MATLAB software, 

we have 

 

  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5600.20000.42619.62634.8
7664.73400.52619.22634.4
5045.56800.23500.59434.6
8855.70610.53810.23400.4

M

Analysis of the result shows that after a long time, given that the last two 

days have been rainy, it will take an average of 4.34 days before we again have 

two rainy days. Similarly, given that the two days have been sunny, it will take an 

average of 2.56 days before we again have two sunny days. 

 

Four-State Steady State Probabilities of Kumasi weather  

The four-state representation of transition matrix of Kumasi weather was 

obtained in chapter three as   

                               RR     RS       SR       SS      

                           

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

55.045.000.000.0
00.000.035.065.0
60.040.000.000.0
00.000.033.067.0

SS
SR
RS
RR

From equation 4 (in chapter two) we obtain 

     [ ]4321 ππππ  = [ ]4321 ππππ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

55.045.000.000.0
00.000.035.065.0
60.040.000.000.0
00.000.033.067.0
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55.060.0

45.040.0

35.033.0

65.067.0

424

423

312

311

+=

+=

+=

+=

πππ

πππ

πππ

πππ

 Thus,              

14321 =+++ ππππ

Thus, ߨଵ ൌ 0

ଵߨ ൌ 0.371  means that, if  it rained today, the probability of it raining tomorrow 

is 0.371, regardless of whether it rained or was sunny yesterday. Similarly,   ߨଶ ൌ

0.189   means that, if it rained today, the probability of it being sunny tomorrow 

is 0.189, regardless of whether it rained or was sunny yesterday. Also,   ߨଷ ൌ

0.189  means that, if it sunny today, the probability of it rainy tomorrow is 0.189, 

regardless of whether it rained or was sunny yesterday. Finally, ߨସ ൌ 0.251  

means that, if it shined today, the probability of it sunny tomorrow is 0.251, 

regardless of whether it rained or was sunny yesterday. 

.371, ଶߨ   ൌ ଷߨ     ,0.189 ൌ ସߨ      ݀݊ܽ    0.189 ൌ 0.251 

 

 Mean First Passage Times of Four-State of Kumasi weather 

Using the transition matrix and steady state of Kumasi weather, the mean 

first passage times can be calculated as follows. 

ଵଵܯ                    ൌ
1

0.371 ൌ ଶଶܯ                             2.695 ൌ
1
.1 ൌ 5.291 0 89

ଷଷܯ  ൌ
1

0.189 ൌ ସସܯ                                5.291 ൌ
1

0.251 ൌ 3.984
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

−

−
−

−

1
1
1
1
1
1
1
1
1
1
1
1

55.000000
045.00045.00
0045.00045.0
000100
000010
000001
0004.000

6.000000
006.0004.0
000000
000000
000000

43

42

41

34

32

31

24

23

21

14

13

12

M
M
M
M
M
M
M
M
M
M
M
M

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−

−
−

−

000000
000000
000000
35.00065.000

0000065.0
0035.0000
100000
010000
001000
33.00033.000

033.00033.00
0000033.0
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By solving the above as system of equations using MATLAB software, we have 

 

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

984.38182.11919.50171.5
6162.6291.59697.27949.2
6465.30909.2291.51282.5
6768.61212.50303.3695.2

M

Analysis of Kumasi weather shows that after a long time, given that the 

last two days have been rainy, it will take an average of 2.695 days before we 

again have two rainy days. Similarly, given that the last two days have been 

sunny, it will take an average of 3.984 days before we again have two sunny days. 

 

Four-State Steady State Probabilities of Accra weather 

The four-state representation of transition matrix of Accra weather was 

obtained in chapter three as  

      RR     RS       SR       SS      

             

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

66.034.000.000.0
00.000.058.042.0
57.043.000.000.0
00.000.059.041.0

SS
SR
RS
RR

From equation 4 (in chapter two) we obtain 

     [ ]4321 ππππ  = [ ]4321 ππππ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

66.034.000.000.0
00.000.058.042.0
57.043.000.000.0
00.000.059.041.0
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        Thus, 

66.057.0

34.043.0

58.059.0

42.041.0

424

423

312

311

+=

+=

+=

+=

πππ

πππ

πππ

πππ

  

14321 =+++ ππππ

Thus 

ଵߨ ൌ 0.162   means that, if it rained today, the probability of it raining 

tomorrow is 0.162, regardless of whether it rained or was sunny yesterday.  

ଵߨ ൌ 0.162, ଶߨ   ൌ ଷߨ     ,0.228 ൌ ସߨ      ݀݊ܽ   0.228 ൌ 0.382 

Similarly,  ߨଶ ൌ 0.228    means that, if it rained today, the probability of it 

sunny tomorrow is 0.228, regardless of whether it rained or was sunny 

yesterday. Also,   ߨଷ ൌ 0.228   means that, if it sunny today, the probability of 

it rained tomorrow is 0.228, regardless of whether it rained or was sunny 

yesterday. Finally, ߨସ ൌ 0.382 means that, if it shined today, the probability of 

it sunny tomorrow is 0.382, regardless of whether it rained or was sunny 

yesterday. 

 

Mean First Passage Times of Four-State of Accra weather 

Using the transition matrix and steady state of Accra weather, the mean first 

passage time can be calculated as follows.  

ଵଵܯ ൌ
1

0.162 ൌ ଶଶܯ                             6.172 ൌ
1

0.228 ൌ 4.386 

ଷଷܯ  ൌ
1

0.228 ൌ ସସܯ                              4.386 ൌ
1

0.382 ൌ 2.618 
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⎥
⎥
⎥
⎥
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
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⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−

−
−

−
−−

−
−

1
1
1
1
1
1
1
1
1
1
1
1

34.000000000000
034.00034.00000000
0034.00034.0000000
00010058.00042.000
0000100000042.0
0000010058.0000
00043.000100000
59.000000010000

0057.00043.0001000
00000059.00059.000
000000059.00059.00
0000000000059.0

43

42

41

34

32

31

24

23

21

14

13

12

M
M
M
M
M
M
M
M
M
M
M
M
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By solving the above matrix as system of equations using MATLAB software, we 

have 

                          
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6180.29412.26530.40182.9
7577.43860.47119.10770.6
0458.37353.23860.47535.8
7407.44302.46949.11720.6

M

The Accra weather shows that after a long time, given that the last two days have 

been rainy, it will take an average of 6.172 days before we again have two rainy 

days. Similarly, given that the last two days have been sunny, it will take an 

average of 2.618 days before we again have two sunny days.  

Summary 

Analyzing the Two-State Steady State Probabilities of Tamale weather, it can 

be said that in the long run, the probability of it being rainy in any given day in 

the month of January is 0.479. The month of August has the highest probability, 

0.538, of daily rainfall. Also, the months of November and December have the 

highest probability, 0.524, of sunshine. The Two-State Mean First Passage Time 

for Tamale weather indicated M21 for January as 1.0946. This implies that there 

will be an average of 1.0946 days sunshine duration before any rainfall in the 

month of January, whilst an average of 1.007 days rainfall before sunshine 

duration in the month of December.  

Analyzing the Two-State Steady State Probability of Kumasi weather, it can 

be said that the month of October has the highest probability of rain in a given 

day, whilst the month of December has the highest probability of sunshine in a 

particular day. The Two-State Mean First Passage Time of Kumasi weather 

indicated M11 for January as 2.0619. This implies that, there will be an average of 
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2.0619 days rainfall before another rainfall in the month of January, while 

average of 1.9305 days sunshine duration before sunshine in the month of 

December.  

The Two-State Steady State probabilities of Accra weather present a unique 

opportunity to streaming the long run behaviour of the weather of Accra. The 

month of April and October, have the highest probability, 0.504, of rainfall in a 

given day whilst the months of February and December have the highest 

probability, 0.520, of sunny conditions on a given day. The Two-State Mean First 

Passage Time of Accra weather indicated M12 for January as 1.0069. This implies 

that after a long time, there will be an average of 1.0069 days of rainfall before 

sunshine, while an average of 1.0813 days sunshine duration before rainfall for 

the month of January. 

Finding of Four-State Steady Probability of Tamale weather shows that if 

it rained today, the probability of raining tomorrow is 0.236, regardless of 

whether it rained or was sunny yesterday. If it rained in Tamale today, the 

probability of a sunny tomorrow is 0.187, regardless of whether it rained or was 

sunny yesterday. If it is sunny Tamale today, the probability of a rainy tomorrow 

is 0.187, regardless of whether it rained or was sunny yesterday. If it is sunny 

Tamale today, the probability of a sunny tomorrow is 0.389, regardless of 

whether it rained or was sunny yesterday. Further analysis of the Tamale weather 

shows that after a long time, given that the last two days have been rainy, it will 

take an average of 4.34 days before we again have two rainy days. Similarly, 

given that the last two days have been sunny, it will take an average of 2.56 days 

before we again have two sunny days.  
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Finding of Four-State Steady Probability of Kumasi weather shows that, if 

it rained today, the probability of it raining tomorrow is 0.371, regardless of 

whether it rained or was sunny yesterday. If it rained Kumasi today, the 

probability of it being sunny tomorrow is 0.189, regardless of whether it rained or 

was sunny yesterday. Also, if it sunny in Kumasi today, the probability of it rainy 

tomorrow is 0.189, regardless of whether it rained or was sunny yesterday. 

Finally, if it shined today in Kumasi, the probability of it sunny tomorrow is 

0.251, regardless of whether it rained or was sunny yesterday. Analysis of 

Kumasi weather shows that after a long time, given that the last two days have 

been rainy, it will take an average of 2.695 days before we again have two rainy 

days. Similarly, given that the last two days have been sunny, it will take an 

average of 3.984 days before we again have two sunny days.  

Finding of Four-State Steady Probability of Accra weather shows that if it 

rained today, the probability of it raining tomorrow is 0.162, regardless of 

whether it rained or was sunny yesterday. If it rained today in Accra, the 

probability of it sunny tomorrow is 0.228, regardless of whether it rained or was 

sunny yesterday. Also, if it sunny today in Accra, the probability of it rained 

tomorrow is 0.228, regardless of whether it rained or was sunny yesterday. 

Finally, if it shined today in Accra, the probability of it sunny tomorrow is 0.382, 

regardless of whether it rained or was sunny yesterday. The Accra weather shows 

that after a long time, given that the last two days have been rainy, it will take an 

average of 6.172 days before we again have two rainy days. Similarly, given that 

the last two days have been sunny, it will take an average of 2.618 days before we 

again have two sunny days.  
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CHAPTER FIVE 

 

SUMMARY, DISCUSSION AND CONCLUSIONS 

        Summary 

In order to achieve the objectives, a theoretical basis was presented 

before adopting the three main approaches of Markov chain models which are: 

Transition Matrix, Steady- State Probabilities and Mean First Passage Times. 

The transition matrices allow us to predict the probability for the short-run for 

weather changes in the three towns. Also, out of the transition matrix the 

classifications of states are made for each Markov chain. Graphical 

representations of the transition matrix were drawn for each weather. The 

Steady-State Probabilities predict the long-run behavior of Markov chain. This 

was based on the condition that each of transition matrices for each month 

weather is an ergodic chain. Analysis was done by the application of 

Management science software and MATLAB. The Mean First Passage Times 

are the extension of the transition matrix and the Steady State Probabilities. 

The Mean First Passage Times enables the researcher to model the expected 

number of transitions before we first reach state j, given that we are currently 

in state i. This is found by the application of MATLAB software. Thus, the 

forecaster is able to predict the number of days of rainfall before sunshine in a 

particular month and vice versa. Finally, applications of all these three 

methods enable us to forecast the probability of rainfall in each day of a month 

or the entire month and the corresponding sunshine duration in the entire 
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month. Thus the forecast for short-run and long-run behaviour of rainfall 

pattern and sunshine duration for each of the three towns can be found in 

chapters three and four respectively. The average number of days of rainfall 

before the occurrence of sunshine and vice versa for each day or month of the 

three towns can be found in Chapter four. 

The study has shown that the states in each of the transition matrix for 

the weather of the three towns are recurrent, a periodic and communicate with 

each other. Thus the chains are ergodic.  

The two-state steady state probabilities of Tamale weather as discussed 

in table 5 shows that, the probability of it being rainy in any given day in the 

month of January is 0.479. The month of August has the highest probability, 

0.538 of daily rainfall. The months of November and December have the 

highest probability, 0.524 of daily sunshine. The two-state mean first passage 

times of Tamale weather as shown in Table 6 indicated an average of 1.0946 

days sunshine duration before any rainfall in the month of January, whilst an 

average of 1.007 days rainfall before sunshine duration in the month of 

December. 

The two-state steady state probabilities of Kumasi weather as 

discussed in Table 7 indicated the month of September has the highest 

probability of rainfall a given day, whilst the month of December has the 

highest probability of sunshine in a particular day. The two-state mean first 

passage time for Kumasi as shown in Table 8, shows that there will be an 

average of 2.0619 days rainfall before another rainfall in the month of January, 

whilst average of 1.9305 days sunshine duration before sunshine in the month 

of December. 
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The two-state steady state probabilities of Accra weather as shown in 

Table 9 indicated the month of April and October as having the highest 

probability, 0.504 of rainfall in a given day whilst, the month of February and 

December as having the highest probabilities, 0.520 of sunny conditions on a 

particular day. The two-state mean first passage time for Kumasi as discussed 

from Table 10 indicated in the month of January, there will be an average of 

1.0069 days rainfall before sunshine whilst, an average of 1.0813 days 

sunshine before rainfall. 

The four-state steady state probabilities for Tamale weather shows that 

states 1, 2, 3 and 4 are 0.236, 0.187, 0.187 and 0.390 respectively. As 

discussed Table 8, state 1 indicated that if it rained today, the probability of it 

raining tomorrow is 0.236, regardless of whether it rained or was sunny 

yesterday. The mean first passage times of the four-state of Tamale weather 

indicated that it will take an average of 4.34 days before we again have two 

rainy days. Similarly, given that the two days have been sunny, it will take an 

average of 2.56 days before we again have two sunny days. 

The four-state steady state probabilities of Kumasi weather shows that 

states 1, 2, 3 and 4 are 0.371, 0.189, 0.189 and 0.251 respectively. State 2 

indicated that if it rained today, the probability of it being sunny tomorrow is 

0.189 regardless of whether it rained or was sunny yesterday. The mean first 

passage times of the four-state of Kumasi weather as indicated in chapter 4 

shows that after a long time, given that the last two days have been rainy, it 

will take an average of 2.695 days before we again have two rainy days. 

Similarly, given that the last two days have been sunny, it will take an average 

of 3.984 days before we again have two sunny days. 
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The four-state steady state probabilities for Accra weather shows that 

states 1, 2, 3 and 4 are 0.162, 0.228, 0.228 and 0.382 respectively. State 3 

indicated that if it sunny today, the probability of it raining tomorrow is 0.228 

regardless of whether it rainy or was sunny yesterday. The mean first passage 

time of four-state of Accra weather shows that after a long time, given that the 

last two days have been rainy, it will take an average of 6.172 days before we 

again have two rainy days. Similarly, given that the last two days have been 

sunny, it will take an average of 2.618 days before we again have two sunny 

days. 

Further discussion of two-state and four-state steady state probabilities 

for each month of the three towns and its corresponding analysis of mean first 

passage times for the two-state and four-state has been provided in Chapter 

Four. Finally, from the two-state and the four-state will enable any forecaster 

to predict daily and monthly weather change for the three towns.  

  

Discussion 

Knowledge of the Transient (or short run behaviour) of Markov Chain, 

the Steady-State probabilities (the long- run behaviour) and the Mean First 

Passage Time (how long it takes to move from one state to another) of rainfall 

pattern and hours of bright sunshine in each of the three regions (Accra, 

Kumasi and Tamale) farmers, fishermen, industries, transport, communication, 

educational institutions and government will be able to include these two 

elements of weather any policy formulation.  

 Apart from the Markov Chain other advanced statistical modeling 

technique like the Auto Regressive Integrated Moving Average (ARIMA) 
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Times Series Analysis, Monte Carlo Method, Bayesian Estimation and 

Method of Maximum Likelihood can be used as discussed in chapter two.  

 Recommendations for further research should be on the following 

areas: Correlation between temperatures and solar irradiation in Ghana. 

Correlation between sunshine, rainfalls and bio-productive systems in Ghana. 

A Markov Analysis of any elements of weather and related diseases in Ghana.  

A Markovian Analysis of the life of Newspaper. A Markovian Analysis of 

purchase of a particular soft drink or alcoholic beverage with relation to any 

elements of weather.   

 

Conclusions 

From all the analysis of this research, it could be concluded that 

Kumasi has the highest rainfall pattern follow by Tamale and Accra. Also 

Tamale has the highest duration of sunshine followed by Accra and then 

Kumasi.  Secondly, Kumasi has the highest number of occurrence of daily 

rainfall compared to Tamale and Accra. Tamale has the highest average 

number of daily bright sunshine compared to Kumasi and Accra. This finding 

confirms what other researchers have made on the weather of the country. It 

would be recommended if further research is made to find whether factors 

such as deforestation, mining, construction or farming have any role to the 

findings.  
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APPENDICES 

 

Appendix A 

 

Kumasi Monthly Rainfall Total (mm)

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 32.9  74.5  73.1  129.5  188.8 254.6 95.3 26.8 99.5  180.1  163.2 30.9

2004 25.8  70.8  164.3  101  72.3 41.1 229.4 115 243.5  232.4  43.5 76.5

2005 12.5  48.9  84.2  146.4  272.1 121.3 18.3 36.7 174.1  236.9  49.8 29.8

2006 111.1  98.4  112.8  66.9  187.3 145.4 66.7 65.2 111.4  158.4  32.5 3.7

2007 0.2  16.4  56.2  310.9  164.2 176.0 192.9 117.7 534.5  153.9  51.7 19.8

 

 

Kumasi Mean Daily Duration of Bright Sunshine (hours) 

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 6.3  7.3  7.4  7.1 7.4 4.3 4.2 3.3 3.8  6.7  7.2  6.5

2004 6.0  6.3  6.1  6.4 6.2 4.4 2.5 2.5 4.3  6.1  6.8  5.5

2005 6.2  6.2  6.7  6.7 7.0 3.7 2.6 1.9 3.8  6.9  7.1  6.0

2006 6.3  6.5  5.1  6.7 6.6 5.9 3.8 3.2 3.1  5.7  7.2  5.9

2007 2.7  5.9  6.0  6.4 5.9 5.0 3.8 2.8 3.3  5.9  6.7  5.8
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Tamale Monthly Rainfall Total (mm) 

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 17.5  10.4  40.6  123.5 151.0 206.7 150.0 289.0 215.3  69.8  15.5 0.0

2004 14.5  0.8  34.1  67.2  133.2 147.0 209.3 264.8 149.1  33.9  48.1 0.0

2005 0.2  14.2  69.9  138.5 81.2 109.1 340.2 88.1 190.7  69.5  tr  40.9

2006 0.0  3.4  4.3  58.5  138.0 87.9 179.4 211.2 164.7  135.6  0.0  0.0

2007 0.0  0.0  29.1  82.8  137.4 85.0 160.3 204.6 278.9  68.5  0.0  0.0

 

 

                Tamale Mean Daily Duration of Bright Sunshine (hours)      

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 8.4  9.1  7.7  7.7 8.7 6.4 6.1 4.5 6.2 8.8  8.6  9.0

2004 8.4  7.0  5.7  6.9 7.6 6.7 5.3 5.1 5.7 9.1  8.8  8.2

2005 6.3  6.8  7.3  7.8 8.4 6.6 4.9 5.0 6.6 8.1  8.5  9.0

2006 8.5  9.0  7.5  8.2 7.2 7.5 6.5 5.7 5.3 8.3  8.9  8.4

2007 6.1  8.8  7.1  6.3 6.9 7.4 6.0 5.0 5.3 8.2  8.9  8.2
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Accra Mean Daily Duration of Bright Sunshine (hours) 

                        

Year Jan Feb March April May June July Aug Sept Oct     Nov Dec 

2003 7.1  8.0  7.2  7.4  8.4 5.0 7.3 5.5 5.6 8.6  8.5  7.4

2004 6.0  6.3  6.1  7.2  7.1 5.1 4.9 4.3 7.3 7.1  8.1  8.0

2005 4.9  7.0  6.8  7.1  7.2 4.3 5.1 4.6 6.2 8.2  8.4  8.1

2006 7.4  8.0  7.3  7.5  7.1 7.1 4.9 4.7 5.7 8.0  8.4  7.6

2007 3.7  7.2  6.3  7.9  6.8 5.1 5.4 4.9 6.1 7.7  7.8  7.2
 

 

                                     Accra Monthly Rainfall Total (mm)

                        

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

2003 2.6  9.4  25.1  215.0  71.2 302.0 36.8 25.9 39.8  102.6  41.1 15.5

2004 14.7  17.7  5.3  26.4  121.5 116.5 38.6 18.4 100.2  87.5  22.6 4.8

2005 Tr  7.5  127.0  32.3  109.0 167.2 46.5 27.7 28.0  91.0  85.5 56.2

2006 8.7  6.0  25.8  37.0  236.6 118.1 42.1 16.1 71.1  75.6  11.2 0.1

2007 0.0  17.4  62.5  84.4  145.7 166.0 117.9 70.1 89.1  66.1  44.4 4.0
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Appendix B 

 

Table of probability of rainfall for each month in each region for a five year period 

(2003-2007) 

MONTH                         TAMALE                 KUMASI                          ACCRA 

JANUARY                      0.0060                          0.0263                             0.0069 

FEBRUARY                     0.0050                           0.0445                             0.0154   

MARCH                            0.0320                           0.0706                            0.0654     

APRIL                               0.0840                             0.1086                             0.1052   

MAY                                 0.1150                              0.1273                             0.1822 

JUNE                                 0.1140                          0.1062                            0.3216 

JULY                                 0.1870                            0.0867                           0.0751 

AUGUST                       0.1900                            0.0520                          0.0421 

SEPTEMBER                   0.1800                            0.1673                           0.0874 

OCTOBER                        0.1680                               0.1384                              0.1126  

NOVEMBER                    0.0110                               0.0490                              0.0545    

DECEMBER                     0.0070                               0.0231                              0.0215 

TOTAL                     1                                       1                                  1 
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Table of probability of long hours of bright sunshine for each region (2003 to 2007) 

MONTH                         TAMALE                   KUMASI                          ACCRA 

  JANUARY                    0.0864                             0.0845                               0.0725 

  FEBRUARY                  0.0933                            0.0989                                0.0910 

MARCH                      0.0809                         0.0961                            0.0840 

APRIL                          0.0846                        0.1023                             0.0925 

MAY                            0.0890                        0.1017                             0.0912 

JUNE                           0.0793                         0.0716                            0.0663 

JULY                           0.0660                         0.0519                            0.0688 

AUGUST                     0.0580                         0.0421                             0.0598 

SEPTEMBER               0.0667                         0.0562                             0.0770 

OCTOBER                   0.0974                         0.0961                            0.0987 

NOVEMBER                0.1002                          0.1075                            0.1027 

DECEMBER                 0.0981                          0.0912                             0.0955 

TOTAL                     1                                       1                                  1 
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 Appendix C 

 

The two-state steady state probabilities of Tamale weather  

Transition matrix for January 

          R     S      
ܲ ൌ ܴ

ܵ ቀ
0.0060 0.9940
0.9136 0.0864ቁ 

           

                                

               [ ]21 ππ  = [ 21 ]ππ  ቀ0.0060 0.9940
0.9136 0.0864ቁ 

      Steady state equation 

  1π     = 0.0060 1π   + 0.9136 2π                                    

2π     = 0. 9940 1π  + 0.0864 2π                                    

ଵߨ ൅ ଶߨ ൌ 1                                                                    

 

Steady state probabilities are shown below 

    State                                      Probability
       1                                       0.479

 
       2                                           0.521

 
 

 

 

              R            S 
                           ܲ ൌ  ܴ

ܵ ቀ
0.479 0.521
0.479 0.521ቁ  

      

There is a probability of 0.479 that it will be raining tomorrow given that it is 

rainy today. There is a probability of 0.521 that if will sunny tomorrow given 

that it is sunny today. 
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The two-state steady state probabilities of Kumasi weather  

Transition matrix for January 

                                           R          S       
                          ܲ ൌ ܴ

ܵ ቀ
0.0263 0.9737
0.9155 0.0845ቁ 

                                

                [ ]21 ππ  = [ 21 ]ππ  ቀ0.0263 0.9737
0.9155 0.0845ቁ 

      Steady state equation 

  1π     = 0.0263 1π   + 0.9155 2π       

2π     = 0. 9737 1π  + 0.0845 2π          

ଵߨ ൅ ଶߨ ൌ 1                                         

 

Steady state probability is shown below 

          State                              Probability
            1                                     0.485
           2                                     0.515 

 

       

                                               

 

                                               R            S 
                                               ܲ ൌ  ܴ

ܵ ቀ
0.485 0.515
0.485 0.515ቁ  

      

There is a probability of 0.485 that it will be raining tomorrow given that it is   

rainy today. There is a probability of 0.515 that if will sunny tomorrow given 

that it is sunny today. 
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The two-state steady state probabilities for Accra weather for January 

              Steady state equations 

         R           S 
 ܴ
 ܵ ቀ

0.0069 0.9931
0.9275 0.0725ቁ 

     

          

                    [ ]21 ππ  =    [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0725.09275.0
9931.00069.0

21 ππ

1π    = 0.0069 1π  + 0.9275 2π        (1) 

2π   = 0.9931 1π  +   0.0752 2π      (2) 

ଵߨ                 ൅ ଶߨ ൌ 1                               (3) 

 

Steady state probabilities are shown below 

      State                              Probability
        1                                    0.483
       2                                    0.517 

    

                                              

       

 
 
 

 
                                                                R            S 

                                                                  ܲ ൌ  ܴ
ܵ ቀ

0.483 0.517
0.483 0.517ቁ     

There is a probability of 0.483 that it will be raining tomorrow given 

that it is rainy today. There is a probability of 0.517 that if will sunny 

tomorrow given that it is sunny today. 
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    Two-state steady state probabilities of Tamale weather (month of 

January) using    management science application software. 
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Steady state probability for two-state chain of Kumasi weather (month of 

January) using management science application software 
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Two-state steady state probabilities of Accra weather (month of January) 

using management science application software 
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Four-state steady state probabilities of Tamale weather using the 

management science software 
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Four-state steady state probabilities of Kumasi weather using the 

management science software 

 

 

 

102 
 



 

Four-state steady state probabilities of Accra weather using the 

management science software 
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      Appendix D 

 

Mean First Passage Times of Four-State of Tamale 

Below shows the equations that would be used to compute the mean passage times for 

a four-state chain  

ଶ ൌ 1 ൅ 0 ଶ   ଵܯ    ଵܯ58.                                                                            

ଵଷܯ   ൌ 1 ൅ ଵଷܯ0.58 ൅                                                         ଶଷܯ0.42

 ସ ൌ 1 ൅ ସ ൅ 0 ସ                ܯଵ ଵܯ0.58 ଶܯ42.                                                         

ଶଵܯ                  ൌ 1 ൅ ଷଵܯ0.58 ൅                                                          ସଵܯ0.42

ଶଷܯ    ൌ 1 ൅                                                                             ସଷܯ0.42

ଶସܯ    ൌ 1 ൅                                                                              ଷସܯ0.58

ଵ   ܯଷଵ ൌ 1 ൅ ଶܯ0.47                                                                               

          ଷଶ ଵଶ                 ܯ ൌ 1 ൅ ܯ0.53                                                                                

                          ସ ൌ ൅ 0 ସ ൅ 0 ସ  ଷܯ      1 ଵܯ53. ଶܯ47.                                                         

ଵ ସܯ      ൌ 1 ൅ ଷଵܯ0.25 ൅                                                         ସଵܯ0.75

                       ଶ ଶ ൅ ସଶܯ0.75 ସܯ          ൌ 1 ൅ ଷܯ0.25                                                        

ସଷܯ                             ൌ 1 ൅                                                                                      ସଷܯ0.75

Also  

ଵଵܯ                      ൌ
1

ଶଶܯ               0.236 ൌ
1

ଷଷܯ         0.187 ൌ
1

ସସܯ          0.187 ൌ
1

0.390           

By solving the matrix above as system of equations using MATLAB software, 

we have 

>> A=[0.42 0 0 0 0 0 0 0 0 0 0 0;0 0.42 0 0 -0.42 0 0 0 0 0 0 0;0 0 0.42 0 0 -0.42 0 0 0 

0 0 0;0 0 0 1 0 0 -0.58 0 0 -0.42 0 0;0 0 0 0 1 0 0 0 0 0 0 -0.42;0 0 0 0 0 1 0 0  -0.58 0 

0 0;0 0 0 -0.47 0 0 1 0 0 0 0 0;-0.53 0 0 0 0 0 0 1 0 0 0 0;0 0 -0.53 0 0 -0.47 0 0 1 0 0 
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0;0 0 0 0 0 0 -0.25 0 0 0.25 0 0;0 0 0 0 0 0 0 -0.25 0 0 0.25 0;0 0 0 0 0 0 0 0 0 0 0 

0.25]; 

>> b=[1;1;1;1;1;1;1;1;1;1;1;1]; 

>> M=A\b 

M = 2.3810, 5.0610, 7.8855, 6.943, 2.6800, 5.504, 4.2634, 2.2619, 7.7664, 8.2634,          

6.2619,    4.0000 

 

 

 

   Mean First Passage Times of Four-State of Kumasi 

Below shows the equations that would be used to compute the mean passage times for 

a four-state chain 

ଵଶ ଵଶ ܯ                          ൌ 1 ൅ ܯ0.67                                                                         

ଵଷܯ                                   ൌ 1 ൅ ଵଷܯ0.67 ൅                                                    ଶଷܯ0.33

 ସ                                ܯଵସ ൌ 1 ൅ ଵସܯ0.67 ൅ ଶܯ0.33                                                     

ଶଵܯ                                  ൌ 1 ൅ ଷଵܯ0.40 ൅                                                      ସଵܯ0.60

ଶଷܯ                                  ൌ 1 ൅                                                                            ସଷܯ0.60

ଶସܯ                                 ൌ 1 ൅                                                                            ଷସܯ0.40

                                ଷଵ ଶଵ ܯ     ൌ 1 ൅ ܯ0.35                                                                          

 ଶ ൌ 1 ൅ 0 ଶ   ଷܯ                               ଵܯ65.                                                                        

         ସ                                   ܯଷସ ൌ 1 ൅ ଵܯ0.65 ൅                                                        ଶସܯ0.35

ଵ ൌ 1 0 ଵ ൅ 0 ଵ  ସܯ                                      ൅ ଷܯ45. ସܯ55.                                                       

                         ଶ ൌ 1 ൅ 0 ଶ ସܯ                        ଷܯ45. ൅                                                      ସଶܯ0.55

ସଷܯ                                             ൌ 1 ൅                                                                           ସଷܯ0.45
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   Also  

ଵଵܯ                      ൌ
1

ଶଶܯ               0.371 ൌ
1

ଷଷܯ         0.189 ൌ
1

ସସܯ          0.189 ൌ
1

0.251           

By solving the above as system of equations using MATLAB software, we have 

>> C=[0.33 0 0 0 0 0 0 0 0 0 0 0;0 0.33 0 0 -0.33 0 0 0 0 0 0 0;0 0 0.33 0 0 -0.33 0 0 0 

0 0 0;0 0 0 1 0 0 -0.4 0 0 -0.6 0 0;0 0 0 0 1 0 0 0 0 0 0 -0.6;0 0 0 0 0 1 0 0 -0.4 0 0 0;0 

0 0 -0.35 0 0 1 0 0 0 0 0;-0.65 0 0 0 0 0 0 1 0 0 0 0;0 0 -0.65 0 0 -0.35 0 0 1 0 0 0;0 0 

0 0 0 0 -0.45 0 0 0.45 0 0;0 0 0 0 0 0 0 -0.45 0 0 0.45 0;0 0 0 0 0 0 0 0 0 0 0 0.55]; 

>> d=[1;1;1;1;1;1;1;1;1;1;1;1]; 

>> M=C\d 

M = 3.0303, 5.1212, 6.6768, 5.1282, 2.0909, 3.6465, 2.7949, 2.9697, 6.6162, 5.0171, 

5.1919, 1.8182 

 

   

        

   First Passage Times of Mean Four-State of Accra 

Below shows the equations that would be used to compute the mean passage times for 

a four-sta ha  te c in  

ଶ ଶ    ଵܯ       ൌ 1 ൅ ଵܯ0.41                                                                   

ଷ ൌ ଷ ൅ ଷ   ܯଵ 1 ൅ ଵܯ0.41 ଶܯ0.59                                                  

 ସ ൅ ସ 0 ସ                                                                   ܯଵ ൌ 1 ଵܯ0.41 ൅ ଶܯ59.    

ଶଵܯ                       ൌ 1 ൅ ଷଵܯ0.43 ൅                                                                       ସଵܯ0.47

ଶଷܯ        ൌ 1 ൅                                                                          ସଷܯ0.57

ଶସ ܯ        ൌ 1 ൅                                                                          ଷସܯ0.43

ଷଵ ଶଵ ܯ          ൌ 1 ൅ ܯ0.58                                                                        

ଷଶܯ                     ൌ 1 ൅                                                                          ଵଶܯ0.42
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                              ଷସ ଵସ ଶସ ܯ       ൌ 1 ൅ ܯ0.42 ൅ ܯ0.58                                                  

ସଵܯ     ൌ 1 ൅ ଷଵܯ0.34 ൅                                                  ସଵܯ0.66

                         ସଶ ଷଶ ܯ           ൌ 1 ൅ ܯ0.34 ൅                                                ସଶܯ0.66

ସଷܯ                               ൌ 1 ൅                                                                      ସଷܯ0.66

        Also  

ଵଵܯ        ൌ
1

ଶଶܯ               0.162 ൌ
1

ଷଷܯ         0.228 ൌ
1

ସସܯ          0.228 ൌ
1

0.382           

By solving the above matrix as system of equations using MATLAB software, we 

have 

>> E=[0.59 0 0 0 0 0 0 0 0 0 0 0;0 0.59 0 0 -0.59 0 0 0 0 0 0 0;0 0 0.59 0 0 -0.59 0 0 0 

0 0 0;0 0 0 1 0 0 -0.43 0 0 -0.57 0 0;0 0 0 0 1 0 0 0 0 0 0 -0.59;0 0 0 0 0 1 0 0 -0.43 0 

0 0;0 0 0 -0.58 0 0 1 0 0 0 0 0;-0.42 0 0 0 0 0 0 1 0 0 0 0;0 0 -0.42 0 0 -0.58 0 0 1 0 0 

0;0 0 0 0 0 0 -0.34 0 0 0.34 0 0;0 0 0 0 0 0 0 -0.34 0 0 0.34 0;0 0 0 0 0 0 0 0 0 0 0 

0.34]; 

>> f=[1;1;1;1;1;1;1;1;1;1;1;1]; 

>> M=E\f 

M =1.6949, 4.4302, 4.7407, 8.7535, 2.7353, 3.0458, 6.0770, 1.7119, 4.7577, 9.0182, 

4.6530,   2.9412 
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