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ABSTRACT

Optimization techniques are called into play everyday in decision making

processes involving resource allocation in almost every discipline. However, the

development and implementation of algorithm for solving optimization prob-

lems are fraught with many difficulties and frustrations.

The aim of this thesis has been to examine and identify some of the prob-

lems associated with the development and implementation of a class of opti-

mization algorithms and to develop a means of improving upon them. The

study made use of functions such as the Rosenbrock’s function that are known

to be a good test of robustness of these techniques.

The study covered a number of algorithms in both unconstrained and con-

strained optimization. Some of the problems encountered were in the im-

plementation of the Modified Newton’s method. It was discovered that if

at any iterate xk, the Hessian matrix H(xk) is not positive definite, then

−H(xk)
−1∇f(xk) is not a descent direction. In this case, we look for a new

direction where the Hessian matrix will be positive definite. Some of the

suggestions proposed in the literature did not always lead to a descent di-

rection. A new iterate could be found from xk+1 = xk − λkvk where vk is

the eigenvector corresponding to the negative eigenvalue of H(xk). However,

if this fails then an alternative is to make use of the Hessian at the previous

iterate H(xk−1) to compute the next iterate xk+1 which will hopefully give a

positive definite Hessian. If this also fails, then setting H(xk)
−1 = In con-

verts the Modified Newton’s method into the Steepest Descent method, where

xk+1 = xk − αk∇f(xk).

The study also revealed that to determine the various critical points of a

given function, it may require more than one technique. All the computations

in this work made use of OCTAVE, a public domain mathematical software.
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CHAPTER ONE

INTRODUCTION

Background of the Study

Optimization is the art and science of allocating scarce resources to the

best possible effect. The day-to-day actions chosen by decision-makers are

often modeled as solutions of maximization or minimization problems. A va-

riety of practical problems involving decision making can be formulated as

mathematical optimization problems. Mathematical optimization has become

an indispensable tool in many disciplines. Optimization techniques are called

into play everyday in questions of industrial planning, resource allocation,

scheduling, system design, analysis and operations.

A firm, may decide to choose policies that maximizes its sales, and profit;

it may on the other hand, choose a policy that minimizes its costs. A govern-

ment may choose policies to maximize its chance of re-election. A petroleum

refiner, for example, must decide where to buy crude oil, where to ship it for

processing, what products to convert it to, where to sell those products, and

at what prices. His overall objective will be to maximize his profits.

An airline must decide on how to route its planes and schedule its crews

at minimum cost while meeting constraints on airplane flight hours between

maintenance and maximum flight time for crews.

In portfolio optimization, we seek the most profitable way of investing some

capital in a set of n assets. The i-th component xi of the vector x represents the

investment in the i-th asset. The constraints might represent the limitations

on the total amount available for investment, or minimum acceptable value of

the expected return on the whole portfolio. The objective or cost function
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might represent the risk or variance of the portfolio return. In such a case,

the optimization problem in Equation 1.1 corresponds to choosing a portfolio

allocation that minimizes risk among all possible allocations that meet the

investor’s requirements.

In data fitting, the problem is to find a model, from a family of potential

models, that best fits some observed data and prior information. Given a set of

data points, the curve of best-fit is the curve that minimizes the errors between

the observed data and the predicting function. Here, the variables are the pa-

rameters of the model; the constraints may represent some prior information

about required limits on the parameters. The objective function might be a

measure of misfit or prediction error between the observed value and the value

predicted by the model. The optimization problem in this case, will be to find

the model parameters that are consistent with prior information and give the

smallest prediction error.

In mathematics, the term optimization or mathematical program-

ming refers to the study of problems in which one seeks to minimize or max-

imize a real-valued function, by systematically choosing the values of real or

integer variables from within an allowed set.

Statement of the Problem

Given a function

f : S ⊆ R
n → R (1.1)

we seek an element x∗ ∈ S such that

(a) f(x∗) ≤ f(x) for all x ∈ S, (in a minimization problem), or such that

(b) f(x∗) ≥ f(x) for all x ∈ S, (in a maximization problem).

Such a formulation is called an optimization problem or a mathemati-

cal programming problem. Many real-world and theoretical problems may
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be modelled in this general framework.

The optimization problem given in Equation 1.1 is an abstraction of mak-

ing the best possible choice of a vector x∗, in R
n from a set of possible choices.

The function f is called the objective function, or cost function. The

variable x∗ represents the choice made and the value of the objective function

f(x) represents the cost of choosing x∗. Since minimizing f is equivalent to

maximizing −f, we will consider only minimization problems. (We can also

think of −f as the value, or utility of choosing x∗).

In Equation 1.1, if the set S = R
n, then we say that the problem is uncon-

strained; in this case Equation 1.1 takes the form

minimize
x∈Rn

f(x) (1.2)

Example 1.1.

min
R2

f(x) = (x1 + x2 − 2)2 + (x1 − x2 + 3)4 (1.3)

On the other hand, if S ⊂ R
n, (S is a proper subset of R

n) then we say

that the problem is constrained.

Typically, this is often specified by a set of equalities and inequalities that

limit the possible choices of x. The elements of S are called feasible solutions.

A constrained minimization problem is of the form

minimize f(x) (1.4a)

subject to

gi(x) ≤ 0, i = 1, · · · , p (1.4b)

hi(x) = 0, i = 1, · · · , q (1.4c)

where f : R
n → R is the objective functional, and the functions h : R

n → R
p

and g : R
n → R

q are the equality and inequality constraints, respectively. A
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feasible solution that minimizes the objective function is called an optimal

solution. A solution of the optimization problem corresponds to a choice that

has minimum cost (or maximum utility), that meets the required constraints

and/or specifications.

An important class of optimization is linear programming, where the

objective function and the constraints are all linear.

minimize cTx (1.5a)

subject to

aT
i x ≤ bi, i = 1, · · · , r (1.5b)

aT
i x = bi, i = r + 1, · · · , m (1.5c)

Here, the vectors c, ai ∈ R
n, and the scalars bi, are the problem parameters

that specify the objective function and the constraints.

When the objective function or any of the constraints are nonlinear, we call

Equation 1.4 a nonlinear programming (NLP) problem or nonlinear

optimization problem.

Many of the large scale optimization techniques for solving linear program-

ming problems today can trace their origins to methods developed during

World War II to deal with the massive logistical issues raised by huge armies

having millions of men and machines. Techniques that promised to improve

the effectiveness of the war effort were desperately needed. For instance, there

was the need for optimum allocation of gasoline supplies among competing

campaigns.

The fundamentals of the first practical, large-scale optimization technique

in Linear Programming, the simplex method, were developed during World

War II. The simplex method was perfected shortly after the war when the

first electronic computers were becoming available. In fact, the early history

of computing is closely intertwined with the history of practical optimization.
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In the early years, the vast majority of all calculation on electronic computers

was devoted to optimization via the simplex method.

Although allocating resources to activities is the most common type of ap-

plication, linear programming has numerous other important applications as

well. In fact, any problem whose mathematical model fits the general format

for the linear programming model is a linear programming problem. Fur-

thermore, a remarkably efficient solution procedure, called the simplex method

is available for solving linear programming problems of even enormous size.

These are some of the reasons why linear programming has had tremendous

impact in industry in recent decades.

A sub-field of Linear Programming is integer programming, which stud-

ies linear programming problems in which some or all variables are constrained

to take on integer values.

Purpose of the Study

Studies into Optimization techniques are well documented in the literature.

Many of these researchers have proposed various modifications to some of the

Optimization techniques to go round problems that have been encountered in

the implementation of the procedures and algorithms of these techniques.

This research is also concerned with the study of Optimization techniques.

The purpose of the study is as follows:

1. to carry out a general study of the various Optimization techniques;

2. to highlight the strengths and weaknesses of various Optimization tech-

niques by the use of some test functions;

3. to identify possible problems associated with the implementation of some

of the procedures and algorithms that are used in Optimization tech-

niques;
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4. to be able to make appropriate recommendations for solving possible

problems associated with proposed methods of some techniques.

Notations and Mathematical Background

Basic concepts in Optimization rely on techniques in multi-variable calculus

and numerical linear algebra, see for example, Broyden (1975).

A vector in x ∈ R
n will be represented by

x = (x1, x2, · · · , xn)T

where the superscript T denote transposition of x. An n × n matrix will be

represented by a bold upper case letter

A =



















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



















The gradient vector, or vector of first partial derivatives of the function

f : R
n → R, is defined as

∇f(x) =





























∂f

∂x1

∂f

∂x2
...

∂f

∂xn





























x

The gradient vector, ∇f(x), points in the direction where f is increasing most

rapidly, which is the direction of steepest ascent. It follows that −∇f(x)

points in the direction where the function is decreasing most rapidly, called

the direction of steepest descent.

The Hessian matrix, or matrix of second-order partial derivatives of f ,

written as ∇2f(x), and denoted by
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H(x) = ∇2f(x) =





























∂2f

∂x2
1

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f

∂xn∂x1

∂2f

∂xn∂x2

· · · ∂2f

∂x2
n





























is square and symmetric if f is twice continuously differentiable. The Hessian

gives information about the curvature of f at any given point x.

For a function of one variable, h : R → R, the curvature at a point xk is

simply the second derivative h′′(xk) at that point. For a function of several

variables, f : R
n → R, the curvature at a point xk is given by the Hessian

matrix H(xk).

Example 1.2. Let

f(x) = x4
1 + x1x2 + (1 + x2)

2. (1.6)

The gradient of the function f at x is given by

∇f(x) =







4x3
1 + x2

x1 + 2 + 2x2







and the Hessian is given by

H(x) =







12x2
1 1

1 2







At the point x0 = [0; 0],

∇f(x0) =







0

2







and the Hessian is

H(x0) =







0 1

1 2
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At another point, say x1 = [0.75,−0.25],

∇f(x1) =







1.4375

2.2500







and the Hessian is

H(x1) =







6.74998 1

1 2







Definition 1.1. Quadratic Forms

Let A be an n×n symmetric matrix. The quadratic form q(x), associated

with the matrix A is defined by

q(x) = xTAx.

For n = 2, a quadratic form on R
2 takes the form

q(x) =

[

x1 x2

]







a11 a12

a12 a22













x1

x2






= a11x

2
1 + 2a12x1x2 + a22x

2
2

Similarly, a quadratic form on R
3 takes the form

q(x) =

[

x1 x2 x3

]













a11 a12 a13

a12 a22 a23

a13 a23 a33

























x1

x2

x3













= a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3

A quadratic form q(x) is called

(a) positive definite if q(x) = xTAx > 0 for all nonzero vectors x ∈ R
n;

(b) positive semidefinite if q(x) = xTAx ≥ 0 for all nonzero vectors x ∈ R
n;

(c) negative semidefinite if q(x) = xTAx ≤ 0 for all nonzero vectors

x ∈ R
n;
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(d) negative definite if q(x) = xTAx < 0 for all nonzero vectors x ∈ R
n;

(e) indefinite if

(i) q(x) = xT Ax > 0 for some x ∈ R
n and

(ii) q(x) = xT Ax < 0 for other x ∈ R
n.

Each of the following is a necessary and sufficient condition for a real sym-

metric matrix A to be positive definite.

(a) xT Ax > 0 for all nonzero vectors x ∈ R
n;

(b) Each eigenvalue of A satisfies λi > 0.

A simpler test for positive definiteness, using leading principal minors

is given below.

Definition 1.2. Leading Principal Minors

Given an n × n matrix A, the k-th leading principal minor Mk is the

determinant of the k × k submatrix obtained by deleting the last n − k rows

and columns from A.

Example 1.3. For a 3 × 3 matrix A, the three leading principal minors are

M1 = |a11| , M2 =

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

∣

∣

, M3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Test for Definiteness Using Principal Minors

Let A be an n × n symmetric matrix. If

(a) Mk > 0, k = 1, · · · , n then A is positive definite.

(b) Mk ≥ 0, k = 1, · · · , n then A is positive semidefinite.
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(c) Mk 6= 0, k = 1, · · · , n, but Mk > 0, and Mk < 0, for different values of k,

then A is indefinite.

(d) A symmetric n × n matrix A is positive definite ⇐⇒ −A is negative

definite. Since

det(−A) = (−1)n
det(A)















> 0, if n is even

< 0, if n is odd,

if

(i) Mk < 0, for odd k, and Mk > 0 for even k, then A is negative definite.

(ii) Mk ≤ 0, for odd k, and Mk ≥ 0 for even k, then A is negative

semidefinite.

Example 1.4. The following are examples of quadratic forms on R
2.

(a)

[

x1 x2

]







2 0

0 3













x1

x2






= 2x2

1 + 3x2
2, (positive definite)

(b)

[

x1 x2

]







−2 0

0 −3













x1

x2






= −2x2

1 − 3x2
2, (negative definite)

(c)

[

x1 x2

]







4 0

0 −5













x1

x2






= 4x2

1 − 5x2
2, (indefinite)

(d)

[

x1 x2

]







1 −1

−1 1













x1

x2






= x2

1 − 2x1x2 + x2
2, (positive semidefinite).

The graphs of the above quadratic forms are given in Figure 1 below.
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Figure 1: Graphs of various quadratic forms in standard position

The quadratic form of a function given by

q(x) =
1

2
xTAx− bTx + c

has its gradient to be

∇q(x) = Ax− b.

This is because

∇[
1

2
(xT (Ax))] −∇(bTx) + ∇(c) =

1

2
[IAx + ATx] −∇(xTb)

=
1

2
[Ax + Ax] − Ib

= Ax− b

since the matrix A is symmetric. The consequence of this is that ∇q(x) = 0,

and that q has a stationary point at the solution of Ax = b. Therefore, solving

Ax = b, finds the minimum of q.

Convex Sets and Convex Functions

Some functions have a nonnegative second derivative everywhere, and such

functions are referred to as convex. A simple example is the function

f(x) = x2. For functions of several variables f : R
n → R, a nonnegative second
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derivative means that the Hessian matrix H(x) is nonnegative definite (that is,

all eigenvalues are larger than or equal to zero). The reason we are interested

in convex functions is found in the following useful results:

Definition 1.3. Convex sets A set S is convex if the line segment joining

any two points x, y in S also lies in S. That is, for any x, y ∈ S, and 0 ≤ t ≤ 1,

we have

tx + (1 − t)y ∈ S.

Definition 1.4. Convex functions

(a) A real-valued function f defined on an interval (or on any convex subset

S of some vector space) is called convex, if for any two points x and y in

its domain, and any t in [0, 1], we have

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y). (1.7a)

(b) A real-valued function f, is said to be strictly convex if

f(tx + (1 − t)y) < tf(x) + (1 − t)f(y) (1.7b)

for any t in [0, 1] and x 6= y.

(c) A real-valued function f, is said to be concave if (−f) is convex.
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Figure 2: A convex function on an interval

Examples of convex functions f : R → R are f(x) = x2, f(x) = ex,

f(x) = |x|. Example of concave functions are f(x) = ln(x), f(x) =
√

(x).

With t = 1/2, Equation 1.7a becomes

f

(

x + y

2

)

≤ f(x) + f(y)

2
(1.8)

for all x and y in S.

Theorem 1.1. A continuously differentiable function f is convex on a set C,

if and only if f(y) ≥ f(x) + f ′(x)(y − x), for all x, y,∈ C.

Proof. (=⇒:) Assume f is convex. Then, for all x, y ∈ C,

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y)

f(x + t(y − x)) ≤ f(x) + t(f(y) − f(x))

(x + t(y − x)) − f(x)

t
≤ f(y) − f(x)

13



Taking the limit as t → 0 gives

f ′(x)(y − x) ≤ f(y) − f(x)

f ′(x)(y − x) + f(x) ≤ f(y)

(⇐=:) Let x = (1 − t)x1 + tx2. Then, by assumption

f(x1) ≥ f(x)(x1 − x)f ′(x)

f(x2) ≥ f(x)(x2 − x)f ′(x)

Geometrically, the above theorem says that a convex function lies above all of

its tangents.

f(y) ≥ f(x) + f ′(x)(y − x)

if at x = x∗, f ′(x∗) = 0 then f(y) ≥ f(x∗), ∀y ∈ R

Remark 1.1. Any local minimum of a convex function is also a global mini-

mum. A strictly convex function will have at most one global minimum.

A twice differentiable function of one variable is convex on an interval if

and only if its second derivative is non-negative there. This gives a practical

test for convexity. If its second derivative is positive then it is strictly convex,

but the converse does not hold, as shown by f(x) = x4.

More generally, a continuous, twice differentiable function of several vari-

ables is convex on a convex set if and only if its Hessian matrix is positive

semidefinite on the interior of the convex set.

(a) Let f be convex. If x∗ satisfies the first order conditions, then x∗ is a

global minimum point of f .

(b) Let f be strictly convex. If x∗ satisfies the first order condition, then x∗

is a strict global minimum point of f .
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Example 1.5. Suppose that f(x) is a convex function, then we want to show

that the set of global minimizers of f is a convex set. To show this we let S

denote the set of the global minimizers. Obviously, we have

f(x) = minf

for any x ∈ S. Take any x,y ∈ S, we just need to show that

λx + (1 − λ)y ∈ S

for any λ ∈ (0, 1). Now by convexity and for equality to hold,

minf ≤ f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) = minf

Local Convergence

Most Optimization problems are solved numerically by computing approx-

imations x1,x2,x3, · · · which hopefully converge to the solution x∗.

Definition 1.5. Convergence

Let xn ⊂ R
n and x∗ ∈ R

n. Then

(a) xn → x∗ q-quadratically if xn → x∗ and there is K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2

(b) xn → x∗ q-superlinearly with q-order α > 1 if xn → x∗ and there is K > 0

such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖α

(c) xn → x∗ q-superlinearly if

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖ = 0

15



(d) xn → x∗ q-linearly with q-factor σ ∈ (0, 1) if

‖xn+1 − x∗‖ ≤ σ‖xn − x∗‖

for n sufficiently large.

Maximum and Minimum Values of a function

Definition 1.6. Let f(x) be a real-valued function defined on some set S . A

point x∗ in S is called

(a) a critical point of f(x) if ∇f(x∗) exists and is equal to zero;

(b) a global minimizer for f(x) on S if f(x∗) ≤ f(x) for all x in S;

(c) a strict global minimizer for f(x) on S if f(x∗) < f(x) for all x in S

such that x 6= x∗;

(d) a local minimizer for f(x) if there is a vector δ such that f(x∗) ≤ f(x)

for all x in S for which x∗ − δ < x < x∗ + δ;

(e) a strict local minimizer for f(x) if there is a vector δ such that

f(x∗) < f(x) for all x in S for which x∗ − δ < x < x∗ + δ and x 6= x∗.

Theorem 1.2. Suppose that f(x) is a differentiable function on some set S.

If x∗ is a local minimizer or maximizer of f(x), then either x∗ is an endpoint

of S or ∇f(x∗) = 0 .

We state the following theorem for the case where x in the above definition

is a single variable.

Theorem 1.3. Suppose that f(x), f ′(x),f ′′(x) are all continuous on an interval

I and that x∗ ∈ I is a critical point of f(x).

(a) If f ′′(x) ≥ 0 for all x ∈ I, then x∗ is a global minimizer of f(x) on I .
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(b) If f ′′(x) > 0 for all x ∈ I such that x 6= x∗, then x∗ is a strict global

minimizer of f(x) on I .

(c) If f ′′(x∗) > 0,then x∗ is a strict local minimizer of f(x) on I.

We consider the cases in the above theorem in the three figures below:

Figure 3: Stationary points of f on the interval I = [a, b]

(a) In the left figure, the unique stationary point x∗ is the global maximizer.

(b) In the middle figure, there are three stationary points: x∗, x′ and x′′. The

point x∗ is the global maximizer, while x′ is a local minimizer, and x′′ is a

local maximizer.

(c) In the right figure, there are two stationary points: x′ and x′′. The point x′

is neither a local maximizer nor a local minimizer; x′′ is a global minimizer.

(d) It is therefore, clear that

(i) a stationary point is not necessarily a maximizer or minimizer; for

example, the point x′ in the right-hand figure.

(ii) a maximizer (local or global) is not necessarily a stationary point;

for example, the point a in the right-hand figure.

From the discussion above we see that being a stationary point is neither

a necessary condition nor a sufficient condition for being a maximum or mini-

mum point. Although a maximizer (or a minimizer) may not be a stationary

17



point, the only case in which it is not is when it is one of the endpoints of

the interval I on which f is defined. That is, any point interior to this interval

that is a maximum (or a minimum) must be a stationary point. The relation-

ship between stationary points and maximizers (minimizers) is stated in the

following Theorem.

Theorem 1.4. Let f be a differentiable function of a single variable defined

on the interval I = [a, b]. If a point x in the interior of I is a local or global

maximizer or minimizer of f then f ′(x) = 0.

This result gives a necessary condition for x to be a maximizer (or a mini-

mizer) of f : if it is a maximizer (or a minimizer) and is between a and b then x

is a stationary point of f . The condition is obviously not sufficient for a point

to be a maximizer; the condition is satisfied also, for example, at points that

are minimizers. Since the first-derivative is involved, we refer to the condition

as a first-order condition.

Example 1.6. Consider f(x) = 3x4 − 4x3 + 1.

Since f ′(x) = 12x3 − 12x2 = 12x2(x − 1), the only critical points of f(x) are

x∗ = 0 and x∗ = 1 . Also, since f ′′(x) = 36x2 − 24x = 12x(3x − 2), we see

that f ′′(0) = 0 and f ′′(1) = 12. Therefore, x∗ = 1 is a strict local minimizer of

f(x). To analyze the behaviour of f(x) near x = 0, we observe that x4 < x3 for

0 < x < 1 so that f(x) < 1 just to the right of the origin, while f(x) > 1 to the

left of the origin. Consequently, the critical point x∗ = 0 is neither a maximizer

nor a minimizer of f(x); rather it is a “horizontal point of inflection” for f(x)

. So f(x) has no global maximizer on R. The strict local minimizer x = 1 is

also a strict global minimizer. See Figure 10 in the Appendix for the graph of

the function.

We consider another example in which x is this time in R
2.
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Example 1.7. Consider a well-known test function, the Rosenbrock’s func-

tion, which is also referred to as the Banana function. This is given as

f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2

∇f(x) =







−400x1(x2 − x2
1) − 2(1 − x1)

200(x2 − x2
1)







∇2f(x) =







−400(x2 − x2
1) + 800x2

1 + 2 −400x1

−400x1 200







Solving ∇f(x) = 0, we get x = [1; 1] as the only solution. So f(x) has only

one critical point. Since f [1; 1] = 0 and obviously f ≥ 0, we know that it is a

local minimizer as well as a global minimizer. At [1; 1], we have

∇2f =







802 −400

−400 200







This process is illustrated in the following picture.

Figure 4: Contours of the Banana function

Theorem 1.5. First Order Conditions

The derivative of a function is always equal to zero at a minimum point.
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This fact is called the first order necessary condition for a minimum. The

reason we include the word ‘necessary’ is that all minimum points satisfy this

condition, but not every point satisfying this condition needs to be a minimum

point (it could also be for example a maximum). The precise formulation of

the first order condition for a function of several variables, f : R
n → R, is

as follows: Let the derivative of f exists and be continuous. If x∗ is a global

minimum point of f , then ∇f(x∗) = 0. Thus, if we want to know whether a

given point x is a minimum point or not, the first thing we should check is

whether the gradient vector is equal to zero at x.

Proof. By Taylor’s theorem, for 0 < θ < 1,

f(x∗ + h) − f(x∗) = ∇f(x∗)h +
1

2
hTHh|x∗+θh

where h is a vector of small changes. For sufficiently small |hj|, the remainder

term
1

2
(hTHh) is of the order h2

j , and hence the expansion may be approxi-

mated as

f(x∗ + h) − f(x∗) = ∇f(x∗)h + o(h2
j )

∼= ∇f(x∗)h.

Suppose that x∗ is a minimum point; then it is shown by contradiction that

∇f(x∗) must vanish. Suppose it does not; then for a specific j, either

∂f(x∗)

∂xj

< 0 or
∂f(x∗)

∂xj

> 0

By selecting hj with appropriate sign, it is always possible to have

hj

∂f(x∗)

∂xj

< 0

By setting all other hj equal to zero, Taylor’s expansion yields

f(x∗ + h) < f(x∗)

This result contradicts the assumption that x∗ is a minimum point. Therefore,

at any extreme point, the condition

∇f(x∗) = 0
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must be satisfied.

Theorem 1.6. Second Order Conditions

If the first order condition is satisfied and the second derivative is positive, then

we have a minimum point. This fact is called the second order sufficient

condition for a minimum. We include the word ‘sufficient’ to indicate that all

points that satisfy this conditions are minima, but some minima do not satisfy

the condition (that is, the condition is not necessary). The precise formulation

of the second order condition for a function of several variables, f : R
n → R, is

as follows: Let the first and second derivatives both exist and be continuous.

If at x = x∗,

1. ∇f(x∗) = 0; and

2. H(x∗) is positive semidefinite,

then x∗ is a local minimum point of f .

Proof. By Taylor’s theorem, for 0 < θ < 1,

f(x∗ + h) − f(x∗) = ∇f(x∗)h +
1

2
hTHh|x∗+θh.

Since x∗ is a stationary point, by Theorem 1.2, ∇f(x∗) = 0. Thus

f(x∗ + h) − f(x∗) =
1

2
hTHh|x∗+θh.

Let x∗ be a minimum point; then, by definition,

f(x∗ + h) > f(x∗)

for all non null h. This means that for x∗ to be a minimum, it must be true

that

1

2
hTHh|x∗+θh > 0.
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However, continuity of the second partial derivative guarantees that the ex-

pression
1

2
hTHh must yield the same sign when evaluated at both x∗ and

x∗ + θh. Since hTHh|x∗ defines a quadratic form, this expression is positive if

and only if H|x∗ is positive-definite. This means that a sufficient condition for

the stationary point x∗ to be a minimum is that the Hessian matrix evaluated

at the same point is positive-definite.

Example 1.8. Consider the function

f(x1, x2, x3) = x1 + 2x3 + x2x3 − x2
1 − x2

2 − x2
3.

The necessary condition

∇f(x0) = 0

gives

∂f

∂x1

= 1 − 2x1 = 0

∂f

∂x2

= x3 − 2x2 = 0

∂f

∂x3
= 2 + x2 − 2x3 = 0

The solution of these simultaneous equations is given by

x0 = (
1

2
,
2

3
,
4

3
).

To establish sufficiency, we consider

H(x0) =





























∂2f

∂x2
1

∂2f

∂x1∂x2

∂2f

∂x1∂x3

∂2f

∂x2∂x1

∂2f

∂x2
2

∂2f

∂x2∂x3

∂2f

∂x3∂x1

∂2f

∂x3∂x2

∂2f

∂x2
3





























x=x0

=













−2 0 0

0 −2 1

0 1 −2
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The eigenvalues of H(x0) have the values −3,−2 and − 1, respectively. Thus,

H(x0) is negative-definite and

x0 = (
1

2
,
2

3
,
4

3
)

represents a maximum point.

Theorem 1.7. Suppose that x∗ is a critical point of a function f(x) with

continuous first and second partial derivatives on R
n. Then:

(a) x∗ is a global minimizer for f(x) if (x − x∗) · H(z)(x − x∗) ≥ 0 for all

x ∈ R
n and all z ∈ [x∗,x];

(b) x∗ is a strict global minimizer for f(x) if (x − x∗) · H(z)(x − x∗) > 0 for

all x ∈ R
n such that x 6= x∗ and all z ∈ [x∗,x];

(c) x∗ is a global maximizer for f(x) if (x − x∗) · H(z)(x − x∗) ≤ 0 for all

x ∈ R
n and all z ∈ [x∗,x];

(d) x∗ is a strict global maximizer for f(x) if (x − x∗) · H(z)(x − x∗) < 0 for

all x ∈ R
n such that x 6= x∗ and all z ∈ [x∗,x].

Theorem 1.8. Suppose that x∗ is a critical point of a function f(x) with

continuous first and second partial derivatives on R
n and that H(x) is the

Hessian of f(x). Then x∗ is:

(a) a global minimizer for f(x) if H(x∗) is positive semidefinite on R
n;

(b) a strict global minimizer for f(x) if H(x∗) is positive definite on R
n;

(c) a global maximizer for f(x) if H(x∗) is negative semidefinite on R
n;

(d) a strict global maximizer for f(x) if H(x∗) is negative definite on R
n.
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Example 1.9. (a) A symmetric matrix whose entries are all positive need not

be positive definite. For example, the matrix

A =







1 4

4 1







is not positive definite. For if x = [1;−1], then

q(x) = [1 − 1] ·







1 4

4 1













1

−1






= [1 − 1]







−3

3






= −6 < 0.

(b) A symmetric matrix with some negative entries may be positive definite.

For example, the matrix

A =







1 −1

−1 4







corresponds to the quadratic form

q(x) = x2
1 − 2x1x2 + 4x2

2.

Since q(x) = (x1 − x2)
2 + 3x2

2, we see that if x = (x1, x2) 6= (0, 0), then

q(x) > 0 since (x1 − x2)
2 > 0 if x1 6= x2 and 3x2

2 > 0 if x1 = x2 .

(c) The matrix

A =













1 0 0

0 3 0

0 0 2













is positive definite because the associated quadratic form q(x) is

q(x) = x2
1 + 3x2

2 + 2x2
3,

and so unless x1 = x2 = x3 = 0, q(x) > 0. In general, a 3 × 3 - diagonal

matrix

A =













d1 0 0

0 d2 0

0 0 d3
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is:

positive definite if di > 0 for i = 1, 2, 3;

(i)(ii) positive semidefinite if di ≥ 0 for i = 1, 2, 3;

(iii) negative definite if di < 0 for i = 1, 2, 3;

(iv) negative semidefinite if di ≤ 0 for i = 1, 2, 3;

(v) indefinite if at least one di is positive and at least one di is negative

for i = 1, 2, 3.

Positive Definite Hessian

The necessary conditions for optimality imply that if a quadratic function

f has a local minimum x∗, then A is positive semidefinite and

Ax∗ = b (1.9)

In particular, if A is semi-positive definite (and hence nonsingular), then

the unique global minimizer is the solution of the linear system in Equation

1.9. If A is a dense matrix and N is not too large, it is reasonable to solve

Equation 1.9 by first computing the Cholesky factorization of A.

A = LLT ,

where L is a nonsingular lower triangular matrix with positive diagonal. If

A is indefinite, the Cholesky factorization will not exist and the standard

implementation will fail because the computation of the diagonal of L require

a real square root of a negative number or a division by zero. If N is very

large, A is sparse, or a matrix representation of A is not available, and a

more efficient approach is the conjugate gradient iteration. Our formulation

of the algorithm uses x as both an input and output variable. On input x

contains x0, the initial iterate, and on output, the approximate solution, x∗.

We terminate the iteration if the relative residual is sufficiently small, that is,
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‖b− Ax‖ ≤ ǫ‖b‖,

or if too many iterations have been taken.

Indefinite Hessian

If A is indefinite, the necessary conditions imply that there will be no local

minimum. Even so, it will be important to understand some properties of

quadratic problems with indefinite Hessians when we design algorithms with

initial iterates far from local minimizers. If

uTAu < 0,

we say that u is a direction of negative curvature. In this case, f(x + tu) will

decrease to −∞ as t → ∞.

A General Solution Strategy

The problem of locating a minimum of a function f of several variables is in

general difficult, and we should not expect to find some method that is able to

take us directly to the desired minimum x, of the function. The usual solution

strategy is to divide the minimization problem into many simpler tasks. More

specifically, we start from an initial vector x (provided by the user) and

move in small steps towards x (hopefully) a minimum point. Algorithms of

this form are called iterative. It is evident that an efficient strategy should

be based on the attempt to determine which is the most promising direction

or, equivalently, to guess whether the positive curvature information are more

significant than the negative curvature information or vice versa. The rule we

adopt is based on the rate of decrease of the quadratic model of the objective

function. In particular, we compare the decrease of the quadratic model along

the negative curvature direction by performing a unit step length along a
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normalized direction dk, with the decrease that we would obtain by performing

a unit step length along the normalized truncated Newton direction. Since we

are interested in solving large scale problems and thus cannot rely on matrix

factorizations, we concentrate on iterative methods to compute the search

directions.

To plan the next move in such an iteration, we should first get an idea

of how the surface looks like in the vicinity of the point we stand in (are we

standing in the bottom of a valley, close to a minimum? Or are we up in the

hillside, far from the nearest minimum?). A common strategy is to construct

a simplified model of the local landscape, and to make further moves based on

this model. For example, we may model the local landscape by a (hyper - )

plane and then make a move in the direction in which the plane descends the

most. The linear approximation can be determined by a Taylor expansion.

Line Search Algorithms

Many well known optimization procedures belong to the class known as

line search algorithms. Many algorithms have been proposed for solving min-

imization problems. Such algorithm can be made globally convergent using

one of the two basic approaches, the line search and the trust region approach.

We would now concentrate on line search algorithms. Line search is a search

method that is used as part of a larger optimization algorithm. The main

idea is to determine, at each iteration, a pair of descent directions, (sk,dk)

where, loosely speaking, sk represents a direction calculated from positive cur-

vature information given by the Hessian matrix, and dk is a negative curvature

direction. This pair of directions is then used in a search along the trajectory

At each step of the main algorithm, the line search method searches along

the line containing the current point xk, parallel to the search direction, which

is a vector determined by the main algorithm. That is, the method finds the
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next iterate xk+1 of the form

xk+1 = xk + α∗dk,

where xk denotes the current iterate, dk is the search direction, and α∗ is a

scalar step length parameter. The line search method attempts to decrease the

objective function along the line xk+αdk by repeatedly minimizing polynomial

interpolation models of the objective function. The line search procedure has

two main steps:

(a) The bracketing phase determines the range of points on the line

xk+1 = xk + α∗dk

to be searched. The bracket corresponds to an interval specifying the range

of values of α.

(b) The sectioning step divides the bracket into subintervals, on which the

minimum of the objective function is approximated by polynomial inter-

polation.

The resulting step length α satisfies the Wolfe conditions:

1. (xk + αdk) ≤ f(xk) + c1α∇fT
k dk

2. ∇f(xk + αdk)
T ≥ c2α∇fT

k dk

where c1 and c2 are constants with 0 < c1 < c2 < 1. The first condition requires

that αk sufficiently decreases the objective function. The second condition en-

sures that the step length is not too small. Points that satisfy both conditions

are called acceptable points.

Choice of Search Direction

It seems reasonable to select a search direction such that the function de-

creases in value as we move in this direction. This is the basic rationale behind

all the methods to be described in Chapter Two and Three.
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Literature Review

Numerous proposals for minimizing an unconstrained function have been

made, particularly since Cauchy’s “steepest descent” technique was introduced

in 1847. Occasional reviews of the proposals and experience on test problems

is published. Unfortunately, these reviews are rarely critical. The result is that

variations of the old techniques are reused and the same difficulties are often

perpetuated. The published experience tends to give the impression that these

methods invariably work. Sometimes a failure is published by Feder (1957),

but it is often quickly forgotten. The area of investigation on ways to minimize

unconstrained function has only been touched on. Much good work has been

done in recent years in this field. Modification of some of the methods to be

discussed will probably accelerate the process for problems with special char-

acteristics or structure. Before 1940 relatively little was known about methods

for numerical optimization of functions of several variables. There had been

some least squares calculations carried out, and steepest descent type methods

had been applied in some physics problems. The Newton method in several

variables was known, and more sophisticated methods were being attempted

such as the self-consistent field method for variational problems in theoretical

chemistry. Nonetheless, anything of any complexity demanded armies of as-

sistants operating desk calculating machines. There is no doubt therefore that

the advent of the computer was paramount in the development of optimiza-

tion methods and indeed in the whole of numerical analysis. The 1940s and

1950s saw the introduction and development of the very important branch of

the subject known as linear programming. All these methods however had a

fairly restricted range of application. The methods were at first very crude

and inefficient, but the subject was again revolutionized in 1959 with the

publication of a report by Davidon (1973) which led to the introduction of

Newton-like methods. Line search descent methods have frequently been used
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as a means of introducing a degree of reliability into optimization software.

In the early days, one common strategy was to choose the step size αk close

to the value given by an exact line search. This is motivated by early theory

which shows that the Steepest Descent method with an exact line search is

globally convergent to a stationary point by Curry (1944). There is also an

unbelievably distant reference to a paper of Cauchy in 1847. However, accu-

rate line searches are expensive to carry out, and there is also the nuisance

that the exact minimizer may not exist. Other researchers weakened the line

search tolerance considerably and used the descent property merely to force a

decrease fk+1 < fk in the objective function on each iteration. This usually

turned out to be more efficient. However, merely requiring a decrease in f

does not ensure global convergence so there were doubts about the stability

of this more efficient approach. There have been many other researches into

Conjugate Gradient methods. The relationship of some other methods is dis-

cussed by Fletcher (1972a). There are also some other theoretical results: for

instance, reset methods are convergent because the Steepest Descent direction

is used regularly and exhibit n-step superlinear convergence (McCormick and

Pearson, 1969)

‖xk+n − x∗‖ = o(‖xk − x∗‖), k = cn + 1, c = 0, 1, · · ·

However, these results are not really relevant to the practical solution of large

problems. A more interesting possibility due to Beale (1972)is that of restart-

ing along directions other than the steepest descent direction. At the expense

of increasing the storage requirement, this has been incorporated into an effi-

cient algorithm by Powell (1977b). However, the most interesting of all recent

theoretical research results about conjugate gradient methods for minimiza-

tion is that of Al-Baali(1985) who shows that the non-reset Fletcher-Reeves

method with an inexact line search is globally convergent. Zangwill (1965)
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studied the general penalty function having the form

f(x) + tG[g(x)]

in the space E
n, where g(x) is a q vector whose components, as functions of x,

are either zero or non-negative; that is, the problem of concern is

minimizef(x)

subject to

gi(x) ≥ 0 for i = 1, · · · , m,

gj(x) = 0 for j = m + 1, · · · , q

The loss function is assumed continuous; G(y) = 0 if y is feasible and is positive

otherwise. The other significant assumptions are the continuity of the problem

functions, the assumption that the auxiliary function attains a minimum for t

large enough, and the assumption that the feasible region is properly contained

in a bounded set. The algorithm proceeds, as usual, minimizing the auxiliary

function over {tk} such that tk ≥ 0 and tk → ∞, to generate a corresponding

minimizing sequence {xk}. The main result is the existence of a subsequence

converging to x∗, a solution of the equation above. Zangwill obtained a dual

relationship without convexity assumptions, and other results with convexity

and differentiability conditions. Zangwill’s work provides a very general treat-

ment of the quadratic penalty function approach to constrained problems in

E
n.

Fiacco and McCormick (1967) further developed the quadratic penalty func-

tion approach, applying it to the convex programming problem in E
n, where

both equality and inequality constraints are permitted. The essential assump-

tion, other than the convexity condition, is the assumption that the set of

optimum points of the problem is compact. The procedure was shown to gen-

erate a sequence of minimizing points such that every limit point is a solution
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of the problem. Duality results were obtained. An important fact is that the

interior of the feasible region may be empty, implying that the Kuhn-Tucker

(1951) constraint qualification- a regularity condition invariably invoked- is

not required in order to prove convergence and, hence, optimality. This work

was an extension of the results of Pietrzykowski (1962). Significant compu-

tational results by this method have only recently been obtained, but it is

clear that the technique will prove computationally very effective for nonlinear

programming. In a paper, Arrow and Hurwicz (1956) proposed a “differen-

tial” method for solving convex programming problems. The method of the

problem is essentially as follows: Find a saddle point in (x,u) of the La-

grangian function L(x,u) = f(x) −∑uigi(x). If there is a point (x̄, ū) such

that L(x̄,u) ≤ L(x̄, ū) ≤ L(x, ū) for all u ≥ 0, then x̄ solves the convex

programming problem. Further generalizations and extensions of a number

of the above results have recently been obtained by Fiacco (1967). In his

work, the theoretical basis for new algorithms is presented, based on modifica-

tions of the more general penalty functions that are defined. Strong (1965)

proved the validity of the Fiacco and McCormick (1967) procedure based on

Carroll’s (1961) inverse penalty function for general topological spaces.The

central assumptions are continuity of the problem functions and the com-

pactness of the feasible region, from which the convergence of the values of

the penalty function, corresponding to any global minimizing feasible inte-

rior sequence of points, to the optimal value of a problem is deduced. This

constitutes a significant generalization of Carroll procedure and is analogous

to the development effected by Butler and Martin (1962) for the quadratic

penalty function approach. In 1965 also, we see evidence of the significant ap-

plication of the quadratic penalty function approach, generalized for multiple

variables and multiple inequality constraints. We refer to the work of Bel-

trami and McGill (1966), who applied the method of constrained variational
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problems in the theory of search. McGill and Kenneth(1964) also employed

an interesting generalization of the Newton-Raphson procedure to operator

equations in more general spaces to obtain what they termed an “effective

computational method”. Fiacco and McCormick (1967) further developed the

quadratic penalty function approach, applying it to the convex programming

problem in E
n, where both equality and inequality constraints are permitted.

The essential assumption, other than the convexity condition, is the assump-

tion that the set of optimum points of the problem is compact. The procedure

was shown to generate a sequence of minimizing points such that every limit

point is a solution of the problem. Duality results were obtained. An important

fact is that the interior of the feasible region may be empty, implying that the

Kuhn-Tucker (1951) constraint qualification-a regularity condition invariably

invoked-is not required in order to prove convergence and, hence, optimality.

This work was an extension of the results of T.Pietrzykowski (1962). Signifi-

cant computational results by this method have only recently been obtained,

but it is clear that the technique will prove computationally very effective for

nonlinear programming. In a paper, Arrow and Hurwicz (1956) proposed a

“differential” method for solving convex programming problems. The method

of the problem is essentially as follows: Find a saddle point in (x,u) of the

Lagrangian function L(x,u) = f(x) −
∑

uigi(x). If there is a point (x̄, ū)

such that L(x̄,u) ≤ L(x̄, ū) ≤ L(x, ū) for all u ≥ 0, then x̄ solves the convex

programming problem. Further generalizations and extensions of a number of

the above results have recently been obtained by Fiacco (1967). In his work,

the theoretical basis for new algorithms is presented, based on modifications

of the more general penalty functions that are defined.
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Outline of the Thesis

This section outlines the contents within each of the five chapters of the

thesis, and gives a brief description of these contents.

The Introduction is the first chapter of the study. It looks at the back-

ground of the study which brings out the history of stages of applications of

Optimization techniques and the need for more innovative efforts in the field.

This is followed by the objectives of the study. It gives the Mathematical

background and notations that are used in the study of both Unconstrained

and Constrained optimization. Next is the review of literature. It discusses

research made in the field of Optimization.

Chapter Two is on the study of Descent Methods of Optimization. These

methods are the Gradient Descent method and the Conjugate Gradient method.

In Chapter Three, we study the Newton-Like methods for non-linear Op-

timization. It begins with the Newton’s method and then looks at various

modifications that have been suggested to this method. Next, the chapter

looks at the Quasi-Newton methods and then the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method.

Chapter Four studies the methods for Constrained Optimization. These

methods are the Lagrange’s method which involve equality constraints and

the Kuhn-Tucker method which involve inequality constraints. In this chap-

ter, methods for solving Constrained minimization problems are discussed.

These are the Sequential Quadratic Programming methods, the Penalty func-

tions and Barrier functions.

In Chapter Five, we make a summary of all the various observations that

have emerged from the study. We then discuss some of these observations. Fi-

nally, we draw appropriate conclusions and make few recommendations based

on the result of the study.
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CHAPTER TWO

UNCONSTRAINED OPTIMIZATION

In this chapter, we consider methods for solving optimization problems of the

form

minimize f(x), x ∈ R
n. (2.1)

We assume that f is smooth, that is, the first and second partial derivatives of

f exists and are continuous. The derivative of a function contains information

about the rates of increase or decrease of the function; in the case of a function

of several variables, the partial derivatives also give the directions of fastest

increase or decrease. If such information about the objective function is known,

then it can be used to determine its optimum value more efficiently. We will

focus attention on a class of Unconstrained Optimization techniques that use

line search algorithms for solving minimization problems.

Gradient Descent Method

The gradient descent method is also known as the method of steepest

descent. Gradient descent is based on the observation that if the real-valued

function f(x) is defined and differentiable in a neighborhood of a point xk,

then f(x) decreases fastest in the direction of the negative gradient of f at xk,

that is, in the direction of −∇f(xk). The search starts with an initial guess

x0 and then slide down the gradient, until we are close enough to the solution

and that computes the sequence x0,x1,x2, . . . such that

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, · · · .

We have
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f(x0) ≥ f(x1) ≥ f(x2) ≥ . . . ,

so hopefully the sequence {xk} converges to the desired local minimum. In

other words, the iterative procedure is

xk+1 = xk − αk∇f(xk) (2.2)

for α > 0 which is a small enough number and ∇f(xk) is the gradient at one

given point. Now, the question is, how big should the step size αk be taken in

that direction, i.e. what should be the size of αk? Obviously, we want to move

to the point where the function f takes on a minimum value, i.e. where the

directional derivative is zero. Using the chain rule, the directional derivative

of f(xk+1) is given by

d

dαk

f(xk+1) = ∇f(xk+1)
T .

d

dαk

.xk+1 = −∇f(xk+1)
T∇f(xk). (2.3)

Setting Equation 2.3 to zero shows that αk must be chosen so that ∇f(xk+1)

and ∇f(xk) are orthogonal, i.e.

∇f(xk+1)
T · ∇f(xk) = 0

The next step is then taken in the direction of the negative gradient at this new

point and we get a zig-zag pattern as illustrated in Figure 5. This iteration

continues until the minimum has been determined within a chosen accuracy ǫ.

This is actually a minimization problem along a line and this is known as an

exact line search algorithm.
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Figure 5: Geometric representation of the Gradient Descent method

Alternatively, one can start with a chosen value for αk, which, if necessary,

will be modified during the iterations, making sure that the function decreases

at each iteration. This works better than the line search and is a bit simpler.

This will take many more iterations to reach the minimum, but each iteration

may take much less time than by using a line search.

The following example illustrates how to determine the value of the step

size α.

Example 2.1. To find the value of α which minimizes the function

f(x, y, z) = 2x2 − 2x + y2 − 4y + z2 − 6z + 13

α0 = min
α>0

{f((x0, y0, z0)
T − α∇f(x0, y0, z0)

T )}
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∇f =













4x − 2

2y − 4

2z − 6













Let [x0; y0; z0] = [1; 1; 1]

∇f =













2

−2

−4













α0 = min
α>0

{f((x0, y0, z0)
T − α∇f(x0, y0, z0)

T )}

= min
α>0

{f((1, 1, 1)T − α(2,−2,−4)T )}

= min
α>0

{f













1 − 2α

1 + 2α

1 + 4α













}

= min
α>0

{5 − 24α + 28α2}

Therefore the value of α which minimizes f is
3

7
.

However, the method of steepest descent is only linearly convergent, de-

spite its use of derivative information. It is often used as a “starter” method

for other algorithms. Because it converges for most initial guesses, several it-

erations of steepest descent may be used to improve an initial guess that is

then handed to another, faster(but less robust) algorithm. This is done not

only for minimization algorithms but also for root - finding algorithms such as

Newton’s method for systems. Suppose we attempt to solve f(x) = 0 where

f : R
n → R

n, that is,

f(x) =



















f1(x1, · · · , xn)

f2(x1, · · · , xn)

...

fn(x1, · · · , xn)
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by Newton’s method for systems or some other root- finding method with some

initial guess x0. If we find that the method fails to converge, then we can use

the method of steepest descent on the function

‖f(x)‖2 = f 2
1 (x) + · · · + f 2

n(x)

(which is nonnegative and has minima precisely where f has zeros) starting

from this x0. After several iterations of steepest descent, we return to Newton’s

method with what we hope is an improved initial guess.

Example 2.2. Consider the problem of minimizing a function

(1 − x1)
2 + x2

2

using the steepest descent method.

Using Equation 2.2, with starting point x0 = [0; 0]. We get the following iter-

ates

x1 = x0 − α0∇f(x0)

∇f(x0) = [−2; 0]

α0 = min
α>0

{f((x0)
T − α∇f(x0)

T )}

= min
α>0

{f((0, 0)T − α(−2, 0)T )}

= min
α>0

{f(2α, 0)}

= min
α>0

{(1 − 2α)2}

⇒ (1 − 2α) = 0

⇒ α0 = 0.5
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x1 = x0 − α0∇f(x0)

= [0; 0] − 0.5[−2; 0]

= [1; 0]

x2 = x1 − α1∇f(x1)

∇f(x1) = [0; 0]

= min
α>0

{f((1, 0)T − α1(0, 0)T )}

= min
α>0

{f(1, 0)}

⇒ α1 = 0

x2 = [1; 0]

Thus, the iterations converge to a critical point [1; 0] just after one iteration.

See Figure 11 in the Appendix for the graph of the given function. Now to

confirm whether the point is a minimum or not, we evaluate the Hessian at

that point. This gives

∇2f [1; 0] =







2 0

0 2







which is positive definite and that is the condition for a critical point to be

minimum. Another reason for converging very fast is because the condition

number of the Hessian matrix is 1. This is not surprising because as the

condition number becomes very large, it affect the rate of convergence, thereby

taking a lot of iterations for it to converge to a required solution. The effect

of the condition number on the rate of convergence to a critical point will be

explained later in this chapter.

Example 2.3. Considering the problem of minimizing the function

f(x1, x2) = (x2 − x2
1)

2 + (1 − x1)
2
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using the steepest descent algorithm.

The algorithm is given by

xk+1 = xk − αk∇f(xk)

Let x0 = [0; 0], then the first iterate is

x1 = x0 − α0∇f(x0)

∇f(x0) = [−2; 0]

α0 = min
α>0

{f(x0, y0)
T − α∇f(x0, y0)

T}

= min
α>0

{f(0, 0)T − α(−2, 0)T}

= min
α>0

{f(2α, 0)}

= min
α>0

{16α4 + (1 − 2α)2}

= min
α>0

{16α4 + 4α2 − 4α + 1}

⇒ 64α3 + 8α − 4 = 0

⇒ 16α3 + 2α − 1 = 0

Solving for α gives 0.29488. Now to get the first iterate x1, we substitute

α0 = 0.29488 into the method’s algorithm. That is,

x1 = x0 − α0∇f(x0)

= [0; 0] − 0.29488[−2; 0]

= [0.58976; 0]

The vector [0.58976; 0] is the first iterate and it also serves as the new initial

guess for the next iteration. At each iteration, the value of α has to be cal-

culated. Now, to get the next iterate x2, we follow the same algorithm. That

is,

x2 = x1 − α1∇f(x1)

We repeat the procedure until we attain a minimum. After going through

three iterations, we realized that the solution converges to the minimum [1; 1].

A summary of it is given in the table below.
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Table 1: Number of iterations and the step size at each iterate

No. of iteration α xk

0 0.29488 [0; 0]

1 0.49995 [0.58976; 0]

2 0.13169 [0.58974; 0.34778]

3 0.13269 [0.99507; 0.98847]

The iterates converge after three iterations. This is because the Hessian

matrix of the function is well-conditioned with a small condition number equal

to 1.

Example 2.4. Consider the problem of minimizing the function

100(x2 − x2
1)

2 + (1 − x1)
2

using the steepest descent method. The function above is known as the Rosen-

brock’s function sometimes also called the Banana function. The nature of the

Rosenbrock’s function makes it very difficult to get to the minimum point.

The reason is that the minimum point lies in a long valley. It is therefore

used to test the robustness of unconstrained minimization algorithms. Using

Equation 2.2 with a starting point x0 = [0; 0], we get the following iterates.The

table below shows some iterates in the application of the steepest descent to

the function.

Table 2: Number of iterations and the condition number of the Hessian

of the Rosenbrocks function

Iteration x Condition No. of Hessian

0 [0; 0] 100

10 [0.310945; 0.085604] 60.578

100 [0.58593; 0.33975] 331.81

1000 [0.92741; 0.85909] 1653.2
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The iterates are converging to the desired solution at a very slow rate. The

slow rate of convergence can be attributed to the ill-conditioning of the Hessian

of the objective function. We note that because the condition number of the

Hessian matrix of the function is 100, it makes the matrix ill-conditioned.The

condition number is the ratio of the largest eigenvalue to the smallest eigen-

value. If this ratio is large, it makes it difficult for the algorithm to converge

to a solution.

Example 2.5. Consider the problem of minimizing the function

f(x) = λ1(x1 − 3)2 + λ2(x2 − 2)2.

Suppose that λ1 = 1000 and λ2 = 1. It is clear by inspection that the optimal

value is x∗ = [3; 2] and that the value of the objective function at this point

is f(x∗) = 0. With an initial guess of x0 = [0; 0], the steepest descent method

converges to

x = [3.0000000; 1.9999994] after 302 iterations and 10,273 scalar function eval-

uations. Suppose λ1 = 1000 is changed to λ1 = 1, the steepest descent method

converges in just two iterations. To see why this makes such a difference, we

consider the condition number of the Hessian matrix which is given as

κ(H) = ‖H‖ · ‖H−1‖

= max{|λ1|, |λ2|} max{|λ−1
1 |, |λ−1

2 |}

=

(

|λ1|
|λ2|

)

Thus, when λ1 = 1000 and λ2 = 1, we have κ(H) = 1000, which makes the

Hessian matrix ill-conditioned. Conversely, when λ1 = 1 and λ2 = 1, the

Hessian matrix is well conditioned with κ(H) = 1.

In general, when the Hessian matrix is ill-conditioned, the steepest descent

method converges very slowly.
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From Example 2.4, it was clear that the steepest descent algorithm fails to

find the minimum in a possible shortest time thereby making the method

insufficient. The major drawbacks in this method identified are as follows:

1. The algorithm can take many iterations to converge towards a local min-

imum.

2. Finding the optimal α per step can be time-consuming. Conversely, using

a fixed α can yield poor results.

3. The rate of convergence can be very slow if the Hessian of the objective

function is ill-conditioned.

Improvement on the weaknesses of the steepest descent method gives rise to

another method known as the Newton’s method. The Newton’s method is

examined in the next chapter.

The Rate of Convergence for the Case of a Quadratic Function

A simple line search descent method is the steepest descent method in

which the search direction sk = −∇f(xk) for all k. In practice, the method

usually exhibits oscillatory behaviour which usually terminates far from the

solution owing to round-off effects. Therefore, making the method inefficient

and unreliable. The local convergence result for steepest descent does predict

the possibility of an arbitrarily slow rate of linear convergence. This inade-

quacy of the steepest descent method can be put down to a failure in the model

situation, perhaps because the steepest descent property along the line holds

only at α = 0 and not for all α. A type of model which in practice does usually

give rise to methods with a rapid rate of convergence is the quadratic model.

One possible reason is that this model is to some extent associated with the

property of second order convergence. Descent methods based on a quadratic

model have proved to be very powerful in practice.
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Theorem 2.1. An algorithm exhibits linear convergence in the objective func-

tion values if there is a constant δ < 1 such that for all k sufficiently large, the

iterates xk satisfy:

f(xk+1) − f(x∗)

f(xk) − f(x∗)
≤ δ,

where x∗ is some optimal value of the problem.

The statement above suggests that the optimality gap shrinks by at least

δ at each iteration, that is, if δ = 0.1, for example, then the iterates gain

an extra digit of accuracy in the optimal objective function value at each

iteration. This effect then speeds up the rate of convergence. On the other

hand, if δ = 0.9, which is very close to 1, it slows down the rate of convergence.

The quantity δ is called the convergence constant. Our aim is to make the

constant smaller rather than larger. The convergence constant depends very

much on the condition number of the Hessian matrix H(x), that is, the ratio

of the largest to the smallest eigenvalue of the Hessian matrix at the optimal

solution x∗. Lets consider the case where the objective function f(x) is itself

a simple quadratic function of the form:

f(x) =
1

2
xTAx + bT x

where A is a positive definite symmetric matrix. We will suppose that the

eigenvalues of A are

λ1 = λ1 ≥ λ2 ≥ · · · ≥ λn = λn > 0,

that is, λ1 and λn are the largest and the smallest eigenvalues of A respectively.

The optimal solution of the problem is computed as:

x∗ = −A−1b

and by direct substitution shows that the optimal objective function value is:

f(x∗) = −1

2
bTA−1b.
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Let xk denote the current point in the steepest descent algorithm and let dk

denote the current direction, which is the negative of the gradient, that is,

dk = −∇f(xk) = −Axk − b.

To get the next iterate of the steepest descent algorithm, we compute the step

size, α, that is,

f(xk + αdk) =
1

2
(xk + αdk)

TA(xk + αdk) + bT (xk + αdk)

=
1

2
xT

k Axk + αdT
k Axk +

1

2
α2dT

k Axk + bTxk + αbTdk

= f(xk) − αdT
k dk +

1

2
α2dT

k Adk.

Optimizing the value of α in this last expression yields

α =
dT

k dk

dT
k Adk

,

and the next iterate of the algorithm is then

xk+1 = xk + αdk = xk +
dT

k dk

dT
k Adk

dk,

and

f(xk+1) = f(xk + αdk) = f(xk) − αdT
k dk +

1

2
α2dT

k Adk

= f(xk) −
1

2

(dT
k dk)

2

dT
k Adk

.

Therefore,

f(xk+1) − f(x∗)

f(xk) − f(x∗)
=

f(xk) − 1
2

(dT
k
dk)2

dT
k
Adk

− f(x∗)

f(xk) − f(x∗)

= 1 −
1
2

(dT
k
dk)2

dT
k
Adk

1
2
xT

k Axk + bTxk + 1
2
bT A−1b

= 1 −
1
2

(dT
k
dk)2

dT
k
Adk

1
2
(Axk + b)TA−1(Axk + b)

= 1 − (dT
k dk)

2

(dT
k Adk)(dT

k A−1dk)

= 1 − 1

β
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where

β =
(dT

k Adk)(d
T
k A−1dk)

(dT
k dk)2

The following inequality provides an upper bound on the value of β.

Theorem 2.2. Kantorovich Inequality

Let λ1 and λn be the largest and the smallest eigenvalues of A, respectively.

Then

β ≤ (λ1 + λn)2

4λ1λn

.

Now, applying this inequality to the above analysis, gives

f(xk+1) − f(x∗)

f(xk) − f(x∗)
= 1 − 1

β

≤ 1 − 4λ1λn

(λ1 + λn)2

=
(λ1 − λn)2

(λ1 + λn)2

=

(

λ1

λn
− 1

λ1

λn
+ 1

)2

=: δ.

By definition, λ1

λn
is always at least 1. If λ1

λn
is small, that is, not much bigger

than 1, then the convergence constant δ will be much smaller than 1. However,

if λ1

λn
is large, then the convergence constant δ will be only slightly smaller than

1. The reason for ensuring that we obtain a small value of the ratio λ1

λn
is to

reduce the condition number of the Hessian matrix, thereby speeding up the

rate of convergence. We illustrate this with an example.

Example 2.6. Consider the problem of minimizing the function

100(x2 − x2
1)

2 + (1 − x1)
2

with a starting point of x0 = [0; 0], then ∇f(x0) = [−2; 0]. The descent direc-

tion d = −∇f(x0) = [2; 0]. The table below gives the Sensitivity of Steepest

Descent Convergence Rate to the Eigenvalue Ratio.
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Table 3: Sensitivity of Steepest Descent Convergence Rate to the

Eigenvalue Ratio

λ1 λn Upper Bound on δ k Condition No.

237.21622 7.97875 0.87407 2 29.731

279.17358 4.60848 0.93609 10 60.578

476.63669 1.43646 0.98800 100 331.81

744.95842 0.66666 0.99634 500 1117.4

889.92511 0.53830 0.99757 1000 1653.2

From Table 3, the condition number of the Hessian matrix keeps on increas-

ing as we increase the number of iteration. This is because as the condition

number gets large, the Hessian matrix becomes ill-conditioned and this is em-

bedded in the problem. The table also shows the relationship between the

condition number and the upper bound on δ on the convergence rate. We see

that when the condition number is small, the upper bound on δ is also small

both of which ensure faster rate of convergence (i.e. small value of k). On

the other hand, when the condition number is large the upper bound on δ is

correspondingly high, leading to a very slow convergence rate (i.e. large value

of k).

We compare the Rosenbrock’s function with the modified Rosenbrock’s

function given by

(x2 − x2
1)

2 + (1 − x1)
2.

The graphs of the two functions within the interval

[X, Y ] = (−2 : 0.1 : 2,−2 : 0.1 : 2) are given in Figures 6 and 7 respectively.
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Figure 6: The graph of the Rosenbrock’s function  in the interval 

   2:1.0:2,2:1.0:2, YX   
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Figure 7: The graph of the Modified Rosenbrock’s function in the  

                   interval    2:1.0:2,2:1.0:2, YX   

 



We observe that within the specified interval, the base of the Modified

Rosenbrock’s function is more clearly defined than that of the Rosenbrock’s

function itself. This suggests that we could obtain a faster convergence rate

for the Modified Rosenbrock’s than the Rosenbrock’s function. The graphs of

the two functions within the interval [X, Y ] = (−5 : 0.1 : 5,−5 : 0.1 : 5) are

given in Figures 12 and 13 in the Appendix.

The differences in the bases of the two graphs are as a result of wide differ-

ences between the largest and the smallest eigenvalues of the Hessian matrix,

H(xk) of the Rosenbrock’s function as compared to the Modified Rosenbrock’s

function. We examine the behaviour of the two functions more analytically. In

Table 4, the first column shows the number of iterations, the second column

shows the condition number of the Rosenbrock’s function and the third column

shows the condition number for the Modified Rosenbrock’s function.

Table 4: The condition number of the Rosenbrock’s and the Modified

Rosenbrock’s functions at various iterations

k κ(Rosenbrock) κ(Modified Rosenbrock)

2 29.731 12.710

10 60.578 25.240

100 331.81 33.962

500 1117.4 33.962

1000 1653.2 33.962

From Table 4, it can be seen that as the condition number of the Rosen-

brock’s function increases, that of the Modified Rosenbrock’s function remains

constant for a number of iterations. As a result the Modified Rosenbrock’s

function is able to converge in less than 100 number of iterations whiles the

Rosenbrock’s function exhibit a slow rate of convergence.

The results in Table 4 illustrate a major weakness of the Steepest De-
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scent method: it is not an appropriate method when the Hessian matrix is

ill-conditioned.

Conjugate Gradient Method

Conjugate gradient methods are widely used for large scale uncon-

strained optimization problems. Most of conjugate gradient methods do not

always generate a descent search direction, so the descent condition is usually

assumed in the analysis as implementation.

The conjugate gradient method is an algorithm for the numerical solution of

particular systems of linear equations, namely those whose matrix is symmetric

and positive definite. The conjugate gradient method is an iterative method

which terminates in at most n steps if no rounding-off errors are encountered,

therefore it can be applied to sparse systems which are too large to be handled

by direct methods such as the Cholesky decomposition. Such systems arise

regularly when numerically solving partial differential equations.

The main aim of conjugate gradient method is to associate conjugacy prop-

erties with the steepest descent method in an attempt to achieve both efficiency

and reliability. The conjugate gradient minimization method of Fletcher and

Reeves (1964) was developed directly from the conjugate gradient method of

Hestenes and Stiefel (1952) for solving linear systems.

The conjugate gradient method were developed for the purpose of solving

Ax = b,

when A is positive definite and they are also used for minimizing

f(x) =
1

2
xTAx− bTx, x ∈ R

n.

Definition 2.1. Given a positive definite matrix A, two vectors u, v are

conjugate with respect to A (or A-conjugate) if
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uT Av = 0

which is an inner product (u,v) defined by the matrix A. This inner product

in turn induces a vector norm ‖u‖A =
(

uTAu
)

1

2 , called the A-norm.

If the vectors d1, · · · ,dn are nonzero and pairwise A-conjugate, then they

are linearly independent, and hence form a basis for R
n. Then {d1, · · · ,dn}

is said to be the set of conjugate directions(with respect to A). Given a

general quadratic function

f(x) =
1

2
xTAx− bTx, x ∈ R

n,

∇f(x) = Ax− b

at any point. We choose the starting point and an initial direction to be the

direction of steepest descent

d0 = −∇f(x0)

= b − Ax0

Starting with an initial guess x0, we choose α0 to minimize f(x0 +α0d0) since

d0 is a descent direction.

We then have

x1 = x0 + α0d0.

In general, we compute these at each iteration:

rk = b− Axk

αk =
rT

k rk

dT
k Adk

xk+1 = xk + αkdk

βk =
rT

k rk

rT
k−1rk−1

dk = rk + βkdk−1

The algorithm outlined is illustrated in Example 2.7.
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Example 2.7. Let

f(x) = −bT x +
1

2
xTAx,

A = [3 − 1;−1 3] and b = [4;−2].

∇f = −b + Ax

−∇f = b− Ax

At x = [0; 0], −∇f = r0 which gives the initial direction.

αk =
rT

k rk

dT
k Adk

α0 =
rT
0 r0

dT
0 Ad0

where r0 is the same as the initial direction d0.

α0 =

[4 − 2]







4

−2







[4 − 2]







3 −1

−1 3













4

−2







α0 =
20

76
=

5

19

x1 = (x0 + α0d0) =
5

19







4

−2






=







1.0526

−0.5263







r1 = b −Ax1 =







4

−2






−







3 −1

−1 3













1.0526

−0.5263






=







0.3159

0.6315







d1 = r1 −
rT
1 Ar1

rT
0 Ar0

d0
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d1 =







0.3159

0.6315






−

[0.3159 0.6315]







3 −1

−1 3













0.3159

0.6315







[4 − 2]







3 −1

−1 3













4

−2













4

−2







d1 =







0.3159

0.6315






− 0.0249







4

−2






=







0.4155

0.5817







α1 =
rT
1 r1

dT
1 Ad1

α1 =

[0.3159 0.6315]







0.3159

0.6315







[0.4155 0.5817]







3 −1

−1 3













0.4155

0.5817







α1 =
0.4986

1.0497
= 0.4750

x2 = (x1 + α1d1) =







1.0526

−0.5263






+ 0.475







0.4155

0.5817






=







1.25

−0.25







We see that the iterates converge after only two iterations. This is so

because the function involved in the implementation is quadratic. If the func-

tion is not quadratic it may take more number of iterations for the iterate to

converge.

The general m-file implementation of the algorithm is given as follows:

function y = cgm(A,b,x0)

n = size(x0)

r0 = b − (A ∗ x0)

p0 = r0;

for k = 1 : n
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ak−1 = (r′k−1 ∗ rk−1)/(d′
k−1 ∗ A ∗ dk−1)

xk = xk−1 + ak−1 ∗ dk−1

rk = rk−1 − ak−1 ∗ (A ∗ dk−1)

bk = (r′k ∗ rk)/(r′k−1 ∗ rk−1)

dk = rk + bk ∗ dk−1

end

x

end

The algorithm outlined is illustrated in Example 2.9.

Example 2.8. Consider the problem of minimizing the function

f(x1, x2) = (x2 − x2
1)

2 + (1 − x1)
2

using the conjugate gradient method with a starting point of x0 = [0; 0], we

get the following iterates:

Table 5: Values of function and gradient at each iterate

Iteration xk ∇f(xk) f(xk)

0 [0; 0] [-2; 0] 1

2 [0.95504; 0.89219] [-0.013851; -0.039824] 0.0024178

4 [0.99947; 0.99872] [-1.9024 e-004; -4.3446 e-004] 3.2740 e-007

6 [1; 1] [-3.9023 e-007; -9.3200 e-007] 1.4880 e-012

From Table 5, we observe that ∇f(xk) steadily approaches zero and the

function evaluations at xk is decreasing. These two indicate that the point

of convergence is truly one of a minimum. The table shows that the iterates

converge after six iterations using the MATLAB implementation of Davidon-

Fletcher-Powell algorithm with self-scaling for solving an n-dimensional un-

constrained minimization problem.
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We see from Table 5 that since the function is not quadratic it takes more

than two iterations for convergence. This illustrates the general case when the

function involved is not quadratic.

Example 2.9. Consider the problem of minimizing the function

f(x1, x2) = x4
1 + x1x2 + (1 + x2)

2

using the conjugate gradient method with a starting point of x0 = [0; 0], we

obtain the first iterate to be x1 = [0.69588; −1.34794] and that is the mini-

mum of the function. The solution is quick. This suggests that the function

exhibits a lot of quadratic properties. We see these properties in the graph of

f illustrated in Figures 14a and 14b in the Appendix. In fact, it can be seen

that the function is a quadratic in x2.
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CHAPTER THREE

NEWTON-LIKE METHODS OF UNCONSTRAINED

OPTIMIZATION

Newton’s Method

Many methods for solving minimization problems are variants of Newton

method, which requires the specification of the Hessian matrix of second deriva-

tives. A quadratically convergent method can be attained by using Newton’s

method to perform root-finding on f ′(x), that is f ′(x) = 0. If f : R → R, then

Newton’s method applied to f ′(x) can be written as

xk+1 = xk −
f ′(xk)

f ′′(xk)
(3.1)

if f is twice continuously differentiable. Since we are dealing with f ′, the

convergence theory requires that f be four times continuously differentiable

such that f ′ will be thrice continuously differentiable. Let assume that x0 is

sufficiently close to a minimum x∗ of f and that f ′′(x∗) is nonzero, then we

expect the quadratic convergence of the method to x∗. Note that if x0 is

not sufficiently close to a minimum, then it converges to a maximum of f . If

x0 is an approximation of the location of the minimum, then near x0 with the

idea of Taylor’s Theorem, we have

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 (3.2)

that is, near x0, f(x) is approximated by the quadratic model

q(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2.

57



The minimum of this quadratic occurs where q′(x) = 0. Differentiating Equa-

tion 3.2 with respect to x and setting f ′(x) to zero gives

0 ≈ 0 + f ′(x0) · 1 + f ′′(x0)(x − x0)

Noting that f ′(x0) and f ′′(x0) are constants, this leads to the Newton’s method

x1 = x0 −
f ′(x0)

f ′′(x0)
.

Hence, if x0 is an approximation of the location of the minimum x∗, then

x1 should be a better approximation of x∗. Therefore, Newton’s method for

minimization is given in Equation 3.1 and is truly an optimization method

based on Newton’s method for root - finding.

Now, to choose a good initial guess x0 for this method, it depends on whether

1. f ′(x0) = 0 and

2. f ′′(x0) > 0

The choice of an initial point(x0) is crucial to obtaining the type of critical

point that is desired. If x0 is chosen close to a minimum point, it leads to a

minimum point. On the other hand, if x0 is chosen close to a maximum point,

we automatically end up with a maximum point. Thus, if we seek a minimum

point, but x0 is taken close to a maximum point, the resulting iterates become

divergent from the desired minimum point. This phenomenon is a particular

feature of the Newton’s method.

Example 3.1. Consider the problem of minimizing the function

f(x) = (x − 5)(x − 12)(x − 30)

using the Newton’s method.

From the graph in Figure 8, it is clear that the only local minimum of this

cubic function lies between x = 30 and x = 40.
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Figure 8: The graph of f(x) = x3 − 47x2 + 570x − 1800

With initial guess x0 = 30, we have

x1 = x0 −
f ′(x0)

f ′′(x0)

= x0 −
3x2

0 − 94x0 + 570

6x0 − 94
= 24.8

x2 = x1 −
f ′(x1)

f ′′(x1)
= 23.3

x3 = x2 −
f ′(x2)

f ′′(x2)
= 23.1

x4 = x3 −
f ′(x3)

f ′′(x3)
= 23.1

To test whether the function has reached its local minimum point, we can

evaluate the second derivative of f at that point (x0 = 23.1). That is,

f ′′(23.1) = 6(23.1) − 94 = 44.6 > 0.

Since the sign of the second derivative is positive, it means that a local mini-

mum is attained.

Newton’s method is rarely employed for one - dimensional minimization;

however, Newton’s method and its variants are very commonly used for multi-

dimensional minimization.
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The multi-dimensional form may be derived by applying Newton’s method

to find a stationary point of f : R
n → R by solving the nonlinear system of

equations ∇f(x) = 0. Alternatively, we can use Taylor series for a function

of several variables to obtain the multi-dimensional analogue of Equation 3.1.

Using the Taylor’s series, we have

f(x) = f(x0) + ∇f(x0)
T (x − x0) +

1

2
(x − x0)

TH(x0)(x − x0) + · · · , (3.3)

where H(x) (also denoted by ∇2f(x)) is a matrix called the Hessian matrix,

and given by

H(x) = ∇2f(x) =





























∂2f

∂x2
1

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · · ∂2f

∂x2
n





























The Hessian matrix is symmetric if f is twice continuously differentiable.

Consider Equation 3.3 and assume that the higher-order terms are negligible.

If we take x0 to be x∗, and since ∇f(x∗) is zero, we have

f(x) = f(x∗) + ∇f(x∗)T (x − x∗) +
1

2
(x − x∗)TH(x∗)(x − x∗) + · · ·

= f(x∗) +
1

2
(x − x∗)TH(x∗)(x − x∗) + · · ·

Since f(x∗) is the local minimum value of f , it must be that

(x − x∗)TH(x∗)(x − x∗) ≥ 0

at least for x near x∗; if the minimum is a strict local minimum, then we must

have

(x − x∗)TH(x∗)(x − x∗) > 0
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(x 6= x∗). The quantity x−x∗ is just a vector. Hence by using vector calculus

either on Newton’s method for finding the roots applied to ∇f(x) = 0 to find

its minimum (assuming in either case that H(x∗) is positive definite), we arrive

at newton’s method for minimization:

xk+1 = xk − H−1(xk)∇f(xk).

Therefore, if H(x∗) is positive definite, then it is necessarily nonsingular,

and so H−1(x) exists at the minimum x = x∗. We write Newton’s method for

minimization as

H(xk)(xk+1 − xk) = −∇f(xk), (3.4)

Then

1. solve for the step δk = xk+1 − xk,

2. compute xk+1 from xk+1 = xk + δk.

We consider the case of a sufficiently differentiable function of two variables

f : R
2 → R. The gradient is

∇f(x, y) =













∂f

∂x

∂f

∂y













and the Hessian is

H(x, y) =















∂2f

∂x2

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2















Newton’s method then takes the form
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xk+1

yk+1






=







xk

yk






−















∂2f

∂x2

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2















−1












∂f

∂x

∂f

∂y













where the Hessian and gradient on the right - hand side are evaluated at

(x, y) = (xk, yk). Since the inverse of the Hessian is usually expensive to com-

pute we make use of Equation 3.4 to determine [xk+1; yk+1].

Example 3.2. Consider the problem of minimizing the function

f(x, y) = −e−x2−y2

using the Newton’s method.

We have

∂f

∂x
= 2xe−x2−y2

∂f

∂y
= 2ye−x2−y2

so

∇f(x, y) =







2xe−x2−y2

2ye−x2−y2







The Hessian matrix of f(x, y) is given by

H(x, y) =















∂2f

∂x2

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2















where

∂2f

∂x2
= 2e−x2−y2

(1 − 2x2)

∂2f

∂x∂y
=

∂2f

∂y∂x
= −4xye−x2−y2

∂2f

∂y2
= 2e−x2−y2

(1 − 2y2)

Hence Newton’s method for finding the minimum of f(x, y) is






xk+1

yk+1






=







xk

yk






−







2e−x2−y2 −4xye−x2−y2

−4xye−x2−y2

2e−x2−y2







−1

×







2xe−x2−y2

2ye−x2−y2
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Taking [x0; y0] = [0.3; 0.3] as the starting point







x1

y1






=







0.3

0.3






−







−0.82 −0.18

−0.18 −0.82













−0.3

−0.3






=







−0.16875

−0.16875







Similarly, the values of xk for four iterates with corresponding f(xk), ∇f(xk)

and ‖∇f(xk)‖∞ are given in Table 6.

Table 6: Iterations showing the function and gradient values at each iterate

k xk f(xk) ∇f(xk) ‖∇f(xk)‖∞

0 [0.3;0.3] -0.83527 [0.50116; 0.50116] 0.50116

1 [-0.16875; -0.16875] -0.94464 [-0.31882; -0.31882] 0.31882

2 [0.02169; 0.02169] -0.99906 [0.04335; 0.04335] 0.04335

3 [0; 0] -1.00000 [0; 0] 0.00000

4 [0; 0] -1.00000 [0; 0] 0.00000

We see from Table 6 that as the iterations increase, the values of the func-

tion at the various iterates decrease. This shows that we are actually mov-

ing towards a minimum point. The values of ∇f(xk) are also diminishing.

Now, setting a stopping condition of ∇f(xk) ≤ ǫ = 10−3, we observe that

∇f(xk) is less than the tolerance value after four iterations. Thus, we take

[−2.6481; −1.5933] as the critical point. At this point, we note that the cor-

responding value of the ‖∇f(xk)‖∞ = 2.2665 × 10−4 is much less than the

tolerance. Furthermore, the Hessian

H(x4) =







2 −2.7756 × 10−7

−2.7756 × 10−7 2







is positive definite. Therefore the minimum point of f is [0; 0] and is obtained

after four iterations from the initial point [0.3; 0.3].
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Example 3.3. Consider the problem of minimizing the function

f(x1, x2) = (x2 − x2
1)

2 + (1 − x1)
2

Now, if we take x0 = [0; 0], then g(x0) = ∇f(x0) = [−2; 0] and

H(x0) =







2 0

0 2






.

Clearly, H(x0) is positive definite. From Equation 3.4, solving for δx0, we

obtain

δx0 =







1

0







Hence,

x1 = δx0 + x0 =







1

0







and

∇f(x1) = [4;−2].

Now,

H(x1) =







14 −4

−4 2







which is positive definite (i.e. leading principal minors are both positive ).

The change in x1, is then given by

δx1 =







1.752 × 10−7

1






.

Hence,

x2 = δx1 + x1 =







1

1







and

∇f [1; 1] =







0

0






.
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The Hessian

H(x2) =







10 −4

−4 2







is positive definite. Thus, at x2 = [1; 1] we have satisfied the condition for a

critical point to be minimum. Therefore, the minimum point of f is [1; 1] and

is obtained after two iterations from the initial point x0 = [0; 0]. It would be

recalled that under the Steepest Descent method, the minimum point of the

Modified Rosenbrock’s function using the same initial point x0 = [0; 0] was

obtained after three iterations. Thus, comparing the two methods, we realize

that Newton’s method convergences faster than the Steepest Descent.

Example 3.4.

minimize : f(x1, x2) = x4
1 + x1x2 + (1 + x2)

2

Using an initial guess of x0 = [0.75;−1.25], we obtain

∇f(x0) = [0.43750; 0.25000], and

H(x0) =







6.74999 1

1 2







From Equation 3.4,

H(xk+1 − xk) = −∇f(xk),

we obtain

x1 =







0.7

−1.35







with

∇f(x1) =







2.2 × 10−2

−5.5511 × 10−12







Similarly,

x2 =







0.69591

−1.34796







65



with

∇f(x2) =







1.3104 × 10−4

−1 × 10−5






;

and

x3 =







0.69588

−1.34794







with

∇f(x3) =







−2.3294 × 10−5

5.5511 × 10−12






.

Using a tolerance of ǫ = 10−5 we see that ∇f(x3) = [0; 0] and the Hessian

H(x3) =







5.81097 1

1 1.99999







is positive definite. Thus, x3 = [0.69588;−1.34794] is a minimum point of

f(x). We recall that in Example 2.9, the minimum point of this function under

Conjugate Gradient method is the same as x3 and was attained in just one

iteration with the starting point of x0 = [0; 0]. We note that x0 = [0; 0] is

farther from x3 than the starting point x0 = [0.75;−1.25] used in this case.

If we use x0 = [0; 0] in this example, we obtain

∇f(x0) =







0

2







and the

H(x0) =







0 1

1 2







This matrix is indefinite and hence we have a saddle point at x0 = [0; 0].

This means that the expression

H(xk)
−1∇f(xk)

in the Newton’s method fails to be a descent direction. To ensure a descent

direction, we make use of an alternative direction vk which is the eigenvector
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corresponding to the negative eigenvalue of the Hessian matrix at xk in the

steepest descent method. That is,

xk+1 = xk + αkvk.

Using this method, we compute the various iterates for given values of the step

size αk and vk. These iterations are given in the following table.

Table 7: Number of iterations, the step size and the descent direction

k αk vk xk

0 0.21571 [-0.92388; 0.38268] [0; 0]

1 0.0051142 [ -0.89608; 0.44388] [-0.199292; 0.082549]

2 0.00024236 [-0.89451; 0.44704] [-0.203875; 0.084819]

3 0.000040420 [-0.89444; 0.44719] [-0.204092; 0.084927]

4 0.000040420 [-0.89443 ; 0.44722] [-0.204128; 0.084945]

5 0.000040420 [-0.89443 ; 0.44722] [-0.204128; 0.084945]

We see from Table 7 that the iterations converge after five iterations to the

critical point [−0.204128; 0.084945]. It is interesting to note that this minimum

point is different from the minimum point [0.69588;−1.34794] obtained under

the Conjugate Gradient method after only one iteration.

In the above example, we encountered a situation where the Hessian at

a point was indefinite and therefore could not continue with the Newton’s

method. At this point, the steps taken to obtain a positive definite Hessian

basically combines the Newton’s method with the Steepest Descent method.

This procedure is in effect a modification of the Newton’s method to achieve

a positive Hessian. The procedure is further illustrated in the next section.
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Modified Newtons’s Method

In Newton’s method,

xk+1 = xk −H(xk)
−1∇f(xk)

the expression sk = −H(xk)
−1∇f(xk) is a descent direction if H(xk)

−1 is

positive definite. The algorithm for damped Newton’s method is

xk+1 = xk − αkH(xk)
−1∇f(xk) (3.5)

for some damping sequence {αk}k=∞
k=0 , 0 < αk ≤ 1, and αk → 1 as k → ∞.

When H(xk)
−1∇f(xk) is not a descent direction, a modified Newton’s method

substitutes a descent direction sk for H(xk)
−1∇f(xk). One possible way to

enforce descent is to use Equation 3.5. Newton’s method and the method of

steepest descent are both of the form of Equation 3.5 for some sequence αk

and some matrix H(xk). From Equation 3.5, the modified Newton’s method

becomes the steepest descent method

xk+1 = xk − αk∇f(xk). (3.6)

That is, we obtain the modified Newton’s method by simply taking

H(xk)
−1 = Ik, where Ik is the identity matrix of dimension k.

In most cases, it is still possible to compute sk from

sk = −H(xk)
−1∇f(xk)

and to search along ±sk, the sign chosen to ensure a descent direction.

The theoretical arguments against the generalized Newton’s method are,

first, if H(xk) is not a positive definite matrix, a move in the direction given

by

xk+1 = xk − αkH(xk)
−1∇f(xk),
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where αk > 0 is chosen to minimize f along −H(xk)
−1∇f(xk), starting from

xk, may result in an increase rather than a decrease in f(x), yielding αk = 0,

which terminate the process at xk. The second theoretical objection is that

H(xk) may not have an inverse, even if f(x) is convex. The modified second-

order method to be discussed takes into account these two relevant objections

to the generalized Newton’s method. The direction vector sk is generated

according to two rules. In both cases,

xk+1 = xk + αksk,

where αk is chosen to be the smallest value of α ≥ 0 for which xk + αksk

is a local minimum of f(xk + αksk). The rules(recommended by Fiacco and

McCormick, 1967) are as follows:

1. If H(xk) has a negative eigenvalue, let sk be a vector where

(sk)
TH(xk)sk < 0 and (sk)

T∇f(xk) ≤ 0. (3.7)

2. If H(xk) has all eigenvalues greater than or equal to zero, choose sk such

that either

H(xk)sk = 0, sT
k ∇f(xk) < 0

or

H(xk)sk = −∇f(xk).

The rationale for Rule 1 is that if the second partial derivative matrix has a

negative eigenvalue there are certain directions along which the function f(x)

decreases and along which the rate of decrease also decreases. That is, for a

vector s satisfying Equation 3.5,

df(xk + αksk)

dαk

= sT
k ∇f(xk) ≤ 0, and

d2f(xk + αksk)

dα2
k

= sT
k H(xk)sk < 0
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at αk = 0.

Now, to get the value of sk, we factorize the matrix H(xk) as

H(xk) = LDLT ,

where L is a nonsingular lower triangular matrix and D is a diagonal matrix.

The conditions for the factorization of H(xk) are as follows:

1. If D has all positive diagonal elements, solve for sk = −H(xk)
−1∇f(xk).

2. If D has all nonnegative diagonal elements, and at least one is zero, the

vector sk is generated according to the second rule above.

3. If D has some diagonal elements that are negative, solve LTv = ak,

where ak is a column vector with jth component= 0 if the jth diagonal

element of D > 0 and with jth component =1 if the jth diagonal element

of D < 0. Let sk = v if vT∇f(xk) ≤ 0, and sk = −v otherwise.

We illustrate the use of the rules outlined above by considering again the

minimization problem in Example 3.4.

Example 3.5. Consider the problem of minimizing the function

f(x1, x2) = x4
1 + x1x2 + (1 + x2)

2

with a starting point of x0 = [0; 0], we obtain ∇f(x0) = [0; 2] and

H(x0) =







0 1

1 2






.

Here, the matrix is indefinite. From the Newton’s method,

xk+1 = xk −H(xk)
−1∇f(xk)

and sk = −H(xk)
−1∇f(xk) is not a descent direction. Therefore, we look for

a new direction, v. The Newton’s method then becomes

xk+1 = xk − αkvk
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To obtain v, we factorize the Hessian matrix H(x0) as LDLT . In this

factorization,

D =







2 0

0 −0.5







Now, because some of the diagonal entries are negative, we use the second

condition to get a. We then solve

LTv = a =







0

1







⇒ v =







1

−0.5







where

ak =















1, if dk < 0

0, otherwise

which is the required descent direction. Using the steepest descent algorithm

to compute the first iterate, we obtain

x1 =







−0.20363

0.10181







The Hessian at x1 is

H(x1) =







0.49758 1

1 1.99999







The matrix H(x1) is not positive definite since the leading principal minors

are not both positive. The process therefore cannot continue. Thus the rec-

ommendation of Fiacco and McCormick (1967) seizes to work. To overcome

this problem, we need to search along a different direction since x1 is in the

same direction as v. We observe that if we choose the direction specified by

∇f(x1) we obtain

x2 =







−0.23656

−0.86608
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At x2, the Hessian is

H(x2) =







0.67150 1

1 2







which is positive definite and therefore we switch back to the Newton’s method.

The following table shows the iterates, x1,x2, · · · ,x12.

Table 8: Values of the function and gradient at each iterate for the

Descent and Newton’s Methods

Method k xk ∇f(xk) f(xk)

0 [0; 0] [0; 2] 1

Steepest 1 [-0.20363; 0.10181] [0.068041; 2] 1.1950

Newton 2 [-0.23656; -0.86608] [-0.919032; 0.031278] 0.22594

Newton 3 [5.2134; -3.6067] [563.17; −8.3901 × 10−6] 726.70

Newton 4 [3.4840; -2.7415] [166.41; 9.8662 × 10−4] 140.81

Newton 5 [2.3375; -2.1688] [48.921; 1.9252 × 10−6] 26.153

Newton 6 [1.5857; -1.7928] [14.156; 7.9298 × 10−6] 4.1081

Newton 7 [1.1086; -1.5543] [3.8962; −2.6482 × 10−7] 0.094751

Newton 8 [0.83521; -1.4176] [0.91289; 2.2768 × 10−7] -0.52299

Newton 9 [0.71923; -1.35961] [0.12858; 3.8630 × 10−7] -0.58096

Newton 10 [0.69670; -1.34835] [0.0043342; 6.8773 × 10−8] -0.58244

Newton 11 [0.69589; -1.34794] [5.5268 × 10−6; 1.8097 × 10−9] -0.58245

Newton 12 [0.69588; -1.34794] [−5.5511 × 10−12; 5.5511 × 10−12] -0.58245

From the table, we observe that ∇f(xk) steadily approaches zero, and the

function values are decreasing. After twelve iterations, the iterates converged

to the solution x12 = [0.69588;−1.34794]
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Other Forms of Modification

1. If the Hessian matrix is not positive definite, we look for another search

direction which is an eigenvector, vk, of H(xk) corresponding to the

negative eigenvalue and that gives a direction along which f can be

reduced. The algorithm then becomes the steepest descent whenever

H(xk) is not positive definite, and it is given by the equation

xk+1 = xk + αkvk

2. An alternative approach is to modify the Newton’s search direction by

giving it a bias towards the steepest descent vector −∇f(xk). This is

achieved by adding a scalar multiple of the unit matrix to H(xk) and

solving the system

(H(xk) + vI)sk = −∇f(x).

This idea was first developed by (Levenberg, 1944; Marquardt, 1963).

The idea is to choose v so that the modified matrix H(xk)+vI is positive

definite.

3. Another alternative is by modifying the Hessian matrix in the form

H(xk) + D

where D is diagonal and it is used to determine the search direction.

This modification was developed by (Murray, 1972 ; Hebden, 1973).The

modification occurs as the matrix is being factorized.
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Quasi - Newton Methods

Quasi-Newton methods are intended for the situation where the Hessian

is expensive or difficult to calculate. Quasi-Newton methods use only first

derivatives to build an approximate Hessian over a number of iterations. This

approximation is updated at each iteration by a matrix of low rank. In uncon-

strained minimization, the original quasi-Newton equation is

Bk+1sk = yk,

where yk is the difference of the gradients at the last two iterates. A new

quasi-Newton equation is given by

Bk+1sk = y∗
k,

where y∗
k is the sum of yk and Aksk where Ak is some matrix . Two choices

are given for Ak which carry some second order information of the Hessian of

the objective function.

In Quasi-Newton method, we use matrices which approximate the Hessian

matrix or its inverse, instead of the Hessian matrix or its inverse in Newton’s

method. The matrices are normally denoted by

B ≃ H(x) and D ≃ H(x)−1.

The matrices can be produced in many different ways ranging from very simple

techniques to highly advanced schemes, where the approximation is built up

and adjusted dynamically on the basis of information about the first deriva-

tives, obtained during the iteration. The simplest and most straight-forward

Quasi-Newton method is obtained if the elements of the Hessian matrix are ap-

proximated by finite differences. In each coordinate direction, ei(i = 1, · · · , n),

a small increment δi is added to the corresponding element of x and the gra-

dient in this point is calculated. The ith column of a matrix B is calculated as
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the difference approximation

(∇f(x + δiei) −∇f(x))

δi

.

After this, the symmetric matrix B =
1

2
(B + BT ) is formed. Extra gradient

evaluations are avoided in Quasi - Newton methods but instead, updating

formulas where the B or D matrices are determined from information about the

iterates, x1,x2, · · · and the gradients of the cost function, ∇f(x1),∇f(x2), · · ·

gathered during the iteration steps. Thus, in each iteration step the B or D

matrix is changed so that it finally converges towards H(x∗), x∗ being the

minimizer. Approximations to the inverse Hessian are preferred rather than

approximations to the Hessian itself. This is because, the computational labour

in the updating is the same no matter which of the matrices we update. Also,

if we have an approximate inverse, then the search direction is found simply by

multiplying the approximation with −∇f . This is an O(n2) process whereas

the solution of the linear system with B as coefficient matrix is an O(n3)

process. Another possibility is to use approximations to the Cholesky factor

of the Hessian matrix, determined at the start of the iteration and updated

in the iteration. Using this, we can find the solution of the system in O(n2)

operations. A classical Quasi - Newton method with updating always includes

a line search. Basically, there are two different approaches (line search or trust

region) which defines two classes of methods. We shall confine ourselves to the

line search approach.

Iteration step in Quasi - Newton with updating and line search

We take B (or D) as the current approximation to H(x) or H(x)−1.

Solve Bhqn = −∇f(x) or compute hqn := −D∇f(x).

Line search along hqn giving hqn := αhqn; x1 = x0 + hqn Update B to Bnew

(or D to Dnew).
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The Quasi - Newton Condition

An updating formula must satisfy the Quasi - Newton condition, which

may be derived in many ways. The condition is also referred to as the se-

cant condition, because it is closely related to the secant method for non -

linear equations with one unknown. Let x and B be the current iterate and

approximation to H(x). Given these, the first parts of the iteration step can

be performed yielding hqn and hence x1. The objective is to calculate Bnew

by a correction of B. The correction must contain some information about the

second derivatives. This information is only approximate. It is based on the

gradients of f at the two points. Now, consider the Taylor expansion of ∇f

around x + hqn :

∇f(x) = ∇f(x + hqn) − H(x + hqn)hqn + · · · (3.8)

We assume that we can neglect the higher order terms, and with the notation

y = ∇f(x1) −∇f(x0),

Equation 3.8 leads to the relation

y ≃ H(x1)hqn.

Therefore, we require that Bnew should satisfy

Bnewhqn = y

This is the Quasi - Newton condition. The same arguments leads to the alter-

native formulation of the Quasi - Newton condition,

Dnewy = hqn.

The Quasi - Newton condition only supplies n conditions on the matrix Bnew

(or Dnew) but the matrix has n2 elements. Therefore, additional conditions

are needed to get a well defined method.
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In the Quasi - Newton methods that we describe, the B or (D) matrix

is updating in each iteration step. We produce Bnew (or Dnew) by adding

a correction term to the present B or (D). Important requirements to the

updating are that it must be simple and fast to perform and yet effective. This

can be obtained with a recursive relation between successive approximations,

Bnew = B + W,

where W is a correction matrix. In most methods, W is a rank - one matrix,

that is,

Bnew = B + abT

or a rank - two matrix, that is,

Bnew = B + abT + uvT ,

where a,b,u,v ∈ R
n. Hence, W is an outer product of two vectors or a sum

of two such products. Often, a = b and u = v; this is a simple way of ensuring

that W is symmetric.

Comparison with Conjugate Gradient Algorithms

The Quasi - Newton methods are closely related to conjugate directions

and conjugate gradient algorithms when applied to quadratic functions. When

minimizing a general non - quadratic function, Quasi - Newton methods(BFGS

in particular) typically perform better. Partially, this is due to the fact that

Quasi -Newton methods, in addition to generating conjugate directions, also

tend to approximate the Hessian matrix, and hence, close to the optimum,

the directions they generate tend to approximate the Newton’s direction. This

observation holds true regardless of the starting matrix D1, and hence it is

typically unnecessary to restart Quasi - Newton methods. Also by numerical

analysis, Quasi - Newton methods tend to be less sensitive to the accuracy
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of line searches performed at each iteration. On the other hand, compared

to conjugate gradient methods, Quasi - Newton methods require more stor-

age space, and each iteration requires more computation. (In particular, they

have to store the matrix Dk and compute Dk∇f(xk) at each iteration, while

the number of function and gradient evaluations is the same as in conjugate

gradient algorithms.) In general, both conjugate gradient and quasi - Newton

methods require significantly less work per iteration than Newton’s method

(unless special structure of the problem allows for efficient direct computa-

tion of the Hessian and its inverse). Quasi - Newton methods (typically with

BFGS update of one form of another) are usually the algorithms of choice

in unconstrained optimization software. The optimization toolbox in MAT-

LAB implements quite a few gradient descent methods in its function fminunc.

The software allows us to change the algorithm used to DFP Quasi - Newton

method which approximate the inverse of the Hessian, or to steepest descent.

The Broyden Family

Many Quasi - Newton methods are advantageous due to their fast conver-

gence and absence of second - order derivative computation. What makes a

Quasi - Newton method work is the choice of the matrix Bk at each iteration.

The important idea behind the methods is that two successive iterates xk and

xk+1 together with the gradients ∇f(xk) and ∇f(xk+1) contain curvature(that

is, Hessian) information, in particular,

(∇f(xk+1) −∇f(xk)) ≈ H(xk+1)(xk+1 − xk)

The above approximation is an equality when the function is quadratic. There-

fore, at every iteration we would like to choose Bk+1 to satisfy

Bk+1qk = pk (3.9)
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where pk = xk+1−xk, qk = ∇f(xk+1)−∇f(xk). Equation 3.9 is the Quasi

- Newton condition, or the secant equation. Suppose that at every iteration,

we update the matrix Bk+1 by taking the matrix Bk and adding a “correction”

term Ck. Then the secant equation becomes

(Bk + Ck)qk = pk ⇒ Ckqk = pk − Bkqk (3.10)

Equation 3.10 leaves us a lot of flexibility in selecting the correction matrix

Ck. The most popular update methods come from the following (parametric)

family of matrices. (we note that the subscript k is omitted in most of the

following formulas for simplicity, here B = Bk):

CB(ξ) =
ppt

ptq
− BqqtB

qtBq
+ ξτvvt (3.11)

where v =
p

ptq
− Bq

τ
, τ = qtBq

The choice of the scalar ξ ∈ [0, 1], which parameterizes the family of ma-

trices C, gives rise to several popular choices of updates. In particular:

1. Setting ξ = 0 at each iteration, we obtain the DFP (Davidson-Fletcher-

Powell) update.

CDFP = CB(0) =
ppt

ptq
− DqqtD

qtDq
,

where B = D

which is historically the first Quasi - Newton method.

2. Setting ξ = 1 at each iteration, we obtain the BFGS (Broyden-Fletcher-

Goldfarb-Shanno) update:

CBFGS = CB(1) =
ppt

ptq
[1 +

qtDq

ptq
] − Dqpt + pqtD

ptq
.

The resulting method has been shown to be superior to other updating

schemes in its overall performance.

79



3. A general member of the Broyden family in Equation 3.11 can therefore

be written as a convex combination of the two above updates:

CB(ξ) = (1 − ξ)CDFP + ξCBFGS

The following two results demonstrate that Quasi - Newton methods

generate descent search directions and the initial approximation D1 is

positive definite,and, when applied to a quadratic function, result in

conjugate direction methods.

Broyden-Fletcher-Goldfarb-Shanno Method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a method

for solving an unconstrained nonlinear optimization problem.

The BFGS method is derived from the Newton’s method treated earlier on

which is a class of optimization techniques that seeks the stationary point of a

function, where the gradient is 0. Newton’s method assumes that the function

can be locally approximated as a quadratic in the region around the optimum,

and use the first and second derivatives to find the stationary point.

In Quasi-Newton methods, the Hessian matrix of the function to be mini-

mized does not need to be computed at every stage. The Hessian is updated

by analyzing successive gradient vectors instead. Quasi-Newton methods are

a generalization of the secant method to find the root of the first derivative

for multidimensional problems. In multi-dimensions, the secant equation is

under-determined, and Quasi-Newton methods differ in how they constrain

the solution. The BFGS method is one of the most successful members of this

class.

The BFGS method is termed a secant updating method. The general aim

of these methods is to preserve symmetry of the approximate Hessian as well

as maintain positive definiteness.
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The Quasi- Newton method reduces work load per iteration and the BFGS

method makes sure that a Quasi - Newton step is always a descent direction.

We start with an initial guess x0 and a symmetric positive definite approx-

imate Hessian, B0 (which is usually taken as an identity matrix.)

The search direction pk at stage k is given by the solution of the analogue

of the Newton equation

Bkpk = −∇f(xk).

A line search in the direction pk is then used to find the next point xk+1.

Instead of requiring the full Hessian matrix at the point xk+1 to be com-

puted as Bk+1, the approximate Hessian at stage k is updated by the addition

of two matrices.

Bk+1 = Bk + Uk + Vk

Both Uk and Vk are rank-one matrices but have different bases. The rank

one assumption here means that we may write

C = abT

So equivalently, Uk and Vk construct a rank-two update matrix which is

robust against the scale problem often suffered in the gradient descent search-

ing.
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CHAPTER FOUR

CONSTRAINED OPTIMIZATION

In the previous chapter, we considered the minimization of a function f(x),

x ∈ R
n,without any restrictions on x. In this chapter, we now consider the

minimization of a function f(x) where x is constrained to lie in some subspace

of R
n. Constraints can either be equality constraints or inequality con-

straints. Since the case of a scalar-variable follows easily from the vector one,

only the latter is discussed in detail in this chapter.

Basic Notations and Examples

We consider nonlinear programming problems (NLP) of the form

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0 (4.1)

where f : R
n → R is the objective functional and the functions h : R

n → R
m

and g : R
n → R

p are the equality and inequality constraints respectively. The

functions f, g and h are assumed to be at least twice continuously differentiable.

Definition 4.1. Feasible set

The set of points that satisfy the equality and inequality constraints, that is,

F := {x ∈ R
n‖ h(x) = 0, g(x) ≤ 0}

is called the feasible set of the NLP in Equation 4.1. Its elements are referred

to as feasible points.

82



In terms of the feasible set, the NLP can be written in a more compact

form as

min
x∈F

f(x)

To illustrate the impact of the constraints on the solution of an NLP, we

first explain the concept of the Lagrange’s method.

Equality Constraints and the Lagrange’s Method

A typical equality constrained minimization problem has the form

min
x

f(x)

subject to gi(x) = 0 i = 1, 2, · · · , p (4.2)

where f(x) is the scalar-valued objective function and gi(x) is the vector-valued

constraint function.

The classical approach to solving Equation 4.2 is the method of Lagrange

multipliers. This approach converts the constrained optimization problem into

an unconstrained one, thereby allowing the use of the techniques described in

the previous section. The Lagrangian of the constrained minimization problem

is defined to be the scalar-valued function

L(x, λ) = f(x) + λ
T g(x) (4.3)

The following theorem gives the necessary condition for solving Equation 4.3.

Theorem 4.1. Let x0 denote a local solution to the constrained minimization

problem given above where the gradients ∇x(g1(x0)), · · · ,∇ x(gM(x0)) of the

constraint function’s components are linearly independent. Then there exists

a unique vector λ0 such that

∇x(L(x0, λ0)) = ∇f(x) + λiΣ∇g(x) = 0.
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Furthermore, the quadratic form

yT∇2
x(L(x0, λ0))y

is non-negative for all y satisfying (∇x(g(x)))Ty = 0.

The latter result in the theorem says that the Hessian of the Lagrangian

evaluated at its stationary points is non-negative definite with respect to all

vectors orthogonal to the gradient of the constraint. This result generalizes the

notion of a positive definite Hessian in unconstrained minimization problems.

The following is a simple example that illustrates the use of the Lagrange’s

method.

Example 4.1. Consider the NLP

minimize x1 + x2

subject to h(x) = x2
1 + x2

2 − 2 = 0.

The Lagrangian is given by

L(x, λ) = x1 + x2 + λ(x2
1 + x2

2 − 2)

∂L

∂x1
= 1 + 2λx1,

∂L

∂x2
= 1 + 2λx2,

∂L

∂λ
= x2

1 + x2
2 − 2

Equating the first two derivatives to zero and solving for x gives

x = (− 1

2λ
, − 1

2λ
)

subject to the condition x2
1 + x2

2 − 2, we obtain

⇒ 1

4λ2
+

1

4λ2
= 2 ⇒ λ = ±1

2
.

When λ =
1

2
, x = [−1;−1] and when λ = −1

2
, x = [1; 1]

Now, when λ =
1

2
,

∂2L

∂x2
1

= 2λ > 0 and the determinant of the Hessian of L

∂2L

∂x2
1

.
∂2L

∂x2
2

− (
∂2L

∂x1∂2
)2 = 4λ2 > 0
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The results show that the Hessian of L is positive definite for the value of

λ =
1

2
. Therefore x = [−1;−1] is the minimum point of the given objective

function.

It is possible to obtain problems with two or more constraints and hence,

require a vector of Lagrange multipliers to determine a minimum point. In

particular, there are problems that involve quadratic objective functions or

functions that could be approximated by a quadratic function. Quadratic

approximation is necessary in minimization problems for the following reasons:

1. one can determine a unique minimum (or maximum);

2. it is easy to handle;

3. the Hessian is a constant.

Before illustrating how to obtain a solution to a minimization problem

that involve a vector of Lagrange multipliers, we briefly review the theory of

solution to quadratic objective function subject to linear constraints.

Quadratic Programming

Now, given the minimization problem

min
x

f(x)

subject to h(x) = 0

The function f(x) may be approximated by a quadratic function of the form

f(x) =
1

2
xTAx + bTx + c
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where b = ∇f and c is a constant. The quadratic approximation is possible if

the function is at least twice continuously differentiable. The constraint h(x)

is also approximated by a linear function

h(x) = Cx− d

The Lagrangian of a constrained minimization problem is then defined to be

the scalar-valued function

L(x, λ) = f(x) + λ(Cx − d)

From Theorem 4.1,

∂L

∂x
= Ax + b + CT

λ = 0; and

∂L

∂λ
= Cx− d

Thus, the solution x∗ satisfies the matrix equation






A CT

C 0













x∗

λ
∗






=







−b

d






(4.4)

Example 4.2. Consider the following Quadratic Programming Problem:

min z = 0.20x2
1 + 0.08x2

2 + 0.18x2
3 + 0.10x1x2 + 0.04x1x3 + 0.06x2x3

subject to

0.14x1 + 0.11x2 + 0.10x3 = 120

x1 + x2 + x3 = 1000

This can be put into the form,

min f(x) =
1

2
xTAx,
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subject to Cx− d = 0

where

A =













0.40 0.10 0.04

0.10 0.16 0.06

0.04 0.06 0.36













C =







0.14 0.11 0.10

1 1 1






d =







120

1000







The optimality condition is given by







A CT

C 0













x∗

λ
∗






=







0

d







Denote

M =







A CT

C 0







and

N =







0

d







Here, M is a 5 × 5 matrix and N is a 5 × 1 matrix and are given by

M =



























0.4 0.1 0.04 0.14 1

0.1 0.16 0.06 0.11 1

0.04 0.06 0.36 0.1 1

0.14 0.11 0.10 0 0

1 1 1 0 0



























, N =



























0

0

0

120

1000



























The optimality condition can now be written as

MY = N,

where Y represent






x∗

λ
∗






.
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Solving, we obtain

Y =



























380.95

476.19

142.86

−2761.90

180.95



























Therefore, the solution of the minimization problem is

x∗ =













380.95

476.19

142.86













and is specified by the vector of the Lagrange multiplier

λ
∗ =







−2761.90

180.95







It remains to show that x∗ is the solution of the minimization problem. The

condition for x∗ to be the solution of the minimization problem is that

f11 > 0,

∣

∣

∣

∣

∣

∣

∣

f11 f12

f21 f22

∣

∣

∣

∣

∣

∣

∣

> 0, |M| > 0

In this example,

f11 = 0.40,

∣

∣

∣

∣

∣

∣

∣

0.40 0.10

0.10 0.16

∣

∣

∣

∣

∣

∣

∣

= 0.054, and |M| = 0.00042

Since all the three values are positive, it means that M is positive definite. As

a result, the value of x∗ is the solution of the minimization problem.

Example 4.3. Consider the following Quadratic Programming Problem:

min z = 3x2
1 + 4x2

2 + x2
3 + 2x2

4 − 2x1x2 + 2x1x3 − 2x1x4 + 2x2x3

− 2x2x4 − 2x3x4 + x1 + x2 + x3 + x4
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subject to

2x1 + x2 + 3x3 + x4 = 5

4x1 + x2 + x3 + 4x4 = 4

This can be put into the form,

min f(x) =
1

2
xTAx + bT x,

subject to Cx− d = 0

where

A =



















6 −2 2 −2

−2 8 2 −2

2 2 2 −2

−2 −2 −2 4



















, C =







2 1 3 1

4 1 1 4






, b =



















1

1

1

1



















, d =







5

4







The optimality condition is given by







A CT

C 0













x∗

λ
∗






=







−b

d







Denote

M =







A CT

C 0







and

N =







−b

d







Here, M is a 6 × 6 matrix and N is a 6 × 1 matrix and are given by
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M =

































6 −2 2 −2 −2 −4

−2 8 2 −2 −1 −1

2 2 2 −2 −3 −1

−2 −2 −2 4 −1 −4

−2 −1 −3 −1 0 0

−4 −1 −1 −4 0 0

































, N =

































−1

−1

−1

−1

5

4

































The optimality condition can now be written as

MY = N,

where Y represent






x∗

λ
∗






.

Solving, we obtain

Y =

































−0.12578

−0.24741

1.56776

0.79569

0.49068

0.32574

































Therefore, the solution of the minimization problem is

x∗ =



















−0.12578

−0.24741

1.56776

0.79569



















and is specified by the vector of the Lagrange multiplier

λ
∗ =







0.49068

0.32574







90



Now, we use R
4 null space to determine whether or not x∗ is the required

solution. We observe that in the R
4 space, the projected gradient of the

Lagrangian matrix given by [0; 0; 0; 0]

is a zero vector. In addition, the projected Hessian matrix given by






5.5130 −1.6858

−1.6858 7.4082







is positive definite, i.e. both its eigenvalues 4.5267 and 8.3945 are positive.

These results show that x∗ is the solution of the minimization problem specified

by λ
∗.

Sequential Quadratic Programming Methods

The sequential quadratic programming (SQP) algorithm is one of the most

successful general methods for solving nonlinear constrained optimization prob-

lems. In this method, we find a step away from the current point by minimizing

a quadratic model of the problem. It also attempts to solve a nonlinear pro-

gramming directly rather than converting it to a sequence of unconstrained

minimization problems. At each step, a local model of the optimization prob-

lem is constructed and solved, yielding a step (hopefully) toward the solution

of the original problem. In unconstrained minimization problems, only the

objective function must be approximated, and the local model is quadratic

but in the nonlinear programming problem, both the objective function and

the constraint must be modelled. An SQP method uses a quadratic model

for the objective function and a linear model for the constraint. A nonlinear

programming in which the objective function is quadratic and the constraints

linear is called a quadratic programming(QP). We consider the general method

of SQP for solving constrained nonlinear programming problem.

Given a current iterate xk of a solution x∗, h can be approximated by

h(xk + δx) = ∇h(xk)
T δx + h(xk),
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and so the constraint

h(x) = 0

is replaced by

∇h(xk)
T δx + h(xk) = 0.

Rather than finding the Taylor’s approximation to f, we obtain the approxi-

mation of the Lagrangian

L(xk+δx; λk) =
1

2
δx.∇2L(xk; λk)δx+∇L(xk; λk).δx+L(xk; λk) (for δx near 0).

The solution to the problem

min
1

2
δx.∇2L(xk; λk)δx + ∇L(xk; λk).δx + L(xk; λk)

subject to

∇h(xk)
T δx + h(xk) = 0

yields improved values of x∗ and λk.

Example 4.4. Define f : R
2 → R and h : R

2 → R by

f(x) = (x2 − 2)2 − x2
1,

h(x) = 4x2
1 + x2

2 − 1.

Then taking x0 = (
1

20
,

5

4
) and λ0 = −1

2
, the solution of the nonlinear pro-

gramming

min f(x)

subject to h(x) = 0

reduces to that of

min
1

2
δx0.∇2L(x0; λ0)δx0 + ∇L(x0; λ0).δx0 + L(x0; λ0)

subject to

∇h(x0)
T δx0 + h(x0) = 0
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This simplifies to

min − 3δx2
1 +

1

2
δx2

2 −
3

10
δx1 −

11

4
δx2 +

219

800

subject to

2

5
δx1 +

5

2
δx2 +

229

400
= 0

Using Equation 4.4, we obtain the value of δx0 = [δx1; δx2] as the solution to

the equation MY = N, where

M =













−6 0 0.4

0 1 2.5

0.4 2.5 0













, N =













−0.3

−2.75

−0.5725













Solving the equation, we obtain

Y =













−0.0173

−0.226232

−1.009507













where

δx0 =







−0.0173

−0.226232






, and λ1 = −1.009507

The new iterate x1 is then given by

x1 = x0 + δx0 =







0.032700

1.023768






.

Next, we obtain the minimization of the Lagrangian

min
1

2
δx1.∇2L(x1; λ1)δx1 + ∇L(x1; λ1).δx1 + L(x1; λ1).

subject to

∇h(x1)
T δx1 + h(x1) = 0

This will yield values for x2 and λ2. The procedure then continues until we

obtain the solution of the problem to be x∗ = [0.00997; 1.00000].
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Inequality Constraints and the Kuhn-Tucker Conditions

When some of the constraints are inequalities, the Lagrange multiplier tech-

nique can be used, but the solution must be checked carefully in its details.

But first, the optimization problem with equality and inequality constraints is

formulated as

min
x

f(x)

subject to g(x) = 0

and h(x) ≤ 0

As before, f(x) is the scalar-valued objective function and g(x) is the equality

constraint function; h(x) is the inequality constraint function. The key result

which can be used to find the analytic solution to this problem is to first form

the Lagrangian function.

Example 4.5. Consider the constrained nonlinear minimization problem

minimize (x2 + 100)2 + 0.01x2
1

subject to g(x) := cos x1 − x2 ≤ 0.

Without constraint, the NLP has the unique solution x = (0,−100)T . With

the constraint, there are infinitely many solutions near to the points

x = (kπ,−1)T , k = ±1,±3,±5, · · · .

Example 4.6. A single inequality constraint

Consider the inequality constrained NLP

minimize x1 + x2

subject to g(x) = x2
1 + x2

2 − 2 ≤ 0.
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The feasible region is the closed ball B̄√
2(0) with radius

√
2 around the origin.

As in the previous example, the solution is x∗ = (−1,−1)T .

The following conditions is the general statement of the Lagrange multiplier

technique for constrained optimization problems.

The Kuhn - Tucker Conditions

The necessary conditions for constrained problems have been developed by

Kuhn - Tucker for a general nonlinear optimization problem with equality and

inequality constraints.

This optimization problem written in terms of minimizing f(x) is given by

minimize f(x)

subject to gj(x) ≤ 0; j = 1, · · · , p

hj(x) = 0; j = 1, · · · , q

where f(x), gj(x) and hj(x) are twice continuously differentiable real valued

functions. Any value of x that satisfies the constraint equations is called a

feasible solution to the problem in the Kuhn - Tucker theory. Then to locate

points that can potentially be local minima of the equation and satisfy the

constraints equations, the Kuhn - Tucker necessary conditions are used. Only

under special circumstances are sure of the existence of single global minimum

because the problem defined above may have several local minima. These

conditions are written in terms of the Lagrangian Function for the problem.

To start with, we consider the special case of equality constraints only. Using

the Lagrange multiplier technique, we define the Lagrangian function as

L(x, λ) = f(x) −
ne
∑

j=1

λjhj(x)
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where λj are unknown Lagrangian multipliers. The necessary conditions for a

stationary point are

∂L

∂xi

=
∂f

∂xi

−
ne
∑

j=1

λj

∂hj

∂xi

= 0; i = 1, · · · , n

∂L

∂λj

= hj(x) = 0; j = 1, · · · , ne

These conditions, however, apply only at a regular point, that is, at a point

where the gradients of the constraints are linearly independent. If we have

constraints gradients that are linearly dependent, it means that we can remove

some constraints without affecting the solution. At a regular point, these

two equations represent n + ne equations for the ne Lagrange multipliers and

the n coordinates of the stationary point. The situation is somewhat more

complicated when inequality constraints are present. To be able to apply the

Lagrange multiplier method, we first transform the inequality constraints to

equality constraints by adding the appropriate nonnegative slack variables.

That is, the inequality constraints are written as

gj(x) − t2
j = 0, j = 1, · · · , ng

where tj is a slack variable which measures how far the jth constraint is from

being critical. We can now form a Lagrangian function as

L(x, t, λ) = f(x) −
ng
∑

j=1

λj(gj − t2
j).

Differentiating the Lagrangian function with respect to x, λ, t we obtain

∂L

∂xi

=
∂f

∂xi

−
ng
∑

j=1

λg

∂gj

∂xi

= 0, i = 1, · · · , n

∂L

∂λj

= −gj + t2
j = 0, j = 1, · · · , ng
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∂L

∂tj

= 2λjtj = 0, j = 1, · · · , ng

The last two equations imply that when an inequality constraint is not crit-

ical (so that the corresponding slack variable is non - zero) then the Lagrange

multiplier associated with the constraint is zero. These three equations are the

necessary conditions for a stationary regular point. We should note that for

inequality constraints, a regular point is one where the gradients of the active

constraints are linearly independent. These conditions are modified slightly

to yield the necessary conditions for a minimum which is known as the Kuhn

- Tucker conditions. The Kuhn - Tucker conditions may be summarized as

follows:

A point x is a local minimum of an inequality constrained problem only if a

set of nonnegative λj ’s may be found such that:

1.

∂L

∂xi

=
∂f

∂xi

−
ng
∑

j=1

λg

∂gj

∂xi

= 0, i = 1, · · · , n

is satisfied.

2. The corresponding λj is zero if a constraint is not active.

Example 4.7. Locate the five Kuhn - Tucker points of the following problem,

and determine their character, that is, maximum, minimum or saddle point.

min f(x) = x1x2

subject to :x1 + x2 ≤ 1

−x1 + x2 ≤ 1

−x1 − x2 ≤ 1

x1 − x2 ≤ 1

The function being optimized is the classic saddle point function which is

constrained by planes. The first step in the procedure is to locate the stationary
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points by ignoring the inequality constraints, that is, λ1 = λ2 = λ3 = λ4 = 0. If

this point satisfies the constraints as inequalities, an optimum may have been

found. For this problem:

∂y

∂x1

= x2 = 0

∂y

∂x2
= x1 = 0

The Kuhn-Tucker point is x0 = [0; 0], and evaluating its character by the

unconstrained sufficiency conditions gives the following result.

∂2y

∂x2
1

= 0,
∂2y

∂x2
2

= 0

∂2y

∂x1x2
= 1,

∂2y

∂x2x1
= 1

and

| H1 |= 0, | H2 |=

∣

∣

∣

∣

∣

∣

∣

0 1

1 0

∣

∣

∣

∣

∣

∣

∣

= −1

The point x0 = [0; 0] is a saddle point, and the constraints are satisfied. One

constraint equation at a time is selected, and the character of the Kuhn-Tucker

point is determined. Beginning with the first constraint equation as an in-

equality, that is, λ1 6= 0 and considering the other three as equalities, that is,

λ2 = λ3 = λ4 = 0, gives the following equation for the Lagrangian function

L(x1, x2, λ1) = x1x2 + λ1(x1 + x2 − 1)

and

∂L

∂x1
= x2 + λ1 = 0,

∂L

∂x2
= x1 + λ1 = 0,

∂L

∂λ
= x1 + x2 − 1 = 0

solving gives:

x1 =
1

2
, x2 = −1

2
, λ = −1

2
y(

1

2
,
1

2
) =

1

4
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The sign of the Lagrange Multiplier is negative, and by the Kuhn-Tucker

necessary conditions, the point can be a maximum, since the other constraint

equations are satisfied as inequalities. The procedure is repeated for the other

three constraint equations, each considered individually as an equality. The

results for the Kuhn-Tucker points are summarized in the following table:

Table 9: Kuhn-Tucker results

Character: max min max min saddle

y: 1
4

-1
4

1
4

-1
4

0

x1:
1
2

-1
2

-1
2

1
2

0

x2:
1
2

1
2

-1
2

-1
2

0

λ : -1
2

1
2

-1
2

1
2

0

The character of each of the stationary points is based on the Kuhn-Tucker

necessary conditions. However, constraint qualifications and sufficient condi-

tions are needed to give a general method.

In the theorems developed by Kuhn and Tucker (1951), the constraint equa-

tions must satisfy certain conditions at the Kuhn-Tucker points, and these

conditions are called constraint qualifications. As given in Bazaraa and

Shetty (1993), there are several forms of constraint qualifications; and one,

according to Gill (1974b), is important for nonlinear constraints. This is the

condition that the gradients of the constraint equations at the Kuhn-Tucker

point are linearly independent. This constraint qualification is required for

the necessary conditions given by Kuhn - Tucker. The same concepts used for

unconstrained problems are followed to develop the sufficient conditions for

constrained problems. This involves expanding the Lagrangian function in a

Taylor series about the Kuhn-Tucker point located using the necessary condi-

tions. The Taylor series is simplified by neglecting third and higher order terms

99



to give a function that contains only terms involving second partial derivatives

evaluated at the Kuhn-Tucker point. This gives a differential quadratic form,

and a test similar to the one for the unconstrained problem is obtained to

determine if the Kuhn-Tucker point is a maximum, minimum, or saddle. The

sufficient conditions for the case of both inequality and equality constraints

are more elaborate than if only equality constraints are involved.

A geometrical interpretation of the Kuhn - Tucker conditions is illustrated

in Figure 9 for the case of two constraints. ∇g1 and ∇g2 denote the gradients of

the two constraints which are orthogonal to the respective constraint surfaces.

The vector S shows a typical feasible direction which does not lead immediately

to any constraint violation. For the two constraints case we get

−∇f = −(λ1∇g1 + λ2∇g2).

To improve upon the design we proceed from A in a direction S that is usable

and feasible.

To be usable, a small move along the direction should decrease the objective

function, so it must form an acute angle with −∇f . To be feasible, S should

form an obtuse angle with −∇g1 and −∇g2.

From the figure, any vector which forms an acute angle with −∇f will

also form an acute angle with either −∇g1 and −∇g2. Thus, Kuhn - Tucker

conditions mean that no feasible design with reduced objective function is to

be found in the neighbourhood of A.
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Figure 9: Geometric representation of the Kuhn-Tucker conditions for two 

    constraints  

 



Mathematically, the condition that a direction S be feasible is written as

ST∇gj ≥ 0, j ∈ IA

where IA is the set of active constraints. Equality is permitted only for linear

or concave constraints. The condition for a usable direction (one that decreases

the objective function) is

ST∇f < 0.

Multiplying by Si and summing over i we obtain,

ST∇f =

ng
∑

j=1

λjS
T∇gj.

So, it is impossible if the λj’s are positive. If the Kuhn-Tucker conditions

are satisfied at a point it is impossible to find a direction with a negative slope

for objective function that does not violate the constraints. In some cases,

although it is possible to move in a direction which is tangent to the active

constraints and perpendicular to the gradient, that is,

ST∇f = ST∇gj = 0, j ∈ IA,

the effect of such a move on the objective function and constraints can

be determined only from higher derivatives. In some cases, a move in this

direction could reduce the objective function without violating the constraints

even though the Kuhn-Tucker conditions are met. Therefore, the Kuhn-Tucker

conditions are necessary but not sufficient for optimality.

The Kuhn - Tucker conditions are sufficient when the number of active

constraints is equal to the number of design variables. When the number of

active constraints is not equal to the number of design variables, sufficient con-

ditions for optimality require the second derivatives of the objective function
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and constraints. A sufficient condition for optimality is that the Hessian ma-

trix of the Lagrangian function is positive definite in the subspace tangent to

the active constraints. For example, if we take the case of equality constraints,

the Hessian matrix of the Lagrangian is

∇2L ≡ ∇2f −
ne
∑

j=1

λj∇2hj

The sufficient condition for optimality is that

ST (∇2L)S > 0

for all S for which ST∇hj = 0, j = 1, · · · , ne. When inequality constraints

are present, the vector S also needs to be orthogonal to the gradients of the

active constraints with positive Lagrange multipliers. For active constraints

with zero Lagrange multipliers,S must satisfy

ST∇gj ≥ 0,

when gj = 0 and λj = 0

Example 4.8. Consider the problem of minimizing the function

f(x) = −x3
1 − 2x2

2 + 10x1 − 6 − 2x3
2

subject to

g1 = 10 − x1x2 ≥ 0,

g2 = x1 ≥ 0,

g3 = 10 − x2 ≥ 0

The Kuhn - Tucker conditions are

−3x2
1 + 10 + λ1x2 − λ2 = 0

−4x2 − 6x2
2 + λ1x1 + λ3 = 0
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We have to check for all possibilities of active constraints. The simplest case

is when no constraints are active, λ1 = λ2 = λ3 = 0. We get x1 = 1.826, x2 =

0, f = 6.17. The Hessian matrix of the Lagrangian

∇2L =







−6x1 λ1

λ1 −4 − 12x2







is clearly negative definite, so that this point is a maximum. We assume that

the first constraints is active, x1x2 = 10, so that x1 6= 0 and g2 is inactive and

therefore λ2 = 0. We have two possibilities for the third constraint. If it is

active, we get x1 = 1, x2 = 10, λ1 = −0.7, λ3 = 639.3 so this point is neither

a minimum nor a maximum. If the third constraint is not active, λ3 = 0, we

obtain the following equations

−3x2
1 + 10 + λ1x2 = 0

−4x2 − 6x2
2 + λ1x1 = 0

x1x2 = 0

The only solution for these equations that satisfies the constraints on x1 and

x2 is x1 = 3.847, x2 = 2.599, λ1 = 13.24, f = −73.08. This point satisfies

the Kuhn - Tucker condition for a minimum. However, the Hessian of the

Lagrangian at that point

∇2L =







−23.08 13.24

13.24 −35.19







is negative definite, so that it cannot satisfy the sufficiency condition. In fact,

an examination of the function f at neighbouring points along x1x2 = 10

reveals that the point is not a minimum.
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Next we consider the possibility that g1 is not active, so that λ1 = 0, and

−3x2
1 + 10 − λ2 = 0

−4x2 − 6x2
2 + λ3 = 0

We have already considered the possibility of both λ’s being zero, so we need

to consider only three possibilities of one of these Lagrange multipliers being

nonzero, or both being nonzero. The first case is λ2 6= 0, λ3 = 0, so that

g2 = 0, and we get

x1 = 0, x2 = 0, λ2 = 10, f = −6 or x1 = 0, x2 = −2

3
, λ2 = 10, f = −6.99.

Both points satisfy the Kuhn- Tucker conditions for a minimum, but not

the sufficiency conditions. In fact, the vectors tangent to the active constraints

(x1 = 0 is the only one) have the form sT = (0, a), and it is easy to check that

sT∇2Ls < 0. It is also easy to check that these points are indeed no minima

by reducing x2 slightly.

The next case is λ2 = 0, λ3 6= 0, so that g3 = 0. We get

x1 = 1.826, x2 = 10, λ3 = 640, f = −2194

This point satisfies the Kuhn -Tucker conditions, but it is not a minimum

either. It is easy to check that ∇2L is negative definite in this case, so that

the sufficiency condition could not be satisfied.

Finally, we consider the case x1 = 0, x2 = 10, λ2 = 10, λ3 = 640,

f = −2206. Now,the Kuhn -Tucker conditions are satisfied, and the number

of active constraints is equal to the number of design variables, so that it is

the minimum.

Convex Problems

There is a class of problems namely convex problems, for which the Kuhn-

Tucker conditions are not only necessary but also sufficient for a global min-
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imum. A set of points S is convex whenever the entire line segment con-

necting two points that are in S is also in S. That is, If x1x2 ∈ S, then

αx1 + (1 − α)x2 ∈ S, 0 < α < 1

A function is convex if

f [αx2 + (1 − α)x1] ≤ αf(x2) + (1 − α)f(x1), 0 < α < 1

It can be shown that a function of n variables is convex if its matrix of

second derivatives is positive semi-definite. A convex optimization problem

has a convex objective function and a convex feasible domain. It can be shown

that the feasible domain is convex if all the inequality constraints gj are concave

and the equality constraints are linear. A convex optimization problem has

only one minimum, and the Kuhn-Tucker conditions are sufficient to establish

it. Most optimization problems encountered in practice cannot be shown to

be convex. However, the theory of convex programming is still very important

in structural optimization, as we often approximate optimization problems by

a series of convex approximations.

Constrained Nonlinear Algorithms

Consider the constrained nonlinear programming problem P as

P : min
x

f(x)

subject to hi(x) = 0 i = 1, · · · , k

gi(x) ≤ 0 i = 1, · · · , m (4.5)

whose feasible region we will denote as

F := {x ∈ R
n|gi(x) ≤ 0, i = 1, · · · , m, hi(x) = 0, i = 1, · · · , k}.
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Barrier and Penalty methods are designed to solve P by instead solving a

sequence of specially constructed unconstrained optimization problems.

In a penalty method, the feasible region of P is expanded from F to all of

R
n, but a large cost or “penalty” is added to the objective function for points

that lie outside of the original feasible region F.

In a barrier method, we presume that we are given a point x0 that lies in

the interior of the feasible region F, and we impose a very large cost on feasible

points that lie ever closer to the boundary of F, thereby creating a “barrier”

to exiting feasible region.

Penalty Methods

Consider the constrained optimization problem P :

P : min
x

f(x)

subject to hi(x) = 0 i = 1, · · · , k

gi(x) ≤ 0 i = 1, · · · , m

By converting the constraints “hi(x) = 0” to “hi(x) ≤ 0, −hi(x) ≤ 0,” we can

assume that P is of the form

P : min
x

f(x)

subject to g(x) ≤ 0,

where we write g(x) := (g1(x), · · · , gm(x))T for convenience.

Definition 4.2. A function p(x) : R
n → R is called a penalty function for

P if p(x) satisfies:

1. p(x) = 0 if g(x) ≤ 0 and
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2. p(x) > 0 if g(x) 6≤ 0.

Example 4.9.

p(x) =

m
∑

i=1

(max{0, gi(x)})2.

We then consider solving the following penalty program:

P (c) : min
x

f(x) + cp(x)

subject to x ∈ R
n

for an increasing sequence of constants c as c → +∞. We should note that in

the program P (c) we are assigning a penalty to the violated constraints. The

scalar quantity c is called the penalty parameter. Let ck ≥ 0, k = 1, · · · ,∞,

be a sequence of penalty parameters that satisfies ck+1 > ck for all k and

lim
k→∞

ck = +∞.

Let q(c,x) = f(x) + cp(x), and let xk be the exact solution to the program

P (ck), and let x∗ denote any optimal solution of P.

The following Lemma presents some basic properties of penalty methods:

Lemma 4.1. 1. q(ck,xk) ≤ q(ck+1,xk+1)

2. p(xk) ≥ p(xk+1)

3. f(xk) ≤ f(xk+1)

4. f(x∗) ≥ q(ck,xk) ≥ f(xk)

Proof. 1. We have

q(ck+1,xk+1) = f(xk+1) + ck+1p(xk+1)

≥ f(xk+1) + ckp(xk+1)

≥ f(xk) + ckp(xk)

= q(ck,xk)
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2.

f(xk) + ckp(xk) ≤ f(xk+1) + ckp(xk+1)

and

f(xk+1) + ck+1p(xk+1) ≤ f(xk) + ck+1p(xk)

Thus,

(ck+1 − ck)p(xk) ≥ (ck+1 − ck)p(xk+1),

whereby p(xk) ≥ p(xk+1).

3. From the proof of (1),

f(xk+1) + ckp(xk+1) ≥ f(xk) + ckp(xk).

But p(xk) ≥ p(xk+1), which implies thatf(xk+1) ≥ f(xk).

4. f(xk) ≤ f(xk) + ckp(xk) ≤ f(x∗) + ckp(x∗) = f(x∗).

Theorem 4.2. Penalty Convergence Theorem

Suppose that f(x), g(x) and p(x) are continuous functions. Let {xk},

k = 1, · · · ,∞, be a sequence of solutions to P (ck). Then any limit point x̄ of

{xk} solves P .

Proof. Let x̄ be a limit point of {xk}. From the continuity of the functions

involved,

lim
k→∞

f(xk) = f(x̄).

Also, from the Penalty Lemma,

q∗ := lim
k→∞

q(ck,xk) ≤ f(x∗).

Thus,

lim
k→∞

ckp(xk) = lim
k→∞

[q(ck,xk) − f(xk)] = q∗ − f(x̄).
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But ck → ∞, which implies from the above that

lim
k→∞

p(xk) = 0.

Therefore, from the continuity of p(x) and g(x), p(x̄) = 0, and so g(x̄) ≤ 0, that

is, x̄ is a feasible solution of P. Finally, from the Penalty Lemma, f(xk) ≤ f(x∗)

for all k, and so f(x̄) ≤ f(x∗), which implies that x̄ is an optimal solution of

P .

An often -used class of penalty function is:

p(x) =

m
∑

i=1

[max{0, gi(x)}]q, where q ≥ 1. (4.6)

We note the following:

1. If q = 1, p(x) in (1) is called the “linear penalty function”. This function

may not be differentiable at points where gi(x) = 0 for some i.

2. Setting q = 2 is the most common form of (1) that is used in practice,

and is called the “quadratic penalty function”.

3. If we denote

g+(x) = (max{0, gi(x)}, · · · , max{0, gm(x)})T ,

then the quadratic penalty function can be written as

p(x) = (g+(x))T (g+(x)).

Kuhn - Tucker Multipliers in penalty Methods

The penalty function p(x) is in actuality a function only of g+(x), where

g+(x) = max{0, gi(x)}, (the nonnegative part of gi(x)), i = 1, · · · , m. Then

we can write p(x) = γ(g+(x)), where γ(y) is a function of y ∈ (Rm)+.
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Two examples of this type of penalty function are

γ(y) =
m
∑

i=1

yi,

which corresponds to the linear penalty function, and

γ(y) =
m
∑

i=1

y2
i ,

which corresponds to the quadratic penalty function.

We should note that even if γ(y) is continuously differentiable, p(x) might

not be continuously differentiable, since g+(x) is not differentiable at points x

where g+
i (x) = 0 for some i. However, if we assume the following:

∂γ(y)

∂yi

= 0 at i = 1, · · · , m (4.7)

then p(x) is differentiable whenever the functions gi(x) are differentiable,

i = 1, · · · , m, and we can write

∇p(x) =

m
∑

i=1

∂γ(g
+(x))

∂yi

∇gi(x). (4.8)

Now, let xk solve P (ck). Then, xk will satisfy

∇f(xk) + ck∇p(xk) = 0,

that is,

∇f(xk) + ck

m
∑

i=1

∂γ(g
+(xk))

∂yi

∇gi(xk).

Let us define

uk
i = ck

∂γ(g
+(xk))

∂yi

. (4.9)

Then

∇f(xk) +

m
∑

i=1

uk
i ∇gi(xk) = 0,

and so we can interpret the uk as a sort of vector of Kuhn - Tucker multipliers.
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Lemma 4.2. Suppose γ(y) is continuously differentiable and satisfies Equa-

tion 4.7, and that f(x), and g(x) are differentiable. Let uk be defined by

Equation 4.9. Then, if xk → x̄, and x̄ satisfies the linear independence con-

dition for gradient vectors of active constraints, then uk → ū, where ū is a

vector of Kuhn - Tucker multipliers for the optimal solution x̄ of P.

Proof. From the penalty Convergence Theorem, x̄ is an optimal solution of

P. Let I = {i | gi(x̄) = 0} and N = {i | gi(x̄) < 0}. For i ∈ N, gi(xk) < 0 for

all k sufficiently large, so uk
i = 0 for all k sufficiently large, whereby ūi = 0 for

i ∈ N. From Equation 4.9 and the definition of a penalty function, it follows

that uk
i ≥ 0 for i ∈ I, for all k sufficiently large. Suppose uk → ū as k → ∞.

Then, ūi = 0 for i ∈ N. From the continuity of all functions involved,

∇f(xk) +

m
∑

i=1

uk
i ∇g(xk) = 0

implies

∇f(x̄) +

m
∑

i=1

ūi∇g(x̄) = 0.

From the above remarks, we also have ū ≥ 0 and ūi = 0 for all i ∈ N. Thus,

ū is a vector of Kuhn - Tucker multipliers. It therefore remains to show that

uk → ū for some unique ū.

Suppose {uk}∞k=1 has no accumulation point. Then ‖uk‖ → ∞. But then

define

vk =
uk

‖uk‖
,

and then ‖vk‖ = 1 for all k, and so the sequence {vk}∞k=1 has some accumu-

lation point v̄. For all i ∈ N, vk
i = 0 for k large, whereby v̄i = 0 for i ∈ N,

and

∑

i∈I

vk
i ∇gi(xk) =

m
∑

i=1

vk
i ∇gi(xk) =

m
∑

i=1

(
uk

i

‖uk‖
)∇gi(xk) =

−∇f(xk)

‖uk‖
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for k large. As k → ∞, we have xk → x̄, vk → v̄ and ‖uk‖ → ∞, and so the

above becomes

∑

i∈I

v̄i∇gi(x̄) = 0,

and ‖v̄‖ = 1, which violates the linear independence condition. Therefore,

{uk} is a bounded sequence, and so has at least one accumulation point. Now

suppose that {uk} has two accumulation points, ũ and ū. Note that ūi = 0

and ũi = 0 for i ∈ N, and so

∑

i∈I

ūi∇gi(x̄) = −∇f(x̄) =
∑

i∈I

ũi∇gi(x̄),

so that
∑

i∈I

(ūi − ũi)∇gi(x̄) = 0.

But by the linear independence condition, ūi − ũi = 0 for all i ∈ I, and so

ūi = ũi. This then implies that ū = ũ.

Exact Penalty Methods

The idea of an exact penalty method is to choose a penalty function

p(x) and a constant c so that the optimal solution x̃ of P (c) is also an optimal

solution of the original problem P.

Theorem 4.3. Suppose P is a convex program for which the Kuhn - Tucker

conditions are necessary. Suppose that

p(x) :=
m
∑

i=1

(gi(x))+.

Then as long as c is chosen sufficiently large, the sets of optimal solutions of

P (c) and P coincide. In fact, it suffices to choose c > maxi{u∗
i }, where u∗ is

a vector of Kuhn - Tucker multipliers.
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Proof. Suppose x̂ solves P. For any x ∈ R
n we have:

q(c,x) = f(x) + c
m
∑

i=1

(gi(x))+ ≥ f(x) +
m
∑

i=1

(u∗
i gi(x))+

≥ f(x) +

m
∑

i=1

u∗
i gi(x)

≥ f(x) +
m
∑

i=1

u∗
i (gi(x̂) + ∇gi(x̂)T (x − x̂))

= f(x) +

m
∑

i=1

u∗
i∇gi(x̂)T (x − x̂)

= f(x) −∇f(x̂)T (x − x̂)

≥ f(x̂) = f(x̂) + c

m
∑

i=1

(gi(x̂))+ = q(c, x̂).

Thus, q(c, x̂) ≤ q(c,x) for all x, and therefore x̂ solves P (c). Next suppose

that x̄ solves P (c). Then if x̂ solves P, we have:

f(x̄) + c

m
∑

i=1

(gi(x̄))+ ≤ f(x̂) + c

m
∑

i=1

(gi(x̂))+ = f(x̂),

and so

f(x̄) ≤ f(x̂) − c

m
∑

i=1

(gi(x̄))+. (4.10)

However, if x̄ is not feasible for P , then

f(x̄) ≥ f(x̂) + ∇f(x̂)T (x̄ − x̂)) = f(x̂) −
m
∑

i=1

u∗
i∇gi(x̂)T (x̄ − x̂)

≥ f(x̂) +

m
∑

i=1

u∗
i (gi(x̂) − gi(x̄))

= f(x̂) −
m
∑

i=1

u∗
i gi(x̄) > f(x̂) − c

m
∑

i=1

(gi(x̄))+,

which contradicts Equation 4.10. Thus, x̄ is feasible for P. So it implies that
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f(x̄) ≤ f(x̂) − c

m
∑

i=1

(gi(x̄))+ = f(x̂)

from Equation 4.10, and so x̄ solves P.

Penalty Methods for Inequality and Equality Constraints

The presentation of penalty methods has assumed either that the problem

P has no equality constraints, or that the equality constraints have been con-

verted to inequality constraints. For the latter, the conversion is easy to do,

but the conversion usually violates good judgement in that it unnecessarily

complicates the problem. Furthermore, it can cause the linear independence

condition to be automatically violated for every feasible solution. Therefore,

instead we consider the constrained optimization problem P with both in-

equality and equality constraints:

P : min
x

f(x)

subject to g(x) ≤ 0

h(x) = 0

where g(x) and h(x) are vector - valued functions, that is,

g(x) := (g1(x), · · · , gm(x))T

and h(x) := (h1(x), · · · , hk(x))T for notational convenience.

Definition 4.3. A function p(x) : R
n → R is called a penalty function for

P if p(x) satisfies:

1. p(x) = 0 if g(x) ≤ 0 and h(x) = 0

2. p(x) > 0 if g(x) 6≤ 0 and h(x) 6= 0.
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The main class of penalty functions for this general problem are of the

form:

p(x) =

m
∑

i=1

[max{0, gi(x)}]q +

k
∑

i=1

|hi(x)|q, where q ≥ 1.

All of the results extend naturally to problems with equality constraints

and for penalty functions of the above form.

Sequential Penalty Methods

The constrained optimization problem is considerably more difficult to solve

than the unconstrained problem. There are several general approaches for

attacking the problem (for example, see Luenberger 1965 and Zangwill 1969),

but we will restrict our investigation to a single technique, the method of

penalty functions. The virtue of penalty functions is that they allow us to

build directly on our previous results by converting constrained optimization

problem into equivalent unconstrained problems. The basic idea is to make

the constraints implicit by adding terms to the objective function. These

terms are zero when the constraints are satisfied but become large when the

constraints are violated. Consequently, the minimization process itself tends

to seek out feasible solutions because solutions that violate the constraints are

penalized in the sense that they incur a large cost in the generalized objective

function. To construct suitable penalty terms, we begin with the equality

constraints. Suppose P (x) denotes a penalty function associated with the

constraint p(x) = 0. The basic requirement on P (x) is that P (x) = 0 when

p(x) = 0 and P (x) > 0 when p(x) 6= 0. By this way, feasible solutions are not

penalized, whereas unfeasible solutions that violate p(x) = 0 are penalized. A

simple P (x) that satisfies these properties is P (x) = pT (x)p(x), which can be

written explicitly as

P (x) =
r
∑

k=1

p2
k(x). (4.11)

116



P (x) is not only positive when p(x) 6= 0, but the value of P (x) grows as the vio-

lation of the constraint becomes more severe. There are many other functions

that also qualify as penalty functions. For example, the terms in Equation

4.11 can be replaced by |pk(x)|. This tends to penalize minor violations of the

constraint more severely, but the gradient of P (x) is not continuous. Penalty

functions for the inequality constraints can be constructed in a similar manner.

If Q(x) is a penalty function associated with the constraint, q(x) ≥ 0, then it

is required that Q(x) = 0 when q(x) ≥ 0 and Q(x) > 0 otherwise. One such

penalty function which satisfies these properties is

Q(x) =

s
∑

k=1

min2{0, qk(x)}. (4.12)

Q(x) is not only positive when the constraint is violated, but the value of

Q(x) increases as the violation becomes more severe. Once penalty functions

are constructed for the equality and inequality constraints, they can then be

incorporated into the generalized objective function, F (x), as

F (x) = f(x) + µ[P (x) + Q(x)]. (4.13)

The penalty parameter µ > 0 controls the relative cost of violating the con-

straints. The original constrained optimization problem is then replaced by

the following parameterized unconstrained optimization problem;

minimize : f(x) + µ[P (x) + Q(x)]

subject to : x ∈ R
n

As the penalty parameter µ > 0 increases, solutions to the unconstrained min-

imization problem become increasingly good approximations to the solution

of the original constrained optimization problem. However, large values of µ

can cause the generalized objective function and its gradient to become very

large, particularly if the initial guess x0, violates the constraints.
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Penalty functions can be implemented using the following algorithm:

1. Choose a sequence {µk} → ∞, typically {1, 10, 102, 103, · · · }.

2. For each µk find a local minimizer, x(µk) say to minx f(x, µk).

3. Terminate when c(x(µk)) is sufficiently small.

We illustrate the implementation of this algorithm using the following prob-

lem.

Example 4.10.

minf(x) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

subject to

p(x) = x1 + x2 − 2 = 0

q(x) = x2 − x3 − 3 ≥ 0

We solve this problem using the penalty functions in Equation 4.13. The

summary of the solution using the algorithm described above with a starting

point of x0 = [0; 0; 0] is given in Table 4.2. In the table, the solution of the

problem is given for each selected penalty parameter µk under various levels of

constraints. It also provides the value of the function f and the two constraints

p(x) and q(x) at the solution xk = [x1; x2; x3].
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Table 10: Illustration of Constrained Optimization using Penalty Functions

µk Constraints x1 x2 x3 f(xk) p(xk) q(xk)

1 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.66667 1.66667 3.00000 0.22222 0.33330 -4.33300

Inq. 1.00000 3.3333 1.66667 3.55560 2.33330 -1.33330

Both 0.12500 2.75000 1.37500 3.96880 0.87500 -1.62500

10 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.52381 1.52381 3.00000 0.45351 0.04762 -4.47620

Inq. 1.00000 3.90480 1.09520 7.25620 2.90480 -0.19048

Both -0.78886 2.96774 0.24340 11.73500 0.17889 -0.27566

102 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.50249 1.50249 3.00000 0.49504 0.00498 -4.49750

Inq. 1.00000 3.99005 1.00995 7.92060 2.99000 -0.01990

Both -0.97691 2.99668 0.02641 13.744000 0.01977 -0.02974

...
...

105 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.50001 1.50000 2.99997 0.50000 0.00000 -4.50000

Inq. 0.00000 1.50000 -1.50000 21.50000 -0.49990 0.00000

Both 0.33334 1.66668 -1.33329 19.33300 0.00000 0.00000

106 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.50000 1.50000 3.00000 0.50000 0.00000 -4.50000

Inq. 0.00000 1.50000 -1.50000 21.50000 -0.50000 0.00000

Both 0.33333 1.66667 -1.33333 19.33300 0.00000 0.00000

107 None 1.00000 2.00000 3.00000 0.00000 1.00000 -4.00000

Eq. 0.52880 1.47120 2.82718 0.53153 0.00000 -4.35600

Inq. 0.00000 1.50000 -1.50000 21.50000 -0.50000 0.00000

Both 0.33333 1.66667 -1.33333 19.33300 0.00000 0.00000
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The results in Table 10 for each µk were obtained after 10 iterations. Com-

putations were done with a tolerance of 10−4. Thus, we consider all values less

than this tolerance to be zero. We see from the table that the solution of the

problem does not change for µ6 and µ7. Thus, the solution of the problem has

converged to the point

x∗ = [0.33333; 1.66667;−1.33333]

after a large penalty parameter µ6 = 10−6. At x∗ we realize that the values of

both the equality and the inequality constraints are zero. This means that x∗

is the solution of the minimization problem and also satisfies the constraints.

A number of other observations can be made from Table 10. We see that

the results for all values of the penalty parameters are the same when there are

no constraints. Particularly, the solution of the problem in this case is [1; 2; 3].

Thus it is of no relevance to choose a penalty parameter when there are no

constraints. The problem then reduces to one of unconstrained optimization

which could be solved using any of the unconstrained minimization techniques

already discussed in the previous chapters.

Barrier Methods

Definition 4.4. A barrier function for P is any function b(x) : R
n → R

that satisfies

1. b(x) ≥ 0 for all x that satisfy g(x) < 0, and

2. b(x) → ∞ as

lim
x

(maxi{gi(x)}) → 0.

The idea in barrier method is to dissuade points x from ever approaching

the boundary of the feasible region. We consider solving:
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B(c) : minimizef(x) +
1

c
b(x)

subject to g(x) < 0, x ∈ R
n

for a sequence of ck → +∞. We should note that the constraints “g(x) < 0”

are effectively unimportant in B(c), as they are never binding in B(c).

Example 4.11.

b(x) =

m
∑

i=1

1

−gi(x)

Suppose g(x) = [x1 − 4; 1 − x2], x ∈ R
2. Then

b(x) =
1

4 − x1
+

1

x2 − 1
.

Let r(c,x) = f(x)+
1

c
b(x). Let the sequence {ck} satisfy ck+1 > ck and ck → ∞

as k → ∞ and where xk denote the exact solution to B(ck).

The following Lemma presents some basic properties of barrier methods.

Lemma 4.3. Barrier Lemma

1. r(ck,xk) ≥ r(ck+1,xk+1)

2. b(xk) ≤ b(xk+1)

3. f(xk) ≥ f(xk+1)

4. f(x∗) ≤ f(xk) ≤ r(ck,xk)

Proof. 1. r(ck,xk) = f(xk) +
1

ck

b(xk) ≥ f(xk) +
1

ck+1

b(xk)

r(ck,xk) ≥ f(xk+1) +
1

ck+1
b(xk+1) = r(ck+1,xk+1)
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2. f(xk) +
1

ck

b(xk) ≤ f(xk+1) +
1

ck

b(xk+1) and

f(xk+1) +
1

ck+1

b(xk+1) ≤ f(xk) +
1

ck+1

b(xk).

Summing and rearranging, we have

(
1

ck

− 1

ck+1
)b(xk) ≤ (

1

ck

− 1

ck+1
)b(xk+1)

Since ck < ck+1, it follows that b(xk+1) ≥ b(xk).

3. From the proof of (1),

f(xk) +
1

ck+1

b(xk) ≥ f(xk+1) +
1

ck+1

b(xk+1).

But from (2), b(xk) ≤ b(xk+1). Thus, f(xk) ≥ f(xk+1).

4. f(x∗) ≤ f(xk) ≤ f(xk) +
1

ck

b(xk) = r(ck,xk).

Theorem 4.4. Barrier Convergence Theorem

Suppose f(x), g(x) and b(x) are continuous functions. Let {xk}, k = 1, · · · ,∞,

be a sequence of solutions of B(ck). Suppose there exists an optimal solution

x∗ of P for which N(ǫ,x∗) ∩ {x| g(x) < 0} 6= 0 for every ǫ > 0 where N(ǫ,x)

denote the ball of radius ǫ centered at the point x. Then any limit point x̄ of

{xk} solves P.

Proof. Let x̄ be any limit point of the sequence {xk}. From the continuity of

f(x) and g(x),

lim
k→∞

f(xk) = f(x̄)

and

lim
k→∞

g(xk) = g(x̄) ≤ 0.

Thus x̄ is feasible for P. For any ǫ > 0, there exist x̃ such that g(x̃) < 0 and

f(x̃) ≤ f(x∗) + ǫ. For each k,

f(x∗) + ǫ +
1

ck

b(x̃) ≥ f(x̃) +
1

ck

b(x̃) ≥ r(ck,xk).
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Therefore for k sufficiently large, f(x∗) + 2ǫ ≥ r(ck,xk), and since

r(ck,xk) ≥ f(x∗) from the 4th point of the Barrier Lemma, then

f(x∗) + 2ǫ ≥ lim
k→∞

r(ck,xk) ≥ f(x∗).

This implies that

lim
k→∞

r(ck,xk) = f(x∗).

We also have

f(x∗) ≤ f(xk) ≤ f(xk) +
1

ck

b(xk) = r(ck,xk).

Taking limits we obtain

f(x∗) ≤ f(x̄) ≤ f(x∗),

whereby x̄ is an optimal solution of P.

A typical class of barrier functions are:

b(x) =
m
∑

i=1

(−gi(x))−q, where q > 0.

Kuhn - Tucker Multipliers in Barrier Methods

Let b(x) = γ(g(x)), where γ(y) : R
m → R, and assume that γ(y) is

continuously differentiable for all y < 0. Then

∇b(x) =
m
∑

i=1

∂γ(g(x))

∂yi

∇gi(x),

and if xk solves B(ck), then ∇f(xk) +
1

ck

∇b(xk) = 0, that is,

∇f(xk) +
1

ck

m
∑

i=1

∂γ(g(xk))

∂yi

∇gi(xk) = 0. (4.14)

Let us define
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uk
i =

1

ck

∂γ(g(xk))

∂yi

. (4.15)

Then Equation 4.15 becomes:

∇f(xk) +
m
∑

i=1

uk
i ∇gi(xk) = 0. (4.16)

Therefore we can interpret the uk as a sort of vector of Kuhn - Tucker

multipliers.

Lemma 4.4. Let P satisfy the conditions of the Barrier Convergence Theorem.

Suppose γ(y) is continuously differentiable and let uk be defined by Equation

4.15. Then if xk → x̄, and x̄ satisfies the linear independence condition for

gradient vectors of active constraints, then uk → ū, where ū is a vector of

Kuhn - Tucker multipliers for the optimal solution x̄ of P.

Proof. Let xk → x̄, and let I = {i| gi(x̄) = 0} and N = {i| gi(x̄) < 0}. For

all i ∈ N,

uk
i =

1

ck

∂γ(g(xk))

∂yi

→ 0 as k → ∞,

since ck → ∞ and gi(xk) → gi(x̄) < 0, and
∂γ(g(x̄))

∂yi

is finite. Also uk
i ≥ 0 for

all i, and k sufficiently large.

Suppose uk → ū as k → ∞. Then ū ≥ 0, and ūi = 0 for all i ∈ N. From

the continuity of all functions involved in Equation 4.16 implies that

∇f(x̄) +

m
∑

i=1

ūi∇gi(x̄) = 0, ū ≥ 0, ūT g(x̄) = 0.

Thus ū is a vector of Kuhn - Tucker multipliers. It remains to show that

uk → ū for some unique ū. The proof that uk → ū for some unique ū is

exactly as in Lemma 4.4.
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CHAPTER FIVE

SUMMARY, DISCUSSION, CONCLUSION AND

RECOMMENDATION

Summary

This thesis is concerned with a study of methods in solving some stan-

dard optimization problems which we encounter in everyday life. The thesis

is divided into two main parts: the first part is devoted to the study of un-

constrained optimization and the second part is on constrained optimization

techniques. Problems used to examine these techniques were basically of two

types: There were analytic problems, which were solved by hand; the other

problems were computational in nature. These required the use of mathe-

matical softwares such as MATLAB and OCTAVE. The methods of nonlinear

programming can generally be classified as either direct or indirect procedures.

Examples of direct methods are the gradient algorithms, in which the mini-

mum of a problem is sought by following the fastest rate of decrease of the

objective function at a point. In indirect methods, the original problem is

first transformed into an auxiliary one from which the optimum is determined.

We note that the auxiliary problems in these cases may yield an exact or an

approximate solution of the original problem.

The study examined unconstrained optimization techniques such as Steep-

est Descent method, Conjugate Gradient method, and Newton-like meth-

ods. Newton-like methods include the Newton’s method, Modified Newton’s

method, Quasi-Newton method and the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method. A number of observations were made about these methods of

unconstrained optimization techniques using the popular Rosenbrock’s func-
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tion and other functions (eg. the modified Rosenbrock’s function) that have

characteristics similar to those of the Rosenbrock’s function. The use of the

Rosenbrock’s function in particular was essential in this study because its min-

imum point lies in a long valley. As a result it is used to test the robustness

of unconstrained minimization algorithms.

Three main weaknesses were observed in the performance of the Steepest

Descent method. These weaknesses were that: the algorithm can take many

iterations to converge towards a local minimum; finding the optimal α per

step can be time-consuming; and the rate of convergence can be very slow if

the Hessian of the objective function is ill-conditioned. Ill-conditioning arises

from wide differences between the largest and the smallest eigenvalues of the

Hessian matrix leading to a large condition number. Thus, the method could

be useful if one could reduce the condition number or use functions with small

condition numbers.

The Conjugate Gradient method is considered the best among the other

methods provided the function in question is quadratic in nature. With this,

the iterates converge in at most two iterations.

The study has demonstrated how crucial the choice of an initial point x0

is to obtaining the type of critical point desired. Thus, if x0 is chosen close to

a minimum point, the iterates lead to a minimum point. On the other hand,

if x0 is chosen close to a maximum point we automatically obtain a maximum

point.

It also came to light that using the same initial point, x0 = [0; 0] say, the

Newton’s method may give a different result from that obtained from another

method (eg. Steepest Descent method).

The implementation of the Newton’s method encountered a situation where

the Hessian at a point xk was indefinite and therefore the vector −H(xk)
−1∇f(xk)

did not provide a descent direction. As a result the Newton’s method could
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not continue. In order to obtain a new direction where the Hessian matrix will

be positive a number of suggestions have been made that give rise to the Mod-

ified Newton’s method. Two of these suggestions are that: a new iterate could

be found from xk+1 = xk − λkvk, where vk is the eigenvector corresponding

to the negative eigenvalue of H(xk); alternatively, a new iterate is given by

xk+1 = xk + αksk, where sk is obtain from the equation LT sk = a for some

vector a and LT is obtained from a factorization of H(xk) as LDLT . Hope-

fully, H(xk+1) should be a positive definite matrix. It has been illustrated that

results using these two methods could differ.

Referring to the use of the direction sk from the LDLT factorization of

H(xk) a problem was encountered. It was discovered that the use of sk did not

always lead to a positive definite Hessian H(xk+1). It was discovered in this

research that the descent direction specified by ∇f(xk) lead to an iterate xk+1

at which the Hessian H(xk+1) was positive definite. The Newton’s method

could then continue from this point.

Other modifications of the Newton’s method makes it possible to overcome

some of its disadvantages. The idea of the Quasi-Newton methods is to use

matrices which approximate the Hessian matrix or its inverse, instead of the

Hessian matrix or its inverse in the Newton’s equation.

Comparing Quasi-Newton methods with Conjugate Gradient methods, it

was clear that Conjugate Gradient methods are both less efficient and less

robust, and therefore would not be preferred in normal circumstances which

involve few variables. However, there is one desirable quality of Conjugate

Gradient methods, namely the particularly simple form which requires no ma-

trix operations to form the search direction sk. Conjugate Gradient methods

may be the only methods which are applicable to large problems, that is, prob-

lems with hundreds or thousands of variables.

The research also discussed constrained optimization methods. The con-
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strained methods are the Lagrange’s methods which works with equality con-

straints; the Kuhn-Tucker method which is used for problems with inequality

constraints; the penalty methods which involve algorithms that uses penalty

functions and a penalty parameter that controls relate cost of violating the con-

straints. These sets of constraints may be only equality constraints, inequal-

ity constraints or a combination of both equality and inequality constraints.

The constrained optimization problem can be replaced by a parameterized un-

constrained optimization problem whose solutions become increasingly good

approximations to the solution of the original constrained problem. The imple-

mentation of the penalty method can be used to solve constrained optimization

problem under varying types of constraints.

Finally, the study examined Barrier function method which determines

points such that they do not approach the boundary of the feasible region.

Throughout the study, examples have been used to illustrate the implementa-

tions of algorithms of optimization methods.

Discussion

Various attempts to accelerate convergence in some unconstrained opti-

mization techniques have been made by various researchers (Fiacco and Mc-

Cormick) in the past but often without rigorous basis. Various modifications

have also been made to techniques that are already in operation. A study of

the modifications in this research have revealed that these modifications could

not lead to the optimal solution. One result of this research which is illus-

trated in Example 3.5, has revealed other dimensions to the convergence of

the optimization techniques. According to Fiacco and McCormick (1967), if

the Hessian matrix of the function is not positive definite, then a new direction

must be sort which probably will help to get to the minimum.

From Example 3.5, the assumptions made by the researchers seem not to
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hold in the sense that choosing a new direction v such that

xk+1 = xk − λkvk

did not get us anywhere. According to the researchers, we have to express

the Hessian matrix as LDLT factorization. It came out that the new vector

is in the same direction as the iterate x1. This is because the direction vectors

are conjugate in nature. From the findings, the Hessian matrix was indefinite

which implies that the Newton method cannot be used. This implies that,

we needed to look for a direction that will make the Hessian matrix positive

definite and which would lead us to the minimum point. Unfortunately, these

modifications recommended by the researchers did not work.

In this research, we were able to go round this problem of indefinite Hessian

matrix H(x1) evaluated at the point x1. To do this, we determined a new

direction ∇f(x1) at x1. Using this new direction, we obtained the next iterate,

x2 at which the Hessian matrix was positive definite. We then switched back

to the Newton’s method and the iterates were able to converge after twelve

iterations.

A number of observations have been made in this research using a number

of known functions. Notable among these functions is the function

f(x1, x2) = x4
1 + x1x2 + (1 + x2)

2.

We realized that there are clear differences in the critical points of f(x) when

we used the Conjugate Gradient method and the Newton’s method. The

differences might be due the remedy given when the Newton’s method seized

to work. We noted that the Newton’s method failed when H(x1) was not

positive definite, and hence did not provide a descent direction. As a result,

an alternative descent direction

H(xk)
−1∇f(xk)
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was used via the Steepest descent method. It is noteworthy here that even

though the same starting point x0 = [0; 0] was used, they led to different

critical points

[−0.204128; 0.084945] and [0.69588;−1.34794]

for Newton’s method and Conjugate Gradient method, respectively. These

results from the two methods show that the function f(x) has multiple critical

points which could not be detected using a single method. It is therefore

proper to suggest that multiple Optimization methods be used to determine

all critical points of a given function. This will help eliminate the influence of

the starting point on the result obtained by any particular method used.

Throughout this work, we have clearly demonstrated the importance of the

choice of a good initial guess in the case of the Newton’s method. Obtaining

the type of critical point depends so much on where you start from. This is in

line with the observation of many researchers in this field.

Conclusion and Recommendation

This research studied various methods in Optimization with special inter-

est in Unconstrained Optimization techniques. These methods were examined

in the light of known functions: notably, the Rosenbrock’s function and its

modification and few other functions. The objective was to identify possible

problems associated with the implementation of some of the procedures and

algorithms that are used in Optimization techniques.

The study has discovered that a recommended modification to the New-

ton’s method, if the Hessian H(xk−1) is not positive definite, does not lead to

the optimal solution. The proposed new direction xk+1 = xk − λkvk such that

LTv = a, where L is obtained from the LDLT factorization of H(xk−1), does
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not always lead to a positive definite Hessian H(xk). Under this circumstance,

it is suggested that a descent direction specified by ∇f(xk) be determined. By

this direction we obtain xk+1 at which the Hessian H(xk+1) is positive definite.

The Newton’s method can then continue from this point.

Different critical points of a function, f(x) were obtained under different

methods (namely, the Newton’s method and the Conjugate Gradient method)

using the same starting point. This indicated that f(x) has multiple critical

points which could not be detected by a single method. It is therefore rec-

ommended that multiple Optimization techniques be used to determine the

critical points of a given function.

In support of the observations of many researchers, this study has illus-

trated clearly the importance of the choice of a good initial guess in the search

for a minimum point of a function, particularly, in the case of the Newton’s

method. If the initial guess is not good enough, iterations of the procedure do

not converge.
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APPENDIX 

 
GRAPHS OF FUNCTIONS USED FOR THE IMPLEMENTATION OF 

OPTIMIZATION TECHNIQUES  
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Figure 10: The graph of  143 34  xxy  
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Figure 11: The graph of   22
1 yxz    in the interval 

   2:1.0:2,2:1.0:2, YX  
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Figure 12: The graph of    222 1100 xxyz    in the interval 

   5:1.0:5,5:1.0:5, YX   
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Figure 13: The graph of    222 1 xxyz    in the interval  

   5:1.0:5,5:1.0:5, YX  

 

 

 

 

 

 

 

 

 

 

 

 

 



 143 

-5

0

5

-5

0

5
800

1000

1200

1400

1600

 

Figure 14(a): The graph of  24 1 yxyxz    in the interval  

   5:1.0:5,5:1.0:5, YX  
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Figure 14(b): The graph of  24 1 yxyxz    in the interval 

   2:05.0:2,2:05.0:2, YX   

 

 


