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ABSTRACT 

In this thesis, hot carrier relaxation dynamics in semiconductor quantum 

dots and quantum well structures have been investigated as the basis for 

improving on the efficiency of conventional solar cells to values between 40% 

and 60% beyond the Shockley and Queisser detailed balance limit of 30% 

hitherto. 

Two schemes have been employed to obtain the shift in efficiency:   

The first is multiple exciton generation which occurs in semiconductor quantum 

dots. The output current as a function of the photogenerated voltage and the 

material band gap, is computed from the difference between the photogenerated  

and the recombination currents. The output voltage is obtained from corrections 

made to the voltages used in the splitting of water by standard photochemical 

processes. 

The second is the formation of  minibands in semiconductor quantum well 

structures which serve as the intermediate band required in the material bandgap 

in intermediate-band solar cell concept. Here, the output current is calculated 

from the difference between  the photon flux absorbed by the cell and that emitted 

as a result of radiative  recombination, all multiplied by a factor of the electronic 

charge. The output voltage is computed from the difference between the chemical 

potentials of the conduction and valence bands. 
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CHAPTER ONE 

INTRODUCTION 

Quantum Dots 

          The word nanometer is derived from the Greek word ‘nano’, meaning 

dwarf or extremely small. A nanometer (nm) is one billionth of a meter ie  

10-9m. For comparison, a single human hair is about 80,000 nm wide, a red 

blood cell is approximately 7,000 nm wide and a water molecule is almost 

0.3nm across and DNA molecule is about 2.5nm wide. The nanoscale 

describes materials of dimensions from 100nm down to the size of atoms 

approximately 0.2nm. There has been an interest in the nanoscale because at 

this scale, the properties of materials show significant differences from those 

at a larger scale. 

  A nanostructure is any particle whose dimensions fall within the length 

scale specified, examples are quantum dots, carbon nanotubes, quantum wires, 

nanopolymers etc. There are many reasons for developing nanostructures. 

These are their ability to enhance optical absorption and emission, the 

continuing miniaturization of digital circuitry and the study of few-body 

quantum phenomena and possible exploitation for quantum computation.  

 The great diversity of matter making up our physical universe is 

composed of atoms exhibiting different physical properties depending on the 

chemical bonds binding them together. If we could concoct our own materials 

out of artificial atoms (quantum dots) that we could control, it would enable us 



 2

to fabricate a wide variety of new materials and useful devices with desirable 

properties.               

 The discovery of quantum dots took place when experimentalists 

measured the conductance through very small semiconductor field effect 

transistors [1]. But in the past two decades, progress in semiconductor micro 

fabrication has made it possible to confine a small number of electrons which 

is often reduced in dimensionality in the so called nanostructures. This means 

that electrons are moving freely in one, two dimensions or completely 

confined in all three spatial dimensions (zero-dimensional). 

  A quantum dot is a semiconductor nanostructure in which the charge 

carriers (electrons and holes) are confined in all three dimensions (zero 

dimensional) within a region of nanometer size. The size of the region is of the 

order of the electron De-Broglie wavelength of the charge carriers and as a 

result lead to discrete or quantized energy levels. These structures display a 

delta function density of states similar to real or naturally occurring atoms [2]. 

Usually, they are fabricated by restricting the two dimensional electron gas 

(2DEG) in a semiconductor heterostructure such as MOSFETs (metal-oxide-

semiconductor field-effect transistors) or modulation-doped GaAs-AlGaAs, 

laterally by tiny electrostatic gates or vertically by etching techniques.  

One can control the material composition, the number of electrons [3], 

vary the particle size and hence manipulate the confinement (discrete energy 

spectrum) or the energy gaps, the density and  interaction strength of the dots 

as well as their absorption and luminescence properties. These structures can 

also hold and release electrons under the proper bias circumstances and thus 

constitute a two- state device. Figure 1 illustrates samples of quantum dots.   
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 Fig 1: Quantum dot samples: (a) cylindrical, (b) rectangular (c) triangular 

pillar [4].          

         

  There are  quantum dots of different materials  and sizes;  for 

instance, single molecules trapped between electrodes, metallic or 

superconducting particles, self assembled quantum dots, semiconductor lateral 

or vertical dots between closely spaced electrodes.  Quantum dots or 

semiconductor nanocrystals and bulk semiconductors are made of the same 

materials. However, they exhibit different properties due to their size 

differences; the diameter of a quantum dot or nanocrystal semiconductor  

ranges between 2nm and 10 nm (10 and 50 atoms) and therefore exhibit 

quantum behavior whereas bulk semiconductor is much bigger than 10 nm. 

The jargon that ‘small is different’ is evident in this case. 

    The small size of a nanomaterial or quantum dot leads to three 

effects; first as a particle decreases in size, a greater proportion of atoms or 

molecules are present on the surface compared to those inside and this 

produces a large surface area to volume ratio than the same mass of material 

produced in larger form. For example, a particle of size 30 nm has 5% of its 

atoms on its surface, at 10 nm, 20% of its atoms reside on its surface and at  
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3 nm, 50% of its atoms reside on its surface. Since intrinsic reactivity or 

growth and catalytic chemical reactions  are surface phenomena, this means 

that a given mass of material in nanoparticulate form will be much more 

chemically reactive than the same mass of material made up of larger 

particles. Thus the reduction in size has the potential for speeding up chemical 

reactions, biochemical and pharmaceutical separations and thus improving 

efficiency of many processes. In some cases, materials that are inert in their 

larger form are reactive when produced in their nano-size form, silver for 

example becomes a bactericide on a nanoscale. 

Secondly, exceptional mechanical strength is observed for example in 

materials such as crystalline solids. As the size of their structural components 

decreases, there is much greater interface area within the material.  Most 

metals are made up of small crystalline grains, the boundaries between the 

grain slow down or arrest the propagation of defects when the material is 

stressed, thus giving it strength. If these grains can be made very small, or 

even nanoscale in size, the interface area within the material greatly increases, 

which enhances its strength. For example, nanocrystalline nickel is as strong 

as hardened steel.   

Thirdly, on accounts of its small size, the electron de Broglie 

wavelength begins to ‘feel the boundaries’ of the dot. Equivalently, as all the 

three spatial dimensions of the nanocrystal   approach the Bohr exciton radius 

(BER), quantum confinement effects are observed. This means that the 

electron angular momentum, the hole and electron energy levels become 

discrete or quantized, i.e. there exist a small but finite separation between the 

energy levels [5]. Under these conditions, the nanostructured semiconductor 
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material ceases to resemble the bulk matrial and it can be called a quantum 

dot. This has large repercussions on the electronic and optical (absorptive and 

emissive) behavior of the semiconductor material. For example a blue shift of 

the absorption spectrum with decreasing dot size and a tunable emission 

wavelength by adjusting the dot size are examples of the size-dependent 

optical properties [6,7]. Hence the typical size of a quantum dot which 

produces a large surface to volume ratio and quantum confinement effects 

give the dot unique mechanical, electronic and optical properties which are 

distinct from those observed in the corresponding bulk semiconductor. 

 A number of theoretical approaches have been developed to analyze 

these phenomena observed in experimental work. The physics of quantum 

dots also show many similarities and differences with the behaviour of 

naturally occurring quantum systems in atomic and nuclear physics. 

Analogous atomic properties include an electronic shell structure, photon 

antibunching, controlled emission of quantum light and Rabi oscillations.  

In contrast, quantum dots differ from real atoms in several respects.  

In quantum dots, the electrons are usually confined to a much larger volume 

than the electrons in real atoms.  Typically a quantum dot structure resembles 

a two-dimensional box with a side length of ~ 100nm whereas in solids, the 

spacing between the atoms is of the order of a few Angstrom’s  

(~ 0.2- 0.3) nm. 

The shape of the confining potential is different in both structures. In 

real atoms the strong coulomb attraction of the nucleus is centripetal and 

restricts the electron motion into a small volume in the proximity of the 

nucleus resulting in a very high density and also, the effect of the mutual 
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coulomb repulsion is very small against the attractive force from the nucleus. 

In quantum dots, the potential is not a central attractive, but resembles more of 

a harmonic trap defined by the external electrodes (lateral quantum dot) or by 

physical dimensions (vertical quantum dots). Hence, the density in quantum 

dots can be much lower.  

              In a naturally occurring atom, one has little control over the spectrum 

of energies for adding or removing electrons. Here, the electrons interact with 

the fixed potential of the nucleus and with each other, and these two 

interactions determine the spectrum. The spacing of the energy levels in 

naturally occurring atoms are fixed and hence the absorption and emission 

properties are characteristic of the particular atom. In a quantum dot, the 

spacing of the energy levels is size-dependent and so are the absorption and 

emission wavelengths i.e. one can change this spectrum completely by altering 

the dot size at will, smaller dots emit blue light while larger dots emit red 

light.    

A single semiconductor quantum dot consists of the order of 103-106 

atoms. Most of the electrons in the material are bound to atoms but some of 

the electrons in the material can be made to move freely in the quantum dot 

region. While electrons are on the average further apart from each other, the 

electron-electron interaction becomes more important in comparison to the 

confinement strength. As the size and shape of the confinement potential 

differs from that of real atoms, so also, the energy scales are modified in 

quantum dots. Even though electrons are free to move in quantum dots, the 

mass of electrons is different from a free electron mass due to the surrounding 

host semiconductor material. 
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 Unlike real atoms, current and voltage leads can be attached to probe a 

quantum dot’s electronic state. When the charging energy of a small quantum 

dot is larger than the thermal energy, electrons in the lead cannot transfer onto 

the dot (Coulomb blockade effect). The interplay between quantum 

confinement and charging effects manifests itself in a wide range of physical 

phenomena. The single electron charging effect is one of these and will be 

discussed in the next chapter. 

By coupling several quantum dots together, artificial molecules can be 

created [8-11].  An important feature of these artificial molecules is that the 

couplings between different dots can be tuned by changing the gate voltage or 

the inter-dot distance. This tunability also results in various interesting 

phenomena ranging from the formation of chemical bonds between coupled 

dots to covalent bonds. If a quantum dot is considered as a building block, 

quantum dot arrays can be created. Electrons in quantum dot arrays can move 

around and interact with each other through the Coulomb interactions and 

many interesting effects manifest themselves in magnetic, transport and 

optical properties.  

When quantum dots are arranged on a periodic lattice and coupled to 

each other coherently, a band structure is obtained. This type of dot lattice or 

artificial crystal was first proposed by Sakaki [12] and it is called quantum dot 

super lattice. It is analogous to quantum well superlattice in which sequences 

of semiconductor layers with different band gaps produce new materials and 

devices. The energy spectrum of the superlattice is determined by the artificial 

periodicity in the quantum (dots) rather than the properties of the individual 

semiconductor materials.        
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Solar cells, alternative to dwindling traditional world energy resources 

Amidst concerns, that the world’s fossil fuel reserves are finite and 

depleting [13], much attention has been focused on finding other sustainable 

energy alternatives.  Among the possible energy sources competing to replace 

fossil fuels, direct conversion of sunlight to electrical energy using 

photovoltaic solar cells is one of the important alternatives and a challenge 

that mankind faces today. Photvoltaic (solar) cells convert solar energy to 

electrical energy and offer many advantages including being low in                         

maintenance and relatively environmentally friendly and could have a large 

number of applications, particularly in the energy, communications, military 

and space industries. 

  Even though solar radiation is free, plentiful and a clean source of 

power and also the technology for its conversion into useful energy has been 

around for over five decades, while researchers agree that when measured on a 

per watt basis, the amount of solar power that reaches the earth surface in an 

hour is more than the world’s population energy requirement for a year, the 

major draw back to the wide-spread use of conventional silicon photovoltaic 

solar cells to date has been its prohibitive  cost and low efficiency device.  

  The maximum power conversion efficiency obtainable with 

conventional single junction solar cell is given by the Shockley and Queisser 

limit. Using detailed balance approach, and assuming that each photon above 

the cell’s material bandgap produces just one electron-hole pair while all 

photons with energies below the bandgap are lost, one obtains a theoretical 

maximum energy conversion efficiency of 30% [14]. The efficiency of 

conventional solar cells is small because of their inability to absorb all of the 



 9

incident solar energy and secondly their inability to convert all of the photons 

energy that is absorbed to free electrons and holes necessary to generate 

photocurrents and photovoltages in the material component.  

  This efficiency value is unsatisfactorily low. It would be incorrect if 

one considers the Shockley and Queisser limit as the ultimate limit achievable 

with photovoltaic cells since the actual limit could be much higher if 

transmission and thermalisation losses could be sufficiently reduced. 

Consider the sun as a blck body emitting at a temperature of 5760K and a 

solar cell (another black body) at 300K , the Carnot thermodynamic efficiency 

is 95%. Calculations of radiative losses from the solar cell by Lansberg et al 

[15] give an efficiency of 93.3%.  

  Taking into account entropy generation during energy conversion, one 

obtains a black body limit of about 86%.  The large difference between the 

Shockley-Queisser and the thermodynamic limits is due to a mismatch 

between single materials which are characterized by only two energy levels 

with bandgaps in the range ; (1.0 eV - 1.7 eV) and the solar spectrum which 

contains photons with a wide range of energies in the interval (0.5 eV - 3.5 

eV). From the foregoing, devices that rely on a single transition between 

energy levels are intrinsically not suitable for the broad solar spectrum. 

  Undoubtedly, large area and durable solar cells with cheap starting 

materials, inexpensive manufacturing techniques, and a reasonable level of 

efficiency are required to satisfy our growing energy demands. Unfortunately, 

contemporary photovoltaic solar cells fail on all counts. Notwithstanding, 

there is a potentially huge market for solar cells utilization if their cost were to 

approach or decrease past the cost of combusting fossil fuels especially for; 
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1. Areas where the cost of connecting to the power grid is prohibitive 

such as in developing nations that do not have a well developed 

electrical distribution network. 

2.  Military planners who are concerned at soldier’s reliance on batteries 

to power the increasing amount of portable electronic equipments they 

carry into battle. 

3. Areas connected to the grid yet located in geographical locations with 

favourable conditions of insolation (sun exposure). In these areas, 

demand will arise from individuals concerned when using clean energy 

sources to supplement their energy supply. 

   Several roots have been proposed to overcome this intrinsic property of 

semiconductor solar cells and thereby increase their power output. All these 

methods or concepts concentrate on a much better use of the solar spectrum 

[16].These methods can be achieved either through slight modification of the 

solar spectrum or the material of the semiconductor or by exploiting the excess 

bandgap energy of the photogenerated electrons through the application of 

nano-size materials (Quantum dots and quantum dot supracystals) which show 

unique and important strong quantization effect. The latter constituting the 

concept of 3rd generation solar cells. 

  In this thesis, we review the unique characteristics of quantum dots and 

the theoretical basis of using quantum dots to optimize the performance of 

conventional solar cells through multiple exciton generation (MEG) and 

intermediate band solar cell (IBSC) concepts. These schemes produce 

efficiency limits between 40% and 60% which constitute an improvement over 

the Shockley and Quiesser limit.  
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Thesis outlook 

The organization of this thesis is as follows.  Chapter One highlights 

some of the outstanding properties of quantum dots in comparison with 

naturally occurring atoms and their possible potential applications especially 

in solar cell technology. A brief commentary on conventional solar cells, the 

need to improve on their efficiency and their possible potential applications 

are also given.  

Chapter Two discusses the synthesis methods and characterization of 

both 2-dimensional electron gas (2DEG) and quantum dots. It gives detailed 

experiments that describe the electronic structure of the dots including 

theoretical overview and the classification of quantum dot in artificial periodic 

table. The optical propertiesof quantum dots, in particular the absorption and 

emission spectroscopy and quantum efficiency are discussed extensively. 

Chapter Three discusses briefly, conventional solar cells and the 

modification of their efficiency by incorporating quantum dots in them. This is 

based on a process referred to as impact-ionization or multiple exciton 

generation (MEG) which occurs in quantum dots on interaction with solar 

radiation. Intermediate band solar cell (IBSC) concepts are also discussed. 

Finally, conclusions and recommendations are given in Chapter Four.  
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CHAPTER TWO 

SEMICONDUCTOR HETEROSTRUCTURE AND 

CHARACTERISATION OF QUANTUM DOT  

Theoretical description of Semiconductor heterostructure 

In solids, atoms are bonded closely together and their formerly discrete 

energy levels split into sub-levels or form degenerate levels. Due to the 

interactions of an enormous amount of atoms, the sublevels are closely spaced 

in such a way that quasi continuous bands of possible energies are formed. 

Quantum mechanical considerations show that the energy spectrum of a bulk 

semiconductor consists of energy bands separated by gaps. The lower energy 

band is called the valence band (VB) while the upper energy band is called the 

conduction band (CB).  

 In the ground state of an undoped perfect semi-conductor at 0K, an 

overwhelming majority of electrons occupy the valence band, filling it almost 

completely whereas an extremely small percentage of electrons occupy the 

conduction band. The electrons in a bulk semiconductor material have a range 

of energies. One electron with energy different from a second electron is 

described as being in a different energy level, and it is established that only 

two electrons can fit in any given state. It is also established that some energy 

levels are simply off- limits to electrons and this region of forbidden electron 

energies is called the bandgap. It is a fixed parameter for each semiconductor 

based on the material of the semiconductor.  

Bulk semiconductor and semiconductor compounds are typically made 

from compounds containing an element from the periodic table that are in 
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groups II and VI, III and V or IV and VI. Through doping of the 

semiconductor, delocalized electrons may also be introduced into the CB and 

holes in the VB using impurity atoms that have more (donors) or fewer 

(acceptors) electrons in their external orbital than the atoms of the lattice. Here 

no excitation is involved and the semiconductor remains in the ground state. 

Electrons and holes or quasi-particles that carry electric charge are responsible 

for all observed phenomena that occur in semiconductors. 

Band-structure engineering has made it possible to construct 

semiconductor heterostructures or artificial crystals [17] which is composed of 

different layers of semiconductors with the thickness of the layers along the 

growth axis being carefully controlled with atomic precision. Thus, making it 

possible, to create new materials and devices with pre-defined properties. In 

bulk metals and semiconductors, electrons (or holes) are generally free to 

move in all spatial directions. If this freedom is frozen or restricted in certain 

directions, the dimensionality of the system becomes reduced.  

The reduced dimensionality actually increases the energy of charge 

carriers (electrons and holes) and has implications for the density of states of 

the system as a whole. For example in a 2-dimensional (2-D) system, the 

electrons can only move in one plane and may not travel perpendicular to this 

plane. An example of a naturally occurring material showing a quasi 2- 

dimensional behaviour is graphite where the resistance measured along the 

sheet is much lower than between sheets. Polymer sheets, electrons on the 

surface of liquid helium, semiconductor systems such as metal oxide 

semiconductor field effect transistors (MOSFET’s), heterojunctions and 

quantum wells are other examples.  
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One dimensional systems where  motion of charge carriers is permitted  

only along a line also occur naturally, as for example transport along a 

polymer chain. They may also be fabricated using semiconductors through 

advanced lithographic techniques where they are known as quantum wires.   

Finally, all possibility of movement may be removed to form a zero-

dimensional system. The fabricated ones are quantum dots, the natural 

versions being atoms. Electrons and holes confined by potential barriers to  

small regions of space where the dimensions of the confinement are less than 

the de-Broglie wavelength of these charge carriers produce pronounced 

quantization effects as already mentioned. The three quantization 

configurations are shown in figure 2. For typical semiconductors (group IV, 

III-V, II-VI elements), the length scale below which strong quantization 

 

 

Fig 2: Three quantization configurations of quantum well structures [18]. 

 

effects begin to occur ranges from about 5nm to 25nm [19].  
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    A single quantum well is formed from one semiconductor 

sandwiched between two layers of semiconductors having a larger bandgap. 

The centre layer with the smaller bandgap semiconductor forms the quantum 

well while the two layers sandwiching the center layer creates the potential 

barriers [20] as shown in figure 3. 

 

 

Fig 3: One-dimensionally confined quantum well [20].  

 

Two potential wells are actually formed in the quantum well structure; one 

well is for conduction band electrons, the other for valence band holes. The 

well depth for electrons is the difference between the conduction band edges 

of the well and barrier semiconductor, while the well depth for holes is the 

corresponding valence band offset. 

Multiple quantum well (MQW) structures consist of a series of 

quantum wells (i.e. a series of alternating layers of wells and barriers). If the 

barrier thickness between adjacent wells is sufficient to prevent significant 

electronic coupling between wells, then each well is electronically isolated. 
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This type of structure is referred to as multiple quantum well (MQW). On the 

other hand if the barrier thickness is sufficiently thin to allow electronic 

coupling between wells i.e. there is significant overlap of electronic wave 

functions between wells, then the electronic charge distribution becomes 

delocalized along the direction normal to the well layers. This coupling leads 

to broadening of the quantized states of the wells. The new broadened and 

delocalized quantized states are called minibands. If there is strong coupling 

between the wells, we obtain a superlattice (SL). The critical barrier thickness  

 

Fig 4: Energy levels of (a) multiple quantum well structures (barrier.4nm) and 

(b) superlattices (barrier <4nm) [19]. 

at which   minibands formation begin to occur is about 40
o
A [21-25]. The 

electronic coupling increases rapidly with decreasing barrier thickness, and 

miniband formation is very strong below 20
o
A as shown in figure 4. 
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Superlattice structures yield efficient transport normal to the layers 

because the charge carriers can move through the minibands, the narrower the 

barriers, the wider the minibands and the higher the carrier mobility. Charge 

transport in multiple quantum wells with thick barriers requires thermionic 

emission of carriers over the barriers. However, if an electric field is applied, 

there would be field-assisted tunneling through the barriers [26]. 

 

Synthesis of Quantum well structures (2DEG) 

Quantum wells are produced through epitaxial growth of crystalline 

films via either 

1. molecular beam epitaxy (MBE) or  

2. metallo-organic chemical vapour deposition [27-30]. 

Both techniques are capable of creating epitaxial layers of sufficient quality to 

produce quantization effects. These qualities include uniform thickness and 

interfacial abruptness (both within a few atomic layers), perfect crystallization 

and compositional uniformity. 

 

Molecular Beam Epitaxy (MBE) 

In the MBE technique, an ultra vacuum chamber is fitted with a 

number of evaporation (effusion) cells, each controlled by a separate shutter, 

which supply fluxes of molecular beams of the desired atomic species, 

illustrated in figure 5. The beam can be turned on and off within 0.1s. Growth 

rates are typically 5Ǻ/s. An ion beam sputtering gun is used first to ion-etch 

the surfaces to remove impurities and imperfections. The substrates are 

maintained at ~500 – 700 oC during growth. Spectroscopic capabilities such as 
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mass spectrometry, auger spectrometry and reflection high-energy electron 

diffraction are included in the chamber to control the process and provide data 

on film quality. 

Fig 5: Schematic diagram of MBE apparatus [31] 

 

Elemental species that can be produced by MBE include Ga, Al, In, 

Sb, Sn, Be, Ge, Se, Te, Cd, Hg, Zn, Mn, Pb and Si. The quantum well 

materials mostly produced by MBE are III-V semiconductors, binary and 

ternary compounds such as GaAs/AlXGa1-XAs, GaSb/AlXGa1-XSb, InAs/GaSb, 

GaXIn1-XAs/AlIn1-xAs, GaAs/GaXIn1-XP2 and InP/GaXIn1-xAs. In each case the 

well material is the first and the barrier material is the second compound. II-VI 

semiconductor materials such as CdTe/HgTe and ZnSe/Zn1-XMnXS have also 

been made. 
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Metallo-organic chemical vapour deposition (MOCVD) 

This technique is used purely for preparing III-V semiconductor 

quantum wells. In this process, the group III metals are introduced into a 

reaction chamber in a form of metallo-organic vapours that react at high 

temperatures with gaseous precursors of the non-metalloid group V 

component of the desired semiconductor compound to form a crystalline, 

epitaxial film on a heated substrate. Ga, Al and In are commonly introduced as 

trimethyle gallium (TMG), trimethyl Aluminium (TMA) and trimethyl indium 

(TMI). As and P are usually introduced as arsine and phosphine, although less 

toxic compounds such as tertiary butyl arsine and tertiary butyl phosphine are 

also used. 

The organometallic compounds are kept in liquid form at a sufficiently 

low but constant temperature and are swept into the reaction chamber at 

controlled composition by spraying hydrogen gas at a controlled flow rate 

through the liquid metallo-organics. Gaseous arsine or phosphine is fed 

directly into the system from gas cylinders through flow and pressure 

controllers. Ultra-pure hydrogen is used as the carrier gas for all reactant 

flows. The single crystal substrate is placed on a graphite block that is heated  

by  resistance heaters to 650-750oC. Growth  rates are typically 5-10 Ǻ/s. The 

reaction chamber is operated at either atmospheric or reduced pressure (50-

100 torr). The low pressure system can yield very sharp interfaces between the 

semiconductor heterojunctions and very uniform epilayers, as shown in figure 

6 where GaAs wells are 52
o
A thick and the Al0.32Ga0.68As barriers are 17

o
A 

thick.  
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Fig 6: TEM of GaAs/Al0.32Ga0.68As superlattice structure [32].  

 

Carrier distribution in quantum well structures 

Consider a low-dimensional system formed by a heterostructure 

consisting of a sandwich of different semiconductor materials such as 

GaAs/AlGaAs wafers where layers of gallium arsenide and aluminum gallium 

arsenide are stacked together in a specific way as shown in figure 7. GaAs is a 

III-V compound semiconductor material composed of the element gallium 

(Ga) from column III and the element arsenic (As) from column V of the 

periodic table of elements. AlGaAs is obtained when a fraction of the Ga ions 

in GaAs is substituted by aluminum (Al) ions, also from column III of the 

periodic table of elements. In this way, the band gap of GaAs eVEg 42.1~Δ is  

increased. The resultant heterostructure is AlxGa1-xAs. Usually  an Al fraction 

of x = 0.3 is substituted resulting in a band gap of 1.79eV and when the two 

materials are put together, a band gap mismatch of eVEc 37.0≈Δ  is formed at 

the interface of the two materials in figure 7. In this way a modulated band gap 

material or a superlattice is formed.  
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Fig 7:  GaAs layer sandwiched between AlGaAs layers to form a 

heterostructure.         

 

Subsequently, when silicon dopants are implanted in the AlGaAs  

regions (typically 318101 −× cm  dopant in 65nm AlGaAs), they donate free 

electrons which fall into the GaAs because their energy is lower in the later 

material. The resulting positive charge on the Si atoms creates a potential that 

hold the electrons at the GaAs/AlGaAs interface in a quantum well. The 

electrons in this well are strongly confined in the growth direction, forming 

discrete states but are only allowed to move in the plane of the interface, 

where they form a two-dimensional electron gas (2DEG)  

  

Modulation-doped Heterostructure 

In an idealized system we are interested in free carriers, i.e. electrons in the 

CB and holes in the VB must propagate in delocalized states over the crystal 

[33]. The obvious way to introduce the carriers is by doping the regions where 
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the carriers are needed. However charged donors or acceptors are left behind 

when electrons or holes are released and these scatter the carriers by coulomb 

interaction-ionized impurity scattering. This obstructs the propagation of the 

carriers within the structure, blurs energy levels and disrupts the coherence of 

the electron and hole wave functions needed to observe the quantum effects.  

The solution to this problem is modulation doping whereby the doping 

is grown in one region but carriers subsequently migrate to another as shown 

in fig ure 8 for the heterojuntion between negatively doped AlGaAs and 

undoped GaAs. The electrons in the conduction band travel around and some 

cross into the GaAs, lowering their energy as shown in figure 8a.    

  

 

 

 

 

 

Fig 8:  Conduction band around a heterojunction between negatively doped 

AlGaAs and undoped GaAs [33].  

  

This motion separates the negatively charged electrons from their positively 

charged donors setting up an electrostatic potential that tends to drive the 

electrons into the n-AlGaAs.  As a result, the edge of the conduction band has 

a slope as shown in fig 8b. Since the electrons cannot climb the barrier ΔEc, 

they become trapped at the heterointerface in the potential well. A detailed 

analysis shows that the potential well is roughly triangular [10] and spreads 
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over 10 nm along the growth direction at typical energy of the electrons E1  in 

GaAs. The energy levels for motion along the z axis are quantized similar to 

those in square well. 

              Mostly electrons occupy the lowest quantized states along the z while 

remaining free in the other two dimensions x and y. This constitutes a two 

dimensional electron gas (2-DEG) which forms the basis for many electronic 

devices. Thus modulation doping achieves two benefits, firstly it has separated 

electrons from their donors to reduce scattering by ionized impurities and 

secondly, confined electrons to two dimensions.   

    

Basic Properties of 2DEG 

In this section, the basic quantum mechanical properties of two 

dimensional electron gas (2DEG) are examined. This includes the wave 

function, the energy dispersion, the density of states and the motion of the 

electrons in perpendicular magnetic field. 

       

The wave function and energy dispersion of a 2DEG 

In order to understand and predict the physical properties of 

heterostructure as described earlier, we need to address the two fundamental 

questions [34]. What is the ground state of given system? and how does the 

system behave under an external influence? Answering these questions remain 

one of the most challenging problems in modern physics mainly due to the 

many- body nature of nanostructures composed of many atoms or electrons. 

Let us first consider electrons in the narrow gap semiconductor layer  

as  shown in figure 7. If this layer is thin enough, the motion of carriers in the 



 24

direction perpendicular to the heterointerfaces is quantized, meaning that this 

motion involves discrete (quantum) energy levels. Let the z- axis be directed 

perpendicular to the plane of the 2DEG. In the direction parallel to the 

heterointerfaces, the electronic motion is not restricted. Hence, the wave 

function for a 2DEG can be presented as                                          

                               )exp()()()(),( yikxikzzz yx +==Ψ χψχ rr                     (1)                         

The term )exp( yikxik yx + in the wave function describes the electronic motion 

in directions x and y in the plane of the  2DEG similar to that of free electrons. 

This is understandable since electrons move freely in these directions while r 

is the position vector in the plane of the 2DEG.  In the rest of the analysis, it 

will be assumed that all the distances are much larger than interatomic 

distances and that the electronic mass is the effective mass. A good 

approximation for the confining potential is a triangular one. Thus 
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 Then one can write the Schrödinger’s equation for the wave function χ (z) as    
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plays the role of characteristic localization length in the y direction. Equation  

(3) can be written in the form    

                                        0'' =− χςχ                                                                (6)  

Which is solved with boundary conditions of finiteness at infinity and  

z = 0.  At z = 0, the solution of equation (6) takes the form   

                                  )()( ςςχ AAi=                                                                (7)                         
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For large positive ς  it decays exponentially,  
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While for large negative ς , it is oscillatory, 
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The energy spectrum En , is defined by the roots nς   of the equation   

                                    )(ςAi = 0, → non EE ς=                                            (11) 

Here   
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 The normalization constants An are defined as 

                                      1−
nA  = ( )∫

∞

0

dz znχ
2                                                                          (13) 

The normalized electron densities 2)(zA nnn χγ =  are shown in figure 9.   
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   Fig 9:  Normalized electron densities nγ = ( ) 2
Fnn zA lχ for the first (1) and   

second (2) subbands in a triangular potential well.  

  

Each level creates a sub-band for the in-plane motion, the energy being  

                                 nnkn EkEEE =+= )(, +
m2
k 22h

,                                (14) 

Here n is the quantum number labelling the levels. Each quantum level,  

En corresponds to an energy subband. The effective mass m, being 

considerably smaller than  the mass of the free electron. The dependence of  

 the electron energy on  the wave vector for a two-dimensional electron gas is 

given by  

                                          
m

kk
EE yx

n 2
)( 222 +

=−
h

                               
(15)       

For the quantization to be important, the difference between the levels should 

be much larger than the thermal energy, that is, TkE Bo >> where Bk  is the 

Boltzmann constant and T is the temperature in kelvins. 
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Density of states 

As in any physical system, electrons and holes try to occupy low 

energy positions in conduction and valence bands. Quantum mechanical 

considerations show that only certain amounts of carriers are allowed for any 

given energy.The quantity that speciifies how closely packed the energy levels 

are in some physical system is called the density of states (DOS). It is defined 

as the available number of states N per unit energy interval per unit volume of 

the material, 

                                      
( )

dE
dN

V
Eg ⋅=

2                                                          (16) 

The factor 2, takes into accounts the fact that two electrons of opposite spins 

occupy each  state. The Density of states shows profound changes with the 

dimensionality of quantization. For an  ideal bulk semiconductors with simple 

parabolic bands, the DOS has a square-root dependence on the electron energy 

[35].  
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The super script 3-D, emphasizes the fact that in bulk material, the carriers 

move freely in all directions of space. While the DOS in 3-D case grows with 

the square root of the energy, it shows different behaviour for structures with 

reduced dimensionality. 

The density of states for each subband in a 2DEG can be found using 

an approach similar to that used for a 3-D density of states, that is, by counting 

the number of states with wave vectors k between k and k + dk. The 

corresponding area in k-space is equal to 2πkdk. The density of allowed states 
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is equal to the number of allowed values of k in this area in k-space times two. 

The density of allowed points in k-space for the unit size sample is 1/(2π)2. 

Hence, the total number of states with values of  k between k and k + dk is  

                                2)2(
22
π
π dkkdN ×

=                                               (18) 

From equation  (15)   
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where nE    is the bottom of the thn  subband and    
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we obtain   
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where the density of states, g(E), for one subband is given by   

                                             2
2)(

hπ
mEg D =−                                                 (22) 

In the absence of a magnetic field, the DOS in a 2DEG is a constant, 

dependent only on fundamental constants and the effective mass of the 

confined electrons.The states of the first (bottom) subband overlap with the 

states of the  second (from the bottom) subband for energies larger than the 

second energy level, and so on. As a consequence, the overall density of states 

has a staircase shape as shown in figure 10. It may be desribed by the equation 

∑ −=−

i
i

D EEHmEg )()( 2
2

hπ
, where )( iEEH −  is the Heaviside function. It 

takes the value of zero when E is less than iE and 1, when E is equal or 
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graeter than iE . iE is the i-th energy level witin the well. With an increase in 

the well thickness, the steps in figure 10 gradually decrease and merge into an  

 

Fig 10:  Density of states for a quasi 2-D system (step-like line) and of bulk 

semiconductor material (broken line) [19]  

 

 envelope parabolic function, which  is equal to the three-dimensional density 

of states function multiplied by the well thickness.  Once we find the densities 

of states, we can calculate the electron concentration in the conduction band 

and various optical properties such as the rate of absorption or emission. 

However, energy states in the valence band may play an equally important 

role.  

 

Motion in a perpendicular magnetic field 

There has been much interest in the effects of a perpendicularly 

applied magnetic field on a 2DEG. The reasons being that because of the 

confinement there is no dispersion in the direction of the magnetic field so that 

a magnetic field applied perpendicularly to the plane of a 2DEG creates highly 



 30

degenerate electron energy levels. In a single particle picture and with no 

disorder in the 2-D electron system, the magnetic field essentially places 

electrons in an identical harmonic oscillator potential well of number equal to 

the number of magnetic flux quanta passing through the 2-D system. The 

quantum energy levels, equally spaced in energy in the harmonic oscillator 

potential wells are known as Landau levels. Depending on the magnetic field 

strength, these levels can have enormous degeneracy. 

 According to classical theory, the Hamiltonian function of a charged 

particle in an external magnetic field is 

                                       φe
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where φ  is scalar and Α  is the vector potential of the magnetic field i.e.  

ΑΒ ×∇= , p  is the generalized momentum of the particle and c is the 

velocity of light in vacuum. According to quantum mechanical rules, the 

canonical momentum p ,  has to be replaced by the corresponding operator,  

                                         p→  p̂  = - ∇hi                                                     (24) 

and adding an extra spin term Hμ− where μ  = Βμ ŝ /s is the magnetic 

moment. Here Βμ =e/2mc is the Bohr magneton while ŝ is the spin operator 

and Η  is the magnetic field intensity. Generally, interaction with the periodic 

potential of the crystalline lattice leads to renormalization of the spin splitting, 

Βμ Bfg μμ =→  where fg is called the spectroscopic spin splitting factor. 

Finally we obtain, 

                             −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

2

ˆ
2
1ˆ Ap

c
e

m
H Hμ + eφ  =  



 31

                           
( ) φμ e

sc
e

c
e

+−+⋅+⋅− HsΑpApA .ˆ
mm22m 2

222p
                (25) 

Since Adivˆˆ hi−=⋅−⋅ pAAp , those operators commute if divA = 0. It holds 

in a uniform magnetic field with ×= HA
2
1 r. Thus AA ⋅=⋅ pp ˆ  ˆ  and  hence 

AAA ⋅=⋅=⋅+⋅ ppApp ˆ2ˆ2ˆˆ . 

 The wave function in a magnetic field is not uniquely defined: it is 

defined only within the gauge transform  
t
f

c
f

∂
∂

−→∇+→
1, φφAA  , 

where f, is an arbitrary function of coordinates and time f(r,t). Under such a 

transformation only the phase of the wave function is changed by the quantity 

cfe h that does not affect the observable quantities. In classical mechanics, 

the generalized momentum of the particles is related to its velocity by the 

Hamiltonian equation, 

                                  cem Apv -=                                                   

(26) 

In quantum mechanics, we arrive at a similar expression. However, 

different components of the velocity do not commute, the commutation rules 

being 
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This means that the particles cannot simultaneously have definite velocities in 

all three directions. The Cartesian components of the vector potential  
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A = (-yH, 0, 0) generate a uniform magnetic field which points in the y 

direction.i.e. H = (0, 0, Hz). Substituting this value of A into the Hamiltonian 

above gives the time-independent Schrödinger equation 
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As the coordinates x and z are missing from the Hamiltonian,  
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follows that they commute with the Hamiltonian, i.e. 
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Following from the commutation relations, we may conclude that 

∧∧∧

Ηand, zx pp  have simultaneous eigenstates. The eigenstates of 
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zx pp and appear as  
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So that we may write the common eigenstates of 
∧∧∧

Ηand, zx pp  in the form 
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also the operator zs
∧

 commutes with the Hamiltonian. Thus the z - component 

of the spin is conserved and can be replaced by its eigenvalueσ . Hence, the 

Schrödinger’s equation for the ordinary coordinate function, may be written as  
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From 
c

epmv z
zz

Α
−= ˆ  with 0=Α z zz mvp =⇒ ˆ  and a similar equation for 

0=Α y  giving yy mvp =ˆ  thus the eigenevalues 
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zx pp and takes all values 

from - ∞∞ to . 

Following from this, the motion along magnetic field in a 3-D system 

is not quantized. Equation (32) reduces to  
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 The frequency Ω  is called the cyclotron frequency. This is the 

frequency of rotation corresponding to the classical motion of a charged 

particle in a uniform magnetic field. The Schrödinger equation  (33) is the 

same as that for a simple harmonic oscillator constrained to move along the y-

axis about the point oy with natural frequencyΩ . From the analysis of the 

harmonic oscillator, the eigen energies of this equation are  
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But for an electron, mces h−=μ  and so the energy spectrum becomes                       
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The first term in equation (35) gives discrete levels which correspond 

to the finite motion in the xy-plane, called the Landau levels. It corresponds to 

rotational motion normal to the direction of the magnetic field in this instance 

directed along the positive z-axis. The separation  between  the allowed values 

being equal to Ωh . The kinetic energy term 
m
kz

2

22h
 corresponds to free, linear 

motion parallel to the z-axis. In the corresponding motion, the electron 

trajectories will be a set of circles around the lines of field. The electrons 

perform these orbits at the cyclotron frequency  meH=Ω  and a constant z 

velocity. Classically, such motion is unaffected by a magnetic field in the z 

direction. The projection of the motion onto the xy-plane is shown in figure 

11. 

 

Fig 11: Magnetic quantization and Landau levels in a 2DEG 

                      

The eigenfuntion corresponding to the eigenenergy of equation (35) is 
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where Hn is the nth-order Hermite polynomial and nℵ  is a normalization 

constant. Together with equation (25), this form for nφ  gives the wave 

function as 
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For a particle moving in a uniform magnetic field which is pointed in 

the z- direction. The other conserved quantity, 
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is the classical x coordinates of the center of the circle. It commutes with the 

Hamiltonian. However the operators 
∧∧

oo yandx do not commute. This implies 

that the coordinates  
∧∧

oo yandx  cannot take definite values simultaneously. 

The coordinates x and y are not equivalent because the wave functions  in 

equation (36)  correspond to the energy independent of yk . As a result, any 

function of the form ( )
zx

x

kkN
k

xkC
,,ϕ∑ corresponds to the same energy since 

one can chose convenient linear combinations to get a correct asymptotic 

behaviour. 

 

Density of state in a magnetic field 

 In order to calculate the density of state in a magnetic field, we must 

first count the number of the values of yk  corresponding to the energy 

αε often called the degeneracy factor. As usual we apply cyclic boundary 
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conditions along y and z axis and obtain z
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same time, we assume that the solution exists only in the region .0 yo Ly <<  

So the degeneracy factor is  
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This is a very important relation which shows that one can imagine the Landau 

states as cells with area 2
Ha . We may now calculate the number of states in a 2-

D system treating the kz as for the usual 1-D motion  
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for each state with a given N . Finally, the total number of states per unit 

volume for a given spin is 
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where the sum is taken over all the values of N with non negative 

( ).21+− NE cωh The total number of states is ( ) ( )EE Ζ=Ζ 2 . 

To obtain DOS, we differentiate equation (41) with respect to E . The 

result is  
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is the Heaviside step function. To take the spin into account, we add the spin 

splitting Hg fBμ± to the energy levels. If we ignore the spin splitting, we can 

assume spin degeneracy and  multiply all the formulas by the factor 2. Thus 

( ) ( ).2 EgEg =   

The behaviour of the density of states could be interpreted qualitatively 

as follows. The landau levels as functions of magnetic field for a given value 

of  zp  are shown in figure 12.  

 

 

 

 

 

 

 

Fig 12:  Landau levels as functions of zp (left panel) and of H (right panel). 

 

As a function of magnetic field they form  the so called  landau fan. The Fermi 

level is also shown. At low magnetic fields, its dependence on magnetic field 

is very weak. It is seen that if the magnetic field is small, many levels are 

filled. Suppose we start with some value of magnetic field and follow the 

upper filled level N, as the field increases. The slopes of the fan also increases 

and at a given threshold value HN , for which 

                                          ( ) =NN HE ЄF                                                        (44) 
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, the electrons are transferred from the N-th Landau level to the other ones. 

Then for the field 1−NH which is determined from the equation ( ) =−− 11 NN HE  

ЄF , the ( N-1)th level becomes empty. We obtain  
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Here cm is the cyclotron effective mass which in the case of isotropic 

spectrum is the same as the density of states effective mass. We observe that 

DOS in a magnetic field oscillates with increasing energy just similar to the 

case of a quasi 1-D system. Here, the Landau subbands play the same role as 

the modes of transverse quantization for quantum channels. For a 2DEG, the 

motion along the z-direction is quantized, and instead of
h/zipze , we 

have ( )zsχ . This means that for each subbands of spatial quantization, we have 

a sharp Landau level, the density of states (per unit area) being  
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Thus the density of states has sharp maxima at the energy level that is a 

feature of zero-dimensional systems as shown in figure 13. In real samples, the 

peaks are smeared by disorder. In the presence of the magnetic field, the 

available states clump into Landau levels separated by the cyclotron energy 

with regions of energy between landau levels where there are no allowed 

states. As the magnetic field increases, the Landau  levels move relative to the 

Fermi energy. When the Fermi energy lies in a gap between Landau levels, 

electrons cannot move to new states. 
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Figure 13: Energy versus DOS for a 2DEG in a magnetic field 

 

Realization of a quantum dot from a 2DEG 

In this section, we focus on two quantum dots (QD) structures that are 

commonly used in the study of single electron phenomena. One is the lateral 

quantum dot shown in figure 14a. Metal electrodes are patterned on the top 

and bottom surfaces of a two-dimensional electron gas (2DEG) heterostructure 

of GaAs\AlGaAs. These electrodes form a capacitor with the 2DEG in 

between them in order to control its density. If a positive or negative bias 

voltage is applied to the gate, the heterointerface region underneath it will be 

populated or depleted in the 2DEG respectively. A negative voltage applied to 

the gates raises the electrostatic potential and depletes the underlying 2DEG in 

the vicinity of the gates. In this way, electrons are confined to movement in 

only one direction forming a one-dimensional system or a quantum wire.  

By restricting motion in the remaining direction with an additional 

gate electrode, a small region of 2DEG remains at the center of the structure, 
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separated from the rest of the 2DEG by two narrow constrictions. As the 

dimensions of the structure approach the electron de-Broglie wavelength, the 

resultant island of trapped electrons form a quasi-zero dimensional structure 

called a quantum dot [36-38]. When the electrostatic potential of the 

constriction is higher than the Fermi energy of the 2DEG, there arises an 

energy barrier under which electrons can tunnel. 

The other structure is obtained in the vertical quantum dot illustrated 

in figure 14b. A narrow pillar is fabricated in a heterostructure where a disk of  

 

 

 

 

 

 

 

 

 

 

Fig 14: Schematic diagram of (a) a lateral and (b) a vertical quantum dots [36]  

 

GaAs is sandwiched between two thin AlGaAs barriers. A negatively biased 

gate electrode surrounding the pillar depletes electrons in the outer region of 

the pillar and shrinks the quantum disk. Consequently, the electrons are 

confined at a very narrow region in the center of the pillar. Current flowing 

through the pillar is measured between the source and drain electrodes on the 
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top and bottom of the pillar. The lateral confining potential has a circular 

symmetry approximated by a two-dimensional parabolic potential. This allows 

us to observe a shell structure having highly degenerate levels. 

Another type of vertical dot structure has been proposed by Ashoori et 

al [39,40]. In this case, the dot is located in the GaAs quantum well between 

AlGaAs barriers and its size is controlled by the top gate voltage as in the 

lateral quantum dot. Electrons tunnel vertically to the bottom electrode. The 

addition spectra are measured in a unique capacitance measurement by 

varying the gate voltage. Singlet-triplet transitions and Landau transitions have 

been observed in these kinds of structures [40].         

 

Synthesis of quantum dots 

  The general technique for producing nanostructures (quantum dots) fall 

under two major categories; 

Firstly, Top- down manufacturing where the approach involves starting with a 

large piece of material and etching, milling or machining a nanostructure  

from it by removing material from it as in fabrication of electronic chips. 

Another approach is to break up solids into nanoparticles using grinding or 

ballmilling. 

Secondly, there is bottom-up manufacturing which involves the building of a 

structure, atom-by-atom or molecule-by-molecule through chemical synthesis, 

self or positional assembly. 

There are three methods of synthesizing quantum dots; these are 

Lithography, colloidal chemistry and epitaxy. 
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Lithography is the process of producing patterns on semiconductor crystals 

[36]. This process is slow and has high instances of contamination and 

deformation. Epitaxy involves the growth of quantum dots on patterned 

substrates [41]. A disadvantage of this method is that the amount of producible 

quantum dot is limited by masked patterns. Quantum dots fabricated using 

colloidal chemistry methods [42] are typically composed of elements in the II 

and VI group of the periodic table (i.e. cadmium sulfide CdS, and cadmium 

selenide CdSe). 

 

Colloidal quantum dots 

The common approach to the synthesis of colloidal quantum dots is the 

controlled nucleation and growth of particles in a solution of chemical 

precursors containing the metal and the anion sources (controlled arrested 

precipitation) [43-45]. The technique of forming mono dispersed is very old 

and can be traced back to the synthesis of gold colloids by Michael Faraday in 

1857 [43, 44]. A common method for II-VI colloids quantum dot formation is 

to rapidly inject a solution of chemical reagents containing the group II and 

group VI into hot and vigorously stirred solvent containing molecules that can 

coordinate with the surface of the precipitated quantum particles [44-46]. A 

large number of nucleation centers are initially formed and the coordinating 

ligands in the hot solvent prevent or limit particle growth via the normal 

process of Oswald ripening (i.e. the growth of smaller particles at the expense 

of larger particles).  

Further improvement of the size distribution of the quantum dots 

particles can be achieved through size-selective precipitation whereby slow 
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addition of non-solvent to the colloidal solution of particles causes 

precipitation of large particles (the solubility of molecules with the same type 

of chemical structure decreases with increasing size). This process can be 

repeated several times to narrow the size distribution of II-VI colloidal 

quantum dots to a few percent of the mean diameter. 

The synthesis of III-V colloidal quantum dot is more difficult than II-VI. This 

is because the synthesis must be conducted in a rigorously air-free and water-

free atmosphere.  It also requires higher reaction temperatures and much 

longer reaction times and it involves more complicated organo-metallic 

chemistry.  

For example in the synthesis of InP quantum dots [47-51], an Indium 

salt, [In(C2O4)3, InF3 or InCl3] is reacted with trimethylsilylphosphine 

[P(Si(CH3)3)3] in a solution of trioctylphosphine Oxide (TOPO) and 

Trioctylphosphine (TOP) to form a soluble InP organometallic precursor 

species that contains In and P in a 1:1 ratio. The InP precursor species in the 

TOPO/TOP solution is then heated for several days at a temperature ranging 

from 270 to 290oC depending on the desired properties. One difference 

between the synthesis of II-VI material and III-VI material is that more than 

one day of heating at the reaction temperature is required to form crystalline 

III-V quantum dots whereas II-VI quantum dots form immediately on 

injection of the reactants into the hot TOPO -TOP solution. 

The resulting InP quantum dot contains a capping layer of TOPO, 

which can be readily exchanged for several other capping agents, such as 

thiols, ptridines, amines and polymers. The size distribution of the InP 

quantum dots can be further narrowed down to less than 10% through 
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selective precipitation techniques.  Finally they can be synthesized in the form 

of colloidal solutions, powders or dispersed in transparent polymers or organic 

glasses (for low temperature studies).  Capped InP quantum dots recovered as 

powders can also be redissolved to form transparent colloidal solutions.  

In addition to InP quantum dots, similar methods have been used to produce 

III-VI quantum dots of GaP [47, 52], GaInP2 [53] and InAs [54]; higher 

temperatures (400oC) are required for GaP and GaInP2 quantum dots. 

Spherical and cubical PbSe quantum dots obtained through colloidal synthesis 

are shown in figure 15.  

 

 

 

 

 

 

 

 

Fig 15: TEM of PbSe quantum dot spheres (5nm diameter) and Cube (10nm) 

[55].  

 

Stranski-Krastanov epitaxial growth 

Quantum dots can also be produced by epitaxial growth from the 

vapour phase on appropriate substrates; the growth can be effected using 

either MBE or MOCVD. In the Stanski-Krastanov (SK) mode of quantum dot 

formation, a thin semiconductor film is deposited by MBE or MOCVD onto 
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another semiconductor substrate material that has a mismatch in lattice 

constant with the material being deposited. If the lattice mismatch is 

sufficiently high, and the film has a higher surface energy than the substrate, 

after the initial growth of a few monolayers (called the wetting layer), 

subsequent deposition form small islands which are in the quantum dots 

regime. The size, shape, perfection and density of these SK quantum dots can 

be controlled by controlling the conditions in the MBE or MOCVD reaction.                       

The bulk of work on these SK quantum dots has been on InGaXAs1-X quantum 

dots grown on GsAs substrates [56].  InP quantum dots grown on GaAs as 

AlXGa1-XAs substrates has also been reported by Hanna et al, [57]. 

The SK quantum dots are generally larger than the colloidal quantum 

dots. They typically have a lateral dimension of 1000-2000Ǻ and a height of 

100-500Ǻ. For III-V semiconductors, these sizes produce quantization effects 

because their Bohr radius is large but their degree of quantization is not as 

strong as that in colloidal quantum dots where the sizes ranges from 15Ǻ to 

100Ǻ. The shape of the InAs/GaAs SK quantum dots has been reported to be a 

square based pyramid [58]. However, other results suggest a parallelogram 

base and C2V  symmetry [59, 60]. Another configuration of  SK type quantum 

dots is possible. In this case a quantum well which has a thin outer barrier 

(about 100Ǻ) is first formed. SK islands of another semiconductor material 

having a lattice mismatch with the barrier are then deposited on top of the 

barrier into the quantum well.  

In the case of InP, SK islands (called stressor islands) formed on an 

AlGaAs/GaAs/AiGaAs quantum well, the strain field expands the GaAs and 

reduces the GaAs quantum well beneath the InP islands [61]. Thus the GaAs 



 46

quantum well beneath the InP stressor island is converted into a quantum dot 

since the one-dimensional confinement of carriers is transformed into 3-

dimensional confinement. An important feature of this type of quantum dot is 

that both the well and barrier region of the quantum dot are made of the same 

material. This eliminates interface defects and interface states that complicates 

the relaxation behaviour of the photogenerated carriers. 

 

Basic properties of quantum dots 

In this section, the theoretical background of the basic properties of 

quantum dots which includes quantization of energy levels and density of 

states are discussed.     

 

Quantization of energy in quantum dots 

As stated previously the confinement of electrons in all three spatial 

directions in 2DEG produces a quantum dot. According to de Broglie, a 

particle can also be treated as a wave with a wavelength inversely proportional 

to the absolute value of the particle’s linear momentum, 

                                     
        

p
h

=λ                                                                (47) 

The absolute value of the momentum is given by the product of the particle’s 

mass and its velocity. Using the definition of the mean thermal velocity of free 

carriers, one arrive at the following equation; 

                                        
kTm

m
kTmvmp 33

=⋅=⋅=                           (48) 
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 In a semiconductor crystal, the mass of the free carriers needs to be 

replaced by the effective mass m of the carrier in the material. The de Broglie 

wavelength is thus       

                                         kTm
h

3
=λ                                                         (49) 

For electrons in InAs, the effective mass is m = 0.026mo [60], where mo is the 

free electron mass. The de Broglie wavelength of electrons in InAs at room 

temperature is therefore λ = 39nm. It can therefore be expected that 

quantization effects become apparent for structures of a few tens of 

nanometers. The carrier wave functions (as solutions to the Schrödinger 

equation in the periodic potential lattice) are therefore localized in space and 

the corresponding energy eigenvalues are no longer quasi continuous but 

discrete. 

 

Density of states in quantum dots 

In quantum dots, the values of  k are quantized in all directions. All the 

available states exist only at discrete energies and can be desribed by a delta 

function. This is illustrated in Fig.16 together with the DOS for bulk 

semiconductor for comparison. Quantum dots are therefore referred to as 

artificial atoms since the atomic levels are also discrete.  
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Fig 16: DOS versus energy for a 3-D and 0-D structure (QD) [62].  

 

In real structures, homogenous and inhomogeneous broadening results 

in a narrow distribution of energy at each level. The homogenous level 

broadening is a result of the finite carrier lifetime, carrier-phonon [62] and 

carrier-carrier interaction [63]. Inhomogeneous broadening , shown as dashed 

lines on the other hand, arises from the superposition of many transitions in a 

quantum dot ensemble. Differences in environment (strain), size and 

composition, lead to slightly different energy levels for the individual quantum 

dots [64, 65]. 

  

Electronic structure of quantum dots 

Atoms are studied by adding, removing or exciting electrons with light 

and quantum mechanical considerations show that the confinement of 

electrons in an atom coupled with the three-dimensional (3-D) spherically 

symmetric potential around them yields discrete quantized energy levels with 

degeneracies known as shells, 1s, 2s, 3s, 3p,. Each shell can hold a specific 

number of electrons. The electronic configuration is particularly stable when 
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these shells are completely filled with electrons, occurring at 'magic' atomic 

numbers 2, 8, 18, 32. 

However, the energy levels of the confined electrons in quantum dot 

can be measured by several ways including the spectroscopy of single-electron 

tunneling which exploits the sequential tunneling of electrons via the localized 

quantum dot states. In this process the electrons tunnel one-by-one from one 

lead attached to the quantum dot and the next depending on the voltage drop in 

the dot and the presence of either the blocking or tunnel barrier and can either 

jump back to the same lead or tunnel further to the other lead.  

The results show  that the confinement of electrons and the symmetry 

of a two-dimensional disk-shaped quantum dot lead to discrete energy levels 

with a shell structure having magic numbers 2, 6, 12, 20.... Thus, the  lower 

degree of symmetry in 2-D results in a different sequence of magic numbers 

from the case of the 3-D. By measuring electron transport through quantum 

dots, a periodic table of artificial 2-D elements has been obtained.  

 

Theory and measurement techniques with the SET 

Figure 17a shows  a schematic diagram of a single electron transistor 

(SET) based on GaAs (semiconducting) and AlGaAs (insulating) and figure 

17b, an electronmicrograph of the top surface of the SET used in the 

experiments of Goldhaber-Gordon et al [66,67]. The active region of the 

transistor is a 2DEG at the interface of GaAs/AlGaAs which is connected 

through two strong tunnel barriers due to the constriction in the top gate, to the 

source and drain. One can  tune the density of  the 2DEG. The set-up makes it 

possible to measure the conductance or the current flow through the dot. When 
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a positive voltage is applied to the bottom gate, more and more electrons 

accumulate in the dot. By application of a negative voltage to the top gate, 

electrons are repelled from under the lithographically patterned top metal 

electrodes, thus tuning the height of the barrier.  

The small lake of electrons in the middle form the quantum dot, their 

confinement in the plane can be approximated as parabolic. Excitations in this 

plane have energies about a few meV, hence the experiment require very low 

temperatures. The Fermi level of the lake can be tuned by the bottom gate 

voltage. When the voltage on this gate is increased, the potential minimum in 

which the electrons are trapped become deeper. This causes the number of 

                                                        

 

 

 

 

 

 

 

(a)                                                             (b) 

Fig 17: (a) Schematic diagram of a Single-electron transistor (vertical quantum 

dot) and (b) electronmicrograph of the top surface of the SET [67]. 

   

trapped electrons to increase. However, unlike a conventional transistor in 

which the charge increase continuously, the charge in the trap increases in 

discrete steps and this is reflected in the conductance between the source and  
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Fig 18: Potential landscape of the 2-D electrons in the SET [68]. 

 

Experimental results of Single-electron tunneling in vertical quantum 

Dots 

The results obtained by the single-electron transistor for the three 

terminal quantum dot are presented in figures 19, 20, 21 and 22. 

In figure 17a, a small biased voltage Vsd is applied between the source and 

drain and the current is measured as a function of the gate voltage Vg which is 

tuned in step, the results illustrated in figure 19. It shows the source-drain 

current as a function of the gate voltage for a quantum dot of diameter 0.5µm  

measured  at a very small bias voltage sdV = 150 Vμ  and at a very low 

temperature ( mKT 50= ). A conventional transistor turns on only ones, when 

the gate voltage is raised. Here, nearly periodic peaks in the current are 

observed when the bottom gate voltage is increased. Also the current peaks are 

observed to occur at specific gate voltages. The name ‘single-electron 

transistor’ is due to the fact that the transistor turns on and off again every 

time a single electron is added to it. 
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Fig 19: Source-drain current versus gate voltage at  VVsd μ150=  [69]. 

 

Each current peak results from many sequential single-electron 

tunneling processes. The time interval between the tunneling events was 

estimated to vary from 1ns to 100ns. For VVg 6.1−< , the quantum dot is 

empty. The first peak at VVg 6.1−≈ , corresponds to the tunneling of the first 

electron via the quantum dot. The relative distances between the peaks 

correspond to the filling of the subsequent shells of the artificial atom. The 

positions of the peaks are explained as follows:  the large separations between 

the nd2 and rd3 peaks, the th6 and th7  peaks, the th12 and th13  peaks correspond 

to the complete filling of the first, second and third shells respectively. The 

slightly larger separation between the th4 and th5 , the th9  and th10 peaks results 

from the filling of the subsequent subshells according to Hund’s rule. 

The intervals of the gate voltage correspond to zero source-drain current, due 

to Coulomb blockade [69]. Then the electrons confined in the quantum dot 

prevent the flow of subsequent electrons.  
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If the source-drain voltage (Vsd ) is tuned or increased, transport is also 

allowed in the excited states of the quantum dot. A plot of the conductance or 

differential current sdVI ∂∂  on the gate voltage- source drain voltage (Vg-Vsd ) 

plane is shown in figure 20 called the stability diagram [70]. In the white 

diamond shaped regions, sdVI ∂∂  = 0 due to the coulomb blockade. 

 

 

Fig 20: Differential conductance sdVI ∂∂  plotted on the sdg VV −  plane at B = 

0 [69, 70]. 

 

The number (N) of the quantum dot’s confined electrons is fixed in each of the 

diamonds. 

The application of an external magnetic field essentially modifies the 

electronic states in the quantum dot [40, 70, 71] and the accompanying 

evolution of the single-electron tunneling peaks was observed by 

Kouwenhoven et al [70]. A plot of the current peaks as a function of the gate 
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voltage and magnetic field plane at biased  source and drain voltage V sd = 

0.1mV is shown in figure 21. The measurement show that, the ground state 

energy of the quantum dot-confined electron system undergoes symmetry 

transformation and the usual current (coulomb) oscillations broaden into 

current stripes. 

 

Fig 21: Source-drain current peaks as a function of gate voltage and magnetic 

field at Vsd = 0.1mV [69]. 

 

Then the N-electron ground state and the excited state electrochemical 

potentials within an energy window e V sd , appear as kinks or peaks shown in 

figure 21.  

  The single-electron tunneling peaks at high magnetic field were 

measured by Oosterkamp et al [71]. If the magnetic-field is sufficiently strong, 

the N electron system becomes fully spin polarized and the electrons occupy 

the orbitals with the subsequent angular momenta. This state is called 
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maximum-density-droplet (MDD) [72]. If the magnetic field increases further, 

the MDD decays and a Wiegner molecule is formed [73] in which the 

electrons are localized at different spatial sites with an island-like electron 

density distribution. The formation and decay of the MDD are shown in figure 

21 as abrupt steps marked by full and open circles.  

The corresponding spin configurations shown by the arrows in the squares 

represent electrons arranged in the symmetric and anti symmetric set of the 

Fock-Darwin orbitals are shown in figure 22.  

 

Fig 22: Gate voltage corresponding to the current peaks at Vsd = 100μV versus 

magnetic field for different numbers of electrons [71].  

 

In the Weigner molecule regime, the additional steps were observed (dotted 

ovals in figure 22). The authors [71] argue that at all these steps, the electron 

charge distribution changes abruptly. The different symbols indicate the 

ground state transitions. 
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Theory of the single-electron tunneling 

The phenomenon of the periodic conductance peaks observed in the 

experimental results may be explained by several models notably; the 

Coulomb blockade model and the constant interaction model.  

The Coulomb Blockade model 

The classical model of the Coulomb blockade is based on charge 

quantization. According to this model [4], a charging energy is required to add 

an  extra electron to the dot. The gate voltage tunes the energy levels of the dot 

and as this energy reaches the Coulomb charging energy, an electron can enter 

the dot. When an energy level in the dot becomes aligned within the transport 

window eVsd, which is determined by the electrochemical potentials of the 

source and drain, a current can pass through the dot. As the gate voltage is 

increased, the level moves out of the transport window as shown in figure 23 

and no electron can tunnel inside or outside the dot resulting in no current 

(Coulomb blockade region). The current is zero until another electron is drawn 

into the dot.  

This model leads to equally spaced tunneling current peaks which are 

observed in large quantum dots, called Coulomb oscillations. In the nanoscale 

regime, quantum effects appear, that is the energy levels of the electrons 

confined in the quantum dot are discrete but are not equally spaced. Therefore, 

the charging energies are different for different numbers of electrons and the 

single-electron peaks exhibit unequal spacing [74] as illustrated in figure 19. 

This is the manifestation of the quantum nature of the Coulomb blockade [75].  
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If one considers a quantum dot as a classical conductor having 

capacitance C, which depends on the dot’s dimensions and the geometry with 

respect to the leads, the charging energy  needed to add one electron to it is 

expressed as U = Ce 22 . At low temperatures, the charging energy can be 

 

Fig 23: A schematic diagram of the transport window through the dot. 

 

larger than the thermal energy TkB  of the dot i.e. (
C

eTkB 2

2
≤ ) and  if the dot 

is very well isolated by the tunnel barriers, then the number of electrons  N on 

it does not fluctuate and is a very well defined integer. This number changes 

when electrons tunnel to and from the dot. However, due to Coulomb 

repulsion between electrons, the energy of a dot containing N+1 electron is 

larger than when it contains N electrons. Extra energy is therefore needed to 

add an electron to the dot. Consequently, no current can flow, a phenomenon 

known as Coulomb blockade.  

In order to transfer a charge Q from the source to the dot, the energy of 

the dot when it contains N and N+1 electron must be degenerate. Under biased 

conditions, the total energy E, of the dot can be written semi classically as   

                                        E = U +                                                              (50) 
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where EΔ  is particle in-a-box  level spacing or the quantum mechanical 

energy levels of the dot. But for the lateral quantum dot in figure 17a, the level 

spectrum can be shifted by the bottom gate Vg.  Hence , the energy E of the 

dot becomes 

                                        
gQV

C
QE +=
2

2

.                                           (51) 

The first term in equation (51) is the charging energy due to the 

repulsion of the electrons on the dot. The second term is the electrostatic 

interaction between the dot and the positive underlying gate voltage which 

tunes the energy levels [66]. The graph of this function (a plot of E  against Q) 

is a parabola with a minimum ( 0=
dQ
dE

) at Q = Qm = - CVg. Hence, the charge 

transferred can be tuned by the gate voltage Vg. By varying Vg, any value of 

Qm, the charge that minimizes the energy, can be chosen arbitrally, were not 

the charge quantized. However, because real charge is quantized, i.e. 

NeQ m −= , the dot’s energy as a function of the number of electrons E(N), and 

the positive gate voltage Vg can only assume discrete or specific values.  

Since the charges are transferred by the electrons with a charge - e, 

then the energy as a function of the number N of electrons on the dot is 

                                        C
eNeVNNE g 2

)(
22

+−=                                         (52) 

Now the energy difference when the dot contains N and N+1 electrons is given 

by 

                                        
C
eNeVNENE g

2

)()1( +−=−+ .                        (53) 
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Since charge is transferred only when E(N+1) and E(N) are degenerate, the 

difference in energy must be zero which corresponds to certain values of Vg, 

such that  

                                         
C
eNV

Ng =  ,                                                (54) 

 This can also be visualized in figure 24 where if the gate voltage Vg is 

adjusted such that when Qm = - Ne, for which an integral number (N) of 

electrons minimizes the energy, the coulomb interaction results in the same 

energy difference U = Ce 22  for increasing or decreasing (N) by one.  

Thus there is an energy gap that suppresses charge fluctuation. Also, 

for all values Qm , there is a small but non-zero energy gap for adding or 

subtracting an electron from the dot thus leading to no current. Only when the  

 

 

 

 

 

 

Fig 24:  Energy versus charge on a semi classical dot. Left; Qm eN−= and 

Right: Qm eN )( 2
1+−=  [68].  

 

gate voltage is adjusted such that Qm eN )( 2
1+−= , the state with N and N+ 1 

electrons are degenerate and the energy gap disappears. Under this condition, 

an electron then tunnels from the source to the dot increasing the number of 

electrons on it to N+1 and then subsequently tunnels out to the drain, reducing 
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the electron number to N again and the charge fluctuation results in the nearly 

periodic equidistant conductance peaks even at zero temperature only when 

the average charge on the artificial atom is Qm eN )( 2
1+−= .  

Thus the approximately equally spaced peaks in the conductance of the 

SET is due to charge quantization. This assertion seems to contradict the age 

long charge quantization concept since the discovery of the electron. However, 

since the wave function of electrons in conductors is extended over 

macroscopic distances, the charge in any small volume is not quantized. It is 

the localization of electrons to a small region of space that quantizes the 

charge. In this case, the degree of localization depends on the transmission of 

the tunnel barriers whose resistance R must be such that the RC time constant 

for an electron to tunnel off the dot into the leads be great enough that energy 

uncertainty is less than the charging energy.  

This is achieved by RC > Uh  or approximately, R > 2eh  which is 

the fundamental unit of resistance that enters for instance in the quantum hall 

effect. Thus while the calculation of the charging energy is completely 

classical, Planck’s constant determines whether the charge energy is present or 

not. This condition is valid at T = 0K, independent of C and therefore of the 

size of the dot. Notably, thermal charge fluctuation can overcome this 

localization, so charge fluctuation is observed only at kT < U, implying that 

this effect is observed in smaller quantum dots which have larger U. 

Apart from the charge quantization, energy quantization is important 

when electrons are confined to small volumes. However, the criterion for 

charge and energy quantization are the same at T = 0K. Whereas U is the 

charging energy, there is a typical energy spacing ΔE necessary to excite the 
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artificial atom with fixed number of electrons. Also the levels of the dot are 

not perfectly sharp but rather have typical width caused by the life-time 

broadening because an electron in a level can tunnel into the leads.  

Alternatively, one can say that the eigen states of the system are mixtures of 

localized states on the dot and extended states in the leads. But energy 

quantization means that ΔE > Γ, where Γ is the band width.  

According to Thoules [76], the current through the SET for a single 

quantum level is the charge of the electron divided by the time t for an 

electron in a single state to traverse the dot while in that level. If dEdN is the 

density of states in the dot, then sdeVdEdN )( is the number of current-

carrying channels between the Fermi energy in the source and that in the drain. 

Thus the current is sdeVdEdN
t
eI )(= . The width gives the traversal time 

Γ= ht  and EdEdN Δ= 1)( , so that the condition for energy quantization is 

2ehIVR sd >= , the same as charge quantization. But while the condition 

for charge and energy quantization at T = 0K are the same, charge 

quantization often survives to higher temperatures and can be observed when 

kT < U, but energy quantization requires kT < ΔE. Since U > ΔE for most 

SET’s, made to date, energy quantization is more difficult to observe than 

charge quantization.  

Energy quantization can be observed by measuring the variations 

between the peak positions from  figure 19 while the energy level spectrum 

can be measured directly by observing the tunneling current at fixed Vg as a 

function of  Vsd . The resonant transfer occurs only at specific gate voltages.  

Between the peaks, the current is zero and N remains constant. The distance 
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between consecutive peaks is proportional to the so-called addition energy, 

which is the difference in energy between dots with N+1 and N electrons. As a 

result of the Coulomb blockade [77- 80] electrons tunnel one-by-one and the 

conductance vs. gate dependence is a set of sharp peaks.  

 The constant interaction model (CI) 

The constant interaction model [79,81] makes two important 

assumptions. First, the coulomb interactions among electrons in the dot, and 

between electrons in the dot and those in its environment, are parameterized 

by a single capacitance C. This capacitance can be thought of as the sum of the 

capacitances between the dot and the source SC  , the drain DC and the 

gate gC . Therefore gDS CCCC ++=  

Second, the discrete energy spectrum can be described independently 

of the number of electrons on the dot. Under these assumptions, the total 

energy of an N-electron dot in the ground state with the source and drain 

voltage Vsd, applied to the source (with the drain grounded), is given by                         

∑
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where e−  is the electron charge, and oN  is the number of electrons on the 

dot at zero gate voltage, which compensates the positive background charge 

originating from the donors in the heterostructure. The terms sdSVC  and 

ggVC can change continuously and represent the charge on the dot induced by 

the bias voltage (through the capacitance SC ) and by the gate voltage 

gV (through the capacitance gC ) respectively. The last term in equation (55) is 

a sum over the occupied single-particle energy levels )(BEn which are 
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separated by energy 1−−=Δ nnn EEE . These energy levels depend on the 

characteristics of the confinement potential. Notably, within the constant 

interaction model, only the single-particle states depend on magnetic field B. 

 To describe these transport experiments, it is often more convenient to 

use the electrochemical potential. The electrochemical potential of the 

electrons in the dot is defined as the energy required  to add  the nth electron 

to the dot  

         
nggsdSoNN EVCVC

e
UUNNEEN ++−−−=−= − )()()( 2

1
1μ            (56) 

where CeU 22=  is the charging energy and nE  is the ground-state energies 

of the N-electron system confined in the dot. The expression denotes the 

transition between the N- electron ground state and N-1 ground-state. The 

electrochemical potential for the transitions between ground-states with a 

different number is shown in figure 25. The discrete levels are spaced by the 

so called addition energy. 

         [ ])()1()()1()( NVNVEUNNNE ggadd −+=Δ+=−+= αμμ           (57) 

Again, the addition energy consists of purely electrostatic part i.e. the charging 

energy U, plus the energy spacing between two discrete quantum levels, 

.EΔ  

Fig 25: Schematic diagrams of the electrochemical potential of the quantum 

dot for different electron numbers [79]. 
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The level spacing EΔ  can be zero when two consecutive electrons are 

added to the same spin-degenerate level. The addition energy is related to the 

gate voltage simply by a dimensionless factor α  which depends on the 

geometry of the dot. Equation (57) is the link between the gate voltages 

measured in the experiment and the ground-state energy. 

For the metal electrodes at zero temperature and zero voltage, the chemical 

potential is identified with the Fermi energy as  

                                        αααα μμ eVF o −==                                                (58) 

where o
αμ   is the chemical potential of the electrons in electrode α  and αV  is 

the voltage applied to electrode α . For transport to occur, energy conservation 

needs to be satisfied. This is the case when an electrochemical level of the dot 

falls within the bias window between the electrochemical potential (Fermi 

energy), of the source )( Sμ and the drain )( Dμ i.e.  

                                        SD μμμ ≤≤                                                           (59) 

with the bias window 

                                        SDsdVe μμ −=− .                                               (60) 

  It is only when the condition in equation (59) is met, that an electron 

tunnels from the source onto the dot and then tunnels off to the drain without 

loosing energy. By reversing the bias voltage, the inequality sign in the 

condition in equation (59) is reversed and the electron tunnels from the drain 

to the source. Hence, the notion of source and drain is a matter of convention. 

The important point to realize is that since the dot is small, it has a very small 

capacitance and therefore a large charging energy. For a typical 
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dot, ≈= CeU 22 a few meV. If the electrochemical potential levels are as 

shown in figure 25a, this energy is not available at low temperatures and small 

bias voltage. So the number of electrons on the dot remains fixed and no 

current can flow through the dot. This is the phenomenon resembling coulomb 

blockade.  

The coulomb blockade can be lifted by changing the voltage applied to 

the gate electrode. This changes the electrostatic potential of the dot with 

respect to the reservoirs, shifting the whole ladder of electrochemical potential 

levels up or down. When a level falls within the bias window, the current 

through the dot is switched on. In figure 25(b), )(Nμ  is aligned, so the 

electron number alternates between N-1 and N. This means that the nth 

electron can tunnel onto the dot from the source, but only after it tunnels off to 

the drain can another electron come onto the dot again from the source. This 

cycle is known as single electron tunneling.  

At the positions of the peaks, an electrochemical potential level is 

aligned with the source and drain and a single-electron tunneling current 

flows. In the valleys between the peaks, the number of electrons on the dot is 

fixed due to Coulomb blockade. By tuning the gate voltage from one value to 

the next one, the number of electrons on the dot can be precisely controlled. 

The distance between the peaks corresponds to EU Δ+  and can therefore give 

information about the energy spectrum of the dot. 

A second way to lift the Coulomb blockade is by changing the source –

drain voltage sdV , as in figure 25(c). In general, we change the electrochemical 

potential of only one of the reservoirs, keeping the other one fixed. This 

increases the bias window and also drags the electrochemical potential level of 
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the dot along due to the capacitative coupling to the source. Suppose Vg is 

adjusted so that Qm = - Ne and Vsd is increased.   Current can flow only when 

an electrochemical potential of the dot falls within the bias window.  

When Vsd  is increased so much that both the ground state as well as an 

excited transition state fall within the bias window, there would be two 

channels available for electron tunneling through the dot and the current 

increases.  For larger Vsd’s than the level spacing (∆E), the current increases 

each time  a new quantum state comes in the bias window set by the Vsd. But 

for small Vsd’s, the current always flow through one state. Measurements with 

different source-drain voltages Vsd as a function of the gate voltage, is 

displayed in figure 20 

 In general, the alignment of nth the ground state and an excited 

transition state in the transport window lead to a change in the current 

enabling us to perform energy spectroscopy of the excited states. The exact 

changes in the current depend on the tunneling rates of the two paths [82]. 

Usually, we measure the current or differential conductance (the derivative of 

the current with respect to the source-drain bias) while keeping the bias 

voltage, for series of different values of the gate voltage. Such measurements 

are plotted on a graph as shown in figure 20. Inside the diamond shaped 

region, the number of electrons is fixed due to Coulomb blockade, and no 

current flows. Outside the diamonds, Coulomb blockade is lifted and single-

electron tunneling can take place (or for large bias voltages, even double 

electron-tunneling is possible) as shown in figure 25(d). Excited states are 

revealed as changes in the current i.e. as peaks or dips in the differential 
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conductance. For such Coulomb diamonds, the excited states as well as the 

charging energy can be read off directly as displayed in figure 20. 

               The simple model described above, explains successfully how 

quantization of charge and energy leads to effects like coulomb blockade and 

Coulomb oscillations. Nevertheless, it is too simplified in many respects. For 

instance the model considers only first-order tunneling processes in which an 

electron tunnels first from one reservoir onto the dot and then from the dot to 

the other reservoir. But when the tunnel rate between the dot and the leads,Γ  

is increased, higher- order tunneling via virtual intermediate states become 

important. Such processes are known as cotunneling.  Furthermore, the simple 

model does not take into account the spin of the electrons, thereby excluding, 

for instance, exchange effects. Thus one can overcome the charging energy by 

changing either the source-drain voltage or the gate voltage. The magic 

numbers can be identified because significantly higher gate voltages are 

needed to add the 2nd, 6th and 12th electron. Quantum dots are therefore 2-D 

analogies for real atoms and are therefore referred to as ‘Artificial atoms’ [83]. 

  So far, three different energy scales have been identified with the 

study of the SETs i.e. U, ΔE and Γ which are respectively the energy needed 

to add an electron to the dot, the energy to excite the dot with a fixed number 

of electrons and the broadening of the dot’s energy levels by quantum 

mechanical tunneling to the leads. A last energy scale other than the three 

mentioned previously is the Kondo ‘bond’. The tunneling results in a kind of 

chemical bond between the dot and the leads when the dot has a spin which is 

the origin of Kondo effect. This Kondo bond is very weak and could not be 
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observed for nearly a decade after its prediction by theorists but it is now a 

subject of intense research [66, 67, 84-86] 

 

Electrostatic energy of a single quantum dot 

The charge conservation requires that  

                                       gce QQQen ++=−  

                                   = )()()( UVCUVCUVC ggccee −+−+−                    (61) 

where U is the potential of the dot. The effective charge of the dot is  
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This charge consists of four contributions, the charge of excess 

electrons and the charges induced by the electrodes. Thus, the electrostatic 

energy of the dot is 
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The last term is unimportant because it is independent of n. In the stationary 

case, the current through both junctions is the same while in the non stationary 

situation, an electric charge can accumulate on the dot and the currents are 

different. 

 

The tunneling current 

 For the artificial atom, the absorption and emission of electrons define 

the tunneling current. Suppose the gate voltage Vg is set at a conductance peak 

and an electron is tunneling back and forth between the atom and the leads. 

Since the electron spends a finite time τ   on the dot, the uncertainty principle 
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tells us that the energy level of the electron has a width τh≈Γ . Further, since 

the probability of finding an electron on the atom decays as e
t
τ−  , the level 

will therefore have a Lorentzian shape. This line shape can be measured from 

the transition probability spectrum T(E) of the electron with energy E incident 

on the atom from the source. The spectrum is given by  
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where EN is the energy of the Nth level. The probability that electrons are 

transmitted from the source to the drain is approximately proportional to the 

conductance, )()( 2 ETheG ≈  where he2  is the quantum conductance. 

Obviously, heG 2<  in each of the barriers separately, in order to observe 

conductance resonance.  

 This condition is equivalent to requiring that the separation of the 

levels is greater than the widthΓ . But the electron spectroscopy has a finite 

width determined by the energy spread of the electrons in the source which are 

trying to enter the artificial atom. These electrons are distributed according to 

the Fermi Dirac distribution function  
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where EF is the Fermi energy. The tunneling current is given by  

                                        
[ ]∫ −−= dEVEfEfET

h
eI sd )()()(                       (66) 

Equation  (66)  shows that the net current is proportional to the probability 

f(E)T(E) that there is an electron in the source with energy E and that the 

electron can tunnel between the source and drain minus the equivalent 
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probability for electrons going from the drain to the source. The best 

resolution is by making Vsd TkB≤ . Then [ ] )()()( dEdfeVVEfEf sdsd ≈−−  

and I is then proportional to Vsd, so that the conductance  

                                             sdVIG = .                                                         (67) 

 

The model Hamiltonian 

In quantum mechanics, particles are described with wave functions 

Ψwhich are solutions of the non-relativistic Schrödinger equation   

                                          t
i

∂
Ψ∂

=ΨΗ hˆ                                                      (68) 

where Η̂ is the Hamiltonian operator. In time independent systems, as 

considered in this thesis, the Schrödinger’s equation reduces to the energy 

eigen value problem   

                                           Ψ=ΨΗ Eˆ                                                           (69) 

All other physical properties can be calculated fromΨ . For many-body 

quantum systems as in quantum dot, solvingΨ becomes exponentially difficult 

when the number of electrons increases. With the aid of modern computing 

power, accurate solutions of Ψ are achievable but for larger systems, some 

approximation schemes of solving equation (69) are necessary.  

In the first place we assume that the heterostructure is an idealized 

defect-free semiconductor crystal where ions are arranged in a regular periodic 

array. Secondly, any crystal is composed of two groups of electrons, valence 

electrons which contribute to the chemical bonding and core electrons which 

are tightly bound in the core shell ions. In semiconductors, valence electrons 

fill in the valence band and core electrons scarcely influence the properties of 



 71

the crystal and for that reason is usually not considered. An important role is 

played by the adiabatic approximation. It is based on the fact that ions are 

much heavier than electrons.  

Therefore, the ions move so slowly on the scale of velocities of 

electrons, that at any moment, the electrons will be in their ground state for 

that particular instantaneous ionic arrangement. In other words, the ions can 

respond only slowly to a change in the electron configuration, while the 

electrons respond adiabatically to a change in the positions of the ions. Thus 

the motion of the ions can be effectively decoupled from the motion of the 

electrons. 

 A key assumption is the one-particle approximation whereby the 

many-particle problem is reduced to the motion of an electron in the potential 

created both by the periodic ion lattice and all electrons in the system 

including itself. It enormously simplifies the problem of many interacting 

electrons by effectively removing pair potentials and thus allowing us to 

describe it with a single particle Schrödinger equation. However, this one 

particle point of view does not completely neglect electron-electron 

interactions but rather summarizes their effect by an average global 

contribution to the potential. In this way the single particle Schrödinger 

equation does not treat an electron independently of all the others, since the 

wave functions of other electrons are present through the form of that average 

contribution. 

As explained earlier, only a couple of electrons at a time can be made 

to move in a quantum dot region. The only constriction in the two-dimensional 

semiconductor interface is created by the external electrodes which define the 
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shape and size of the quantum dot. Although an electron is effectively free to 

move, its motion is affected by the surrounding ion lattice in the 

semiconductor material. One can rather accurately describe electron motion in 

a quantum dot by substituting the mass of a free electron with the effective 

mass tensor ( )rm*
αβ   of the electron of the host semiconductor material in the 

Hamiltonian. This is called the effective mass approximation [87] and it has 

shown to be fairly accurate for GaAs conduction band electrons in quantum 

dots. The problem of an electron moving under the simultaneous influence of 

external forces and the lattice potential can then be simplified to an equivalent 

problem where quasi electrons, distinguishable from free electrons only by 

their different masses, move only under the influence of the external forces.  

The approximation is valid in the same conditions where the 

concentration of electrons is mostly low; hence the electrons occupy the states 

near the bottom of the conduction band. In this case the band energy E(k), 

where k is the wave vector in the crystal, can be expanded about the minimum. 

The linear term of the expansion is zero at the minimum, and the energy 

dependence will have a familiar quadratic law, to which the effective mass 

tensor can be assigned. Furthermore assuming that the same conduction region 

occupied by the electrons is uniform and isotropic, the effective mass tensor 

can be replaced by a constant mass m*. We shall also exclude spin-orbit 

coupling from the quantum dot model Hamiltonian. This relativistic effect can 

become important in small quantum dots but in large quantum dots, it is 

negligible.  

It is worth to mention that spin-orbit interaction along with fluctuating 

nuclear spins of GaAs lattice [88-90] can have a large effect on the 
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decoherence times of spin states in large quantum dots, which are of great 

interest in future spin-based information processing [91]. The quantum dot is 

described as a closed system of interacting 2-D electrons in an external 

isotropic parabolic potential. Here the tunneling and the leads are not modeled 

as interest is in the case where tunneling is sufficiently weak so that the dot 

can be idealized as an isolated system with well define electron number and 

we seek for their interacting ground state. As a result of the given 

approximations, the model quantum dot Hamiltonian of N electrons in a 

homogenous external magnetic field along the z-axis ( AB ⋅∇=Β= zu ) can 

be written as [92, 93]  
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The part in parenthesis oĤ  show the sum over N electrons in the 

quantum dot and the second, interaction part H ′contains the coulomb 

repulsion between pairs of electrons. Magnetic field appear  in Hamiltonian in 

the kinetic energy term via the vector potential ( )( ir
rA ) and also couples 

directly to the electron spins )..( ,izi SBSB =  which leads to the spin Zeeman 

splitting. The potential )( iext rrV  describes the quantum dot confinement of the 

electrons. We assume the electron motion in the quantum dot to be strictly 

restricted in two dimensions )( yx uyuxr rrr
+= . The semiconductor host of the 

quantum dot is taken into account also in the effective g-factor g* and in the 

dielectric constant ε, in addition to the constant mass m* discussed above. 

Bμ is the Bohr magneton. 
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Single-particle state 

The direct solution of Schrödinger’s equation for the Hamiltonian of 

equation  (68)  is a tedious task. The Schrödinger’s equation for the single-

particle part oĤ  on the other hand is straight forward to solve: 

                            iiioH φεφ =ˆ                                                        (71) 

If we drop the interaction between electrons and the Zeeman coupling to the 

electron spin, the Hamiltonian for a single-electron reduces to  
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As can be guessed from figure 18, the confinement potential in the plane can 

be described as harmonic to a good approximation. Thus 

                             
22*

2
1 rmV oext ω=                                                      (73) 

where oω  gives the strength of the confinement. In the case of large quantum 

dots (diameter~100nm), oωh  is typically of the order of few meV. 

Substituting harmonic extV  and A  in the symmetric gauge ( ))0,,(2
1 xy−= BA  

we can write equation (72) as  
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which in a more compact form becomes  
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where 4222
co ωωω +=  and cmeBc

*=ω , zL̂ is the z-components of the 

angular momentum operator, 
θ∂
∂

−=−= hiPyPxL xyz
ˆˆˆ . 
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A natural choice is to measure energy in oscillator units ωh , and length 

in effective harmonic oscillator lengths  ωω
*ml h=  . The characteristic 

energy and length scales depend on both confinement strength and magnetic 

field because  422
co ωωω +=  . The Hamiltonian in oscillator units can be 

written as  
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The problem of a harmonic oscillator in a magnetic field of equation (76) was 

first considered by Darwin [94].  Since this Hamiltonian is spin-independent 

and invariant under rotation about the z-axis, 
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The exact eigen funtions can be chosen as simultaneous eigen 

functions of the total angular momentum tot
zL̂  , the total spin 2

totS  and its z 

component tot
zS where eigen functions and corresponding densities are then 

rotationally invariant. The solution in polar coordinates can be written using 

the associated Laguerre polynomials );(xLn
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where the Laguerre polynomial is given by the formula    
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The wave functions nlφ  called the Fock-Darwin states form a complete 

orthonormal basis. Ten lowest eigenstates of oĤ  are  
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The corresponding energy eigenvalues of the radial quantum number n and the 

angular momentum number l  of oĤ  are given by    

                                         
cnl lln ωωε hh

2
1)12( −++=                               (81) 

 In absence of a magnetic field, the solution reduces to a two-

dimensional harmonic oscillator.  When   B = 0, the last term of equation (81) 

vanishes )0( =cω and all contributions of =+ )2( ln constant are degenerate 

in energy. The degeneracy becomes larger with higher energies. The energy 

levels nlε  at B = 0T are plotted in the left panel and the radial part of the wave 

functions of equation (80) are plotted in the right panel of figure 26.  

The application of a magnetic field destroys the degeneracy due to 
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Fig 26: Left, Energy levels in the absence of magnetic field..  

Right, Radial part of the wave function )(rnlφ [94] 

  

the term linear in l . The electron levels shift and split, resulting in many level 

crossings as the magnetic field strength increases. In the left panel of figure 

27, the evolution of the five lowest energy levels ),( ln  is plotted as a 

function of the magnetic field with the confinement strength meVo 3=ωh .    

For a comparison, the single-particle energy levels of meVo 6=ωh  parabolic 

quantum dots are plotted in the right panel of figure 27. 

In the limit of very high magnetic field, the lowest energy levels 

condense into Landau levels. The lowest Landau level is composed of  

increasing l -values with 0=n , whose energy rises with increasing B  but the 

separation between the energy levels decreases when the magnetic field 

increases. In the limit of ∞→B , the degeneracy in the lowest Landau levels 

become very high. In analogy to the hydrogen atom, their degeneracy leads to 
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Fig 27: Fock-Darwin energy levels versus magnetic field with meVo 3=ωh  in 

the left and meVo 6=ωh in the right panel [94].   

 

the energetic shell structure for weak interaction. The degeneracy of 

the m -th level with energy )1( += mEm ωh  is 22 +m  for spinful electrons. 

This gives the so called magic numbers which are total number of electrons in 

closed shells  

                              ,...30,20,12,6,2)2)(1()( =++= mmmN                          (82) 

and correspond to energetically very stable fillings. A periodic table of the 

artificial atoms is displayed in figure 28.  

With these one-particle states, one can now make the so called constant 

interaction approximation for the addition energies; one assumes that the total 

energy is given by the sum over the occupied oscillation states plus the 

coulomb interaction which is parameterized by a constant capacity C. The 

addition energies, equation (57) then reads 
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and are maximal for closed shells. This is the atomic shell structure of the 

quantum dots which relies on the symmetry of the 2-D harmonic oscillator. 

A periodic table of artificial atoms (quantum dots) is illustrated in figure 28. 

  

 

 

 

 

 

 

 

Fig 28: A periodic table of artificial atoms (quantum dots) [5] 

 

The electronic state of a quantum dot 

The simplest treatment of the electronic states of a quantum dot is 

based on the effective mass approximation (EMA). This rests on the 

assumption that if the quantum dot is larger than the lattice constant of the 

crystal structure, then it will retain the crystal properties of the infinite crystal 

and the same values of the carrier effective masses. The electronic states of the 

quantum dot can then be determined   simply by considering the modification 

of the energy of the charge carriers provided by the quantum confinement. 

The electronic and hole states illustrated in figure 29 are determined by 

solving the Schrödinger’s equation for a particle in 3-dimensional box. The 

zeroth order approximation is a perfectly spherical quantum dot with infinite 

potential wells at the surface.  Strong confinement is defined as the case where 
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the quantum dot size is small compared with the de-Broglie wavelength of the 

electrons in the box or small compared with the Bohr exciton radius of the 

bound electron-hole pair (exciton) in the bulk material. This is the case for II-

VI and III-V semiconductors. 

  

 

 

 

 

 

 

Fig 29: Comparison of energy levels between, (a) bulk semiconductor and (b) 

a quantum dot [5]. 

 

Taking into account the Coulomb interaction between electrons and 

holes which is enhanced due to the quantum confinement in the quantum dot, 

the Hamiltonian can be written as  
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or                                      )()( rErH Ψ=Ψ
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where Ve and Vh are the confining potentials, re and rh are the distances of the 

electron and hole from the center of the quantum dot and ε is the permittivity 

of the semiconductor. Analytical solutions of equations (84) and (85) are 

demanding because the center of mass motion and the reduced mass motion 

cannot be separated as independent coordinates.  



 81

Various approaches to solving this problem have been used. These 

include variational calculations (Schmidt et al, [95]; Ekimov et al, [96]; 

Kayanuma et al, [97]; Takagahara, [98, 99]), matrix diagonalisation (Hu et al, 

[100]; Park et al, [101]) and Monte Carlo methods (Pollodi et al [102]). 

Pertubation theory (Brus, [87,103]) and variational calculations ( Kayanuma, 

[104]) lead to a solution of the form  
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Emin is the lowest energy separation between the hole and electron states of the 

quantum dot (the energy gap between the lowest level of the conduction band 

(Lowest Unoccupied Molecular Orbital (LUMO)) and the highest level of the 

valence band (highest occupied Molecular Orbital (HOMO).  R is the radius of 

the quantum dot and ER y d is the bulk exciton binding energy in meV.  Emin
  is 

often referred to as the bandgap Eg of the quantum dot since it represents the 

threshold energy for photon absorption.  

In equation (86), the first term relates to the quantum localization 

which shifts the energy gap to higher energies as R-2. The second term is the 

coulomb term which shifts the energy to lower energies as R-1, consequently, 

the total energy gap increases in energy when decreasing the quantum dot 

diameter [87]. By altering the boundaries of the band gaps, the energy levels 

of the valence and conduction bands of the quantum dot can be adjusted. This 

may be done by either subtracting or adding atoms to the dot or changing the 

shape (geometry) of the dot. Since the emission frequencies are dependent on 

the band gaps, the wavelengths can be controlled. The band gap of a quantum 

dot can therefore be precisely tuned to emit different wavelengths [6, 7].  
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One of the optical features of small excitonic quantum dots 

immediately noticeable to the unaided eye is coloration. As with bulk 

semiconductor material, electrons tend to make transitions near the edges of 

the bandgap. The coloration is directly related to the energy levels of the 

quantum dot. Quantitatively speaking, the bandgap energy that determines the 

energy (and hence color) of the fluoresced light is inversely proportional to the 

square of the size of the quantum dot. The smaller the dot, the bluer (the more 

towards the blue end of the spectrum) the emission colour reflecting the fact 

that electrons must fall a greater distance in terms of energy and thus produce 

radiation of a shorter and therefore ‘bluer’ wavelength. This is because a small 

dot has few atoms and energy levels which are widely spaced.  

Also the larger the dot the redder (the more towards the red end of the 

spectrum) the emission colour because larger dot have many atoms and energy 

levels which are more closely spaced. This also accounts for the large 

difference between bulk and nanocrystal semiconductor materials. Figure 30 

illustrates a matching of the output colour and the size of quantum dots. The 

dot’s size thus dictates its wavelength emission; the smaller the dot the bluer 

the emission and the larger the dot, the redder the emission. 

   

 

 

 

 

  

Fig 30: Matching of the output colour and the quantum dot size [5,105]  
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This allows the quantum dot to absorb photons containing less energy, 

i.e. those closer to the red end of the spectrum where as smaller size quantum 

dots have fewer atoms and therefore wider band-gaps, absorb photons of 

higher energy and hence fluoresce in the blue region. Recent research in 

nanotechnology seem s to suggest that the shape of the quantum dot may well 

also be a factor in the coloration, but as yet is still to be confirmed [105]. 

Table 1 show quantum dot material systems and their emission wavelength 

ranges. 

Table 1: Quantum dot material systems and their emission wavelength range 

[106]      

 

 

Because of the 3-dimensional spatial confinement in quantum dots, the 

solution of the Schrödinger’s equation results in describing the electronic 

states of the quantum dot by three quantum numbers plus spin. A commonly 

used notation by Woggon [107] and Xia [108] labels the electron states as nLF 

, where n is the principal quantum numbers (1, 2, 3 etc), L is the orbital 

angular momentum (S, P, D, etc) and F is the total angular momentum (F = L 

+ J, J = L + S), where S is the spin and the projection of F along a magnetic 
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axis is mF  = - F to + F. Thus the electron states become 1Se, 2Se, 1Pe, etc and 

the hole states become 2/12/32/1 1,1,1 PSS  etc, shown in figure 29. For optical 

transitions in ideal quantum dots, the selection rules are ,0=Δn  2,0 ±=ΔL  

and 1,0 ±=ΔF . These rules can be broken by non-spherical quantum dots and 

strong hole-state mixing.  

 

Spectroscopy of quantum dots 

The idea of quantum dot spectroscopy is to use light of a suitable 

wavelength to induce excitation between energy levels in the quantum dot and 

measure the absorption and photoluminescence spectral intensities as a 

function of their wavelengths. Due to their small sizes, quantum dots display 

remarkable spectroscopic properties. In this section, we seek to establish the 

difference in behaviour between quantum dots of different sizes and by 

describing several optical properties of (CdSe) quantum dot such as their 

absorption spectrum, photoluminescence spectrum, and quantum efficiency. 

  

Absorption spectrum 

The absorption spectrum of quantum dots (CdSe) was obtained from 

an absorption experiment using a Fourier Transform spectrometer (Biorad 

FTS-6000) operated at a resolution of 32cm-1. For the light source, an 

incandescent lamp (tungsten-halogen) which gives a very broad emission 

spectrum from the visible to the infra-red regime was used. The absorption 

spectrum was determined by comparing the spectrum of the quantum dot in 

chloroform to the spectrum of pure chloroform solution. Furthermore, the 

absorption spectrum can also be used to obtain the mean size of the dot. The 
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mean size is extracted by comparing the wavelength of the first absorption 

peak with the experimental results at [109-111].  

The absorption experiment was performed for two mean sizes of CdSe  

quantum dots. The results are presented in figure 31. The thick line represents  

  

 

 

 

 

 

 

 

Fig 31: A typical absorption spectrum of CdSe quantum dots [109].  

 

the absorption spectrum of CdSe quantum dot with ( 4.3± 0.4) nm in mean 

diameter. The first absorption peak occurs at the wavelength 595nm. 

The dashed line displays the absorption spectrum for the (3.1± 0.3) nm 

quantum dot in mean diameter with the first absorption peak at the wavelength 

551nm. The first absorption peak is associated with the transition between the 

LUMO and the HOMO band of the quantum dots.  

Broadening of the absorption spectrum at the blue side as well as the 

red side of the first absorption peak is due to size dispersion of the quantum 

dots. Based on these absorption spectra, it is clear that the absorption spectra 

shift to shorter wavelengths as the mean size of the dot decreases. The blue 

shift proves that the LUMO-HOMO energy gap for small quantum dots is 
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wider than for larger dots. The absorption spectrum also gives information 

about the efficient wavelength to excite the dots. Moreover, the absorption 

spectrum can be used to determine the quantum efficiency of the dot (CdSe).  

 

Photoluminescence spectrum 

The quantum confinement also affects the photoluminescence of the 

quantum dots. That is the emission wavelength can be tuned by adjusting the 

size of the dots. The photoluminescence for two mean sizes of (CdSe) 

quantum dots were measured. The results are displayed in figure 32. The thick 

line represents the emission spectrum for the (4.3± 0.4) nm in mean diameter 

which is red shifted in comparison to the (3.1± 0.3) nm (dashed line) quantum 

dots. The band width of the quantum dots spectrum is associated with the 

polydispersity of the quantum dots size. The spectral band width for 

monodispersed quantum dots is narrower than those observed for the 

polydispersed quantum dots.  

 

 

 

 

 

 

 

 

Fig 32: A typical photoluminescence spectrum of (CdSe) quantum dots [112].  
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Moreover, a specific wavelength component in the quantum dots 

spectrum originates from specific sizes of quantum dots with the smaller dots 

emission towards the blue side. Since the emission line width of a single 

quantum dot is very narrow, (~0.3nm at 10K) [112], the quantum dots 

spectrum has a narrow homogenous line width and a broad inhomogeneous 

line width. 

  

Quantum efficiency 

In general, the quantum efficiency of a quantum dot is defined as the 

ratio of the total number of photons emitted to the total number of photons 

absorbed. Experimentally, this quantity can be extracted by calculating the 

ratio of the luminescence to the absorption data, then compare the ratio with 

the quantum efficiency of a standard reference sample. For a reference, laser 

dyes Rhodamine 6G (R6G) in ethanol which has a quantum efficiency of 

=GR6η   95% ± 5% [113] was used. 

Calculation of the quantum dots efficiency can be expressed as follows [114]; 
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where GRT 61−  and QDT−1  are the absorption values of  R6G and quantum dots 

respectively, which are obtained from the absorption measurements. QDΔΦ  

represents the total luminescence intensity of quantum dots extracted by 

integrating the emission intensity per wavelength interval )(λI  over the whole 
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spectrum. QDΔΦ = ∫ λλ dI )( . GR6ΔΦ  is obtained using the same calculation for 

R6G. In these calculations, the wavelength used to get the absorption should 

be the same as the wavelength used to excite the quantum dots and R6G. 
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CHAPTER THREE 

MULTIPLE EXCITON GENERATION AND INTERMEDIATE BAND 

SOLAR CELL CONCEPTS 

Basic structure of solar cells 

 A Solar cell also called (photovoltaic, PV) converts the energy of the sun 

into electricity. It consists of a diode made of two layers of semiconductor 

materials one with an abundance of electrons that functions as the negative 

pole and the other with an abundance of holes (vacant positively charged 

spaces) that functions as the positive pole sandwiched between two electric 

contact layers. Sunlight that passes through the top contact is absorbed in the 

semiconductor and causes the electrons and holes to diffuse into the different 

contacts. The electrons and holes are separated by the diode and these charges 

drive a current in the circuit. Direct current (D.C.) electricity is generated 

when the solar cell is connected to a load. Solar cells may be integrated into 

larger modules and arrays to generate enough electricity. The spectrum of 

sunlight which can be successfully utilized by the solar cell depends on the 

type and configuration of material used.  

 Silicon is the most common element used to manufacture solar cells, 

however, other organic and inorganic materials and nanostructures may be 

used. Cheaper alternatives to Si do exist but these have much lower 

efficiencies and often more sensitive to environmental conditions.  

They can be classified into: 
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1. Silicon (Si) – including single-crystalline Si, multi-crystalline Si and  

 amorphous Si. 

2. Poly-crystalline thin films – including Copper Indium diselenide (CIS),  

 Cadmium telluride (CdTe) and thin film Silicon. 

3. Single-crystalline thin films- including high efficiency materials such as  

 Gallium arsenide (GaAs).  

4. Organic sensitized cells which are thin layers of titanium dioxide 

nanoparticles onto which organic dye molecules are adsorbed, and an 

acqueous or gel-like electrolyte. Here the energy conversion process is 

similar to that used by plants during photosynthesis (electron transfer via 

dye molecules). An organic sensitized solar cell is inexpensive, but its 

efficiency is about 10% which is too low. 

5. Polymer cells, semiconductor polymers which are mainly organic  

 molecules (such as polyphenylene vinylene) have extended delocalized 

bonds that create bands similar to silicon. Ultrathin layers of these 

molecules are used in cells which are cheaper to manufacture but suffer 

from low efficiencies and sensitive to air and moisture.  

6. Quantum dots cells, on account of their small size,  are potentially more  

 energy efficient, generating up to seven electrons per photons 

compared to one with existing silicon technologies. They can be 

incorporated in different matrices and applied as thin films potentially 

allowing a larger proportion of the spectrum to be absorbed by using 

different sized particles in stacked layers. 

7. Quantum wells these: these allow potentially more energy to be captured    

from available light than materials in existing applications. 
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8. Carbon nanotubes and fullerens:  when   incorporated in matrices of 

other semiconductor materials, facilitate charge transfer thus increasing 

efficiency. In addition, they can be used as scaffolds for the deposition of 

other semiconductor, giving a much larger surface area per unit volume 

and boosting energy conversion.  

       Figure 33 is the design of a solar cell showing its essential features. 

It consists of a glass or plastic cover or other encapsulant, an antireflective 

layer, a front contact to allow electrons to enter a circuit, a back contact to 

allow them to complete the circuit, and a semiconductor layer where the 

electrons begin and complete their journey.  

   

   

 

 

 

Fig 33:  Structure of a conventional solar cell [115] 

 

  Solar radiation as an energy source 

  The major source of energy to operate a solar cell is the sun which 

radiates energy from gamma rays down to radio waves. Most of the energy is 

released as visible light even though visible light represents only a small 
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fraction of the total solar spectrum. The radiation from the sun consists of 

discrete packets of energy called photons that range in frequencies. 

In terms of wavelength, the sun emits almost all of its energy in the 

range mto 67 102102 −− ×× . Each wavelength corresponds to a particular 

frequency and energy υh=E  where h   Planck’s constant is and υ  is the 

frequency of radiation. The   shorter the wavelength,, the higher the frequency 

and the greater the energy. Red and violet lights are at the low and high energy 

ends of the visible spectrum respectively with violet light having twice as 

much energyas red light. This is illustrated in figure 34. 

 

 

 

 

 

 

Fig 34: Representation of the solar radiation [115]  

            

            The sun may be considered as a black body at a temperature of nearly 

Tsun = 5767K radiating electromagnetic spectrum in the solar system. 

Using a dilution factor  
πω

sun

SE

sun

R
Rf Ω

== 2)(  where sunR  and SER are the radii 

of the sun and earth respectively. sunΩ  is the solid angle subtended at the 

earth, we obtain the solar constant 24 /367.1 mkWTfS sun == σω  which is the 

average extraterrestrial irradiance, i.e. the radiation intensity that reaches the 

outer edge of the atmosphere when the earth is taken to be at its average 
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distance from the sun. The atmosphere reflects and absorbs most of the high 

energy radiations including gamma rays, x-rays and ultraviolet rays. Also, 

much of the residual energy is lost through absorption and scattering in 

travelling from the edge of the atmosphere to the surface of the earth 

depending on the thickness of the atmosphere that the energy must pass 

through. Hence the intensity available at the earth’s surface is less than the 

solar constant.  

 Assuming a fraction 0.7 reaches the earth’s surface when the sun is 

directly over head in clear sky, then the terrestrial irradiance is  SE = 0.7S = 

957W/m2 ~ 1000W/m2  denoted by AM1.5G which is chosen as the standard 

value of radiant power. As the sun moves lower in the sky, the energy passes 

through a longer path of air, loosing more energy and thus reaches a value less 

than 1000W/m2. This radiation is distributed unevenly in different regions on 

the earth with the regions near the equator receiving more solar radiation than 

anywhere else.   The number 1.5 indicates that the length of the path through 

the atmosphere is 1.5 times, the shorter path when, the sun is directly over-

head. The standard spectrum outside the earth’s atmosphere is AM0 which is 

useful for predicting the performance of a solar cell in space.  

 The mean daily irradiance is obtained with the use of a geometrical 

factor of 4
1  which takes account of the angle between the sun rays and a plane 

parallel to the earth surface often called the peak solar hours (PSH) = GE = 

4
1 xSE x 24h ~ 5.75kW/h. This value is needed in the sizing of the stand alone 

PV system. In practice one uses the mean solar radiation near the site of 

installation and its variation throughout the year rather than the average hourly 

radiation which is 4
1 SE = 238W/m2 . The amount of the sun’s energy that 
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reaches the surface of the earth every hour is greater than the world’s 

population energy needs in one year hence the sun represents an abundant 

source of renewable energy to humanity [116-120].  

 

Solar cell performance parameters 

  When solar radiation or photons of sufficient energy from some other 

source incident on a solar cell, their energies are transferred to the extra 

electrons in the negative pole, causing them to flow to the positive pole and 

creating new holes that start to flow to the negative pole. Thus producing a 

direct electric current which can be used to power other devices. This current 

may be converted into an alternating current using inverters and subsequently 

fed into the grid. An ideal solar cell may be modeled by a current source in 

parallel with a diode. In practice no solar cell is ideal and so a shunt resistance 

and  series resistance components are added to the model. The equivalent 

circuit and symbol are shown in figure 35 

 The performance of a solar cell is predicted from its current density-

voltage characteristics. This is obtained by exposing the cell to a constant level 

of light while maintaining a constant cell temperature, varying the resistance 

of the load and measuring the current that is produced. 

(a) (b)  

Fig 35: Schematic diagram of the (a) equivalent circuit and (b) symbol of a 

solar cell 
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 The current density-voltage curve illustrated in figure 36 passes through 

typically, two significant points 

1. The intercept on the current axis called the short-circuit current (ISC) which is 

the value of the current when the positive and negative terminals of the cell are 

short circuited and the voltage between the terminals is zero corresponding to 

a zero resistance. 

2. The intercept on the voltage axis called the open-circuit voltage (VOC) which 

is the value of the voltage over the terminals under open circuit conditions, 

when the current is zero corresponding to infinite resistance.          

Pm, is the maximum power point 

 

 

 

 

 

 

 

 

Fig 36: The Current-voltage characteristics of a solar cell.  

   

 The cell may be operated over a wide range of voltages and currents by 

varying the load resistance from zero (short circuit) to infinity (open circuit). 

From the equivalent circuit, the current produced by the solar cell is equal to 
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the photogenerated currnet, minus that which flows through the diode, minus 

that which flows through the shunt resistance. 

 

                               SHOP IILI −−=  

where 

I   is the output current 

PI   is the photo –generated current  

DI  is the diode current 

SHI  is the shunt current 

The current through these elements is determined by the voltage through them: 

                            SJ IRVV +=  

where 

JV  is the voltage across both the diode and shunt resistance SHR  

V  is the voltage across the output terminals 

SR  is the series resistance 

Using the Shockley diode equation, the current diverted through the diode is 

( )1)(exp −= nkTqVII JOD  

OI  is the reverse saturation  current 

n  is the diode quality factor ( 1for an ideal diode) 

where k is Boltzman’s constant , q  is the charge on an electron 

T  is the working temperature of the cell  

By Ohm’s law, the current diverted through the shunt resistance is  

                                 
SH

J
SH R

VI =  
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SHR  is the shunt resistance 

Substituting these into the first equation, gives the characteristic equation 

which relates the solar cell parameters to the output voltage. 

( )
SH

S
SOP R

IRVnkTRIVqIII +
−−×+−= 1)(exp  

If the shunt resistance is so high that the last term can be ignored, the n we 

have 

( )1)(exp −×+−= nkTRIVqIII SOP  

 `  ( ))(1)( 11 TTKTII OPP −+=         

)()( 11 TIGTI CSP ×=        
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/3
11 TTnk
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                        V
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⎠
⎞

⎜
⎝
⎛−=        

                        ( )( )1111 )(exp)( nkTTqVnkTqTIX COOV ×=                            (88) 

gV  is band gap voltage 

1T   and  2T  are reference temperatures in Kelvin 

COV  is the open circuit voltage 

CSI  is the short circuit current 

        The highest efficiency can be determined as corresponding to the point 

normally at the knee of the I-V curve where the cell delivers maximum power  

                                      mmm VIP =                                                                (89)  
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If the constant solar irradiance or light intensity is E  and the surface of the 

solar cell receiving the light is A , then the total incident solar power is AE×  

and hence the efficiency of the solar cell is calculated from 

                                       
=

×
=

AE
Pmη

AE
VI mm

×
                                                 (90)   

At the point of intercept of SCJ  and OCV  the ratio 

                                      OCSC

mm

VI
VIFF =                                                           (91) 

is called the fill factor. The fill factor measures the ‘squaredness’ of the I-V 

curve and describes the degree to which the current at the maximum power 

point mI  matches the current SCI  and the voltage at the maximum power point 

mV  matches the voltage OCV . From equation (89)  OCSCmm VIFFVI ×=  and 

hence the cell’s efficiency 

                                       AE
VIFF

AE
VI OCSCmm

×
×

=
×

=η                                      (92) 

The last equation shows that the higher the fill factor, the higher the efficiency 

and vice versa.                                                             

 The widespread use of solar cells has been limited to date because of two 

factors; 

1. High production cost and 

2.  Low efficiency. 

 The fabrication of the simplest semiconductor solar cells is a complex process 

that requires ultra-pure starting materials (Silicon) and takes place under 

exactly controlled conditions such as high vacuum and temperatures between 

400 oC and 1400oC. The market value of  normal solar panels compared with 

other conventional sources, for instance fossil fuel are expensive and their size 
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is constrained by manufacturing techniques thus limiting their scalability to 

large area panels.  

 

Factors affecting Solar cell conversion efficiency 

 The conversion efficiency of a solar cell is the percentage of the solar 

energy shinning on a PV device that is converted into electrical energy. This is 

currently between 20% and 30% for the most efficient solar cells even though 

the predicted theoretical limit is 67%. Much of the energy from sunlight 

reaching a PV cell is lost before it can be converted into electricity. But certain 

characteristics of a solar cell material limit the cell’s efficiency. Some 

characteristics are fixed, while others can be improved by selecting 

appropriate materials and carefully designing the cell. The efficiency of solar 

cells is affected by a variety of factors which include the following:  

 

Wavelength 

 The spectrum of sunlight covers a range of 0.5 eV to 3.5 eV. From 

infrared to ultraviolet, it covers a range of about 0.5eV to about 2.9eV in terms 

of energy. For example, red light has energy of about 1.7eV, and blue light has 

energy of about 2.7eV. (An electron-volt is equal to the energy gained by an 

electron when it passes through a potential difference of 1 volt in a vacuum.) 

When light shines on crystalline silicon, electrons within the crystal lattice 

may be freed. This is because only photons with a certain level of energy can 

free electrons in the semiconductor material from their atomic bonds to 

produce an electric current. This level of energy, known as the bandgap 
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energy, is the amount of energy required to dislodge an electron from its 

covalent bond and allow it to become part of an electrical circuit. 

Crystalline silicon has bandgap energy of 1.1eV. The bandgap energies 

of other effective PV semiconductors range from about 1.0 to 1.7 eV. In this 

range, electrons can be freed without creating extra heat.  To free an electron, 

the energy of a photon must be at least as great as the band gap energy. The 

primary reason why PV cells efficiency is small is because they cannot 

respond to the entire spectrum of sunlight. Photons with energy less than the 

band gap are not absorbed, or do not produce electronic transition, a 

deficiency, referred to as transmission losses. This constitutes about 20% of 

incoming solar energy. 

             Also, photons with more energy than the band gap energy will 

expend that extra amount as heat when freeing electrons; the resultant energy 

loss is referred to as thermalisation loss.This account for an additional loss of 

about 30%. Thus the inefficient interactions of sunlight with the cell material 

waste about 50% of the energy from the original sunlight, because the 

photon’s energy is either below the band gap of the material or is in excess of 

the bandgap energy. Only photons with as much energy as the material band 

gap produce energy conversion with optimum efficiency [121]. A key to 

obtaining an efficient PV cell among others is to convert as much sunlight as 

possible into electricity or reduce both transmission and thermalisation losses 

to a minimum. 

This requires a PV cell or solar radiation to be tuned through slight 

modifications to the silicon's molecular structure to optimize the photon 
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energy or to modify the solar radiation to obtain a better match between the 

incident radiation and the spectral response of the solar cell material or both.  

Figure 37 illustrates the absorption and transmission relationship 

between solar energy and different solar cell materials. Different PV materials 

have different energy bandgaps. Photons with energy at least equal to the band 

gap energy are absorbed to create free electrons. Photons with less energy than 

the bandgap energy pass through the material. 

 

 

 

 

 

 

 

Figure 37: Different PV materials with different energy bandgaps [115]. 

  

Recombination 

Charge carriers which are electrons and holes in a solar cell may 

inadvertently recombine before they make it into the electrical circuit and 

contribute to the cell’s current. Indirect recombination may also occur where 

electrons or holes encounter an impurity, defect in the crystal structure or 

interface or surface that makes it easy for them to recombine. 
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Natural resistance 

 The natural resistance to electron flow in a cell decreases a cell’s 

efficiency. This loss predominantly occurs in three places, in the bulk of the 

primary solar material, in the tin top layer typical of many devices and at the 

interface between the cell and the electrical contacts leading to the circuit. 

 

Temperature 

              Solar cells work best at low temperatures as determined by their 

material properties. However, much of the light energy shining on the cell 

becomes heat, but all cell materials loose efficiency as the operating 

temperature rises. The solution is to match the material to the operating 

temperature or continually cool the cell. 

 

Reflection 

               Silicon is a shiny gray material and can act as a mirror, reflecting 

more than 30% of the incident light. A cell’s efficiency can be increased by 

minimizing the amount of light reflected away from the cell’s surface. To 

improve the conversion efficiency of the solar cell, the amount of light 

reflected must be minimized. Two techniques are commonly used. 

First a thin layer of silicon monoxide (SiO) which has anti reflecting (AR) 

properties is coated at the top surface of the solar cell. A single layer reduces 

reflection to about 10% but only at one wavelength. A second layer can lower 

the reflection to less than 4%. Better results are obtained by applying multiple 

AR layers.  
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             Another way is to texture the top surface of the cell. Chemical etching 

creates a pattern of cones and pyramids which capture light rays that might 

otherwise be deflected away from cell. By texturing the surface, reflected light 

is redirected down into the cell where it has a second chance to be absorbed. 

 

Interaction of solar radiation with bulk semiconductor material 

A stimulus such as heat, voltage or photon flux in a semiconductor 

generates carrier distribution that is different from that in thermal equilibrium. 

After the removal of the excitation source, relaxation processes will force the 

system back into the equilibrium state. Even though the discrete levels in a 

quantum dot increases the complexity of the carrier dynamics, the underlying 

physical processes are the same as the bulk case.    

Shining light on a semiconductor causes the following excitations; 

interband transitions and excitonic transitions or below bandgap transitions. 

These processes are shown schematically in figure 38. 

Fig 38: Schematic diagram of electronic excitation in a semiconductor due to 

interaction with photons [122]. 
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(a) Bandgap excitation: (1) Single photon absorption, (2) multi-photon 

absorption. (b) excitonic transition and (c) below-bandgap transitions: (3) 

impurity related transition, (4) intra-band absorption, (5) intra-valence band 

transitions. The notations have the following meanings, EXi…..ith, excitonic 

levels, HH/LH/SO…., heavy hole/light hole/split-off valence band, for direct 

bandgap materials i.e. when the conduction band minimum is at the same 

position in k-space as the valence band maximum.  

If the photon energy is larger than the bandgap, inter-band transitions 

dominate, exciting electrons from the valence band into the conduction band. 

Deviations from a perfectly periodic structure in a crystal lattice result in 

localized defect energy levels within the forbidden gap. These can be caused 

by either structural defects in the bulk (such as point defects, dislocations, 

stacking faults etc) or by the surface itself (so called surface states). 

Depending on their energy levels, the defects are categorized as either 

traps or recombination centers. When the energy difference between the defect 

levels and the conduction band is small, an electron promoted from the top of 

the valence band can be captured at the defect level within the forbidden gap. 

The probability of recombination with the carrier of opposite sign is rather 

small as the energy difference to the valence is large. Consequently the 

electron and hole pair forming a bound system like a hydrogen atom via 

Coulomb interaction called an exciton, stay at the carrier traps for finite times 

and can return to the conduction or valence band through thermal excitation.         

The possible energies of an exciton below the conduction band is 

described similar to the hydrogen atom as 
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where μ  is the reduced mass and rε  is the relative dielectric constant of the 

material under consideration  taking into account the changes arising from 

considering carriers in a semiconductor instead of free carriers in vacuum and 

e is the elementary charge. The reduced mass depends on the effective masses 
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For each material, there is a fixed physical average separation between 

the electron and the hole called the Bohr exciton radius (BER).The 

characteristic distance between these two charges is [81, 123, 124] 
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 Defects with energy levels deep within the forbidden gap, present a different 

situation. Thermal excitation of trapped carriers is significantly reduced (the 

probability of such an event decays exponentially with the energy difference 

of the defect and the band energy). Instead carriers recombine at the defects, 

which are called recombination centers, nonradiatively i.e. with the emission 

of phonons.      

              In bulk semiconductors, the crystals are much larger than the BER, 

the exciton stretches to its full extent leading to continuous energy levels both 

in the valence and conduction bands, meaning there is almost no energy 

difference between them. Although many above-bandgap solar photons carry 

enough energy to theoretically unleash several electrons or excitons, they 

almost never free more than one electron (i.e. the quantum efficiency is low, 

about 1.3 electron-hole pairs per absorbed photon) [50,125]. This is because 
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the photogenerated carriers with total excess kinetic energy equal to the 

difference between the photon energy and the bandgap (hot carriers) often 

collides with nearby atoms and is less likely to set other electron free to 

generate multiple excitons. Rather it creates atomic vibrations or phonons that 

squander the electron’s excess energy as heat (Thermalization loss) leading to 

a fast relaxation of the exciton to their lowest energy levels and their 

subsequent recombination.  

             The distribution of the excess exciton kinetic energy between 

electrons and holes in bulk semiconductors is determined by their effective 

masses. The carrier having lower effective mass receives more of the excess 

energy [32] hence 

                                        [ ] 1**1)( −
+−=Δ hege mmEhE υ                                 (95) 

                                        egh EEhE Δ−−=Δ )( υ                                           (96) 

where eEΔ  is the difference in energy between the conduction band and the 

initial energy of the photo-generated electron and hEΔ  is the energy difference 

between the valence band and the photo-generated hole. This is illustrated in 

figure 39. This excess kinetic energy creates an effective temperature for the 

Boltzman ensemble of photogenerated carriers that can be much higher than 

the lattice temperature after the electrons and holes have equilibrated 

(thermalized) among themselves.  

              The initial carrier temperature on photon absorption can be much 

higher than 3000K with the lattice temperature at 300K. 

The action of the built-in voltage in conventional bulk semiconductor solar 

cells is a fast extraction of the electrons away into the external circuit to 
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constitute a photogenerated current and a photovoltge [126] before the hot 

exciton relapse to their lowest levels and subsequently recombine. This 

accounts for the one-photon-one electron rule characteristic of bulk 

semiconductor solar cells which limits its efficiency to about 30% [2].  

 

Fig 39: Hot carrier relaxation / cooling in semiconductor solar cell [32]. 

           

               M. Califano et al [127,128] had suggested that the solutions to the 

loss in photon energy are alternative solar cell concepts that harvest the excess 

band gap energy of photons to produce photocurrents and photovoltages, 

rather than being lost to phonons. Then it would be possible to obtain two or 

more electron-hole pairs from one and this could possibly break the efficiency 

barrier of conventional solar cells caused by thermalization. Solar cells based 

on direct carrier multiplication are commonly referred to as third generation 

solar cells and among the several schemes are the following: 

1. Hot carrier solar cells [129-131] 

2. Solar cells producing multiple electron-hole pairs per photon (impact-                 

ionization) [132-135] 
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3. Multiband and impurity solar cells [125,134-136] 

4. Thermo-thermophotonic cells [125]  

 

Impact-ionization in quantum dots 

              Two factors make low-dimensional structures such as quantum dots 

and MQW potentially useful for third generation solar cell implementation.  

1 The mitigation of thermal scattering and  

2 The control over light absorption. 

About a decade ago, Murphy et al [137] hypothesized that the nano-size of 

quantum dots coupled with their quantum confinement effects could lead to 

impact-ionization which is a pre-requisite for improving on the performance of 

conventional solar cells. 

              Impact-ionization is a process by which the interaction between a 

photon with excess bandgap energy and an electron in a quantum dot produce 

several excitons. First the photo-generated electron with excess bandgap 

energy strikes an electron bound to an atom transferring energy to it and 

creating another exciton. If enough excess energy remains in the newly formed 

exciton, its electron can create another exciton and so on.  

              In quantum dots, the presence of discrete states means that energy 

must be transferred from the carriers in discrete steps. Since the spacing 

between the electronic (excitonic) levels ( of the order of hundreds of meV) is 

large, compared to the longitudinal optical phonon frequency (~25meV), 

electron cooling via electron-phonon coupling requires the simultaneous 

emission of a large quantity of phonons, a process which is quantum 

mechanically of low probability. This retards hot exciton cooling and results in 
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cooling times in the nanosecond range [138]. It is such slow cooling properties 

of the quantum dot exciton that proves useful in the concept of quantum dot 

based solar cells [129] since slow cooling would allow the harvesting of the 

photons energy in excess of the band gap. As this energy may be available to 

generate other excitons, the process has the potential of nearly doubling the 

theoretical efficiency of conventional solar cells. This is the significance of 

impact-ionization. 

              Since then, there has been extensive research in this direction by 

various researchers notably groups from the National Renewable Energy 

Laboratory (NREL). Experiments conducted by Schaller et al [139] involving 

the interaction of high energy blue light with cadmium selenide (CdSe) and 

lead selenide (PbSe) quantum dots, produced two and three excitons 

respectively.The creation of three excitons using lead telluride(PbTe) quantum 

dots has been reported by Jiang et al [140]. Recently, Schaller etal [141] have 

reported the creation of as many as seven excitons by interaction of ultra violet 

light photons with lead selenide (PbSe) quantum dots. Hypothetically, the 

number of excitons created by a photon is related to the energy of the photon 

divided by the dot’s band gap energy, 

                                       gEhexcitonsn /~)( ν                                              (97)                         

where Eg is the band gap energy of the quantum dot and υ  is the frequency of 

the photon. This is because the photon must supply one band gap worth of 

energy to each electron. Therefore, using dots with smaller band gap energy 

produce a large number of excitons because less energy is needed to push the 

electron over the dot’s bandgap threshold.  However, in actual experimental 

work, it is observed that the distribution of photon energy between electrons 
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and holes often require the photon to have more energy to produce a specific 

number of excitons than suggested above. Schaller et al [139] have 

subsequently reported that the photon must have at least three band gaps of 

energy. 

 

 Computation of the conversion efficiency of MEG solar cells 

                This section considers the calculation of the conversion efficiency 

limit of a single junction solar device which employs quantum dot absorbers 

based on the principle of impact-ionization discussed by Hana et al [142]. In 

this calculation, the basic assumptions are:  

1. All photons with energy above the absorption threshold are absorbed. 

2. The quasi-Fermi level separation is constant and equal to qV across the 

device which is equivalent to the assumption of infinite carrier mobility 

and finally, 

3.  The only active recombination mechanism is radiative recombination.  

The current-voltage relationship for a single junction device is given by 

                                      ),()(),( gRgGg EVIEIEVI −=                                  (98) 

where GI  is the photo generated current,  

RI  is the recombination current associated with radiative recombination  

gE  is the absorption threshold or band gap of the barrier 

V is the photovoltage generated by the cell. 

              The photo generated current GI  and recombination current RI  are 

obtained from  
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Where E is the photon energy 

q is the electron charge 

k is the Boltzmann’s constant  

T is the temperature of the solar device (T=300K) 

322 hcg π=  where c is the speed of light in vacuum and h is Planck’s 

constant. 

              The quantum yield QY(E) allows for the generation and 

recombination of multiple charge pairs per photon over the appropriate energy 

range. )(EΓ  is the photon flux associated with the AM1.5G spectrum. Emax is 

the maximum photon energy in the solar spectrum; For AM1.5G, Emax = 

4.428eV approximated to Emax = 4eV for practical purposes, the resultant 

integrated solar current above 4eV in the standard AM1.5G spectrum is 

~ 25 −Acmμ  . In equation (99), carrier generation from ambient black body 

radiation is neglected which is a reasonable approximation for Eg = 0.2eV. 

               Multiple exciton generation is implicit in the analysis through the 

energy dependent quantum yield QY(E) which may exceed one over certain 

photon energy ranges. For an ideal MEG quantum dot absorber, the form of 

QY(E) is given by a sum of the step function  

                                        
∑
=

=
M

m
gmEEEQY

1
),()( θ                                        (101) 

where ),( gmEEθ  is the Heaviside unit step function. m = 1, gives the usual 

one-photon, one-electron-hole pair. 
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gEEmm maxmax ==   gives the maximum number of excitons and the highest 

possible efficiency for an MEG device. MEG absorbers may be denoted by M 

= 1, M = 2 and M = Mmax  respectively by M1, M2 and Mmax. The conversion 

efficiency of a photovoltaic device at a given point is  

                                          inpv PVVIV /)()( =η                                            (102) 

where Pin = 100mW/cm2 is the integrated optical power in the AM1.5G 

spectrum.  

             The value of the voltage V in equation (102) is obtained by the 

following consideration of actual water splitting devices. The photochemical 

conversion efficiency for the production of stored chemical energy as H2 from 

water splitting is given as 

                                        inHH PUVIV /)()(
22

=η                                         (103) 

where VU H 23.1
2
=  is the minimum thermodynamic potential required for 

water splitting at 300K. The operating voltage or bias point of the cell will be 

larger than 
2HU  by the sum of the anode and cathode over potential (loss) and 

the resistive potential drop of the electrolyte. Denoting the sum of these over 

potentials (loss) by overV and assuming it is independent of the current, then the 

operating voltage  

                                       2Hover UVV +=                                                      (104) 

By maximizing the efficiencies of equations (103) and (104), the maximum 

efficiency of a single junction photovoltaic device with a given threshold Eg 

and quantum yield QY(E) can be obtained from equations (98) to (104).  

              Several authors [143-148] have subsequently reported values of the 

efficiency of single junction solar cell devices which rely on carrier 
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multiplication by impact-ionization exceeding the Shockley and Queisser 

limit. Under standard AM1.5G illumination, the maximum efficiency for 

single junction solar cells operating at 300K with quantum yield determined 

from equations (98) to (104) is shown in figure 40 for single junction devices 

with the following absorber types; M1 (no exciton multiplication), M2 (two 

excitons per photon above gE2=υh ) and Mmax ( maximum possible number 

of excitons per photons from solar spectrum). 

              

Figure 40:  PV conversion efficiency as a function of quantum dot bandgap 

[142]. 

              

 The curve M1 is without carrier multiplication and corresponds to the 

usual one-photon-one-exciton rule i.e. the Shockley and Queisser limit with  

maximum efficiency 33.7%, occurring at Eg = 1.3 eV. The curve Mmax is 

obtained by using the maximum integral number of carrier multiplication 

possible with the available excess energy gEEm maxmax = . This corresponds to 

a maximum efficiency of 44.4% for a single junction with bandgap Eg = 0.7 

eV where mmax  =  6.  From the graph, an efficiency value of ~ 42% is obtained 
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with carrier multiplication of M = 2 i.e. curve M2 which is 94% of the absolute 

maximum. The implication is that higher multiplication values greater than 2 

are not the only pre-requisite for substantially increasing the efficiency of a 

single junction solar device based on impact-ionization.  

  

Intermediate band solar cell concept 

               In order to achieve higher conversion efficiencies, multi-bandgap 

absorber systems such as multiple quantum wells (MQW) and superlattice 

(SL) have been suggested [149]. Due to quantum mechanical effects, the 

effective band gap of the MQW is lower than  and thus a MQW can 

expand the light absorption range to longer wavelengths. The enhanced well 

number and the formation of continous minibands in a superlattice contribute 

to the easy spread of the charge carriers through the whole structure resulting 

in high conductivity.  This can improve its efficiency by increasing the short-

circuit current [150]. In the presence of the built-in electric field, in the 

depletion layer, the photogenerated carriers produced by absorbing extra 

photons in the well escape to the adjacent barrier layer, and thus contribute 

extra current with high escape efficiency at room temperature [151-153].  

To avoid defect formation and degradation of the photovoltaic 

properties, lattice matched MQW materials are used. Based on current 

technology, lattice matched absorbers with thickness up to 1µm have been 

made possible [154]. As a way of minimizing the effect of lattice dislocations, 

the component materials as well as the values of   and  are carefully 

selected. The MQW could be fabricated with quantum dot arrays produced by 

self assembled growth [155,156] or by patterning techniques. 
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The concept of intermediate band solar cells (IBSC) involves the 

insertion of a narrow additional level (isolated or forming bands) in the regular 

bulk semiconductor material at the p-n junction to provide additional 

absorption channels that can accept electronic excitations from the valence 

band and allow transitions to the conduction band [157-159] as shown in 

figure 41.  

 

 

 

 

 

 

 

Fig 41:  Photon absorption processes in the Inter mediate band solar cell [160]   

 

Thus the operation of the IB solar cell depends on a material with three bands, 

i.e. a conduction band, a valence band and an  inter mediate band.  Due to the 

existence of three bands, there exist three band gaps: A bandgap between the 

conduction and valence bands, ECV, a bandgap between the conduction and 

inter - mediate bands, ECI, and a bandgap between the valence and inter- 

mediate bands, EVI. Each of these bands is associated with a distinct quasi-

Fermi level. E FV , E FI and E FC are the Fermi levels of the valence, inter - 

mediate and conduction bands respectively. 

Under non equilibrium conditions, three chemical potentials exist, one 

for each of the carrier populations associated with the three bandgaps as 
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shown in figure 42. µIV, µCV and µCI are the chemical potentials between the 

intermediate band and the valence band, the conduction band and the valence 

band and finally the conduction band and  the  inter mediate band respectively. 

qV = µCI - µIV, V is the photogenerated voltage across the cell.The AIV, ACI, 

and ACV are respectively, the energy difference between middle level of the 

intermediate band and the lowest level of the valence band, the energy 

difference between the middle levels of the conduction and intermediate 

bands, and finally the energy difference between the lowest level of the 

conduction band and the highest level of the valence band.   

 

 

 

 

 

 

 

 

 

Fig 42:  Schematic diagram of IBSC showing the energy intervals, chemical 

potentials and Fermi levels [161] 

                

               Due to increased photon induced carrier generation, the existence of 

the intermediate band provides more efficient solar energy conversion as 

compared to single junction solar cell whose band gap is ECV [162], as a result, 

such intermediate band solar cells could work close to their optimum 
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efficiencies without current flowing in the intermediate band itself if the 

band(s) are suitably populated with electrons and holes. In order to provide 

high likelihood of carrier advancement to and from the intermediate band, the 

Fermi levels must exist near the intermediate band.  Also, the conduction and 

valence bands are not directly electrically contacted although radiative 

transitions between the intermediate band and the two other levels are allowed 

[158,163]. The advantage derived from here is that the IB helps to receive 

photons with energies less than the bandgap of the host material (which could 

otherwise not produce any electronic transitions) by a two-step process thus 

improving the short-circuit current without degrading the open circuit- 

voltage. [159, 164-167]. 

               The IBSC could be implemented by introducing QWs into the 

intrinsic region of the p-i-n solar cell [149,168], where the minibands 

constructed with 3-dimensionally ordered assemblies of quantum dots or 

quantum dot supracrystals [149,169,170] constitute the intermediate bands. 

[154].This can provide the required electron and hole dispersion, and charge 

transport expected to increase the spectral range leading to higher efficiency. 

Here, the requirement of a narrow band ( to reduce thermalisation losses) and 

high mobility ( to avoid serial resistance ) are somewhat conflicting from the 

fundamental point of view of quantum mechanics because they vary inversely 

as a function of the overlap integral of the electronic wave functions of the 

centers (transition metals, quantum dots ) forming the bands.   

In these structures, interband electron-phonon relaxation can be 

reduced substantially [171] though this effect can be overturned by many-body 

effects and high temperatures. Intersubband absorption of phonons [172], 
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intersubband transitions due to electron-electron scattering or the inverse 

Auger effect can constitute ways to have multiple quasi-Fermi levels under 

detailed balance conditions and thus leading to an increase in efficiency 

beyond the single gap limit.  

Another mechanism that comes into play which could lead to an 

enhancement of the efficiency of solar cells even when the local distribution of 

charge carriers is well described by two quasi-Fermi levels is the heating of 

the optically active regions of the semiconductor.  

As a result, the thermoelectric due to temperature gradients in the cell may 

enhance the output voltage. There may also be the enhancement of current and 

output voltage due to thermionic emission from the optically active regions if 

a semiconductor with a lower band gap than the traditional semiconductor 

material is inserted within the main band gap [173].  

In general, the conversion efficiency of inorganic solar cells decline 

with a rise in temperature which is due to the decrease in optical bandgap. In 

contrast, the MQW solar cells exhibit excellent temperature dependence 

because of the multi-bandgap structure [174] such as p-i-n single-junction 

concentrators e.g. AlGaAs/InGaAs or InGaAs/InP MQW. These also show 

excellent radiation hardness, useful for space solar cells.  

                 Even though the concept of IB solar cell seems promising, several 

difficulties have been identified with its practical implementation. 

One of the main challenges associated with this concept is ensuring practically 

and efficiently, optimal optical transitions which depend on obtaining the 

required exact energy spacing among all three bands. The most efficient 

conversion process is realized if each photon is absorbed using the transition 
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with the highest threshold possible [158, 164, 175]. In figure 41, the 

transitions with the lowest energies are to proceed according to the path 

coloured red until the energy is high enough to proceed along the path 

coloured green which should be dominant for energies upwards until the path 

coloured blue becomes in turn possible and dominant. Therefore, an optimal 

use of energy imposes very different transition rates between bands.  

                 Another difficulty encountered in this concept is that practically, 

these transitions described above do not occur naturally since in general, 

absorption coefficients tend to vary as 1/E where E is the transition energy. 

Even though there are considerable degree of freedom with the density of 

states and transition matrix elements, obtaining efficient absorption reqiures 

that optical absorptions are allowed and therefore can be described in the 

dipolar (first order) approximation as proposed by Nelson [176] .Therefore 

The optical transitions are not expected to depend much on energy for a given 

transition between two bands.  

The three matrix elements corresponding to the three transitions of 

figure 40 are not completely independent and it seems difficult to have cross 

sections in the order of the transitions described especially keeping them all as 

high as possible.  Notably, if the bands are suitably narrow or if the valence 

band-width is equal to the difference in the absorption threshold between 

transitions coloured red and green, then the transitions described will occur 

naturally. Yet this will lead to an unpleasant implication, considering the solar 

spectrum, the width of the valence band should be of the order of 1eV which is 

quite narrow and therefore with likely implications for the hole mobility. 
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                 Another factor to consider is the electron and hole concentrations in 

the intermediate band. One requires a sufficiently high electron and hole 

concentrations in the this band to ensure an efficient transition coloured red 

and green respectively. 

This may be achieved in two ways: either  

1) the intermediate band is populated (with both electrons and holes) by 

photon absorption or  

2)  the intermediate band is naturally rich in both species and therefore 

behave as a metallic band   [157]. 

However it is necessary that such a metallic band will not impact 

negatively on the optical properties of the device (e.g. increased reflectivity). 

Case (1) gives an absorption cross section that depends on the square of the 

intensity of illumination, so that most likely, high illumination levels will have 

to be reached for the process to be efficient.  

Case (2) relaxes the constraint on illumination levels but it makes the 

recombination kinetics much faster. As a result of the micro-reversibility 

principle, in the radiative limit, both absorption and recombination are 

enhanced in the same ratio and this has no net influence on the efficiency. This 

is not so any more if non radiative recombination is included.  

                 In the metallic IB concept, there is a strong absorption probability 

of the intermediate band. The problem of course is that such metallic IB is 

very likely to be a source of recombination in real systems. The high 

concentration of both holes and electrons in the IB necessary for having good 

absorption will increase the kinetics of any recombination path and this is 

likely to make the system specially sensitive to non radiative recombination in 
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the paths coloured red and green. It will also strongly increase the 

recombination of carriers generated by the path coloured blue.  

Notably in this scheme, there is some up conversion at play whereby 

two low -energy photons are used to produce an electron with a higher kinetic 

energy. Here the stringent requirement on the closeness to the radiative limit 

can be somewhat relaxed because the optical transitions of the two step 

promotion of the valence band electrons take place in different parts of the 

device and are not therefore strongly coupled as in the metallic intermediate 

band version. The mobility necessary in the intermediate band to avoid 

resistive losses under AM1.5G illumination can be estimated around 

100cm2/Vs (for typical carrier concentrations of 1017cm-3). This value can be 

achieved in minibands in multiple quantum well structures but not in solids 

having narrow bands (d or f bands) such as transition metal oxides or 

chalconides.  

                We next consider 3-dimensionally ordered QDS with closely spaced 

quantum dots and high quality interfaces in which there is a strong 

overlapping of the electronic wave functions leading to the formation of 

minibands [177]. Figure 43 is a schematic diagram of the supposed 

supracrystal structure showing the periodically arranged quantum dots.  

The QDS is sandwiched between p and n type layers of the host 

material. In principle the IB must be half populated with electrons which could 

be achieved by modulation doping at the barrier region. To achieve maximum 

efficiency, one has to engineer the QDS parameters such as quantum dot size, 

shape, inter-dot spacing and dot arrangement. 
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Fig 43: Schematic diagram of quantum dot supracystal [177]     

 

                In order to demonstrate the possibility of QDS forming optimum IB, 

the electron dispersion in such structure is first calculated by solving the 

Schroedinger’s equation. This has been successfully carried out by 

Lazarenkova et al [178] using semianalytical approach which gives the 

solution in the 3-D ordered QDS through the Kronig-Penny type of 

expression. This has been further verified to ensure its accuracy by the finite-

element simulation [177,179]. 3-D analysis of QDS made of 

InAs0.9N0.1/GaAs0.98Sb0.02 material systems has been performed by Q. Shao et 

al [180].   

It has been found that the valence band offsets are negligible in this 

system while the conduction band offset is equal to Ebarrier ≈ 1.29eV [181].  

The values of the electron effective masses, o
NsAnI

mm 035.0=∗ and 

o
bSsAaG

mm 066.0* =  where m0 is the electron rest mass and the other band 

parameters are obtained from [181]. The results are presented in figure 44  
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 showing the calculated electron dispersion E(k) in the simple cubic QDS as a 

function of the electron wave vector q with quantum dot size W = 4.5nm and 

inter-dot spacing H = 2nm along the [[100]] quasi crystallographic direction. 

  

 

Fig 44: Electron dispersion in In /Ga  quantum dot 

supracrstal [178]. 

  

Parameters of the IB solar cell 

                The analysis leading to obtaining the efficiency of  the IBSC is 

carried out with the standard assumptions of the ideal solar cell specified by 

Luque et al [158] i.e. non radiative transitions are forbidden, the quasi-Fermi 

levels are constant throughout the whole cell volume, the photovoltaic cell is 

thick enough to assure full absorption of photons with enough energy to 

induce any of the transitions shown in figure 41 and ohmic contacts applied 

such that only electrons (holes) can be extracted from the conduction (valence) 

to form the external current.  

For an ideal solar cell, the photogenerated current is proportional to the 

difference between the number of photons absorbed by the device and the 
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number of photons emitted from the device. In the IBSC, the short circuit 

current density SCJ  is given by [158] 

          

)0,,,([)],,,()0,,,([/ 1223131313 SaSSC TEENTENTENqJ &&& +∞−∞= μ   

                                       )],,,( 121223 μeTEEN−                                           (105)                         

where ST  is the temperature of the sun ( 6000K) regarded as a black body, aT  

is the temperature of the solar cell (300K), N&  is the flux of photons, absorbed 

or emitted from the semiconductor and 122313 ,, EEE  122313 ,, μμμ are the energy 

differences and chemical potential difference between the conduction and 

valence bands, the conduction and intermediate bands and finally the 

intermediate and valence bands respectively. 32! ,, FFF EEE  are the Fermi levels 

of the valence, intermediate and conduction bands respectively and 1Δ is  the 

width of the intermediate band as shown in figure 45. 

 

 

 

 

 

 

 

 

 

Fig 45: Band diagram of a solar cell with intermediate band 
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The first term in equation (105) is the photon flux that produces 

transitions from the valence band to the conduction band. The second term is 

the photon flux emitted as a result of charge recombination between the 

conduction and valence bands. The third term is the photon flux that produce 

transitions between the valence band and the intermediate band and between 

the intermediate band and the conduction band. The fourth term is the photon 

fluxdue to recombination of charge carriers between the conduction band and 

the intermediate band and between the inetermediate band and the valence 

band.    

 In thermodynamic equilibrium, the photon flux N&  is given by the 

general form of the Kirchoff’s law of thermal radiation [161] 
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2

23 μ

πμ&                     (106) 

where lE  and hE are the lower and upper energy limits of the photon flux for 

the corresponding transitions respectively. μ  is the chemical potential of  the 

transitions, Bk  is the Boltzman’s constant, E is the photon’s energy and c is 

the speed of light. The output voltage is the difference between the chemical 

potentials of the conduction and valence bands.i.e  

                                       1213 μμ −=ocqV                                                    (107) 

Assuming the fill factor is unity, then substituting the values of VOC and JSC in 

the efficiency equation
in

OCSC

P
VFFJ

=η , where the incident power 

4
Sin TP σ= , and σ  is the stefan-Boltzman constant, we obtain the efficiency 

upper limit for the optimum quantum dot supracrystal parameters of the IBSC.  
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Fig 46: PV power conversion efficiency versus quantum dot size in 

InAs0.9N0.1/GaAs0.98Sb0.02 quantum dot supracrystal [158].                  

                 

  Figure 46  illustrates the power conversion efficiency of the IB solar 

cell based on quantum dot supracrystals as a function of the dot size which 

shows a maximum efficiency of 51.2%  obtained from QDS with W = 4.5nm, 

H = 2nm having band parameters close to the ideal one. Though in 

comparism, this value is smaller than the thermodynamic values, it is still 

higher than the Shockley and Queisser limit of ~30% for bulk semiconductor 

materials [2].  

Lastly, the electron density of states DOS must be as high as possible 

in order to restrict the IB quasi-Fermi level to its equilibrium position [182]. 

The electron DOS is given by  

                                         ∫ ∇=
)()2(

2)( 3 kE
dSEG
k

E

π
                                   (108) 

where E(k) is the electron energy and the integration is carried out over the 

surface of constant energy SE. The DOS for IB ([[111]] miniband) in the 
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simple cubic supracrystal is shown insert in figure 44, the area under the curve 

is 7.395×1018cm-3 which is of the same order of magnitude as the DOS in the 

valence and conduction bands sufficient for the IB quasi-Fermi level pinning. 

                Typical theoretical values of efficiency of both one and two level 

bands as obtained by Brown et al [149] with the intermediate band scheme are 

shown in figure 47. 

 

 

 

 

 

 

 

 

Fig 47:  One and two level IBSC systems with efficiency values [149]. 

 

 In these calculations, all optimum bands and energy separations are assumed 

to be exact. The intermediate band solar cell has remained largely conceptual 

due to difficulty in materializing it. However, recently some attempts to obtain 

the intermediate band structure using InAs [183,184] , Si/SiO2 [185,186] or Si 

quantum dots embedded in hydrogenated amorphous Silicon carbide (a-

SiC:H) multilayer [187] has been reported. 
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Compatibility of quantum dots 

               Quantum dots are a versatile kind of structure, apart from their small 

size and quantum confinement effect, quantum dots, in particular colloidal 

nanocrystals are not rigid like bulk semiconductor materials and can be 

molded into a variety of different forms. Such dots are free-floating in solution 

and can be combined easily with conductors and semiconductor polymers or 

sol-gels or implemented into porous films. Also due to the possibility of using 

liquid-phase with relatively low temperature processing, it permits the creation 

of junctions on inexpensive substrates such as coated glass, metal sheets etc. at 

the expense of the expensive microfabrication processes used in 

manufacturing conventional Silicon and thin-film based solar cells 

              Lastly, quantum dots can be prepared with a protective shell which 

increases its stability and therefore can lead to long lasting solar cells with 

little or no degradation in performance. All these constitute a huge advantage 

over conventional semiconductor solar cell devices which do not have 

molecular shells to protect them against harmful solar effects thus requiring 

periodic replacement [188]. These properties of quantum dots can enhance the 

ease of their inclusion in conventional solar cells to improve their 

performance. The way forward is to exploit the tunable band gap property of 

quantum dots to design them with different sizes to match and absorb all the 

photons in the solar spectrum in the same cell. 
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CHAPTER FOUR 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

             The advancement in nanofabrication methods especially lithography, 

molecular beam epitaxy and colloidal synthesis, coupled with the development 

of Scanning Tunneling microscopy and Atomic Force microscopy, allows for 

the accurate observation and positioning of atoms and molecules on substrates 

at the nanoscale . This has led to the production of nanostructures such as 

quantum dots and quantum well structures with strong quantum confinement 

effects and desirable properties that can be controlled at will.  

      The theory of the electrostatically gated quantum dot elaborated in 

chapter two, yield quantitatively a correct interpretation of the electronic 

properties of aquantum dot.The analysis indicate that like naturally occurring 

atoms, the electrons confined in aquantum dot form localized bound states 

with discrete energy levels and tunable band gaps.The spectroscopic analysis 

also indicates a good agreement between theory and  experiment mainly that 

the absorption and emission spectra shift to shorter wavelength as the mean 

size of the dot decreases. 

      The interaction of quantum dot with a photon flux also show that the 

quantum confinement effect retards hot exciton cooling and allows the excess 

bandgap energy to be harnessed to produce several excitons thus breaking the 

one-photon, one-exciton  rule which effectively limits the efficiency of 
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conventional solar cells. Also inter dot coupling could form minibands which 

provide additional channels for charge transport. These properties lend a 

quantum dot as suitable material for implementation in a solar cell as a way of 

improving its efficiency.     

             In this review, it has been demonstrated  theoretically, that through 

multiple exciton generation (MEG) or  impact ionization  in quantum dots, the 

conversion  efficiency of a quantum dot solar cell attains a value of 42% 

which nonetheless, is less than the thermodynamic limit but much  higher than  

the Shockley and Queisser detailed balance limit. Secondly, that a single 

junction cell with properly located band of intermediate states using quantum 

dot supracrystals achieves a power conversion efficiency of up to 51.2%.  

Higher efficiencies of up to 71.7% have been reported for materials with two 

bands of intermediate steps.  

 

Recommendations 

There still remains a gap between the ideal and real values of the 

conversion efficiencies and further investigation into quantum dot carrier 

dynamics should be on-going, even though the problem of large area, cost-

effective and highly reproducible fabrication processes for mass production 

seem mitigated.  

Future ultra- efficient solar cells should incorporate a 3-D array of 

quantum dots of different sizes to respond to different portions of the solar 

spectrum and thus increase the spectral absorption range and also with inter-

dot spacing sufficiently small such that strong coupling occurs and minibands 

formed to allow long-range eletron transport. The delocalized quantized 3-D 
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miniband states could be expected to slow carrier cooling and permit the on-

set of impact-ionization to enhance both the photocurrent and photovoltage. 

However, these schemes are largely theoretical and successful 

experimental back-ups with improvements and fine tuning are expected to 

boost the efficiency, reduce the cost of solar cells in comparison with other 

currently available energy sources and lead to the wide-spread use of solar 

cells and to secure a future based on clean and sustainable energy. 
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