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ABSTRACT

This thesis is concerned with the qualitative properties of solutions of neu-

tral functional differential equations, neutral functional difference equations and dy-

namic equations on time scale. Some of the equations are of the first and second

order whereas some are systems of equations. All these equations are delay equa-

tions with constant or variable delays.

Fixed point theory is used extensively in this thesis to investigate the qualita-

tive properties of solutions of neutral delay equations. In particular, the Krasnosel-

skii’s fixed point theorem, the Krasnoselskii-Burton fixed point theorem and the

Banach’s fixed point theorem are used in the thesis. We invert the equations and the

results of the inversions are used to define suitable mappings which are then used to

discuss the qualitative properties of solutions to certain classes of neutral functional

equations considered.

Sufficient conditions are established to discuss the qualitative properties such

as periodicity, positivity, and stability of the classes of neutral equations of our focus.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

The attempt to solve physical problems led gradually to mathematical models

involving an equation in which a function and its derivatives play important roles.

However, the theoretical development of this new branch of mathematics - Ordinary

Differential Equations - has its origins rooted in a small number of mathematical

problems. These problems and their solutions led to an independent discipline with

the solution of such equations an end in itself.

According to Kline (1972), the history of Ordinary Differential Equations (ODEs)

goes all the way back to the XVII century when two great scientists Isaac Newton

and Gottfried Leibniz introduced calculus which came to place from the concept of

functions.

Delay differential equations, differential integral equations and functional dif-

ferential equations have been studied for at least 200 years (see Schmitt (1911) ).

Some of the early work originated from problems in geometry and number theory.

Volterra (1909), (1928) discussed the integrodifferential equations that model

viscoelasticity. In (1931), he wrote a fundamental book on the role of hereditary ef-

fects on models for the interaction of species. The subject gained much momentum

(especially in the Soviet Union) after 1940 due to the consideration of meaningful

models of engineering systems and control. It is probably true that most engineers

were well aware of the fact that hereditary effects occur in physical systems, but

this effect was often ignored because there was insufficient theory to discuss such

1



models in detail.

During the last 50 years, the theory of functional differential equations has

been developed extensively and has become part of the vocabulary of researchers

dealing with specific applications such as viscoelasticity, mechanics, nuclear reac-

tors, distributed networks, heat flow, neural networks, combustion, interaction of

species, microbiology, learning models, epidemiology, physiology, as well as many

others (see Kolmanovski and Myshkis (1999)).

Differential equations are essential tools in scientific modeling of physical

problems which found their relevance in almost every sphere of human endeavour

from Agricultural Sciences, Engineering, Medical Science, Physical Sciences to So-

cial Sciences. Among the earlier work on differential equations, the works of Euler

and Lagrange stand out. They first worked on the theory of small oscillations and

consequently also, the theory of linear system of ordinary differential equations.

In the construction of mathematical models of physical systems it is usually

assumed that all of the independent variables, such as time and space are continuous.

This assumption normally leads to a realistic and justified approximation of the real

variables of the systems. However, we regularly encounter systems for which this

continuous variable assumption cannot be made.

Systems in which one or more variables are inherently discrete are in areas

such as population growth (Smith (1971)), digital communication networks (Mc-

Clamroch (1980)) and delayed feedback oscillation as in laser emission pulsation

(Rabinovich (1980)). Due to their discrete character, these systems must be mod-

elled by the use of difference equations. This lead to the development of the basic

theory of linear difference equations in the eighteenth century by de Moivre, Euler,

Lagrange, Laplace, and others.

Delayed differential or difference equations sometimes are also called differ-

ential or difference equations with deviating arguments. However nowadays, this

later title is seldom used; instead, the terminology of functional differential or dif-

ference equations is mostly utilized. Functional differential or difference equations
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are classified as retarded, neutral, or advance type. Such a classification, first intro-

duced by Myshkis (1951) in his monograph, lay the foundation for a general theory

of linear delayed systems.

The concept of time scale analysis is a fairly new idea. It was introduced in

1988 by the German mathematician Stefan Hilger. Many results concerning dif-

ferential equations carry over quite easily to corresponding results for difference

equations, while other results seem to be completely different in nature from their

continuous counterparts. The study of dynamic equations on time scale reveals such

discrepancies, and helps avoid proving results twice, once for differential equations

and once for difference equations. The general idea is to prove a result for a dynamic

equation where the domain of the unknown function is a so-called time scale, which

is an arbitrary nonempty closed subset of the reals. By choosing the time scale to

be the set of real numbers, the general result yields a result concerning an ordinary

differential equation. On the other hand, by choosing the time scale to be the set of

integers, the same general result yields a result for difference equations. However,

since there are many other time scales than just the set of real numbers or the set of

integers, one has a much more general result.

In the study of the theory of differential and difference equations, we most

often encounter equations in which the conventional methods, such as the Laplace

transform method and the power series solutions, can be used to solve the differen-

tial or difference equations analytically, that is, the solutions can be written out using

formulas.

However, in most applications in biology, chemistry, and physics modelled by

differential or difference equations where analytical solutions may be unavailable,

people are interested in the questions related to the so-called qualitative properties,

such as:

(1) Will the system have at least one solution ?

(2) Will the system have at most one solution?
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(3) Can certain behaviour of the system be controlled or stabilized?

(4) Will the system exhibit some periodicity?

and

(5) Will the system have positive solutions?

If these questions can be answered without solving the differential or difference

equations, especially when analytical solutions are unavailable, we can still get a

very good understanding of the system.

The first person to carry out a major investigation in the line of the qualitative

theory and hence the development of the qualitative theory of differential and dif-

ference equations was Henry Poincare (see Boyer (1968)). This qualitative theory

is now the most actively developing area of the theory of differential and difference

equations, with most important applications in diverse areas such as Engineering,

Economics, Physical and Biological sciences. It is well known that mathematical

formulations of many physical problems often result in differential or difference

equations that are non-linear. Much has been done on the theory and method of deal-

ing with the linear differential and difference equations in Mathematics but just little

of general nature is known about non-linear differential and difference equations. By

non-linear differential or difference equations, we are referring to equations where

the terms involving the unknown function are not linear in the unknown function. In

general, the study of non-linear differential and difference equations are restricted to

a variety of special cases and the method of solution usually involves one or more

of a limited number of different methods. There are several important differences

between linear differential equations and non-linear differential equations as well as

linear difference equations and non-linear difference equations. For instance, for the

linear ordinary differential and difference equations, it is possible to derive a closed-

form expressions for the solutions of the equations whereas this is not possible in

general for the non-linear differential and difference equations. As a consequence, it

is desirable to be able to make predictions about the behaviour (qualitative analysis)
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of non-linear ordinary differential and difference equations even in the absence of

the closed-form expressions for the solution of the equations.

The analysis of non-linear ordinary differential and difference equations makes

use of a wide variety of approaches and mathematical tools than does the analysis of

linear differential and difference equations. The main reason for this variety is that

no tool or methodology in non-linear differential and difference equations analysis

is universally applicable to handle them in a fruitful manner. Close to half a century

now, great efforts have been devoted to the study of qualitative theory of non-linear

differential and difference equations, to be precise non-linear neutral functional dif-

ferential and difference equations. During these periods, new methods and outstand-

ing results have appeared. These were extensively summarized in the monograph of

Reisig, Sansone and Conti (1974). The major directions which must be emphasized

in this context, consist in the investigation of solutions of non-linear differential and

difference equations involving boundedness, stability, periodicity and positivity of

solutions.

Some of the techniques used in the investigation of these qualitative properties

of solutions include the Lyapunov’s Direct Method which involves the construction

of a suitable positive definite function whose derivative is negative definite. The

frequency domain method is another method employed in the investigation. This

method involves the study of location of the characteristic polynomial roots in the

complex plane. We can also mention the topological degree method which demand

the verification of continuity properties of a certain operator and the proof of exis-

tence of a particular a-priori bound. Moreover, fixed point theorems are also used to

establish qualitative properties. Each of the first three methods has its limitations, for

instance, the limitation of the Lyapunov’s Second Method is on the non-unique way

of constructing a suitable Lyapunov function; the frequency domain method though

overcomes the problem of constructing Lyapunov’s functions, it is narrower in scope

than the Lyapunov’s Second Method (see Rouche, Habets, and Laloy, (1977)). The

Topological Degree Methods on the other hand are mainly used in proving existence
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of periodic solutions.

This thesis is concerned with the following qualitative properties of solutions:

• positivity,

• periodicity,

• stability;

for neutral functional differential and difference equations.

A neutral functional differential equation is one in which the derivatives of

the past history are involved, as well as those of the present state of the system.

Similarly, a neutral functional difference equation is one in which the difference of

the past history are involved, as well as those of the present state of the system.

The following classes of equations are considered;

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t) =
d
dt

c(t,x(t − τ(t)))+ f (t,h(x(t)),g(x(t − τ(t)))),

(1.1)

x′(t) =−a(t)h(x(t))+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
, (1.2)

x′(t) = −a(t)x3(t)+ c(t)x′(g(t))g′(t)+q(t,x3(g(t))), (1.3)

x(n+1) = A(n)x(n)+C(n)∆x(n− τ(n))+g(n,x(n− τ(n))), (1.4)

∆x(n) =−
N

∑
j=1

a j(n)x(n− τ j(n)), (1.5)

∆
(

x(n)−h(x(n−L1))
)
= g(x(n))−g(x(n−L2)), n ∈ Z, (1.6)

x∆(t) = −a(t)h(x(σ(t))+(Q(t,x(t),x(t −g(t)))))∆

+ G
(
t,x(t),x(t −g(t))

)
, t ∈ T, (1.7)
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and

x∆(t) =−a(t)xσ(t)+ c(t)x∆̃(t −g(t))+
∫ t

t−r(t)
k(t,s)h(x(s)) ∆s, t ∈ T. (1.8)

Equations of the form (1.1)-(1.8) are not only of theoretical importance but

also of practical importance. For example, equation (1.1) has applications in prob-

lems dealing with the study of two or more simple oscillatory systems with some

interconnections between them (see Cooke and Krumme (1968)), and in modelling

physical problems such as vibration of masses attached to an elastic bar (see Hale

(1977)). Also, neutral equations such as Equations (1.2) and (1.3) arise in blood

cell models (see for instance Beretta, Solimano, and Takeuchi (1996), Wazewska-

Czyzewska and Lasota (1976), and Xu and Li (1998)) and food-limited population

models (see for instance Chen (2005), Chen and Shi (2005), Fan and Wang (2000)).

Definition 1.1.1. Let

x′(t) = f (t,x(t),x(t − τ(t)),x′(t − τ(t))), t ≥ t0 (1.9)

with an assumed initial function x(t) = ψ(t), t ∈ [mt0, t0], with ψ ∈C([mt0, t0],R),

[mt0, t0] = {u ≤ t0 : u = t − τ(t), t ≥ t0}.

The solution x(t) of (1.9) is said to be periodic if x(t +T ) = x(t) for T > 0, and for

all t ∈ [mt0,∞). T is called the period of x.

Definition 1.1.2. The solution ϕ(t) of (1.9) is said to be stable if for any t0 ≥ 0

and any ε > 0, there exists a δ = δ(ε, t0) > 0, such that |ψ − ϕ(t0)| ≤ δ implies

|x(t, t0,ψ)−ϕ(t)| ≤ ε for t ≥ t0.

Definition 1.1.3. The solution ϕ(t) of (1.9) is said to be asymptotically stable if it is

stable and in addition , for any t0 ≥ 0, there exists an r(t0)> 0 such that |ψ−ϕ(t0)| ≤

r(t0) implies limt→∞ |x(t, t0,ψ)−ϕ(t)|= 0.

Definition 1.1.4. The solution ϕ(t) of (1.9) is said to be positive if ϕ(t) > 0 for all

t ∈ [mt0 ,∞).

Definition 1.1.5. Let

x(n+1) = f (n,x(n),x(n− τ(n)),∆x(n− τ(n))), n ≥ n0 (1.10)
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with an assumed initial function x(n)=ψ(n),n∈ [mn0,n0]∩Z, with ψ∈D([mn0,n0]∩

Z,R),

[mn0,n0]∩Z= {u ≤ n0 : u = n− τ(n),n ≥ n0},

where D is the set of bounded sequences on the interval [mn0,n0]∩Z.

The solution x(n) of (1.10) is said to be periodic if x(n+N) = x(n) for some positive

integer N, and for all n ∈ [mn0,∞)∩Z. N is called the period of x.

Definition 1.1.6. The solution ϕ(n) of (1.10) is said to be stable if for any n0 ≥ 0

and any ε > 0, there exists a δ = δ(ε,n0) > 0, such that |ψ− ϕ(n0)| ≤ δ implies

|x(n,n0,ψ)−ϕ(n)| ≤ ε for n ≥ n0.

Definition 1.1.7. The solution ϕ(n) of (1.10) is said to be asymptotically stable

if it is stable and in addition , for any n0 ≥ 0, there exists an r(n0) > 0 such that

|ψ−ϕ(n0)| ≤ r(n0) implies limn→∞ |x(n,n0,ψ)−ϕ(n)|= 0.

Definition 1.1.8. The solution ϕ(n) of (1.10) is said to be positive if ϕ(n)> 0 for all

n ∈ [mn0,∞)∩Z.

We now examine what we mean by a statement that a solution of a differential

or difference equation is stable. Note that a differential or difference equation is

typically used to model the movement of a certain physical system or experiment. In

running a system or experiment, one needs to deal with some initial measurements,

such as putting one gallon of water initially for some experiment, which inevitably

involves some errors in measurements or approximations. If the behaviour of a

system or experiment is stable, then a small change in initial data will result in a

small change in the behaviour for future time. Thus, by a statement that a solution

ϕ of a differential equation is stable we mean that other solutions with initial data

close to the solution ϕ will remain close to ϕ for future time. For example, for a

stable system, if ϕ is the solution corresponding to one gallon of water initially, and

x is a solution with its initial value close to one gallon of water, say for example,

1.005 gallons of water, then ϕ and x should be close for the future time, or |x− ϕ|

should be small for future time.

Fixed point theory will be our approach to the study of qualitative properties
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in this thesis. Over the years vast outflow of research and publications has resulted

from the use of fixed point methods to the study of qualitative properties. This work

is mainly motivated by Burton and Furumochi (2001a), which has been appreciated

by most researchers in qualitative theory of functional differential and difference

equations. Generally, to solve a problem with fixed point theory is to find:

(a) a set S consisting of points which would be acceptable solutions;

(b) a mapping P : S → S with the property that a fixed point solves the problem;

(c) a fixed point theorem stating that this mapping on this set will have a fixed

point.

If the functions in a differential or difference equation of interest all satisfy a local

Lipschitz condition, then contraction mappings will usually be our first choice in

our qualitative properties investigations. However, if the functions are not Lipschitz

then we will turn to fixed point theorems of Krasnoselskii type.

1.2 Research Aims and Objectives

The following are the proposed objectives of this thesis:

• To establish sufficient criteria for the existence of positive periodic solutions

of the neutral functional second order differential equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t)

=
d
dt

c(t,x(t − τ(t)))+ f (t,h(x(t)),g(x(t − τ(t)))).

• To obtain sufficient conditions for the existence of periodic solutions of the

neutral functional differential equation

x′(t) =−a(t)h(x(t))+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
,

and of the system of differential equations

d
dt

x(t) = A(t)x(t − τ).
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• To prove that the zero solution of the neutral functional differential equation

x′(t) =−a(t)h(x(t))+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
,

is asymptotically stable.

• To prove the existence and positivity of periodic solutions of the neutral func-

tional differential equation

x′(t) = −a(t)x3(t)+ c(t)x′(g(t))g′(t)+q(t,x3(g(t))).

• To prove that the zero solution of the neutral delay difference equation

∆x(n) =−
N

∑
j=1

a j(n)x(n− τ j(n)),

is asymptotically stable.

• To obtain sufficient conditions for the existence of positive periodic solutions

for the system of neutral functional difference equations

x(n+1) = A(n)x(n)+C(n)∆x(n− τ(n))+g(n,x(n− τ(n))),

where A(n) = diag[a1(n),a2(n), ...,ak(n)], and C(n) = diag[a1(n),a2(n),

...,ak(n)].

• To establish sufficient conditions for the existence of periodic solutions of the

neutral nonlinear dynamic equation

x∆(t) = −a(t)h(x(σ(t))+(Q(t,x(t),x(t −g(t)))))∆

+ G
(
t,x(t),x(t −g(t))

)
, t ∈ T,

on time scale T and to also prove that the zero solution of the neutral dynamic

equation

x∆(t) =−a(t)xσ(t)+ c(t)x∆̃(t −g(t))+
∫ t

t−r(t)
k(t,s)h(x(s)) ∆s, t ∈ T,

is asymptotically stable on the time scale T.
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1.3 Outline of the Thesis

In the following Chapter, we review some relevant literature for our study and

also give a brief review of the relevant mathematical concepts as well as provide

an overview of the tools used in the discussion of the qualitative properties of solu-

tions considered in this thesis. Relevant literature for our investigation is reviewed

in the first section of this Chapter. In the second section of the Chapter, some basic

results on delay differential equations are given. In the third section of the same

Chapter, we state some fixed point theorems as well as provide some details on how

fixed point theorems are used to study qualitative properties. In the fourth section of

the same Chapter, we give an overview of some basic concepts in difference calcu-

lus and in the fifth section of the Chapter we give some basic concepts in measure

theory. Sections six and seven contain some basic results on time scale calculus and

some definitions related to qualitative studies of differential and difference equations

respectively.

Sufficient conditions for the existence of periodic solutions for totally nonlin-

ear neutral functional differential equations of the first order are established in the

third Chapter.

In Chapter four, criteria for the zero solution of totally nonlinear neutral dif-

ferential equations of the first order to be asymptotically stable are obtained.

Conditions for the existence and positivity of periodic solutions of nonlinear

neutral functional differential equations are established in the fifth Chapter.

In Chapter six, we establish sufficient criteria for the existence of positive pe-

riodic solutions for neutral functional second order differential equations.

The existence of periodic solutions for a system of differential equations with

constant delay is proved in Chapter seven.

In Chapter eight of this thesis, we obtain sufficient conditions for the existence

of positive solutions for a system of periodic neutral delay difference equations. We

also consider neutral functional difference equations with asymptotically constant

or Periodic Solutions.
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We establish sufficient conditions for the zero solution for a certain class of

neutral delay difference equations with variable delays to be asymptotically stable

in Chapter nine. Moreover, criteria for solutions of totally nonlinear neutral differ-

ence equations to be periodic are also established.

In Chapter ten, we prove the existence of periodic solutions of totally nonlin-

ear neutral dynamic equations on time scale. Furthermore, sufficient criteria for the

asymptotic stability of the zero solution of neutral Volterra dynamic equations are

established.

The last Chapter of this thesis contains the conclusion and suggestions for

further studies.
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CHAPTER TWO

LITERATURE REVIEW AND MATHEMATICAL

BACKGROUND

2.1 Literature Review

The study of qualitative behaviour of solutions of differential equations started

in the latter part of the nineteenth century and became a subject of intense research

since 1940 whiles the qualitative theory of delay difference equations has attracted

many researchers since 1988. The first direct reference as far as we know toward

this approach is the work of Poincare (1899). Ever since this work appeared, there

has been an intensified interest among researchers to explore its richness. There

is a substantial amount of literature dealing with numerous qualitative behaviour

of solutions of differential and difference equations. These have been summarized

in the monographs by Coddington, and Levinson (1955), Hahn (1963), Halanay

(1966), Krasovskii (1963), Rouche and Mawhin (1980), Burton (2006) and Agar-

wal, Bohner, Grace, and O’Regan (2005).

Lyapunov (1892) proposed a fundamental method for studying the problem of

stability, boundedness and the existence of periodic solution of functional differen-

tial and difference equations by constructing functions known as Lyapunov functions

in the modern parlance. This function is often represented as V (t,x) defined in some

region or the whole state phase that contains the unperturbed solution x = 0 for all

t > 0 and which together with its derivative V ′(t,x) satisfy some sign definiteness.

This method is by far the most general method for dealing with stability, bounded-

ness, and the existence of periodic solution of functional differential and difference
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equations. Yet, numerous difficulties with the theory and application to specific

problems persist and it does seem that new methods are needed to address those

difficulties. There is, of course, the problem of constructing appropriate Lyapunov

functional and also problems with the types of conditions which are typically im-

posed on the functions in the differential or difference equations. These conditions

are virtually always precise pointwise requirements. Real-world problems with all

their uncertainties call for conditions which are averages.

Burton and Furumochi (2001a) discovered that a number of the difficulties

with the use of Lyapunov’s direct method vanish if fixed point theory is used in-

stead. They pointed out that, not only do the fixed point conditions emerge as av-

erages, but in one step the existence, uniqueness, and boundedness of solutions of

problems which have challenged investigators for decades are proved. They con-

tinued this work in Burton and Furumochi (2001b), where delay equations which

may be unstable when the delay is zero were considered. In particular, asymptotic

stability results were proved by Schauder’s and Banach’s fixed point theorems and

Schaefer’s fixed point theorem was also used to prove that there is a periodic solu-

tion when a periodic forcing function is added to that equation.

Neutral equations have been studied for a long time, and with good reason. On

the intuitive level, every parent, every gardener, and every stock broker has observed

growth spurts; present growth rate is closely tied to recent growth rate. And this is

the very essence of neutral equations. Gopalsamy (1992), Gopalsamy and Zhang

(1988), Kuang (1993a) and Kuang (1993b) devote much space to population prob-

lems heuristically modeled as neutral equations. On the other hand, starting from

first principles of physics, Driver (1984), studies a two-body problem in terms of

neutral equations.

The study of periodicity of solutions of second order differential equations

have gained the attention of many researchers in recent times. For instance, Zeng

(1997) studied the existence of almost periodic solutions of the equation

x′′(t)− x(t)+ x3(t) = f (t), (2.1)
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where f is an almost periodic function. Also, Li and Shen (1997), obtained sufficient

conditions for the existence of periodic solutions of the equation

x′′(t)+Cx′(t)+g(t,x(t)) = e(t). (2.2)

Moreover, Wang (1999) investigated the same problem for the following equation

x′′(t)− x(t)± xm(t − r) = f (t), (2.3)

by Schauder’s fixed point theorem.

The first major work on existence of positive periodic solutions of delay dif-

ferential equations of the second order was carried out by Liu and Ge (2003). In that

work, Liu and Ge obtained sufficient conditions for the existence of positive periodic

solutions of the equation

x′′(t)+ p(t)x′(t)+q(t)x(t) = λ f (t,x(t − τ(t)))+ r(t), (2.4)

by employing a fixed point theorem in cones. The existence of positive periodic

solutions for second order neutral delay differential equations of the form of (1.1)

has not been investigated till now.

Equations of form similar to Equation (1.2) have gained the attention of many

researchers recently. For instance, Burton and Furumochi (2001a) proved that the

zero solution of

x′(t) =−a(t)x(t)+b(t)x(t −g(t)), (2.5)

is asymptotically stable. Raffoul (2003) proved that the neutral differential equation

x′(t) =−a(t)x(t)+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
. (2.6)

has periodic solutions. Raffoul (2004b) also obtained sufficient conditions for the

zero solution of (2.6) to be asymptotically stable. Moreover, Djoudi and Khemis

(2006) proved that the zero solution of the neutral differential equation

x′(t) =−a(t)x(t)+ c(t)x(t −g(t))x′(t −g(t))+b(t)x2(t −g(t)), (2.7)
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is asymptotically stable. Each of the equations (2.5)- (2.7) contains the term −a(t)x(t)

which is linear in x(t). When this term is replaced with the highly nonlinear term

−a(t)h(x(t)) we obtain (1.2). There are no corresponding results on stability and

periodicity for (1.2) since the existing results for the equations (2.5)- (2.7) do not

hold for (1.2).

Burton (2002) proved that the zero solution of the equation

x′(t) =−a(t)x3(t)+b(t)x3(t − τ(t)), (2.8)

which is a special form of (1.3) is asymptotically stable. Deham and Djoudi (2008)

also proved that the solutions of the equation

x′(t) =−a(t)x3(t)+G(t,x3(t − τ(t))), (2.9)

are periodic. Deham and Djoudi (2010) also proved that the solutions of the neutral

equation

x′(t) =−a(t)x3(t)+ c(t)x′(t − τ(t))+G(t,x3(t − τ(t))), (2.10)

are periodic. Results on the positive periodic solutions of equations of the form of

(1.3) are not available.

Without question, the study of periodic systems in general and Floquet theory

in particular have been central to the differential equations theorist for some time.

Chicone (1999), Freedman (1971), Johnson (1980), Pandiyan and Sinha (1994), and

Papanicolaou and Kravvavitis (1998) have extensively explored these topics for or-

dinary differential equations. Floquet theory is a branch of the theory of ordinary

differential equations relating to the class of solutions to linear differential equations

of the form ẋ(t) = A(t)x(t), with A(t) a piecewise continuous periodic function with

period T . Not surprisingly, Floquet theory has wide ranging effects, including exten-

sions from time varying linear systems to time varying nonlinear systems of differen-

tial equations of the form x′(t) = f (t,x(t)), where f (t,x) is smooth and ω− periodic

in t. The paper by Shi (1993) ensures the global existence of solutions and proves

that this system is topologically equivalent to an autonomous system y′(t) = g(y(t))
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via an ω−periodic transformation of variables. The theory has also been extended

by Weikard (2000) to nonautonomous linear systems of the form z′ = A(x)z, where

A : C→Cn×n is an ω− periodic function in the complex variable x, whose solutions

are meromorphic.

Recently, Raffoul and Yankson (2010) obtained sufficient conditions under

which the scalar version of (1.4) has positive periodic solutions.

Raffoul (2006) also considered the equation

∆x(n) = a(n)x(n− τ). (2.11)

In particular, sufficient conditions for the zero solution to be asymptotically stable

were obtained. Periodicity of solutions was also proved. The delay τ in (2.11) is

constant thus Equation (1.5) is a generalized form of (2.11) with variable delays.

Differential and difference equations which have the property that every con-

stant function is a solution and and every solution approaches a constant was first

introduced by Cooke and Yorke (1973). In that paper they presented three models

that described the growth of a population. They used Lyapunov functionals to ar-

rive at their results. Recently, Raffoul (2011) showed that the nonlinear difference

equations of the form ∆x(t) = g(x(t))− g(x(t −L)) converges to a pre-determined

constant.

In the past 10 years, there has been interest in obtaining results for equations

on time scales in which the general ”delta” derivative x∆ appears. For instance, Adi-

var and Raffoul (2009) obtained by means of fixed point theory sufficient conditions

for the existence of periodic solutions of the totally nonlinear dynamic equation

x∆(t) =−a(t)h(x(t))+G(t,x(δ(t))), t ∈ T. (2.12)

Equation (1.7) is a generalized neutral version of (2.12). Several monographs and

survey papers contain detailed treatment of these types of equations, however, they

do not discuss, in detail, the equally (or more) important case of equations that fea-

ture the delta integral, rather than the delta derivative. This is possibly due to the

basic theory of integral equations on time scales lagging behind that of delta deriva-
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tive equations on time scales. It is difficult to find any recent papers on the subject,

except Wong and Soh (2005), Wong and Boey (2004) and Kulik and Tisdell (2008)

where the theory of Fredholm-type and Volterra-type equations on time scales are

discussed. None of the above mentioned papers discusses neutral Volterra equations

on Time scales of the form of (1.8).

2.2 Delay Differential Equations

2.2.1 Introduction

When modeling a system using a differential equation where the fundamental

assumption is that the time rate at time t, given as x′(t), depends only on the current

status at time t, given as f (t,x(t)) results in the differential equation

x′(t) = f (t,x(t)), x(t0) = x0, t ≥ t0, x(t) ∈ Rn. (2.13)

Moreover, the initial condition is given in the form x(t0) = x0. In applications, this

assumption and the initial condition should be improved so we can model the situa-

tions more accurately and therefore derive better results.

One improvement of (2.13) is to assume that the time rate depends not only

on the current status, but also on the status in the past; that is, the past history will

contribute to the future development, or, there is a time-delay effect. For example,

for a university, its current population will affect its population growth, however, its

population in the past may also affect its population growth. In fact, in his study of

predator-prey models, Volterra (1928) had investigated the equation

x′(t) = x(t)[a−by(t)−
∫ 0

−r
F1(s)y(t + s)ds],

y′(t) = y(t)[−a+ cx(t)+
∫ 0

−r
F2(s)x(t + s)ds], (2.14)

where x and y are the number of preys and predators, respectively, and all constants

and functions are nonnegative and r is a positive constant. In
∫ 0
−r F1(s)y(t + s)ds,

the variable s varies in the interval [−r,0], thus y(t + s) is a function defined on the

interval [t − r, t]. This says that for equation (2.14), the time rate at t, [x′(t),y′(t)]T ,
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depends not only on the status of x(t) and y(t) at t, but also on the past status of

x(t + s) and y(t + s) defined on the interval [t − r, t]. That is , the history on the inter-

val [t − r, t] will affect the growth rates of the preys and predators at time t.

Other physical procedures that possess such time-delay properties include blood

moving through arteries, relaxation of materials with memory from bending and sig-

nals traveling through mediums. Differential equations incorporating delay effect,

or using information from the past, are called delay differential equations. They in-

clude finite delay differential equations and infinite delay differential equations.

Consider the delay differential equation below with x ∈ Rn,

x′(t) = f (t,x(t),x(t − τ)), τ > 0, (2.15)

with

x(t) = ϕ0(t), t0 − τ ≤ t ≤ t0. (2.16)

Here ϕ0 :R→Rn is a known function, usually taken to be continuous. ϕ0(t) is called

the initial function for (2.15), t0 the initial instant and [t0 − τ, t0] the initial set.

Definition 2.2.1.1 A function x : [t0 − τ, t0 +T ] → Rn, where T > 0 is a constant,

is said to be a solution of (2.15) and (2.16) on [t0 − τ, t0 +T ] if x(t0) = ϕ0, x(t) is

differentiable on [t0, t0 +T ], and satisfies (2.15) for t ∈ [t0, t0 +T ].

Definition 2.2.1.2 A function f (t,x) on a domain D ⊂ R×Rn is said to satisfy a

local Lipschitz condition with respect to x on D if for any (t1,x1) ∈ D, there exists a

domain D1 such that (t1,x1) ∈ D1 ⊂ D and that f (t,x) satisfies a Lipschitz condition

with respect to x on D1. That is, there exists a positive constant k1 such that

| f (t,x)− f (t,y) |≤ k1 | x− y | for (t,x), (t,y) ∈ D1.

Theorem 2.2.1.3[Driver (1977)] If f (t,x,y) is continuous with respect to t and y and

locally Lipschitz with respect to x in some neighbourhood of (t0,ϕ0(t0)) and ϕ0 is

continuous with respect to t in some neighbourhood of t0, then there exists a unique

solution to (2.15)− (2.16) in a neighbourhood of (t0,ϕ0(t0)).
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2.2.2 Systems with Bounded Delays - General Framework

In section 2.2.1 we considered the existence and uniqueness of solutions for

some delay differential equations of specific forms. To consider arbitrary delay dif-

ferential equations, we need a more general mathematical framework in which to

work. This is the subject of the current section.

For τ > 0, let C = C([−τ,0],Rn) be the space of continuous functions map-

ping [−τ,0] into Rn. Let ϕ ∈ C . We will take the norm on this space to be ∥ ϕ ∥τ=

sup−τ≤θ≤0 ∥ ϕ(θ) ∥, where ∥ . ∥ is the usual Euclidean norm on Rn. With this norm,

C is a Banach space. Further, for D ⊆ Rn let CD = C([−τ,0],D) be the set of con-

tinuous functions mapping [−τ,0] into D.

Definition 2.2.2.1 If x is a function defined at least on [t − τ, t]→ Rn then we define

a new function xt : [−τ,0]→ Rn by

xt(θ) = x(t +θ), −τ ≤ θ ≤ 0. (2.17)

Clearly, if x is continuous on [t −τ, t], then xt is continuous on [−τ,0]. In the follow-

ing, unless otherwise stated, we will take J ⊆ R and D ⊆ Rn to be open sets.

Definition 2.2.2.2 If F : J×CD → Rn is a given functional, we call the relation

x′(t) = F(t,xt) (2.18)

a delay differential equation on J×CD.

It must be noted that equation (2.18) includes the following.

(a) Ordinary differential equations (if τ = 0): x′(t) = F(t,x(t)).

(b) Differential equations with constant delays:

x′(t) = f (t,x(t − τ1), ...,x(t − τm))

= f (t,xt(−τ1), ...,xt(−τm))

= F(t,xt).

Here τ j ≥ 0 is constant and τ = max1≤ j≤m τ j.
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(c) Differential equations with bounded, variable delays:

x′(t) = f (t,x(t − τ1(t)), ...,x(t − τm(t)))

= f (t,x(−τ1(t)), ...,x(−τm(t)))

= F(t,xt).

Here 0 ≤ τ j ≤ τ, j = 1, ...,m, t ∈ J.

(d) Differential equations with a distribution of delays:

x′(t) =
∫ 0

−τ
f (t,θ,x(t +θ))dθ

=
∫ 0

−τ
f (t,θ,xt(θ))dθ

= F(t,xt).

We now give a more precise definition of a solution of a delay differential equation.

Definition 2.2.2.3 Let F : J ×CD → Rn. A function x(t) is said to be a solution of

(2.18) on [t0 − τ,β) if there are t0 ∈ R and β > t0 such that

(i) x ∈C([t0 − τ,β),D)

(ii) [t0,β)⊂ J

(iii) x(t) satisfies (2.18) for t ∈ [t0,β).

For a given t0 ∈ R and ϕ0 ∈ CD, the initial value problem associated with the delay

differential equation (2.18) is
x′(t) = F(t,xt), t ≥ t0

xt0 = ϕ0

(2.19)

or 
x′(t) = F(t,xt), t ≥ t0

xt0 = ϕ0(t − t0), t0 − τ ≤ t ≤ t0.

(2.20)

The following lemmas will be useful when discussing the properties of solu-

tions.
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Lemma 2.2.2.4 If x is continuous on [t0 − τ, t0 + γ] then xt is a continuous function

of t for t ∈ [t0, t0 + γ].

Proof. Since x is continuous on [t0 − τ, t0 + γ] it is uniformly continuous. Thus

for any ε > 0 there is a δ > 0 such that ∥x(t)− x(s)∥ < ε if s, t ∈ [t0 − τ, t0 + γ]

and |t − s| < δ. Consequently, for s, t ∈ [t0 − τ, t0 + γ] with |t − s| < δ, we have

∥x(t +θ)− x(s+θ)∥< ε for all θ ∈ [−τ,0].

Lemma 2.2.2.5[Driver (1977)] Let F : J ×CD → Rn be continuous and let t0 ∈ J

and ϕ0 ∈ CD be given. Then x is a solution of the initial value problem (2.20) on

[t0 − τ,β) if and only if [t0,β)⊂ J,x ∈C([t0 − τ,β),D) and x satisfies
xt0 = ϕ0

x(t) = ϕ0(0)+
∫ t

t0 F(s,xs)ds, t0 ≤ t ≤ β.
(2.21)

Definition 2.2.2.6 Let F : J×CD →Rn and let U ⊂ J×CD. We say that F is Lipschitz

on U if there exists K ≥ 0 such that

∥F(t,φ)−F(t,ψ)∥ ≤ K∥φ−ψ∥τ,

whenever (t,φ) and (t,ψ) ∈U.

Lemma 2.2.2.7(Generalized Gronwall’s inequality) Let c and k be given nonnega-

tive continuous functions on an interval J = [t0,β) and let c be differentiable on J.

Then if v : J → [0,∞) is continuous and

v(t)≤ c(t)+
∫ t

t0
k(s)v(s)ds

then

v(t)≤ c(t0)e
∫ t

t0
k(s)ds

+
∫ t

t0
c′(s)e

∫ t
s k(u)duds.

Proof. Let R(t) =
∫ t

t0 k(s)v(s)ds. Then

R′(t) = k(t)v(t)≤ k(t)c(t)+ k(t)
∫ t

t0
k(s)v(s)ds.
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Thus R′(t)−k(t)R(t)≤ k(t)c(t). Multiplying through by the integrating factor e−
∫ t

t0
k(s)ds

yields

[
e−

∫ t
t0

k(s)dsR(t)
]′
≤ k(t)c(t)e−

∫ t
t0

k(s)ds
.

Integrating from t0 to t gives

e−
∫ t

t0
k(s)dsR(t)−R(t0)≤

∫ t

t0
k(s)c(s)e−

∫ s
t0

k(u)duds.

Noting that R(t0) = 0 and integrating by parts on the right hand side gives

e−
∫ t

t0
k(s)dsR(t)≤ c(t0)− c(t)e−

∫ t
t0

k(u)du
+

∫ t

t0
c′(s)e−

∫ s
t0

k(u)duds.

Thus

R(t)≤−c(t)+ c(t0)e
∫ t

t0
k(s)ds

+
∫ t

t0
c′(s)e

∫ t
s k(u)duds.

Using v(t)≤ c(t)+R(t), we obtain the result.

Lemma 2.2.2.8[Reid’s Lemma, Driver (1977)] Let C be a given constant and k a

given nonnegative continuous function on an interval J. Let t0 ∈ J. Then if v : J →

[0,∞) is continuous and

v(t)≤C+
∣∣∣∫ t

t0
k(s)v(s)ds

∣∣∣ (2.22)

for all t ∈ J, it follows that

v(t)≤Ce|
∫ t

t0
k(s)ds|

for all t ∈ J.

Proof. Suppose t ≥ t0 and t ∈ J. Then (2.22) becomes

v(t)≤C+
∫ t

t0
k(s)v(s)ds,

or

k(t)v(t)− k(t)[C+
∫ t

t0
k(s)v(s)ds]≤ 0.
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Let Q(t) =C+
∫ t

t0 k(s)v(s)ds, then Q′(t)−k(t)Q(t)≤ 0. Multiplying through by the

integrating factor e−
∫ t

t0
k(s)ds we obtain

d
dt

[
Q(t)e−

∫ t
t0

k(s)ds
]
≤ 0.

Integrating from t0 to t and noting that Q(t0) =C, yields

Q(t)e−
∫ t

t0
k(s)ds −C ≤ 0

or

Q(t)≤Ce
∫ t

t0
k(s)ds

.

Substituting this into (2.22) yields

v(t)≤ Q(t)≤Ce
∫ t

t0
k(s)ds

.

The proof for t < t0 is similar.

Theorem 2.2.2.9(Uniqueness) Let F : [t0,α)×CD → Rn be continuous and locally

Lipschitz on its domain. Then, given any ϕ0 ∈ CD and β ∈ (t0,α], there is at most

one solution of the initial value problem (2.20) on [t0 − τ,β).

Proof. Suppose (for contradiction ) that for some β ∈ (t0,α] there are two solutions

x(t) and y(t) mapping [t0 − τ,β) into D with x ̸= y. Let t1 = inf{t ∈ (t0,β) : x(t) ̸=

y(t)}. Then t0 < t1 < β and x(t) = y(t) for t0−τ ≤ t ≤ t1. Since (t1,x1)∈ [t0,β)×CD

and F is locally Lipschitz, there exist numbers a > 0 and b > 0 such that the set

U = [t1, t1 + a]×{ψ ∈ C : ∥ψ − xt1∥r ≤ b} is contained in [t0,α)× CD and F is

Lipschitz on U (with Lipschitz constant K). By Lemma 2.2.2.4 there exists δ ∈ (0,a]

such that (t,xt) ∈U and (t,yt) ∈U for t1 ≤ t < t1 +δ. Thus for t1 ≤ t < t1 +δ,

∥x− y∥ =
∥∥∥∫ t

t0
[F(s,xs)−F(s,ys)]ds

∥∥∥
≤

∫ t

t1
K∥xs − ys∥τds.

Now since the right hand side is an increasing function of t and since ∥x(t)−y(t)∥=

0 for t1 − τ ≤ t ≤ t1,

∥xt − yt∥τ ≤
∫ t

t1
K∥xs − ys∥τds
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for t1 ≤ t < t1 +δ. From this and the Generalized Gronwall’s Lemma it follows that

x(t) = y(t) on [t1, t1 +δ) contradicting the definition of t1.

Theorem 2.2.2.10(Local Existence) Let F : [t0,α)× CD → Rn be continuous and

locally Liptschitz. Then, for each ϕ0 ∈ CD, the initial value problem (2.20) has a

unique solution on [t0 − τ, t0 +∆) for some ∆ > 0.

Proof. Choose any a > 0 and b > 0 sufficiently small so that

U = [t0, t0 +a]×{ψ ∈ C : ∥ψ−ϕ0∥τ ≤ b}

is a subset of [t0,α)×CD and F is Lipschitz on U , with Lipschitz constant K. Define

a continuous function χ̃ on [t0 − τ, t0 +a]→ Rn by

χ̃ =


ϕ0(t − t0), t0 − τ ≤ t ≤ t0

ϕ0(0), t0 < t ≤ t0 +a.

Then F(t, χ̃t) depends continuously on t, and hence ∥F(t, χ̃t)∥ ≤ B1 on [t0, t0+a] for

some constant B1. Define B = Kb+B1. Choose a1 ∈ (0,a] such that ∥χ̃t −ϕ0∥τ =

{χ̃t − χ̃t0∥τ ≤ b for t0 ≤ t ≤ t0 +a1. Choose ∆ > 0 such that ∆ ≤ min{a1,b/B}. Let

S be the set of all continuous functions χ : [t0 − τ, t0 +∆] → Rn such that χ(t) =

ϕ0(t − t0) for t0 − τ ≤ t ≤ t0 and ∥χ(t)−ϕ0(0)∥ ≤ b for t0 ≤ t ≤ t0 +∆. Note that if

χ ∈ S and t ∈ [t0, t0 +∆], then ∥χt − χ̃t∥τ ≤ b so that

∥F(t,χt)∥ ≤ ∥F(t,χt)−F(t, χ̃t)∥+∥F(t, χ̃t)∥

≤ K∥χt − χ̃t∥τ +B1

≤ B.

For each χ ∈ S define a function T χ on [t0 − τ, t0 +∆] by

(T χ)(t) =


ϕ0(t − t0), t0 − τ ≤ t ≤ t0

ϕ0(0)+
∫ t

t0 F(s,χs)ds, t0 ≤ t ≤ t0 +∆.

Then T χ is continuous and, since ∥F(s,χs)∥ < B, |(T χ)(t)− ϕ0(0)| ≤ B∆ ≤ b for

t0 ≤ t ≤ t0 + ∆. Thus T χ ∈ S, that is, T : S → S. Choose x(0) ∈ S and construct
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the successive approximations x(1) = T x(0),x(2) = T x(1), .... Note that for each l,

x(l)(t) = ϕ0(t − t0) on [t0 − τ, t0]. We will now prove that the sequence xl(t) con-

verges. For each l = 0,1,2, ... when t0 ≤ t ≤ t0 +∆

∥x(l+2)(t)− x(l+1)(t)∥ =
∫ t

t0
[F(s,x(l+1)s)−F(s,x(l)s)]ds∥

≤
∫ t

t0
K∥x(l+1)s − x(l)s∥τds.

Note that ∥x(1)(t)− x(0)(t)∥ ≤ 2b on [t0 − τ, t0 +∆]. Thus ∥x(1)t − x(0)t∥τ ≤ 2b on

[t0, t0 +∆] and

∥x(2)(t)− x(1)(t)∥ ≤
∫ t

t0
K∥x(1)s − x(0)s∥ds

≤ 2bK(t − t0)

on [t0, t0 +∆], which further implies that ∥x(2)t −x(1)t∥τ ≤ 2bK(t − t0) on [t0, t0 +∆].

This leads to

∥x(3)(t)− x(2)(t)∥ ≤
∫ t

t0
K∥x(2)s − x(1)s∥ds

≤ 2b
K2(t − t0)2

2
.

Using induction it can be shown that

∥x(l+1)(t)− x(t)∥ ≤ 2b
Kl(t − t0)l

l!

on [t0, t0 +∆]. This together with x(l+1)(t) = x(l)(t) on [t0 − τ, t0] gives

∥x(l+1)(t)− x(t)∥ ≤ 2b
Kl∆l

l!

on [t0 − τ, t0 +∆]. Now the series

x(0)(t)+
∞

∑
p=0

[x(p+1)(t)− x(p)(t)]

converges uniformly on [t0 − τ, t0 +∆] by the Weierstrass M−Test, but

x(l)(t) = x(0)(t)+
l−1

∑
p=0

[x(p+1)(t)− x(p)(t)],
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and so the sequence {x(l)(t)} converges uniformly on [t0 − τ, t0 +∆]. Let x(t) =

liml→∞ x(l)(t) for t0 − τ ≤ t ≤ t0∆. Clearly, x(t) is continuous on [t0 − τ, t0 +∆] and

xt0 = ϕ0. Further

∥x(t)− x(l)(t)∥ ≤ 2b
∞

∑
p=l

(K∆)p

p!

for t0 − τ ≤ t ≤ t0∆ and ∥xt − x(l)t∥τ ≤ 2b∑∞
p=l

(K∆)p

p! for t0 ≤ t ≤ t0∆. Thus, for

t0 ≤ t ≤ t0∆,

∥x(t)−ϕ0(0)∥ ≤ ∥x(t)− x(l)(t)∥+∥x(l)(t)−ϕ0(0)∥

≤ 2b
∞

∑
p=l

(K∆)p

p!
+b

≤ b,

and xt ∈ CD. Finally for t ∈ [t0, t0 +∆]

∥x(t)−ϕ0(0)−
∫ t

t0
F(s,xs)ds∥ ≤ ∥x(t)− x(l)(t)∥+

∫ t

t0
∥F(s,x(l−1)s)−F(s,xs)∥ds

≤ 2b
∞

∑
p=l

(K∆)p

p!
+K∆2b

∞

∑
p=l−1

(K∆)p

p!
.

Taking the limit as l → ∞ of this inequality then gives

∥x(t)−ϕ0(0)−
∫ t

t0
F(s,xs)ds∥= 0,

that is, x(t) satisfies (2.21). Uniqueness follows from Theorem 2.2.2.1.

Theorem 2.2.2.11(Continuous Dependence on Initial Conditions) Let F : [t0,α]×

CD → Rn be continuous and globally Lipschitz constant K. Let ϕ0 ∈ CD and ϕ̃0 ∈

CD be given and let x and x̃ be unique solutions of (2.18) with xt0 = ϕ0 and x̃t0 ,

respectively. If x and x̃ are both valid on [t0 − τ,β), then

∥x(t)− ˜x(t)∥ ≤ ∥ϕ0 − ϕ̃0∥τeK(t−t0)

for t0 ≤ t < β.

Proof. Since x and x̃ are solutions of the given initial value problems, x satisfies

(2.21) and x̃ satisfies
x̃t0 = ϕ̃0

x̃(t) = ϕ̃0(0)+
∫ t

t0 F(s, x̃s)ds, t0 ≤ t < β.
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Thus for t0 ≤ t < β

∥x(t)− x̃(t)∥ = ∥ϕ0(0)− ϕ̃0(0)+
∫ t

t0
[F(s,xs)−F(s, x̃s)]ds∥

≤ ∥ϕ0(0)− ϕ̃0(0)∥+
∫ t

t0
∥[F(s,xs)−F(s, x̃s)]∥ds

≤ ∥ϕ0 − ϕ̃0∥τ +
∫ t

t0
K∥xs − x̃s)∥τds, for t0 ≤ t ≤ β.

Since ∥x(t)− x̃(t)∥ ≤ ∥ϕ0 − ϕ̃0∥τ on [t0 − τ, t0], it follows that

∥xt − x̃t∥ ≤ ∥ϕ0 − ϕ̃0∥τ +
∫ t

t0
K∥xs − x̃s)∥τds for t0 ≤ t ≤ β.

Applying the generalized Gronwall’s Lemma with C = ∥ϕ0 − ϕ̃0∥τ and k(s) = K

yields

∥x(t)− x̃(t)∥ ≤ ∥xt − x̃t∥τ

≤ ∥ϕ0 − ϕ̃0∥τeK(t−t0), for t0 ≤ t ≤ β.

Theorem 2.2.2.12(Continuous Dependence on F) Let F, F̃ : [t0,α)×CD → Rn be

continuous, and let F be globally Lipschitz with Lipschitz constant K. Given ϕ0, ϕ̃0 ∈

CD, let x(t) and x̃(t) be the unique solutions of (2.20) and
x̃′(t) = F̃(t, x̃t), t ≥ t0

x̃(t) = ϕ̃0(t − t0), t0 − τ ≤ t ≤ t0,

(2.23)

respectively. If x and x̃ are both valid on [t0 − τ,β) and ∥F(t,ψ)− F̃(t,ψ)∥ ≤ µ for

all t ∈ [t0,α), ψ ∈ CD then

∥x(t)− x̃(t)∥ ≤ ∥ϕ0 − ϕ̃0∥τeK(t−t0)+
µ
K
[eK(t−t0)−1], for t0 ≤ t < β.

Proof. x(t) and x̃(t) must satisfy the integral equations (2.21) and
x̃t0 = ϕ̃0

x̃(t) = ϕ̃0(0)+
∫ t

t0 F̃(s, x̃s)ds, t0 ≤ t < β.

Thus on [t0 − τ, t0]

∥x(t)− x̃(t)∥ = ∥ϕ0(t − t0)− ϕ̃0(t − t0)∥

≤ ∥ϕ0 − ϕ̃0∥τ
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on [t0,β)

∥x(t)− x̃(t)∥ ≤ ∥ϕ0(0)− ϕ̃0(0)∥+
∫ t

t0
∥F(s,xs)− F̃(s, x̃s)∥ds

≤ ∥ϕ0 − ϕ̃0∥τ +
∫ t

t0
∥F(s,xs)−F(s, x̃s)∥ds

+
∫ t

t0
∥F(s, x̃s)− F̃(s, x̃s)∥ds

≤ ∥ϕ0 − ϕ̃0∥τ +
∫ t

t0
K∥xs − x̃s∥τds+

∫ t

t0
µds.

Since the right hand side of this last inequality is an increasing function of t, it

follows that

∥x− x̃∥τ ≤ ∥ϕ0 − ϕ̃0∥τ +µ(t − t0)+
∫ t

t0
K∥xs − x̃s∥ds, for t0 ≤ t < β.

Applying the generalized Gronwall’s Lemma with c(t) = ∥ϕ0 − ϕ̃0∥τ +µ(t − t0) and

k(t) = K yields the result.

For y ∈Cn−1([−τ,0],R) we may define the function y′t on [−τ,0] as follows

y′t(θ) = y′(t +θ)

= lim
h→0+

y(t +θ+h)− y(t +θ)
h

= lim
h→0+

yt(θ+h)− yt(θ)
h

− τ ≤ θ ≤ 0.

We may define the functions y′′t ,y
′′′
t , ...,y(n−1)

t on [−τ,0] in a similar manner. Then

for J ⊂ R and G : J × [C([−τ,0],R]n we can consider the scalar nth order delay

differential equation

y(n)(t) = G(t,yt ,y′t ,y
′′
t , ...,y

(n−1)
t ) (2.24)

with initial conditions 

yt0 = ϕ0

y′t0 = ϕ1

...

y(n−1)
t0 = ϕn−1

(2.25)
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where t0 ∈ J and ϕ j ∈C([−τ,0],R). Solutions of (2.24) will be (n−1) times differ-

entiable functions. The initial value problem (2.24)-(2.25) can be reduced to a delay

differential equation on J×C in the usual way, that is, by defining x ∈ Rn

x = [y,y′,y′′, ...,y(n−1)]T .

The theorems in the previous section may then be applied to this initial value prob-

lem.

2.3 Fixed Point Theorems

This section contains an elementary set of definitions and theorems relevant to

our study. Every qualitative property we discuss is formulated in a complete metric

space. Let it be noted that in this thesis there is usually a Banach space (B, ||.||)

in the background. A subset S of B is selected and (S, ||.||) is the complete metric

space in which we work, where the metric on S is defined by the norm inherited from

the Banach space. Thus the notation almost always suggests a norm ||.|| instead of

a metric ρ. Even if the zero function, say θ, is not in S, then for ϕ ∈ S, ||ϕ|| is

interpreted as ρ(ϕ,θ) = ||ϕ−θ||.

Definition 2.3.1 A pair (S,ρ) is a metric space if S is a set and ρ : S× S → [0,∞)

such that when y,z, and u are in S then

(a) ρ(y,z)≥ 0, ρ(y,y) = 0 and ρ(y,z) = 0 implies y = z,

(b) ρ(y,z) = ρ(z,y), and

(c) ρ(y,z)≤ ρ(y,u)+ρ(u,z).

The metric space is complete if every Cauchy sequence in (S,ρ) has a limit in that

space. A sequence {xn} ⊂ S is a Cauchy sequence if for each ε > 0 there exists N

such that n,m > N imply ρ(xn,xm)< ε.

If the functions in a differential or difference equation of interest all satisfy a

local Lipschitz condition, then contraction mappings will usually be our first choice

in our investigations. If the functions are not Lipschitz then we will turn to fixed

30



point theorems of Krasnoselskii’s type. These require compactness instead of com-

pleteness and are formulated in complete normed spaces.

Definition 2.3.2 A set L in a metric space (S,ρ) is compact if each sequence {xn}⊂ L

has a subsequence with limit in L.

Definition 2.3.3 Let U be an interval on R and let { fn} be a sequence of functions

with fn : U → Rd . Denote by |.| any norm on Rd .

(a) { fn} is uniformly bounded on U if there exists M > 0 such that | fn(t)| ≤ M

for all n and all t ∈U .

(b) { fn} is equicontinuous if for any ε > 0 there exists δ > 0 such that t1, t2 ∈U,

and |t1 − t2|< δ imply | fn(t1)− fn(t2)|< ε for all n.

Definition 2.3.4 A subset A of X is said to be closed if for any convergent sequence

{xn}∞
n=1 ⊂ A, the limit point is also in A.

Definition 2.3.5 A function f : X → Y from a metric space to a metric space is said

to be Lipschitz continuous if there exists L ∈ R such that d( f (u), f (v)) ≤ Ld(u,v)

for every u,v ∈ X . We call L a Lipschitz constant, and write Lip( f ) for the smallest

Lipschitz constant that works.

Definition 2.3.6 A contraction is a Lipschitz continuous function from a metric

space to itself that has Lipschitz constant less than one.

Definition 2.3.7 A fixed point of a function T : X → X is a point x ∈ X such that

T x = x.

Here is the standard result on how one verifies equicontinuity.

Theorem 2.3.1[Burton (2006)] Let S ⊂C([a,b]), −∞ < a ≤ b < ∞. If each f ∈ S is

differentiable in (a,b) and there is K such that | f ′(x)| ≤ K holds for all f ∈ S, and

all x ∈ (a,b), then S is equicontinuous.

The proof of the next result can be found in any text on real variables or in

Burton (1985).
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Theorem 2.3.2 (Ascoli-Arzela) If { fn(t)} is a uniformly bounded and equicontin-

uous sequence of real functions on an interval [a,b], then there is a subsequence

which converges uniformly on [a,b] to a continuous function.

If our t-intervals are infinite, then the following extension of Theorem 2.3.1 which

is stated below will be used to prove compactness. This theorem is stated in Burton

and Furumochi (2001b).

Theorem 2.3.3[Burton (2006)] Let R+ = [0,∞) and let q : R+ → R+ be a contin-

uous function such that q(t) → 0 as t → ∞. If {ϕk(t)} is an equicontinuous se-

quence of Rd-valued functions on R+ with |ϕk(t)| ≤ q(t) for t ∈ R+, then there is

a subsequence that converges uniformly on R+ to a continuous function ϕ(t) with

|ϕ(t)| ≤ q(t) for t ∈ R+, where |.| denotes the Euclidean norm on Rd.

Definition 2.3.7 A vector space (V,+, .) is a normed space if for each x,y ∈V there

is a nonnegative real number ∥x∥, called the norm of x, such that

(a) ∥x∥= 0 if and only if x = 0,

(b) ∥αx∥= |α|∥x∥ for each α ∈ R, and

(c) ∥x+ y∥ ≤ ∥x∥+∥y∥.

A normed space is a vector space and it is a metric space with ρ(x,y) = ∥x−y∥. But

a vector space with a metric is not always a normed space.

Definition 2.3.8 A banach space is a complete normed space.

We will now state some useful fixed point theorems. We begin by stating

the contraction mapping principle which generally goes under the name Banach-

Caccioppoli Theorem, or Banach’s (1932) Contraction Mapping Principle. A proof

can be found in many places such as Smart (1980) or Burton (1985). It gains more

respect every day. The real power of the result lies in its application with cleverly

chosen metrics.
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Theorem 2.3.4 (The Contraction Mapping Principle) Let (S,ρ) be a complete metric

space and let H : S → S. If there is a constant α < 1 such that for each pair ϕ1,ϕ2 ∈ S

we have

ρ(Hϕ1,Hϕ2)≤ αρ(ϕ1,ϕ2),

then there is one and only one point ϕ ∈ S with Hϕ = ϕ.

Definition 2.3.9 Let (M,d) be a metric space and B : M → M. B is said to be a large

contraction if for each pair ϕ,ψ ∈ M with ϕ ̸= ψ then d(Bϕ,Bψ)< d(ϕ,ψ) and if for

each ε > 0 there exists δ < 1 such that

[ϕ,ψ ∈ M,d(ϕ,ψ)≥ ε]⇒ d(Bϕ,Bψ)< δd(ϕ,ψ).

Theorem 2.3.5[Burton (2006)] Let (M,d) be a complete metric space and B a large

contraction. Suppose there is an x ∈ M and an L > 0, such that d(x,Bnx)≤ L for all

n ≥ 1. Then B has a unique fixed point in M.

Krasnoselskii (1958) studied a paper of Schauder (1932) and obtained the fol-

lowing working hypothesis: The inversion of a perturbed differential operator yields

the sum of a contraction and compact map. Accordingly, he formulated the follow-

ing fixed point theorem which is a combination of the contraction mapping principle

and Schauder’s fixed point theorems.

Theorem 2.3.6[Burton (2006)] Let M be a closed convex non-empty subset of a

Banach space (S,∥.∥). Suppose that A and B map M into S such that

(a) Ax+By ∈ M for all x,y ∈ M,

(b) A is continuous and AM is contained in a compact set,

(c) B is a contraction with constant α < 1.

Then there is a y ∈ M with Ay+By = y.
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Burton (1996) studied the theorem of Krasnoselskii and observed that Theo-

rem 2.3.6 can be more interesting in applications with certain changes and formu-

lated the following results.

Theorem 2.3.7[Burton (2006)] Let M be a bounded convex non-empty subset of a

Banach space (S,∥.∥). Suppose that A and B map M into M such that

(a) Ax+By ∈ M for all x,y ∈ M,

(b) A is continuous and AM is contained in a compact subset of M,

(c) B is a large contraction.

Then there exists y ∈ M with Ay+By = y.

2.3.1. Formulation of Fixed Point Problems in Differential Equations

This section is an elementary introduction to the formulations of fixed point

problems in differential equations. In this thesis we will be primarily interested

in functional differential and difference equations, but we begin with an ordinary

differential equation

x′(t) = g(t,x(t)), (2.26)

where g : [0,∞)×Rn →Rn is continuous. Perhaps the most basic problem concern-

ing (2.26) is to find a solution through a given point (t0,x0) ∈ [0,∞)×Rn defined on

some interval [t0, t0 + γ] and satisfying (2.26) on that interval.

For this problem, our first guess would be that the set S should consist of dif-

ferentiable functions ϕ : [t0, t0 + γ]→ Rn with ϕ(t0) = x0. Next, the simplest way to

find a mapping is to formally integrate (2.26) and obtain

x(t) = x0 +
∫ t

t0
g(s,x(s))ds,

so that the mapping P on S is defined by

(Pϕ)(t) = x0 +
∫ t

t0
g(s,ϕ(s))ds.
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A fixed point will certainly satisfy the equation. Since our mapping is given by an

integral, our second approximation to S is the set of continuous functions; differen-

tiability will be automatic. There is now a vast array of fixed point theorems which

will yield a fixed point of that mapping and satisfy our initial value problem. We

will use the Contraction Mapping Principle for this problem. For our illustration

here, it is easiest to complete the solution by asking that g satisfy a global Lipschitz

condition of the form

|g(t,x)−g(t,y)| ≤ K|x− y|

for t ≥ t0, K > 0, and for all x,y ∈ Rn, where |.| is any norm on Rn. This will allow

us to give a contraction mapping argument. For any fixed interval [t0, t0 + γ], our set

S with the supremum metric is a complete metric space and P : S → S. Checking our

contraction requirement, we have

|(Pϕ1)(t)− (Pϕ2)(t)| ≤
∫ t

t0
K|ϕ1(s)−ϕ2(s)|ds

≤ Kγ∥ϕ1(t)−ϕ2(t)∥,

so that if α := Kγ < 1 then P is a contraction with unique fixed point ϕ, a solution of

our differential equation and it satisfies the initial condition.

So much more can be done. But everything begins with a suitable mapping;

that is the central problem. It can be relatively easy to state and prove theorems,

once we have a proper mapping, but the real problem is in constructing the mapping.

Seldom will we see a problem in which it is so easy to find a suitable mapping as

the one we just finished.

2.4 Difference Calculus

Many of the calculations involved in solving and analyzing difference equa-

tions can be simplified by use of the difference calculus, a collection of mathematical

tools quite similar to the differential equations.
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2.4.1. The Difference Operator

Just as the differential operator plays the central role in the differential calcu-

lus, the difference operator is the basic component of calculations involving finite

differences.

Definition 2.4.1.1

Let y(n) be a function of a real or complex variable n. The difference operator ∆ is

defined by

∆y(n) = y(n+1)− y(n).

For the most part, we will take the domain of y to be a set of consecutive

integers such as the natural numbers N= {1,2,3, ...}.

Occasionally we will apply the difference operator to a function of two or

more variables. In this case, a subscript will be used to indicate which variable is

to be shifted by one unit. Higher order differences are defined by composing the

difference operator with itself. The second order difference is

∆2y(n) = ∆(∆y(n))

= ∆(y(n+1)− y(n))

= (y(n+2)− y(n+1))− (y(n+1)− y(n))

= y(n+2)−2y(n+1)+ y(n).

An elementary operator that is often used in conjunction with the difference

operator is the shift operator.

Definition 2.4.1.2 The shift operator E is defined by

Ey(n) = y(n+1).

The fundamental properties of ∆ are given in the following theorem.

Theorem 2.4.1.3

(a) ∆m(∆ky(n)) = ∆m+ky(n) for all positive integers m and k.
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(b) ∆(y(n)+ z(n)) = ∆y(n)+∆z(n).

(c) ∆(Cy(n)) =C∆y(n) if C is a constant.

(d) ∆(y(n)z(n)) = y(n)∆z(n)+Ez(n)∆y(n).

(e) ∆
(

y(n)
z(n)

)
= z(n)∆y(n)−y(n)∆z(n)

z(n)Ez(n) .

2.4.2. Summation

To make effective use of the difference operator, we introduce in this section

its right inverse operator, which is sometimes called the ”indefinite sum.”

Definition 2.4.2.1 An ”indefinite sum” (or ”antidifference”) of y(n), denoted ∑y(n),

is any function so that

∆
(
∑y(n)

)
= y(n)

for all n in the domain of y.

Theorem 2.4.2.2 If z(n) is an indefinite sum of y(n), then every indefinite sum of

y(n) is given by

∑y(n) = z(n)+C(n),

where C(n) has the same domain as y and ∆C(n) = 0.

In what follows it will be convenient to use the convention

b

∑
k=a

y(k) = 0

whenever a > b. Observe that for m fixed and n ≥ m,

∆n

( n−1

∑
k=m

y(k)
)
= y(n),

and for p fixed and p ≥ n,

∆n

( p

∑
k=n

y(k)
)
=−y(n).
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The following theorem contains a useful formula for computing definite sums, which

is analogous to the fundamental theorem of calculus.

Theorem 2.4.2.3 If z(n) is an indefinite sum of y(n), then

n−1

∑
k=m

y(k) = [z(k)]nm = z(n)− z(m).

2.4.3. Linear Difference Equations

Let p(n) and r(n) be given functions with p(n) ̸= 0 for all n. The first order

linear difference equation is

y(n+1)− p(n)y(n) = r(n). (2.27)

Equation (2.27) is said to be of the first order because it involves the values of y at n

and only n+1 only, as in the first order difference operator ∆y(n) = y(n+1)−y(n).

If p(n) = 1 for all n, then Eq. (2.27) is simply

∆y(n) = r(n),

so the solution is

y(n) = ∑r(n)+C(n),

where ∆C(n) = 0. For simplicity, we assume that the domain of interest is a discrete

set t = a, a+1,a+2, · · · . Consider first the equation

u(n+1) = p(n)u(n), (2.28)

which is easily solved by iteration:

u(a+1) = p(a)u(a).

Thus,

u(a+2) = p(a+1)u(a+1)

= p(a+1)p(a)u(a),

...

u(a+n) = u(a)
n−1

∏
k=0

p(a+ k).
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We can write the solution in the more convenient form

u(n) = u(a)
n−1

∏
s=a

p(s), (n = a,a+1, . . .),

where it is understood that ∏a−1
a p(s) = 1 and for n ≥ a+ 1, the product is taken

over a,a+1, · · · ,n−1.

2.5 Basic Measure Theory

In this section we provide some basic definitions and theorems in measure

theory.

2.5.1. σ-algebra and Measure

Definition 2.5.1.1 Let X be a set. A collection M of subsets of X is a σ− algebra if

M has the following properties:

(a) X ∈M,

(b) A ∈M ⇒ X \A ∈M,

(c) A1,A2,A3, ... ∈M⇒
∪∞

i=1 Ai ∈M.

The pair (X ,M) is called a measurable space and elements of M are called measur-

able sets.

Definition 2.5.1.2 Let (X ,M) be a measurable space. A measure ( also called posi-

tive measure) is a function

µ : M→ [0,∞]

such that

(a) µ(ϕ) = 0,

(b) µ is countably additive, that is, if A1,A2,A3, ... ∈M are pairwise disjoint, then

µ
( ∞∪

i=1

Ai

)
=

∞

∑
i=1

µ(Ai).
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The triple (X ,M,µ) is called a measure space.

If µ(X)< ∞, then µ is called a finite measure.

The following theorem provides some elementary properties of measures.

Theorem 2.5.1.3 Let (X ,M,µ) be a measure space. Then

(a) If the sets A1,A2, ...,An ∈ M are pairwise disjoint then µ(A1 ∪ ... ∪ An) =

µ(A1)+µ(A2)+ ...+µ(An).

(b) If A,B ∈M,A ⊂ B and µ(B)< ∞, then µ(B\A) = µ(B)−µ(A).

(c) If A,B ∈M,A ⊂ B, then µ(A)≤ µ(B).

(d) If A1,A2,A3, ... ∈M, then

µ
( ∞∪

i=1

Ai

)
≤

∞

∑
i=1

µ(Ai).

(e) If A1,A2,A3, ... ∈M,µ(Ai) = 0, for i = 1,2,3, ... then µ(∪∞
i=1Ai) = 0.

(f) If A1,A2,A3, ... ∈M, A1 ⊂ A2 ⊂ A3 ⊂ ... then

µ
( ∞∪

i=1

Ai

)
= lim

i→∞
µ(Ai).

(g) If A1,A2,A3, ... ∈M, A1 ⊃ A2 ⊃ A3 ⊃ ... and µ(A1)< ∞, then

µ
( ∞∩

i=1

Ai

)
= lim

i→∞
µ(Ai).

2.5.2. Lebesgue Measure on the Real Line

The length of a bounded interval I (open, closed, half-open) with endpoints a

and b (a < b) is defined by ℓ(I) := b− a. If I is (a,∞),(−∞,b), or (−∞,∞), then

ℓ(I) = ∞. Is it possible to extend this concept of length (or measure) to arbitrary

subsets of R ? When one attempts to do this, one is led rather naturally to what has

become known as Lebesgue measure.

Given a set E of real numbers, µ(E) will denote its Lebesgue measure if it is

defined.

The following are the properties of the Lebesgue measure.
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(a) Extends length: For every interval I, µ(I) = ℓ(I).

(b) Monotone: If A ⊂ B ⊂ R, then 0 ≤ µ(A)≤ µ(B)≤ ∞.

(c) Translation invariant: For each subset A of R and for each point x0 ∈ R we

define A+ x0 := {x+ x0 : x ∈ A}. Then µ(A+ x0) = µ(A).

(d) Countably additive: If A and B are disjoint subsets of R, then µ(A∪ B) =

µ(A)+µ(B). If {Ai} is a sequence of disjoint sets, then µ(∪∞
i=1Ai)=∑∞

i=1 µ(Ai).

Let M = M(R) denote the largest family of subsets of R for which conditions (a) -

(d) hold with µ : M → [0,∞]. Members of M =M(R) are called Lebesgue measurable

subsets of R.

Definition 2.5.2.1 For each subset E of R we define its Lebesgue outer measure

µ∗(E) by

µ∗(E) := inf
{ ∞

∑
k=1

ℓ(Ik) : {Ik} a sequence of open intervals with E ⊂
∞∪

k=1

Ik

}
.

It is obvious that 0 ≤ µ∗(E)≤ ∞ for every set E ⊂ R.

Theorem 2.5.2.1 The Lebesgue outer measure µ∗(E) is zero if E is countable; ex-

tends length; is monotone; translation invariant; and is countably subadditive: for

every sequence Ei ⊂ R,

µ∗
( ∞∪

i=1

Ei

)
≤

∞

∑
i=1

µ∗(Ei).

That is, every subset of R has a Lebesgue outer measure which satisfies properties

(a)-(c), but satisfies only part of property (d).

Definition 2.5.2.2 A set E ⊂ R is called Lebesgue measurable if for every subset A

of R,

µ∗(A) = µ∗(A∩E)+µ∗(A∩Ec).

Definition 2.5.2.3 If E is a Lebesgue measurable set, the Lebesgue measure of E is

defined to be its outer measure µ∗(E) and is written µ(E).

Theorem 2.5.2.2 The collection M of Lebesgue measurable sets has the following

properties:
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(a) Both ϕ and R are measurable; µ(ϕ) = 0 and µ(R) = ∞.

(b) If E is measurable, then so is Ec.

(c) If µ∗(E) = 0, then E is measurable.

(d) If E1 and E2 are measurable, then E1 ∪E2 and E1 ∩E2 are measurable.

(e) If E is measurable, then E + x0 is measurable.

(f) Every interval is measurable and µ(I) = µ∗(I) = ℓ(I).

(g) If {Ei : 1 ≤ i ≤ n} is a finite collection of disjoint measurable sets, then for all

A ⊂ R,

µ∗
( n∪

i=1

A∩Ei

)
= µ∗

(
A∩

( n∪
i=1

Ei

))
=

n

∑
i=1

µ∗(A∩Ei).

In particular, when A = R we have

µ
( n∪

i=1

Ei

)
=

n

∑
i=1

µ(Ei).

(h) If {Ei} is a sequence of measurable sets, then

∞∪
i=1

Ei and
∞∩

i=1

Ei

are also measurable sets.

(i) If {Ei} is an arbitrary sequence of disjoint measurable sets, then

µ
( ∞∪

i=1

Ei

)
=

∞

∑
i=1

µ(Ei).

(j) Every open set and every closed set is measurable.

2.5.3. Measurable Functions

Definition 2.5.3.1 Let f be a function on [a,b]. We say that f is a measurable

function if, for every s ∈ R the set

{x| f (x)> s}
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is a measurable set.

That is, f is a measurable function if, for every real s, the inverse image under

f of (0,∞) is a measurable set. It follows immediately that every continuous function

g on [a,b] is measurable. If g is continuous, then, the inverse image under g of (s,∞)

is open. But open sets are measurable. Hence {x|g(x)> s} is a measurable set, and

so g is a measurable function.

Here are other criteria for measurability equivalent to definition 2.5.3.1

Theorem 2.5.3.2 The function f on [a,b] is measurable if and only if any one (and

hence all) of the following statements hold.

(a) For every s ∈ R the set {x| f (x)≥ s} is a measurable set.

(b) For every s ∈ R the set {x| f (x)< s} is a measurable set.

(c) For every s ∈ R the set {x| f (x)≤ s} is a measurable set.

Theorem 2.5.3.3 If f is a measurable function on [a,b], and if c ∈ R, then the func-

tions f + c and c f are measurable.

Theorem 2.5.3.4 If f and g are measurable functions on [a,b], then so are f + g,

f −g, and f g. Furthermore, if g(x) ̸= 0 (a ≤ x ≤ b), then f/g is also measurable.

2.5.4. Definition and existence of the Lebesgue integral for bounded functions

Definition 2.5.4.1 Let f be a bounded function on [a,b], and let E be a subset of

[a,b]. Then we define

M[ f ;E] = l.u.b.x∈E f (x),

m[ f ;E] = g.l.b.x∈E f (x).

Definition 2.5.4.2 By a measurable partition P of [a,b] we mean a finite collection

{E1,E2, ...,En} of measurable subsets of [a,b] such that

∪n
k=1Ek = [a,b]
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and such that

µ(E j ∩Ek) = 0 ( j,k = 1, ...,n; j ̸= k).

The sets E1,E2, ...,En are called the components of P.

If P and Q are measurable partitions, then Q is called a refinement of P if every

component of Q is wholly contained in some component of P.

Definition 2.5.4.3 Let f be a bounded function on [a,b] and let P = {E1, ...,En} be

any measurable partition of [a,b]. We define the upper sum U [ f ;P] as

U [ f ;P] =
n

∑
k=1

M[ f ;Ek]µ(Ek).

Similarly, we define the lower sum

L[ f ;P] =
n

∑
k=1

m[ f ;Ek]µ(Ek).

Definition 2.5.4.4 Let f be a bounded function on [a,b]. We define

ℓ
∫̄ b

a
f (x)dx,

called the Lebesgue upper integral of f over [a,b], as

ℓ
∫̄ b

a
f (x)dx = g.l.bPU [ f ;P]

where the g.l.b. is taken over all measurable partitions P of [a,b]. Similarly, we

define

ℓ
∫
¯

b
a

f (x)dx,

called the Lebesgue lower integral of f over [a,b], as

ℓ
∫
¯

b
a

f (x)dx = l.u.b.PL[ f ;P].

For simplicity we will denote the upper and lower integrals of f respecticely by

ℓ
∫̄ b

a
f and ℓ

∫
¯

b
a

f .

Definition 2.5.4.5 If f is a bounded function on [a,b], we say that f is Lebesgue

integrable on [a,b] if

ℓ
∫̄ b

a
f = ℓ

∫
¯

b
a

f .
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If f is Lebesgue integrable on [a,b], we write f ∈ ℓ[a,b].

Theorem 2.5.4.6(Lebesgue Dominated Convergence Theorem) Let { fn}∞
n=1 be a

sequence of functions in ℓ[a,b] such that

lim
n→∞

fn(x) = f (x) almost everywhere (a ≤ x ≤ b).

Suppose there exists g ∈ ℓ[a,b] such that

| fn(x)| ≤ g(x) almost everywhere (a ≤ x ≤ b;n ∈ I).

Then f ∈ ℓ[a,b] and

lim
n→∞

∫ b

a
fn =

∫ b

a
f .

2.6 The time scale calculus

Definition 2.6.1 A time scale is an arbitrary nonempty closed subset of the real

numbers.

Thus

R, Z, N, N0,

that is, the real numbers, the integers, the natural numbers, and the nonnegative

integers are examples of time scales.

Definition 2.6.2 Let T be a time scale. For t ∈T we define the forward jump operator

σ : T→ T by

σ(t) := inf{s ∈ T : s > t},

while the backward jump operator ρ(t) : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In this definition we put infϕ = supT( that is, σ(t) = t if T has a maximum

t) and supϕ = infT ( that is, ρ(t) = t if T has a minimum t) , where ϕ denotes the

empty set. If σ(t)> t, we say that t is right-scattered, while if ρ(t)< t we say that t

is left-scattered. Points that are right-scattered and left-scattered at the same time are
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called isolated. Also, if t < supT and σ(t) = t, t is called right-dense, and if t > infT

and ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense

at the same time are called dense. Finally, the graininess function µ : T→ [0,∞) is

defined by µ(t) = σ(t)− t. We also need below the set Tκ which is derived from the

time scale T as follow: If T has a left-scattered maximum m, then

Tκ =


T\ (ρ(supT),supT), if supT< ∞

T, if supT= ∞.

If f : T→ R is a function, then we define the function f σ : T→ R by

f σ(t) = f (σ(t)) for all t ∈ T,

that is f σ = f o σ.

Example 2.6.1 Let us briefly consider the two examples, T= R and T= Z.

(i) If T= R, then we have for any t ∈ R

σ(t) = inf{s ∈ R : s > t}= inf(t,∞) = t

and similarly ρ(t) = t. Hence every point t ∈R is dense. The graininess func-

tion µ turns out to be

µ(t)≡ 0 for all t ∈ T.

(ii) If T= Z, then we have for any t ∈ Z

σ(t) = inf{s ∈ Z : s > t}= inf{t +1, t +2, t +3, . . .}= t +1

and similarly ρ(t) = t −1. Hence every point t ∈ Z is isolated. The graininess

function µ in this case is

µ(t)≡ 1 for all t ∈ T.

Now we consider a function f : T→ R and define the delta (or Hilger) derivative of

f at a point t ∈ Tκ.
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Definition 2.6.3 Assume f : T → R is a function and let t ∈ Tκ. Then we define

f ∆(t) to be the number (provided it exists ) with the property that given any ε > 0,

there is a neighbourhood U of t (that is, U = (t −δ, t +δ)∩T for some δ > 0) such

that

|[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈U.

We call f ∆(t) the delta (or Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger) differentiable (or in short: differ-

entiable) on Tκ provided f ∆(t) exists for all t ∈ Tκ. The function f ∆ : Tκ → R is

then called the (delta) derivative of f on Tκ.

Example 2.6.2

(i) If f : T→R is defined by f (t) = α for all t ∈T, where α ∈R is constant, then

f ∆(t) = 0. This is clear because for any ε > 0,

|[ f (σ(t))− f (s)]−0.[σ(t)− s]| = |α−α|

≤ ε|σ(t)− s| holds for all s ∈ T.

(ii) If f : T→ R is defined by f (t) = t for all t ∈ T, then f ∆(t) = 1. This follows

since for any ε > 0,

|[ f (σ(t))− f (s)]−1.[σ(t)− s]| = |σ(t)− s− (σ(t)− s)|

= 0

≤ ε|σ(t)− s| holds for all s ∈ T.

Some easy and useful relationships concerning the delta derivative are given next.

Theorem 2.6.1 Assume f : T → R is a function and let t ∈ Tκ. Then we have the

following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f ∆(t) =
f (σ(t))− f (t)

µ(t)
.
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(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)
t − s

exists as a finite number. In this case

f ∆(t) = lim
s→t

f (t)− f (s)
t − s

.

(iv) If f is differentiable at t, then

f (σ(t)) = f (t)+µ(t) f ∆(t).

Proof. Part (i). Assume that f is differentiable at t. Let ε ∈ (0,1). Define

ε∗ = ε[1+ | f ∆(t)|+2µ]−1.

Then ε∗ ∈ (0,1). By definition 2.6.3 there exists a neighbourhood U of t such that

| f (σ(t))− f (s)− [σ(t)− s] f ∆(t)| ≤ ε∗|σ(t)− s| for all s ∈U.

Therefore we have for all s ∈U ∩ (t − ε∗, t + ε)

| f (t)− f (s)| = |{ f (σ(t))− f (s)− f ∆(t)[σ(t)− s]}

− { f (σ(t))− f (t)−µ(t) f ∆(t)}+(t − s) f ∆(t)|

≤ ε∗|σ(t)− s|+ ε∗µ(t)+ |t − s|| f ∆(t)|

≤ ε∗[µ(t)+ |t − s|+µ(t)+ | f ∆(t)|]

= ε.

It follows that f is continuous at t.

Part (ii). Assume f is continuous at t and t is right-scattered. By continuity

lim
s→t

f (σ(t))− f (s)
σ(t)− s

=
f (σ(t))− f (t)

σ(t)− t

=
f (σ(t))− f (t)

µ(t)
.

Hence, given ε > 0, there is a neighbourhood U of t such that∣∣∣ f (σ(t))− f (s)
σ(t)− s

− f (σ(t))− f (t)
µ(t)

∣∣∣≤ ε
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for all s ∈U. It follows that∣∣∣[ f (σ(t))− f (s)]− f (σ(t))− f (t)
µ(t)

[σ(t)− s]
∣∣∣≤ ε|σ(t)− s|

for all s ∈U . Hence we get the desired result

f ∆(t) =
f (σ(t))− f (t)

µ(t)
.

Part (iii). Assume f is differentiable at t and t is right-dense. Let ε > 0 be given.

Since f is differentiable at t, there is a neighbourhood U of t such that

|[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]|ε|σ(t)− s|

for all s ∈U. Since σ(t) = t we have that

|[ f (t)− f (s)]− f ∆(t)(t − s)| ≤ ε|t − s|

for all s ∈U. It follows that∣∣∣ f (t)− f (s)
t − s

− f ∆(t)
∣∣∣≤ ε

for all s ∈U , s ̸= t. Therefore we get the desired result

f ∆(t) = lim
s→t

f (t)− f (s)
t − s

.

Part (iv). If σ(t) = t, then µ(t) = 0 and we have that

f (σ(t)) = f (t) = f (t)+µ(t) f ∆(t).

On the other hand if σ(t)> t, then by (ii)

f (σ(t)) = f (t)+µ(t).
f (σ(t))− f (t)

µ(t)

= f (t)+µ(t) f ∆(t),

and the proof of part (iv) is complete.

Next we would like to find the derivatives of sums, products, and quotients of

differentiable functions. This is possible according to the following theorem.

Theorem 2.6.2 Assume f ,g : T→ R are differentiable at t ∈ Tκ. Then:
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(i) The sum f +g : T→ R is differentiable at t with

( f +g)∆(t) = f ∆(t)+g∆(t).

(ii) For any constant α, α f : T→ R is differentiable at t with

(α f )∆(t) = α f ∆(t).

(iii) The product f g : T→ R is differentiable at t with

( f g)∆(t) = f ∆(t)g(t)+ f (σ(t))g∆(t)

= f (t)g∆(t)+ f ∆(t)g(σ(t)).

(iv) If f (t) f (σ(t)) ̸= 0, then 1
f is differentiable at t with(1
f

)∆
(t) =− f ∆(t)

f (t) f (σ(t))
.

(v) If g(t)g(σ(t)) ̸= 0, then f
g is differentiable at t and( f

g

)∆
(t) =

f ∆(t)g(t)− f (t)g∆(t)
g(t)g(σ(t))

.

Proof. Assume that f and g are delta differentiable at t ∈ Tκ.

Part (i). Let ε > 0. Then there exist neighbourhoods U1 and U2 of t with

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε
2
|σ(t)− s| for all s ∈U1

and

|g(σ(t))−g(s)−g∆(t)(σ(t)− s)| ≤ ε
2
|σ(t)− s| for all s ∈U2.

Let U =U1 ∩U2. Then we have for all s ∈U

|( f +g)(σ(t))− ( f +g)(s)− [ f ∆(t)+g∆(t)](σ(t)− s)|

= | f (σ(t))− f (s)− f ∆(t)(σ(t)− s)+g(σ(t))−g(s)−g∆(t)(σ(t)− s)|

≤ | f (σ(t))− f (s)− f ∆(t)(σ(t)− s)|+ |g(σ(t))−g(s)−g∆(t)(σ(t)− s)|

≤ ε
2
|σ(t)− s|+ ε

2
|σ(t)− s|

= ε|σ(t)− s|.
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Therefore f +g is differentiable at t and ( f +g)∆ = f ∆ +g∆ holds at t.

Part (iii). Let ε ∈ (0,1). Define ε∗ = ε[1+ | f (t)|+ |g(σ(t))|+ |g∆(t)|]−1. Then ε∗ ∈

(0,1) and hence there exist neighbourhoods U1, U2, and U3 of t such that

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε∗|σ(t)− s| for all s ∈U1

and

|g(σ(t))−g(s)−g∆(t)(σ(t)− s)| ≤ ε∗|σ(t)− s| for all s ∈U2.

and

| f (t)− f (s)| ≤ ε∗ for all s ∈U3.

Put U =U1 ∩U2 ∩U3 and let s ∈U. Then

|( f g)(σ(t))− ( f g)(s)− [ f ∆(t)g(σ(t))+ f (t)g∆(t)](σ(t)− s)|

= |[ f (σ(t))− f (s)− f ∆(t)(σ(t)− s)]g(σ(t))

+ [g(σ(t))−g(s)−g∆(t)(σ(t)− s)] f (t)

+ [g(σ(t))−g(s)−g∆(t)(σ(t)− s)][ f (s)− f (t)]

+ (σ(t)− s)g∆(t)[ f (s)− f (t)]|

≤ ε∗|σ(t)− s||g(σ(t))|+ ε∗|σ(t)− s|| f (t)|

+ ε∗ε∗|σ(t)− s|+ ε∗|σ(t)− s||g∆(t)|

= ε∗|σ(t)− s|[|g(σ(t))|+ | f (t)|+ ε∗+ |g∆(t)|]

≤ ε∗|σ(t)− s|[1+ | f (t)|+ |g(σ(t))|+ |g∆(t)|]

= ε|σ(t)− s|.

Thus ( f g)∆ = f ∆gσ + f g∆ holds at t.

Definition 2.6.4 A continuous function f : T → R is called pre-differentiable with

(region of differentiation) D, provided D ⊂ Tκ, Tκ \D is countable and contains no

right scattered elements of T, and f is differentiable at each t ∈ D.

Theorem 2.6.3 Let f and g be real-valued functions defined on T, both pre-differentiable

with D ⊂ T. Then
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(i) | f ∆(t)| ≤ g∆(t) for all t ∈ D implies

| f (s)− f (r)| ≤ g(s)−g(r) for all r,s ∈ T, r ≤ s. (2.29)

(ii) If U is a compact interval with endpoints r,s ∈ T, then

| f (s)− f (r)| ≤ sup
t∈Uκ∩D

| f ∆(t)||s− r|. (2.30)

In order to describe classes of functions that are ”integrable”, we introduce the fol-

lowing concepts.

Definition 2.6.5 A function f : T → R is called regulated provided its right-sided

limits exists (finite) at all right-dense points in T and its left-sided limits exist (fi-

nite) at all left-dense points in T.

Definition 2.6.6 A function f : T → R is called rd-continuous provided it is con-

tinuous at right-dense points in T and its left-sided limits exist (finite) at left-dense

points in T. The set of rd-continuous functions f : T→R will be denoted by in this

thesis by

Crd =Crd(T) =Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is rd-

continuous is denoted by

C1
rd =C1

rd(T) =C1
rd(T,R).

Some results concerning rd-continuous and regulated functions are contained

in the following theorem.

Theorem 2.6.4

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous then f is regulated.

(iii) The jump operator σ is rd-continuous.

(iv) If f is regulated or rd-continuous, then so if f σ.
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(v) Assume f is continuous. If g : T→ R is regulated or rd-continuous, then f og

has that property too.

Theorem 2.6.5(Existence of Pre-Antiderivatives) Let f be regulated. Then there

exists a function F which is pre-differentiable with region of differentiation D such

that

F∆(t) = f (t) holds for all t ∈ D.

Definition 2.6.7 Assume f : T → R is a regulated function. Any function F as in

Theorem 2.6.4 is called a pre-antiderivative of f . We define the indefinite integral of

a regulated function f by

∫
f (t)∆ = F(t)+C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the

Cauchy integral by

∫ s

r
f (t)∆t = F(s)−F(r) for all r,s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f (t) holds for all t ∈ Tκ.

Theorem 2.6.6(Existence of Antiderivatives) Every rd-continuous function has an

antiderivative. In particular if t0 ∈ T, then F defined by

F(t) :=
∫ t

t0
f (τ)∆τ for t ∈ T

is an antiderivative of f .

Theorem 2.6.7 If f ∈Crd and t ∈ Tκ, then

∫ σ(t)

t
f (τ)∆τ = µ(t) f (t).

Theorem 2.6.8 If f ∆ ≥ 0, then f is nondecreasing.

Theorem 2.6.9 If a,b,c ∈ T, α ∈ R, and f ,g ∈Crd , then
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(i) ∫ b

a
[ f (t)+g(t)]∆t =

∫ b

a
f (t)∆t +

∫ b

a
g(t)∆t;

(ii) ∫ b

a
(α f )(t)∆t = α

∫ b

a
f (t)∆t;

(iii) ∫ b

a
( f )(t)∆t =−

∫ a

b
f (t)∆t;

(iv) ∫ b

a
( f )(t)∆t =

∫ c

a
f (t)∆t +

∫ b

c
f (t)∆t;

(v) ∫ b

a
f (σ(t))g∆(t)∆t = ( f g)(b)− ( f g)(a)−

∫ b

a
f ∆(t)g(t)∆t;

(vi) ∫ b

a
f (t)g∆(t)∆t = ( f g)(b)− ( f g)(a)−

∫ b

a
f ∆(t)g(σ(t))∆t;

(vii) ∫ a

a
f (t)∆t = 0;

(viii) if | f (t)| ≤ g(t) on [a,b), then∣∣∣∫ b

a
f (t)∆t

∣∣∣≤ ∫ b

a
g(t)∆t;

(ix) if f (t)≥ 0 for all a ≤ t < b, then
∫ b

a f (t)∆t ≥ 0.

We next define the improper integral
∫ ∞

a f (t)∆t as one would expect.

Definition 2.6.8 If a ∈ T,supT = ∞, and f is rd- continuous on [0,∞), then we

define the improper integral by∫ ∞

a
f (t)∆t := lim

b→∞

∫ b

a
f (t)∆t
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provided this limit exists, and we say that the improper integral converges in this

case. If this limit does not exist, then we say that the improper integral diverges.

Theorem 2.6.10(Chain Rule) Assume g : R→ R is continuous, g : T→ R is delta

differentiable on Tκ, and f : R→R is continuously differentiable. Then there exists

c in the real interval [t,σ(t)] with

( f og)∆(t) = f ′(g(c))g∆(t).

We next present a chain rule which calculates ( f og)∆, where

g : T→ R and f : R→ R.

Theorem 2.6.11(Chain Rule) Assume ν :T→R is strictly increasing and T̃ := ν(T)

is a time scale. Let w : T̃→ R. If ν∆(t) and w∆̃(ν(t)) exist for t ∈ Tκ, then

(w◦ν)∆ = (w∆̃ ◦ν)ν∆.

Theorem 2.6.12(Substitution) Assume ν : T → R is strictly increasing and T̃ :=

ν(T) is a time scale. If f : T→R is an rd-continuous function and ν is differentiable

with rd-continuous derivative, then for a,b ∈ T,∫ b

a
f (t)ν∆(t)∆t =

∫ ν(b)

ν(a)
( f ◦ν−1)(s) ∆̃s.

Definition 2.6.9 A function p :T→R is said to be regressive provided 1+µ(t)p(t) ̸=

0 for all t ∈ Tκ. The set of all regressive rd-continuous functions f : T→ R is de-

noted by R while the set R + is given by R + = { f ∈ R : 1+µ(t) f (t)> 0 for all t ∈

T}.

Definition 2.6.10 Let p ∈ R and µ(t) ̸= 0 for all t ∈ T. The exponential function on

T is defined by

ep(t,s) = exp
(∫ t

s

1
µ(z)

Log(1+µ(z)p(z))∆z
)
,

It is well known that if p ∈ R +, then ep(t,s)> 0 for all t ∈ T. Also, the exponential

function y(t) = ep(t,s) is the solution to the initial value problem y∆ = p(t)y, y(s) =

1. Other properties of the exponential function are given in the following lemma.

Lemma 2.6.1 Let p,q ∈ R . Then
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(i) e0(t,s)≡ 1 and ep(t, t)≡ 1;

(ii) ep(σ(t),s) = (1+µ(t)p(t))ep(t,s);

(iii) 1
ep(t,s)

= e⊖p(t,s) where, ⊖p(t) =− p(t)
1+µ(t)p(t) ;

(iv) ep(t,s) = 1
ep(s,t)

= e⊖p(s, t);

(v) ep(t,s)ep(s,r) = ep(t,r);

(vi)
( 1

ep(·,s)
)∆

=− p(t)
eσ

p(·,s)
.

Next we consider the first order nonhomogeneous linear equation

y∆ = p(t)y+ f (t) (2.31)

and the corresponding homogeneous equation

y∆ = p(t)y (2.32)

on a time scale T.

Theorem 2.6.13 Suppose (2.32) is regressive. Let t0 ∈ T and y0 ∈ R. The unique

solution of the initial value problem

y∆ = p(t)y, y(t0) = y0 (2.33)

is given by

y(t) = ep(t, t0)y0.

2.7 Qualitative Properties

2.7.1. Basic Definitions for Neutral Functional Differential Equations

Consider a neutral functional differential equation of the form

x′(t) = f (t,x(t),x(t − τ(t)),x′(t − τ(t))), t ≥ t0 (2.34)
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where τ : [t0,∞)→ [t0,∞), f : [t0,∞)×Rn ×Rn ×Rn → Rn, f (t,0,0,0) = 0, and all

the functions are continuous in their respective arguments. Note that x ≡ 0 is a solu-

tion of (2.34). For a given t0 ≥ 0, let β0 = inft≥t0 t−τ(t). Then we define Et0 = [β0, t0]

which is the initial interval.

To specify a solution for equation (2.34) we need t0 ≥ 0 and a continuous function

ψ : Et0 →Rn. We say that ψ is the initial function on the interval Et0 with ψ′ contin-

uous.

Definition 2.7.1.1 x(t,ψ) is a solution of (2.34) if x(t,ψ) is defined on an interval

[β0, t0 + γ),0 < γ ≤ ∞, x(t0,ψ) = ψ, and satisfies (2.34) for t0 < t < γ.

Definition 2.7.1.2 The zero solution of (2.34) is said to be stable if for each t0 ≥ 0

and each ε > 0 there is a δ > 0 such that ∥ψ∥< δ on Et0 implies that any solution of

(2.34) satisfies |x(t, t0,ψ)|< ψ for all t ≥ t0.

Definition 2.7.1.3 The zero solution of (2.34) is said to be asymptotically stable if

it is stable and if for each t0 ≥ 0 there is an η > 0 such that ||ψ||< η on Et0 implies

that any solution of (2.34) satisfies x(t, t0,ψ)→ 0 as t → ∞.

Definition 2.7.1.4 The solution x(t) of (2.34) is said to be periodic if x(t +T ) = x(t)

for T > 0 and for all t ∈ (−∞,∞). T is called the period of x.

Definition 2.7.1.5 The solution x(t) of (2.34) is said to be positive if x(t)> 0 for all

t.

2.7.2. Basic Definitions for Neutral Functional Difference Equations

Consider a neutral functional difference equation of the form

x(n+1) = f (n,x(n),x(n− τ(n)),∆x(n− τ(n))), (2.35)

where τ : [n0,∞)∩Z→R, f : [n0,∞)∩Z×Rn×Rn×Rn →Rn, f (n,0,0,0) = 0 and

f is continuous in its respective arguments. Note that x ≡ 0 is a solution of (2.35).
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For a given n0 ≥ 0, let α0 = infn≥n0 n− τ(n). Then we define Dn0 = [α0,n0]∩Z

which is the initial interval. To specify a solution for equation (2.35) we need n0 ≥ 0

and an initial bounded function ψ : Dn0 → Rn.

Definition 2.7.2.1 x(t,ψ) is a solution of (2.35) if x(t,ψ) is defined on an interval

[α0,n0]∩Z, x(n0,ψ) = ψ, and satisfies (2.35) for n ≥ n0.

Definition 2.7.2.2 The zero solution of (2.35) is said to be stable if for each n0 ≥ 0

and each ε > 0 there is a δ > 0 such that ||ψ|| < δ on Dn0 implies that any solution

of (2.35) satisfies |x(n,n0,ψ)|< ε for all n ≥ n0.

Definition 2.7.2.3 The zero solution of (2.35) is said to be asymptotically stable if it

is stable and if for each n0 ≥ 0 there is an η > 0 such that ||ψ||< η on Dn0 implies

that any solution of (2.35) satisfies x(n,n0,ψ)→ 0 as n → ∞..

Definition 2.7.2.4 The solution x(n) of (2.35) is said to be periodic if x(n+N)= x(n)

for N ∈ Z+ and for all n ∈ (−∞,∞)∩Z. N is called the period of x.

Definition 2.7.2.5 The solution x(n) of (2.35) is said to be positive if x(n) > 0 for

all n ∈ Z.

58



CHAPTER THREE

PERIODIC SOLUTIONS FOR FIRST ORDER NEUTRAL

DIFFERENTIAL EQUATIONS WITH FUNCTIONAL DELAY

3.1 Introduction

In this Chapter we obtain sufficient conditions for the existence of periodic

solutions for totally nonlinear neutral differential equations of the first order. In

particular, we consider the totally nonlinear neutral differential equation

x′(t) =−a(t)h(x(t))+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
, (3.1)

where a(t) is a real valued function, c(t) is continuously differentiable, g(t) is twice

continuously differentiable, h : R → R is continuous with respect to its argument

and q : R×R×R→ R is also continuous with respect to its arguments.

Equations of form similar to (3.1) where h(x(t)) = x(t) have gained the at-

tention of many researchers in recent times. This include the work of Burton and

Furumochi (2001a), Raffoul (2003), and Djoudi and Khemis (2006). In all the above

mentioned papers, the method of variation of parameters was applied directly to in-

vert the equations, however, for (3.1) the method of variation of parameters cannot

be applied directly. We therefore resort to the idea of adding and subtracting a lin-

ear term. Burton (2002) noted that the added terms destroys a contraction already

present in part of the equation but replaces it with the so called large contraction

mapping which is suitable for fixed point theory.

Remark 3.1.1 The content of this Chapter has been published as:

E. Yankson, ” Periodic solutions for totally nonlinear neutral differential equations

with functional delay,” Opuscula Mathematica, No. 3, 2012.
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The rest of the Chapter is organized as follows. First, some preliminary mate-

rial is provided in section two. Our main results in this Chapter are presented in the

third section.

3.2 Preliminaries

Let T > 0 and define the set PT = {ϕ∈C(R,R) : ϕ(t+T )= ϕ(t)} and the norm

∥x(t)∥= maxt∈[0,T ] |x(t)|, where C is the space of continuous real valued functions.

Then (PT , ||.||) is a Banach space. Also, for any L > 0, define

ML = {φ ∈ PT : ||φ|| ≤ L,φ′ is bounded}.

In this Chapter we make the following assumptions.

a(t +T ) = a(t), c(t +T ) = c(t), g(t +T ) = g(t), g(t)≥ g∗ > 0 (3.2)

with c(t) continuously differentiable, g(t) twice continuously differentiable and g∗

is constant. Also, ∫ T

0
a(s)ds > 0. (3.3)

We also assume that q(t,x,y) is continuous and periodic in t and Lipschitz continu-

ous in x and y. That is

q(t +T,x,y) = q(t,x,y) (3.4)

and some positive constants K and E,

|q(t,x,y)−q(t,z,w)| ≤ K∥x− z∥+E∥y−w∥ . (3.5)

Also, we assume that for all t, 0 ≤ t ≤ T ,

g′(t) ̸= 1. (3.6)

Since g(t) is periodic, condition (3.6) implies that g′(t)< 1.
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Lemma 3.2.1. Suppose (3.2)-(3.3) and (3.6) hold. If x(t)∈PT , then x(t) is a solution

of equation (3.1) if and only if

x(t) =
c(t)

1−g′(t)
x(t −g(t))+

(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T

[
a(u)H(x(u))− r(u)x(u−g(u))+q(u,x(u),x(u−g(u)))

]
e−

∫ t
u a(s)ds du ,

(3.7)

where

r(u) =

(
c′(u)− c(u)a(u)

)(
1−g′(u)

)
+g′′(u)c(u)

(1−g′(u))2 , (3.8)

and

H(x(u)) = x(u)−h(x(u)). (3.9)

Proof. Let x(t) ∈ PT be a solution of (3.1). We first rewrite (3.1) in the form

x′(t)+a(t)x(t) = a(t)H(x(t))+ c(t)x′(t −g(t))+q
(
t,x(t),x(t −g(t)

)
. (3.10)

Multiply both sides of (3.10) by e
∫ t

0 a(s)ds and then integrate from t −T to t to obtain

∫ t

t−T

[
x(u)e

∫ u
0 a(s)ds]′du

=
∫ t

t−T

[
a(u)H(x(u))+ c(u)x′(u−g(u))+q(u,x(u),x(u−g(u)))

]
e
∫ u

0 a(s)dsdu.

Thus we obtain,

x(t)e
∫ t

0 a(s)ds − x(t −T )e
∫ t−T

0 a(s)ds

=
∫ t

t−T

[
a(u)H(x(u))+ c(u)x′(u−g(u))+q(u,x(u),x(u−g(u)))

]
e
∫ u

0 a(s)dsdu.

By dividing both sides of the above equation by exp(
∫ t

0 a(s)ds) and using the fact

that x(t) = x(t −T ), we obtain

x(t) =
(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T

[
a(u)H(x(u))+ c(u))x′(u−g(u))+q(u,x(u),x(u−g(u)))

]
e−

∫ t
u a(s)dsdu .

(3.11)
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Rewrite

∫ t

t−T
c(u)x′(u−g(u))e−

∫ t
u a(s)dsdu

=
∫ t

t−T

c(u)x′(u−g(u))(1−g′(u))
(1−g′(u))

e−
∫ t

u a(s)dsdu.

Let

U =
c(u)

1−g′(u)
e−

∫ t
u a(s)ds, and dV = x′(u−g(u))(1−g′(u))du.

It follows that

dU =
(1−g′(u))[c′(u)e−

∫ t
u a(s)ds + c(u)a(u)e−

∫ t
u a(s)ds]− c(u)e−

∫ t
u a(s)ds(−g′′(u))

[1−g′(u)]2

=

(
(1−g′(u))[c′(u)+ c(u)a(u)]− c(u)(−g′′(u))

)
e−

∫ t
u a(s)ds

[1−g′(u)]2
.

= r(u)e−
∫ t

u a(s)ds.

Also, with z = u−g(u) we obtain

V =
∫

x′(u−g(u))(1−g′(u))du

=
∫

x′(z)dz

= x(u−g(u)).

We therefore obtain∫ t

t−T
c(u)x′(u−g(u))e−

∫ t
u a(s)dsdu

=
c(t)

1−g′(t)
x(t −g(t))

(
1− e−

∫ t
t−T a(s)ds)−∫ t

t−T
r(u)e−

∫ t
u a(s)dsx(u−g(u))du ,

(3.12)

where r(u) is given by (3.8). Then substituting (3.12) into (3.11) gives the desired

results. Since each step in the above work is reversible, the proof is complete.

3.3 Existence of periodic solution

In this section we state and prove our main results in this Chapter. In proving

the results in this chapter, we employ theorem 2.3.7 in which the notion of a large
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contraction is required as one of the sufficient conditions. In view of this we first

define the operator P by

(Pφ)(t) =
c(t)

1−g′(t)
φ(t −g(t))+

(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T

[
a(u)H(φ(u))− r(u)φ(u−g(u))

+q(u,φ(u),φ(u−g(u)))
]
e−

∫ t
u a(s)ds du.

(3.13)

where r and H are given in (3.8) and (3.9) respectively. It therefore follows from

Lemma 3.2.1 that fixed points of P are solutions of (3.1) and vice versa.

In order to employ Theorem 2.3.7 we need to express the operator P as a sum of two

operators, one of which is completely continuous and the other is a large contraction.

Let (Pφ)(t) = Aφ(t)+Bφ(t) where A,B : PT → PT are defined by

(Bφ)(t) =
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T

[
a(u)H(φ(u))

]
e−

∫ t
u a(r)drdu, (3.14)

and

(Aφ)(t) =
c(t)

1−g′(t)
φ(t −g(t))+

(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T

[
− r(u)φ(u−g(u))+q(u,φ(u),φ(u−g(u)))

]
e−

∫ t
u a(s)ds du.

(3.15)

In the rest of the Chapter we require the following conditions.

KL+EL+ |q(t,0,0)| ≤ βLa(t), (3.16)

|r(t)| ≤ δa(t), (3.17)

max
t∈[0,T ]

| c(t)
(1−g′(t))

|= α, (3.18)

and

J(β+α+δ)≤ 1, (3.19)

where α, β, δ,L and J are constants with J ≥ 3.
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Next we state our main result and present its proof in four lemmas.

Theorem 3.3.1. Let L be a fixed positive number and let (PT , ||.||) be the Banach

space of continuous T -periodic real functions. Suppose (3.2)-(3.4), and (3.16)-

(3.19) hold. Then equation (3.1) possesses a periodic solution in the subset ML.

The proof is based on the following four lemmas.

Lemma 3.3.2. Suppose that conditions (3.2)-(3.4) and (3.16)-(3.19) hold. Then for

the L defined in Theorem 3.3.1, A : ML →ML is continuous in the supremum norm

and maps ML into a compact subset of ML.

Proof. We first show that (Aφ)(t + T ) = (Aφ)(t). Substituting t + T into (Aφ)(t)

gives

(Aφ)(t +T ) =
c(t +T )

1−g′(t +T )
φ(t +T −g(t +T ))+

(
1− e−

∫ t+T
t a(s)ds)−1

×
∫ t+T

t

[
− r(u)φ(u−g(u))

+ q(u,φ(u),φ(u−g(u)))
]
e−

∫ t+T
u a(s)ds du.

With v = s−T and k = u−T we obtain

(Aφ)(t +T ) =
c(t)

1−g′(t)
φ(t −g(t))+

(
1− e−

∫ t
t−T a(v+T )dv)−1

×
∫ t

t−T

[
− r(k+T )φ(k+T −g(k+T ))

+ q(k+T,φ(k+T ),φ(k+T −g(k+T )))
]
e−

∫ t+T
k+T a(s)ds dk

=
c(t)

1−g′(t)
φ(t −g(t))+

(
1− e−

∫ t
t−T a(v)dv)−1

×
∫ t

t−T

[
− r(k)φ(k−g(k))

+ q(k,φ(k),φ(k−g(k)))
]
e−

∫ t
k a(v)dv dk

= (Aφ)(t).

We will next show that A maps ML into itself. Note that

|q(t,x,y)| ≤ |q(t,x,y)−q(t,0,0)|+ |q(t,0,0)| ≤ K|x|+E|y|+ |q(t,0,0)|.
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Thus, for any φ ∈ML, we have

|(Aφ)(t)| ≤
∣∣∣c(t)φ(t −g(t))

1−g′(t)

∣∣∣+ (
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T
|r(u)φ(u−g(u))|e−

∫ t
u a(s)dsdu

+
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
|q(u,φ(u),φ(u−g(u)))|e−

∫ t
u a(s)ds du

≤ αL+
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
δa(u)Le−

∫ t
u a(s)dsdu

+
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
(KL+EL+ |q(t,0,0)|)e−

∫ t
u a(s)ds du

≤ αL+δL
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
a(u)e−

∫ t
u a(s)dsdu

+ βL
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
a(u)e−

∫ t
u a(s)ds du

≤ (α+δ+β)L ≤ L
J
< L.

Thus showing that A maps ML into itself.

Now we show that A is continuous. Let φ,ψ ∈ML, and let

a = max
t∈[0,T ]

(
1− e−

∫ t
t−T a(s)ds)−1

, b = max
u∈[t−T,t]

e−
∫ t

u a(s)ds,

σ = max
t∈[0,T ]

r(t), λ = max
t∈[0,T ]

|q(t,0,0)|, (3.20)

ν = max
t∈[0,T ]

| c′(t)
(1−g′(t))

|, µ = max
t∈[0,T ]

| g′′(t)c(t)
(1−g′(t))2 |.

Given ε > 0, take δ = ε/F such that ∥φ−ψ∥< δ. Then we get

∥∥(Aφ(t)
)
−
(
Aψ(t)

)∥∥≤ α∥φ−ψ∥+ab
∫ t

t−T

[
L∥φ−ψ∥+E∥φ−ψ∥+σ∥φ−ψ∥

]
du

≤ F∥φ−ψ∥< ε

where F = α+Tab[σ+L+E]. This proves A is continuous. To show A is compact,

we let φn ∈ML where n is a positive integer. Then as before we have that

∥A(φn(t))∥ ≤ L. (3.21)
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Moreover, a direct calculation shows that

(Aφn)
′(t) = q(t,φn(t),φn(t −g(t)))− r(t)φn(t −g(t))−a(t)

(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T
[q(u,φn(u),φn(u−g(u)))− r(t)φn(u−g(u))]e−

∫ t
u a(s)dsdu

+
c′(t)φn(t)+ c(t)φ′

n(t)
1−g′(t)

+
g′′(t)c(t)φn(t)
(1−g′(t))2 .

By invoking conditions (3.5), (3.16)-(3.18), (3.20) and (3.21) we obtain

|(Aφn)
′(t)| ≤ KL+EL+λ+δ||a||L+ ||a||L+νL+αL′+µL ≤ D,

for some positive constant D. Hence the sequence (Aφn) is uniformly bounded and

equicontinuous. The Ascoli-Arzela theorem implies that the subsequence (Aφnk)

of (Aφn) converges uniformly to a continuous T - periodic function. Thus, A is

compact.

Lemma 3.3.3. Suppose (3.2)-(3.5), and (3.16) hold. Suppose also that for the L

defined in Theorem 3.3.1,

(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T

[
|a(u)||H(φ(u))|

]
e−

∫ t
u a(r)drdu ≤ (J−1)L

J
.

(3.22)

For B,A defined by (3.14) and (3.15), if φ,ψ ∈ML are arbitrary, then

Aφ+Bψ : ML →ML.

Proof. Let φ,ψ∈ML be arbitrary. Using the definition of B and the result of Lemma

3.3.2, we obtain

|(Aφ)(t)+(Bψ)(t)|

≤ | c(t)
1−g′(t)

φ(t −g(t))|+
(
1− e−

∫ t
t−T a(s)ds)−1

×
∫ t

t−T

[
|r(u)φ(u−g(u))|+ |q(u,φ(u),φ(u−g(u)))|

]
e−

∫ t
u a(s)ds du

+
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T

∣∣a(u)H(φ(u))
∣∣e−∫ t

u a(r)drdu

≤ L
J
+

(J−1)L
J

= L.
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Thus Aφ+Bψ ∈ML. This completes the proof.

In the next lemma we prove that H is a large contraction on ML. To this end

we make the following assumptions on the function h : R→ R.

(H1) h is continuous and differentiable on UL = [−L,L].

(H2) h is strictly increasing on UL.

(H3) sups∈UL
h′(s)≤ 1.

(H4) (s−r)
{

supt∈UL
h′(t)

}
≥ h(s)−h(r)≥ (s−r)

{
inft∈UL h′(t)

}
≥ 0 for s,r ∈UL

with s ≥ r.

Lemma 3.3.4. Let h : R→ R be a function satisfying (H1)− (H4). Then for the L

defined in Theorem 3.3.1, the mapping H is a large contraction on the set ML.

Proof. Let ϕ,φ ∈ML with ϕ ̸= φ. Then ϕ(t) ̸= φ(t) for some t ∈ R. Define the set

D(ϕ,φ) =
{

t ∈ R : ϕ(t) ̸= φ(t)
}
.

Note that φ(t) ∈UL for all t ∈ R whenever φ ∈ML. Since h is strictly increasing

h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

=
h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)
> 0 (3.23)

holds for all t ∈ D(ϕ,φ). By (H3) we have

1 ≥ sup
t∈UL

h′(t)≥ inf
s∈UL

h′(s)≥ 0. (3.24)

Define the set Ut ⊂UL by Ut = [φ(t),ϕ(t)]∩UL if ϕ(t)> φ(t), and Ut = [ϕ(t),φ(t)]∩

UL if ϕ(t)< φ(t), for t ∈ D(ϕ,φ). Hence, for a fixed t0 ∈ D(ϕ,φ) we get by (H4) and

(3.23) that

sup{h′(u) : u ∈Ut0} ≥
h(ϕ(t0))−h(φ(t0))

ϕ(t0)−φ(t0)
≥ inf{h′(u) : u ∈Ut0}.

Since Ut ⊂UL for every t ∈ D(ϕ,φ), we find

sup
u∈UL

h′(u)≥ sup{h′(u) : u ∈Ut0} ≥ inf{h′(u) : u ∈Ut0} ≥ inf
u∈UL

h′(u),
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and therefore,

1 ≥ sup
u∈UL

h′(u)≥ h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

≥ inf
u∈UL

h′(u)≥ 0 (3.25)

for all t ∈ D(ϕ,φ). So, (3.25) yields

|(Hϕ)(t)− (Hφ)(t)| = |ϕ(t)−h(ϕ(t))−φ(t)+h(φ(t))|

= |ϕ(t)−φ(t)|
∣∣∣1−(h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)

)∣∣∣
≤ |ϕ(t)−φ(t)|

(
1− inf

u∈UL
h′(u)

)
(3.26)

for all t ∈ D(ϕ,φ). Thus, (3.25) and (3.26) imply that H is a large contraction in the

supremum norm. To see this choose a fixed ε ∈ (0,1) and assume that ϕ and φ are

two functions in ML satisfying

∥ϕ−φ∥= sup
t∈[−L,L]

|ϕ(t)−φ(t)| ≥ ε.

If |ϕ(t)−φ(t)| ≤ ε/2 for some t ∈ D(ϕ,φ), then from (3.26)

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)| ≤ 1
2
∥ϕ−φ∥. (3.27)

Since h is continuous and strictly increasing, the function h(u+ ε
2)−h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |ϕ(t)−φ(t)| for

some t ∈ D(ϕ,φ), then from (3.25) and (H3) we conclude that

1 ≥ h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

> λ,

and therefore,

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)|
{

1− h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

}
≤ (1−λ)∥ϕ(t)−φ(t)∥, (3.28)

where

λ :=
1

2L
min

{
h(u+

ε
2
)−h(u),u ∈ [−L,L]

}
> 0.

Consequently, it follows from (3.27) and (3.28) that

|(Hϕ(t)− (Hφ)(t)| ≤ δ∥ϕ−φ∥,
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where δ = max
{

1
2 ,1−λ

}
< 1. The proof is complete.

The next result gives a relationship between the mappings H and B in the sense

of large contraction.

Lemma 3.3.5. If H is a large contraction on ML, then so is the mapping B.

Proof. If H is a large contraction on ML, then for x,y ∈ ML, with x ̸= y, we have

∥Hx−Hy∥ ≤ ∥x− y∥. Thus, it follows from the equality

a(u)e−
∫ t

u a(r)dr =
d

du
[e−

∫ t
u a(r)dr],

that

|Bx(t)−By(t)| ≤
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
a(u)

∣∣H(x(u))−H(y(u))
∣∣

× e−
∫ t

u a(r)drdu

≤ ∥x− y∥(
1− e−

∫ t
t−T a(s)ds)−1

∫ t

t−T
a(u)e−

∫ t
u a(r)drdu

= ∥x− y∥.

Thus,

∥Bx−By∥ ≤ ∥x− y∥.

One may also show in a similar way that

∥Bx−By∥ ≤ δ∥x− y∥

holds if we know the existence of a 0 < δ < 1, such that for all ε > 0

[
x,y ∈ML, ∥x− y∥ ≥ ε

]
⇒∥Hx−Hy∥ ≤ δ∥x− y∥.

The proof is complete.

By Lemma 3.2.1, φ is a solution of (3.1) if

φ = Aφ+Bφ,
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where B and A are given by (3.14) and (3.15) respectively. By Lemma 3.3.2, A :

ML → ML is completely continuous. By Lemma 3.3.3, Aφ+Bψ ∈ ML whenever

φ,ψ ∈ ML. Moreover, B : ML → ML is a large contraction by Lemma 3.3.5. Thus

all the hypotheses of Theorem 2.3.7 are satisfied. Thus, there exists a fixed point

φ ∈ML such that φ = Aφ+Bφ. Hence (3.1) has a T− periodic solution.
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CHAPTER FOUR

ASYMPTOTIC STABILITY FOR NEUTRAL DIFFERENTIAL

EQUATIONS WITH FUNCTIONAL DELAY

4.1 Introduction

In this Chapter we prove that the zero solution of totally nonlinear neutral

differential equations are asymptotically stable. As pointed out in the introduction of

Chapter three, a number of authors have considered similar forms of the equation we

consider in this Chapter where h(x(t)) = x(t). In the previous Chapter, we obtained

sufficient conditions for the existence of periodic solutions of the equation which we

consider in this Chapter.

We consider the totally nonlinear neutral differential equation

x′(t) =−a(t)h(x(t))+ c(t)x′(t −g(t))+b(t)q
(
x(t −g(t)

)
, t ≥ 0 (4.1)

with an initial function x(t) = ψ(t), t ∈ [n0,0], with ψ ∈C([n0,0],R), [n0,0] = {z ≤

0 | z= t−g(t), t ≥ 0}. We assume in this paper that a,h,b,q ∈C(R+,R) with a(t)≥

0, c ∈C1(R+,R) and g ∈C2(R+,R) such that

g′(t) ̸= 1, t ∈ R+. (4.2)

We further assume that h(0) = 0, q(0) = 0, and there is positive constant ρ such that

|q(x)−q(y)| ≤ ρ|x− y|, (4.3)

for all t ≥ 0.

The rest of the Chapter is organized as follows. In section two we introduce

some preliminary material relevant for our work in this Chapter. The last section

contains a statement of our main results of this Chapter together with its proof.
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4.2 Preliminaries

Define S to be the Banach space of bounded continuous functions φ : [n0,∞)→

R with the supremum norm ||.||. Suppose L is a positive real number. Then let

M =
{

φ ∈ S | φ(t) = ψ(t) if t ∈ [n0,0], |φ(t)| ≤ L for t ∈ [n0,∞),

and φ(t)→ 0 as t → ∞
}
.

The set M is therefore convex, bounded and complete when endowed with the supre-

mum norm ||.||.

In this chapter we make the following assumptions. Let µ(t) = c(t)
(1−g′(t)) and

assume that there are constants k1,k3 > 0 such that for 0 ≤ t1 < t2∣∣∣∫ t2

t1
a(u)du

∣∣∣≤ k1|t2 − t1|, (4.4)

and

|µ(t2)−µ(t1)| ≤ k3|t2 − t1|. (4.5)

Suppose that for t ≥ 0,

sup
t≥0

| c(t)
(1−g′(t))

|= α, (4.6)

|b(t)|< a(t), (4.7)

|r(t)|< δa(t), (4.8)

and

J(ρ+α+δ)≤ 1, (4.9)

where α, ρ, δ and J are positive constants with J > 3.

We assume further that

t −g(t)→ ∞ and
∫ t

0
a(u)du → ∞ as t → ∞. (4.10)
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Lemma 4.2.1. Suppose (4.2) hold. Then x(t) is a solution of equation (4.1) if and

only if

x(t) =
[
ψ(0)− c(0)ψ(−g(0))

1−g′(0)

]
e−

∫ t
0 a(s)ds +

c(t)
1−g′(t)

x(t −g(t))+∫ t

0

[
a(u)H(x(u))− r(u)x(u−g(u))+b(u)q(x(u−g(u)))

]
e−

∫ t
u a(s)ds du ,

(4.11)

where

r(u) =

(
c′(u)− c(u)a(u)

)(
1−g′(u)

)
+g′′(u)c(u)

(1−g′(u))2 , (4.12)

and

H(x(u)) = x(u)−h(x(u)). (4.13)

Proof. We first rewrite (4.1) in the form

x′(t)+a(t)x(t) = a(t)H(x(t))+ c(t)x′(t −g(t))+b(t)q
(
x(t −g(t)

)
.

(4.14)

Multiply both sides of (4.14) by e
∫ t

0 a(s)ds and then integrate from 0 to t to obtain

x(t) = ψ(0)e−
∫ t

0 a(s)ds +
∫ t

0

[
a(u)H(x(u))+ c(u)x′(u−g(u))

+b(u)q(x(u−g(u)))
]
e
∫ u

0 a(s)dsdu. (4.15)

Rewrite

∫ t

0
c(u)x′(u−g(u))e−

∫ t
u a(s)dsdu

=
∫ t

0

c(u)x′(u−g(u))(1−g′(u))
(1−g′(u))

e−
∫ t

u a(s)dsdu.

We integrate the above integral by parts. Let

U =
c(u)

1−g′(u)
e−

∫ t
u a(s)ds, and dV = x′(u−g(u))(1−g′(u))du.
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Thus

dU =
(1−g′(u))[c′(u)e−

∫ t
u a(s)ds + c(u)a(u)e−

∫ t
u a(s)ds]− c(u)e−

∫ t
u a(s)ds(−g′′(u))

[1−g′(u)]2

=

(
(1−g′(u))[c′(u)+ c(u)a(u)]− c(u)(−g′′(u))

)
e−

∫ t
u a(s)ds

[1−g′(u)]2
.

= r(u)e−
∫ t

u a(s)ds.

Also, with z = u−g(u) we obtain

V =
∫

x′(u−g(u))(1−g′(u))du

=
∫

x′(z)dz

= x(u−g(u)).

We therefore have that∫ t

0
c(u)x′(u−g(u))e−

∫ t
u a(s)dsdu

=
c(t)

1−g′(t)
x(t −g(t))− c(0)ψ(−g(0))

1−g′(0)
e−

∫ t
0 a(s)ds

−
∫ t

0
r(u)e−

∫ t
u a(s)dsx(u−g(u))du ,

(4.16)

where r(u) is given by (4.12). Then substituting (4.16) into (4.15) gives the desired

results. Since each step in the above work is reversible, the proof is complete.

In order to employ Theorem 2.3.7 we need to define an operator P that is a

sum of two operators, one of which is completely continuous and the other a large

contraction. Thus let (Pφ)(t) = Aφ(t)+Bφ(t) where A,B : M→M are defined by

(Bφ)(t) =
[
ψ(0)− c(0)ψ(−g(0))

1−g′(0)

]
e−

∫ t
0 a(s)ds

+
∫ t

0
a(u)H(φ(u))e−

∫ t
u a(s)dsdu, (4.17)

and

(Aφ)(t) =
c(t)

1−g′(t)
φ(t −g(t))−

∫ t

0
r(u)φ(u−g(u))e−

∫ t
u a(s)dsdu

+
∫ t

0
b(u)q(φ(u−g(u)))e−

∫ t
u a(s)dsdu (4.18)

respectively.

74



4.3 Asymptotic Stability

In this section we state and prove our main results of this Chapter.

Lemma 4.3.1. Suppose that conditions (4.3), (4.6)-(4.10) hold. Then for the map A

defined in (4.18), |Aφ(t)| ≤ L/J < L. Moreover, Aφ(t)→ 0 as t → ∞.

Proof. Let φ ∈M. Using the expression of the map A and the conditions (4.6)-(4.9)

we have that

|Aφ(t)| ≤
∣∣∣ c(t)
1−g′(t)

φ(t −g(t))
∣∣∣+ ∫ t

0
|r(u)φ(u−g(u))|e−

∫ t
u a(s)dsdu

+
∫ t

0
|b(u)q(φ(u−g(u)))|e−

∫ t
u a(s)dsdu

≤ αL+Lδ
∫ t

0
a(u)e−

∫ t
u a(s)dsdu

+ Lρ
∫ t

0
a(u)e−

∫ t
u a(s)dsdu

= αL+Lδ
∫ t

0

d
du

(e−
∫ t

u a(s)ds)du

+ Lρ
∫ t

0

d
du

(e−
∫ t

u a(s)ds)du

≤ L(α+δ+ρ)

≤ L
J
< L.

Thus showing that Aφ(t) is bounded by L.

We will next prove that Aφ(t)→ 0 as t → ∞. The first term on the right hand

side of the map A tends to zero by the condition that t −g(t)→ ∞ as t → ∞ and the

fact that φ ∈M. Finally we show that the remaining integral terms goes to zero as

t → ∞. Since φ(t) → 0 and t − g(t) → ∞ as t → ∞, for each ε > 0, there exists a

T > 0 such that t ≥ T implies |φ(t −g(t))|< ε. Thus for t ≥ T we have∣∣∣∫ t

0

[
b(u)q(φ(u−g(u)))− r(u)φ(u−g(u))

]
e−

∫ t
u a(s)dsdu

∣∣∣
≤

∫ T

0

∣∣∣b(u)q(φ(u−g(u)))− r(u)φ(u−g(u))
∣∣∣e−∫ t

u a(s)dsdu

+
∫ t

T

∣∣∣b(u)q(φ(u−g(u)))− r(u)φ(u−g(u))
∣∣∣e−∫ t

u a(s)dsdu

≤ L(ρ+δ)e−
∫ t

T a(s)ds + ε(ρ+δ).

75



In view of condition (4.10), the term L(ρ+ δ)e−
∫ t

T a(s)ds is arbitrarily small. This

completes the proof.

Lemma 4.3.2. Suppose (4.6)-(4.10) hold. Suppose also that

∫ t

0

[
|a(u)||H(φ(u))|

]
e−

∫ t
u a(r)drdu ≤ 2L

3
.

(4.19)

For B,A defined by (4.17) and (4.18), if φ,ψ ∈M are arbitrary, then

||Aφ+Bψ|| ≤ L.

Moreover, Bφ → 0 as t → ∞.

Proof. Let L > 0 be given. Choose γ > 0 such that

(
1−

∣∣∣ c(0)
1−g′(0)

∣∣∣)γe−
∫ t

0 a(s)ds +
L
J
+

2L
3

≤ L. (4.20)

Let ψ : [n0,0]→ R be a given initial function such that ||ψ|| ≤ γ. Also let φ,ψ ∈M

be arbitrary. Using the definition of B and the result of Lemma 4.2.1, we obtain

|(Aφ)(t)+(Bϕ)(t)|

≤
∣∣∣ c(t)
1−g′(t)

φ(t −g(t))
∣∣∣+∫ t

0
|r(u)φ(u−g(u))|e−

∫ t
u a(s)dsdu

+
∫ t

0
|b(u)q(φ(u−g(u)))|e−

∫ t
u a(s)dsdu

+
∣∣∣ψ(0)− c(0)ψ(−g(0))

1−g′(0)

∣∣∣e−∫ t
0 a(s)ds

+
∫ t

0
a(u)|H(ϕ(u))|e−

∫ t
u a(s)dsdu

≤
(

1−
∣∣∣ c(0)
1−g′(0)

∣∣∣)γe−
∫ t

0 a(s)ds +
L
J
+

2L
3

≤ L.

Thus ||Aφ+Bψ|| ≤ L.

Since 0 ∈M, we have also proved that |Bψ(t)| ≤ L.

We next show that Bφ → 0 as t → ∞. The first term on the right hand side of
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the map B tends to zero because of condition (4.10). Now, let φ ∈M. Then suppose

that in view of the fact that φ(t) → 0 as t → ∞, we can find a T ≥ 0 such that for

t ≥ T there exist an ε > 0 such that |φ(t)−h(φ(t))| ≤ ε. Then∣∣∣∫ t

0
a(u)H(φ(u))e−

∫ t
u a(s)dsdu

∣∣∣
≤

∫ T

0
|a(u)H(φ(u))|e−

∫ t
u a(s)dsdu

+
∫ t

T
|a(u)H(φ(u))|e−

∫ t
u a(s)dsdu

≤ 2L
3

e−
∫ t

T a(s)ds + ε

In view of condition (4.10), the term 2L
3 e−

∫ t
T a(s)ds is arbitrarily small. This com-

pletes the proof.

Lemma 4.3.3. Suppose that (4.3), (4.6)-(4.9) hold. Then, the mapping A is continu-

ous on M.

Proof. Let ε > 0 be given. Choose η = εJ such that ||φ−ϕ|| ≤ η.

|(Aφ)(t)− (Aϕ)(t)| ≤ α|φ(t −g(t))−ϕ(t −g(t))|

+
∣∣∣∫ t

0
r(u)[φ(u−g(u))−ϕ(u−g(u))]

∣∣∣e−∫ t
u a(s)dsdu

+
∣∣∣∫ t

0
b(u)[q(φ(u−g(u)))−q(ϕ(u−g(u)))]

∣∣∣
× e−

∫ t
u a(s)dsdu

≤ α||φ−ϕ||

+ δ
∫ t

0
a(u)

∣∣∣e−∫ t
u a(s)dsdu||φ−ϕ||

+ ρ
∫ t

0
a(u)e−

∫ t
u a(s)dsdu∥|φ−ϕ||

≤ (α+δ+ρ)||φ−ϕ||

≤ 1
J
||φ−ϕ||

≤ ε.

Therefore A is continuous. This completes the proof.

Lemma 4.3.4. Suppose that (4.3), (4.4)-(4.8) hold. Then, the operator A maps M

into a compact subset of M.
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Proof. It follows from Lemma 4.3.1 that ||A(φn)|| ≤ L, and so the family Aφ of

functions are uniformly bounded. We next show that Aφ is equicontinuous. Let ε> 0

be given. Choose δ1 = ε/K where K = Lk3+3Lδk1+3Lρk1 such that |t2− t1|< δ1.

Let φ ∈M and let 0 ≤ t1 < t2. Then,

|Aφn(t2)−Aφn(t1)|

≤
∣∣∣ c(t2)
1−g′(t2)

φn(t2 −g(t2))−
c(t1)

1−g′(t1)
φn(t1 −g(t1))

∣∣∣
+
∣∣∣∫ t2

0
r(u)φn(u−g(u))e−

∫ t2
u a(s)dsdu

−
∫ t1

0
r(u)φn(u−g(u))e−

∫ t1
u a(s)dsdu

∣∣∣
+
∣∣∣∫ t2

0
|b(u)q(φn(u−g(u)))|e−

∫ t2
u a(s)dsdu

−
∫ t1

0
|b(u)q(φn(u−g(u)))|e−

∫ t1
u a(s)dsdu

∣∣∣
(4.21)

By condition (4.5), we have that

|µ(t2)φn(t2 −g(t2))−µ(t1)φn(t1 −g(t1))
∣∣∣

≤ L|µ(t2)−µ(t1)|

≤ Lk3|t2 − t1|. (4.22)

Moreover,∣∣∣∫ t2

0
r(u)φn(u−g(u))e−

∫ t2
u a(s)dsdu−

∫ t1

0
r(u)φn(u−g(u))e−

∫ t1
u a(s)dsdu

∣∣∣
=

∣∣∣∫ t1

0
r(u)φn(u−g(u))e−

∫ t2
u a(s)dsdu+

∫ t2

t1
r(u)φn(u−g(u))e−

∫ t2
u a(s)dsdu

−
∫ t1

0
r(u)φn(u−g(u))e−

∫ t1
u a(s)dsdu

∣∣∣
=

∣∣∣∫ t1

0
r(u)φn(u−g(u))e−

∫ t1
u a(s)ds

(
e−

∫ t2
t1

a(s)ds −1
)

du

+
∫ t2

t1
r(u)φn(u−g(u))e−

∫ t2
u a(s)dsdu

∣∣∣
≤ L

∣∣∣e−∫ t2
t1

a(s)ds −1
∣∣∣∫ t1

0
δa(u)e−

∫ t1
u a(s)dsdu+L

∫ t2

t1
|r(u)|e−

∫ t2
u a(s)dsdu

≤ Lδ
∫ t2

t1
a(u)du+L

∫ t2

t1
e−

∫ t2
u a(s)dsd

(∫ u

t1
|r(v)|dv

)
≤ Lδ

∫ t2

t1
a(u)du+L

[
e−

∫ t2
u a(s)ds

(∫ u

t1
|r(v)|dv

)]t2

t1
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+ L
∫ t2

t1
a(u)e−

∫ t2
u a(s)ds

∫ u

t1
|r(v)|dvdu

≤ Lδ
∫ t2

t1
a(u)du+L

∫ t2

t1
|r(u)|du

(
1+

∫ t2

t1
a(u)e−

∫ t2
u a(s)dsdu

)
≤ Lδ

∫ t2

t1
a(u)du+2L

∫ t2

t1
|r(u)|du

≤ Lδ
∫ t2

t1
a(u)du+2δL

∫ t2

t1
a(u)du

≤ 3Lδk1|t2 − t1|. (4.23)

Also, by (4.4) and (4.7) we obtain∣∣∣∫ t2

0
|b(u)q(φn(u−g(u)))|e−

∫ t2
u a(s)dsdu

−
∫ t1

0
|b(u)q(φn(u−g(u)))|e−

∫ t1
u a(s)dsdu

∣∣∣
=

∣∣∣∫ t1

0
b(u)q(φn(u−g(u)))e−

∫ t1
u a(s)ds

(
e−

∫ t2
t1

a(s)ds −1
)

du

+
∫ t2

t1
b(u)q(φn(u−g(u)))e−

∫ t2
u a(s)dsdu

∣∣∣
≤ L

∣∣∣e−∫ t2
t1

a(s)ds −1
∣∣∣∫ t1

0
ρa(u)e−

∫ t1
u a(s)dsdu+Lρ

∫ t2

t1
|b(u)|e−

∫ t2
u a(s)dsdu

≤ Lρ
∫ t2

t1
a(u)du+Lρ

∫ t2

t1
e−

∫ t2
u a(s)dsd

(∫ u

t1
|b(v)|dv

)
≤ Lρ

∫ t2

t1
a(u)du+Lρ

([
e−

∫ t2
u a(s)ds

∫ u

t1
|b(v)|dv

]t2

t1

+
∫ t2

t1
a(u)e−

∫ t2
u a(s)ds

∫ u

t1
|b(v)|dvdu

)
≤ Lρ

∫ t2

t1
a(u)du+Lρ

∫ t2

t1
|b(u)|du

(
1+

∫ t2

t1
a(u)e−

∫ t2
u a(s)dsdu

)
≤ Lρ

∫ t2

t1
a(u)du+2Lρ

∫ t2

t1
|b(u)|du

≤ Lρ
∫ t2

t1
a(u)du+2Lρ

∫ t2

t1
a(u)du

≤ 3Lρk1|t2 − t1|. (4.24)

Substituting (4.22)-(4.24) into (4.21) gives

|Aφn(t2)−Aφn(t1)|

≤ Lk3|t2 − t1|+3Lδk1|t2 − t1|+3Lρk1|t2 − t1|

≤ K|t2 − t1|< ε. (4.25)

Therefore, AM is equicontinuous. Then by the Ascoli-Arzela theorem we that AM
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resides in a compact set. �

In the next lemma we prove that H is a large contraction on M. To this end we

make the following assumptions on the function h : R→ R.

(H1) h is continuous and differentiable on UL = [−L,L].

(H2) h is strictly increasing on UL.

(H3) sups∈UL
h′(s)≤ 1.

(H4) (s−r)
{

supt∈UL
h′(t)

}
≥ h(s)−h(r)≥ (s−r)

{
inft∈UL h′(t)

}
≥ 0 for s,r ∈UL

with s ≥ r.

Lemma 4.3.5. Let h : R→ R be a function satisfying (H1)− (H4). Then the map-

ping H is a large contraction on the set M.

Proof. Let ϕ,φ ∈M with ϕ ̸= φ. Then ϕ(t) ̸= φ(t) for some t ∈ R. Define the set

D(ϕ,φ) =
{

t ∈ R : ϕ(t) ̸= φ(t)
}
.

Note that φ(t) ∈UL for all t ∈ R whenever φ ∈M. Since h is strictly increasing

h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

=
h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)
> 0 (4.26)

holds for all t ∈ D(ϕ,φ). By (H3) we have

1 ≥ sup
t∈UL

h′(t)≥ inf
s∈UL

h′(s)≥ 0. (4.27)

Define the set Ut ⊂UL by Ut = [φ(t),ϕ(t)]∩UL if ϕ(t)> φ(t), and Ut = [ϕ(t),φ(t)]∩

UL if ϕ(t)< φ(t), for t ∈ D(ϕ,φ). Hence, for a fixed t0 ∈ D(ϕ,φ) we get by (H4) and

(4.26) that

sup{h′(u) : u ∈Ut0} ≥
h(ϕ(t0))−h(φ(t0))

ϕ(t0)−φ(t0)
≥ inf{h′(u) : u ∈Ut0}.

Since Ut ⊂UL for every t ∈ D(ϕ,φ), we find

sup
u∈UL

h′(u)≥ sup{h′(u) : u ∈Ut0} ≥ inf{h′(u) : u ∈Ut0} ≥ inf
u∈UL

h′(u),
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and therefore,

1 ≥ sup
u∈UL

h′(u)≥ h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

≥ inf
u∈UL

h′(u)≥ 0 (4.28)

for all t ∈ D(ϕ,φ). So, (4.28) yields

|(Hϕ)(t)− (Hφ)(t)| = |ϕ(t)−h(ϕ(t))−φ(t)+h(φ(t))|

= |ϕ(t)−φ(t)|
∣∣∣1−(h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)

)∣∣∣
≤ |ϕ(t)−φ(t)|

(
1− inf

u∈UL
h′(u)

)
(4.29)

for all t ∈ D(ϕ,φ). Thus, (4.28) and (4.29) imply that H is a large contraction in the

supremum norm. To see this choose a fixed ε ∈ (0,1) and assume that ϕ and φ are

two functions in M satisfying

∥ϕ−φ∥= sup
t∈[−L,L]

|ϕ(t)−φ(t)| ≥ ε.

If |ϕ(t)−φ(t)| ≤ ε/2 for some t ∈ D(ϕ,φ), then from (4.29)

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)| ≤ 1
2
∥ϕ−φ∥. (4.30)

Since h is continuous and strictly increasing, the function h(u+ ε
2)−h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |ϕ(t)−φ(t)| for

some t ∈ D(ϕ,φ), then from (4.28) and (H3) we conclude that

1 ≥ h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

> λ,

and therefore,

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)|
{

1− h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

}
≤ (1−λ)∥ϕ(t)−φ(t)∥, (4.31)

where

λ :=
1

2L
min

{
h(u+

ε
2
)−h(u),u ∈ [−L,L]

}
> 0.

Consequently, it follows from (4.30) and (4.31) that

|(Hϕ(t)− (Hφ)(t)| ≤ δ∥ϕ−φ∥,

81



where δ = max
{

1
2 ,1−λ

}
< 1. The proof is complete.

The next result gives a relationship between the mappings H and B in the sense

of large contraction.

Lemma 4.3.6. If H is a large contraction on M then so is the mapping B.

Proof. If H is a large contraction on M, then for x,y ∈ M, with x ̸= y, we have

∥Hx−Hy∥ ≤ ∥x− y∥. Thus, it follows from the equality

a(u)e−
∫ t

u a(r)dr =
d

du
[e−

∫ t
u a(r)dr],

that

|Bx(t)−By(t)| ≤
(
1− e−

∫ t
t−T a(s)ds)−1 ×

∫ t

t−T
a(u)

∣∣H(x(u))−H(y(u))
∣∣e−∫ t

u a(r)drdu

≤ ∥x− y∥(
1− e−

∫ t
t−T a(s)ds)−1

∫ t

t−T
a(u)e−

∫ t
u a(r)drdu

= ∥x− y∥.

Thus,

∥Bx−By∥ ≤ ∥x− y∥.

One may also show in a similar way that

∥Bx−By∥ ≤ δ∥x− y∥

holds if we know the existence of a 0 < δ < 1, such that for all ε > 0

[
x,y ∈M, ∥x− y∥ ≥ ε

]
⇒∥Hx−Hy∥ ≤ δ∥x− y∥.

The proof is complete.

Theorem 4.3.7. Let L be a fixed positive number. Suppose that conditions (4.2),

(4.4)-(4.10) hold. If ψ is a given initial function which is sufficiently small then

there is a solution x(t,0,ψ) of (4.1) with |x(t,0,ψ)| ≤ L and x(t,0,ψ)→ 0 as t → ∞.
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Proof. From the hypothesis of Lemmas 4.3.1 we have that A is bounded by L, and

Aφ(t) → 0 as t → ∞. So, A maps M into M. It also follows from Lemmas 4.3.2

that for arbitrary φ,ϕ ∈M, Aφ+Bϕ ∈M, since both Aφ and Bϕ are bounded by L

and Bϕ → 0 as t → ∞. Also, in view of Lemmas 4.3.3 and 4.3.4, we have that A

is continuous and AM resides in a compact set. Finally, B is a large contraction by

Lemma 4.3.6. Thus, all the conditions of Theorem 2.3.7 are satisfied. Therefore,

there exists a solution of (4.1) with |x(t,0,ψ)| ≤ L and x(t,0,ψ)→ 0 as t → ∞. The

proof is complete.
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CHAPTER FIVE

Existence and positivity of solutions for nonlinear periodic

differential equations

5.1 Introduction

Let T > 0 be fixed. We consider the non-linear neutral periodic equation

x′(t) = −a(t)x3(t)+ c(t)x′(g(t))g′(t)+q(t,x3(g(t))),

x(t) = x(t +T ). (5.1)

In recent years, there have been several papers written on the stability and pe-

riodicity of solutions for equations of forms similar to equation (5.1); see Burton

(2002), Deham and Djoudi (2008) and Deham and Djoudi (2010). In the above

mentioned papers, the nonlinear term q and the function a are assumed to be con-

tinuous in all arguments. The objective of this Chapter is to prove the existence and

positivity of solutions of the periodic differential equation (5.1) by imposing much

weaker conditions on the nonlinear term q and the argument function a. Specifically,

we assume that q satisfies Carathéodory conditions and a ∈ L1(R,R).

The map f : [0,T ]×Rn → R is said to satisfy Carathéodory conditions with

respect to L1[0,T ] if the following conditions hold.

(i) For each z ∈ Rn, the mapping t 7→ f (t,z) is Lebesgue measurable.

(ii) For almost all t ∈ [0,T ], the mapping z 7→ f (t,z) is continuous on Rn.

(iii) For each r > 0, there exists αr ∈ L1([0,T ],R) such that for almost all t ∈ [0,T ]

and for all z such that |z|< r, we have | f (t,z)| ≤ αr(t).

84



The rest of the Chapter is organized as follows. First, we present some preliminary

material that we will employ to show the existence and positivity of solutions in

this Chapter. In section three, we present our existence of periodic solutions results

together with its proof. Finally, we obtain conditions for positivity of solutions in

section 4.

Remark 5.1.1

The content of this Chapter has been published as:

E. Yankson, ” Existence and positivity of solutions for a nonlinear periodic differen-

tial equation,” Archivum Mathematicum (BRNO), 48 (2012), pp. 261-270.

5.2 Preliminaries

Define the set PT = {ϕ ∈ C(R,R) : ϕ(t + T ) = ϕ(t)} and the norm ||ϕ|| =

supt∈[0,T ] |ϕ(t)|, where C is the space of continuous real valued functions. Then

(PT , ||.||) is a Banach space. In this Chapter we make the following assumptions.

(D1) a ∈ L1(R,R) is bounded and satisfies a(t +T ) = a(t) for all t and

1− e−
∫ t

t−T a(r)dr ≡ 1
ρ
̸= 0.

(D2) c ∈C1(R,R) satisfies c(t +T ) = c(t) for all t.

(D3) g ∈C1(R,R) satisfies g(t +T ) = g(t) for all t.

(D4) q satisfies Carathéodory conditions with respect to L1[0,T ], and

q(t +T,x) = q(t,x).

Lemma 5.2.1. Suppose that conditions (D1), (D2), (D3), and (D4) hold. Then

x ∈ PT is a solution of equation (5.1) if and only if, x ∈ PT satisfies

x(t) = c(t)x(g(t))+ρ
∫ t

t−T
a(u)[x(u)− x3(u)]e−

∫ t
u a(r)drdu

+ ρ
∫ t

t−T
[q(u,x3(g(u)))− r(u)x(g(u))]e−

∫ t
u a(r)drdu (5.2)

where r(u) = a(u)c(u)+ c′(u).
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Proof. Let x ∈ PT be a solution of (5.1). We first rewrite (5.1) in the form

x′(t)+a(t)x(t) = a(t)x(t)−a(t)x3(t)+ c(t)x′(g(t))g′(t)+q(t,x3(g(t))).

Multiply both sides of the above equation by e
∫ t

0 a(s)ds and then integrate the resulting

equation from t −T to t. Thus we obtain,

x(t)e
∫ t

0 a(s)ds − x(t −T )e
∫ t−T

0 a(s)ds =
∫ t

t−T

[
a(u)

(
x(u)− x3(u)

)
(5.3)

+ c(u)x′(g(u))g′(u)

+ q(u,x3(g(u)))
]
e
∫ u

0 a(s)dsdu.

Dividing both sides of (5.3) by e
∫ t

0 a(s)ds and using the fact that x ∈ PT we obtain

x(t)
1
ρ

=
∫ t

t−T

[
a(u)

(
x(u)− x3(u)

)
+ c(u)x′(g(u))g′(u)

+ q(u,x3(g(u)))
]
e−

∫ t
u a(s)dsdu.

(5.4)

Integrating the second term on the right hand side of (5.4) by parts gives

∫ t

t−T
c(u)x′(g(u))g′(u)e−

∫ t
u a(s)dsdu = c(t)x(g(t))

− e−
∫ t

t−T a(s)dsc(t −T )x(g(t −T ))

−
∫ t

t−T

d
du

[
c(u)e−

∫ t
u a(s)ds]x(g(u))du.

Since c(t) = c(t −T ),g(t) = g(t −T ), and x ∈ PT , then

∫ t

t−T
c(u)x′(g(u))g′(u)e−

∫ t
u a(s)dsdu =

1
ρ

c(t)x(g(t)) (5.5)

−
∫ t

t−T

d
du

[
c(u)e−

∫ t
u a(s)ds]x(g(u))du.

Substituting the right hand side of (5.5) into (5.4) and simplifying gives the desired

result.

The converse implication is easily obtained and the proof is complete.
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5.3 Existence of periodic solution

In this section we state and prove our existence results. In view of this we first

define the operator H by

(Hφ)(t) = c(t)φ(g(t))+ρ
∫ t

t−T
a(u)[φ(u)−φ3(u)]e−

∫ t
u a(r)drdu

+ ρ
∫ t

t−T
[q(u,φ3(g(u)))− r(u)φ(g(u))]e−

∫ t
u a(r)drdu, (5.6)

where r is given in Lemma 5.2.1. It therefore follows from Lemma 5.2.1 that fixed

points of H are solutions of (5.1) and vice versa.

In order to employ Theorem 2.3.7 we need to express the operator H as a sum

of two operators, one of which is completely continuous and the other is a large

contraction. Let (Hφ)(t) = Aφ(t)+Bφ(t) where A,B : PT → PT are defined by

(Bφ)(t) = ρ
∫ t

t−T
a(u)[φ(u)−φ3(u)]e−

∫ t
u a(r)drdu, (5.7)

and

(Aφ)(t) = c(t)φ(g(t))+ρ
∫ t

t−T
[q(u,φ3(g(u)))− r(u)φ(g(u))]e−

∫ t
u a(r)drdu

(5.8)

respectively.

Lemma 5.3.1. Suppose that conditions (D1), (D2), (D3), and (D4) hold. Then

A : PT → PT is completely continuous.

Proof. It follows from (5.8) and conditions (D1), (D2), that r(σ+T ) = r(σ) and

e−
∫ t+T

σ+T a(r)dr = e−
∫ t

σ a(u)du. Consequently, we have that

(Aφ)(t +T ) = c(t +T )φ(g(t +T ))

+ ρ
∫ t+T

t
[q(u,φ3(g(u)))− r(u)φ(g(u))]e−

∫ t+T
u a(r)drdu

= c(t)φ(g(t))

+ ρ
∫ t

t−T
[q(k+T,φ3(g(k+T )))− r(k+T )φ(g(k+T ))]

× e−
∫ t+T

k+T a(r)drdu
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= c(t)φ(g(t))

+ ρ
∫ t

t−T
[q(k,φ3(g(k)))− r(k)φ(g(k))]e−

∫ t
k a(s)dsdu

= (Aφ)(t).

That is, if φ ∈ PT then Aφ is periodic with period T.

To see that A is continuous let {φi} ⊂ PT be such that φi → φ. By the Domi-

nated Convergence Theorem,

lim
i→∞

|Aφi(t)−Aφ(t)|

≤ lim
i→∞

(
|c(t)||φi(g(t))−φ(g(t))|

+ ρ
∫ t

t−T

(∣∣q(u,φ3
i (g(u)))−q(u,φ3(g(u)))

∣∣
+ |r(u)|

∣∣φi(g(u))−φ(g(u))
∣∣)e−

∫ t
u a(r)drdu

)
→ 0.

Hence A : PT → PT .

We next show that A is completely continuous. Let Q ⊂ PT be a closed

bounded subset and let µ be such that ||φ|| ≤ µ for all φ ∈ Q. Then

|Aφ(t)| ≤ νµ+ρ
∫ t

t−T

(
|q(u,φ3(g(u)))|+ |r(u)||φ(g(u))|

)
e−

∫ t
u a(r)drdu

≤ νµ+ρN
(∫ t

t−T
αµ(u)du+µ

∫ t

t−T
|r(u)|du

)
≡ K,

where ν=maxt∈[0,T ] c(t) and N =maxu∈[t−T,t] e−
∫ t

u a(r)dr. And so the family of func-

tions Aφ is uniformly bounded. Again, let φ ∈ Q. Without loss of generality, we can

pick τ < t such that t − τ < T. Then

|Aφ(t)−Aφ(τ)|

=
∣∣∣c(t)φ(t)+ρ

∫ t

t−T

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ t
s a(r)drds

− c(τ)φ(τ)−ρ
∫ τ

τ−T

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ τ
s a(r)drds

∣∣∣
=

∣∣∣c(t)φ(t)+ρ
∫ τ

t−T

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ t
s a(r)drds

+ ρ
∫ t

τ

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ t
s a(r)drds

− c(τ)φ(τ)−ρ
∫ t−T

τ−T

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ τ
s a(r)drds
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− ρ
∫ τ

t−T

(
q(s,φ3(g(s)))− r(s)φ(g(s))

)
e−

∫ τ
s a(r)drds

∣∣∣
≤

∣∣∣c(t)φ(t)− c(τ)φ(τ)
∣∣∣+ρ

∫ t

τ

(
|q(s,φ3(g(s)))|+ |r(s)||φ(g(s))|

)
e−

∫ t
s a(r)drds

+ ρ
∫ τ

t−T

(
|q(s,φ3(g(s)))|+ |r(s)||φ(g(s))|

)∣∣∣e−∫ t
s a(r)drds− e−

∫ τ
s a(r)drds

∣∣∣
+ ρ

∫ t−T

τ−T

(
|q(s,φ3(g(s)))|+ |r(s)||φ(g(s))|

)
e−

∫ τ
s a(r)drds

≤
∣∣∣c(t)φ(t)− c(τ)φ(τ)

∣∣∣+2ρN
(∫ t

τ
αµ(s)+µ|r(s)|ds

)
+ ρ

∫ τ

t−T

(
αµ(s)+µ|r(s)|

)∣∣∣e−∫ t
s a(r)drds− e−

∫ τ
s a(r)dr

∣∣∣ds.

Now |c(t)φ(t)− c(τ)φ(τ)
∣∣∣ → 0 and

∫ t
τ αµ(s)+ µ|r(s)|ds → 0 as (t − τ) → 0. Also,

since

∫ τ

t−T

(
αµ(s)+µ|r(s)|

)∣∣∣e−∫ t
s a(r)drds− e−

∫ τ
s a(r)dr

∣∣∣ds

≤
∫ T

0

(
αµ(s)+µ|r(s)|

)∣∣∣e−∫ t
s a(r)drds− e−

∫ τ
s a(r)dr

∣∣∣ds,

and |e−
∫ t

s a(r)drds− e−
∫ τ

s a(r)dr
∣∣∣→ 0 as (t − τ)→ 0, then by the Dominated Conver-

gence Theorem,

∫ τ

t−T

(
αµ(s)+µ|r(s)|

)∣∣∣e−∫ t
s a(r)drds− e−

∫ τ
s a(r)dr

∣∣∣ds → 0

as (t −τ)→ 0. Thus |Aφ(t)−Aφ(τ)| → 0 as as (t −τ)→ 0 independently of φ ∈ Q.

It therefore follows that the family of Aφ is equicontinuous on Q.

By the Arzelà-Ascoli Theorem, A is completely continuous and the proof is com-

plete.

Lemma 5.3.2. Let ||.|| be the supremum norm, and

M= {φ : R→ R : φ ∈C, ||φ|| ≤
√

3/3}.

If (Fφ)(t) = φ(t)−φ3(t). Then F is a large contraction of the set M.
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Proof. For each t ∈ R we have, for φ,ψ real functions,

|(Fφ)(t)− (Fψ)(t)| = |φ(t)−φ3(t)−ψ(t)+ψ3(t)|

= |φ(t)−ψ(t)||1− (|φ2(t)+φ(t)ψ(t)+ψ2(t))|.

Then for

|φ(t)−ψ(t)|2 = φ2(t)−2φ(t)ψ(t)+ψ2(t)| ≤ 2(φ2(t)+ψ2(t))

and for φ2(t)+ψ2(t)< 1, we have

|(Fφ)(t)− (Fψ)(t)| = |φ(t)−ψ(t)|
[
1− (φ2(t)+ψ2(t))+ |φ(t)ψ(t)|

]
≤ |φ(t)−ψ(t)|

[
1− (φ2(t)+ψ2(t))+

φ2(t)+ψ2(t)
2

]
≤ |φ(t)−ψ(t)|

[
1− φ2(t)+ψ2(t)

2

]
.

Thus, we have shown that pointwise F is a large contraction. It is easy to see that

this implies a large contraction in the supremum norm.

For a given ε ∈ (0,1), let φ,ψ ∈M with ||φ−ψ|| ≥ ε.

(a) Suppose that for some t we have ε/2 ≤ |φ(t)−ψ(t)| so that

(ε/2)2 ≤ |φ(t)−ψ(t)|2 ≤ 2(φ2(t)+ψ2(t))

or

φ2(t)+ψ2(t)≥ ε2/8.

For all such t we have

|(Fφ)(t)− (Fψ)(t)| ≤ |φ(t)−ψ(t)|
[
1− ε2

16
]

≤ ||φ−ψ|
[
1− ε2

16
]
.

(b) Suppose that for some t, we have |φ(t)−ψ(t)| ≤ ε/2. Then

|(Fφ)(t)− (Fψ)(t)| ≤ |φ(t)−ψ(t)|

≤ (1/2)||φ−ψ||.
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Thus, for all t we have

|(Fφ)(t)− (Fψ)(t)| ≤ min[1/2,1− ε2

16
]||φ−ψ||.

The proof is complete.

For the rest of the Chapter we define

M= {φ ∈ PT | ||φ|| ≤ L},

where L =
√

3/3.

We also need the following condition on the nonlinear term q.

(D5) There exists periodic functions α,β,∈ L1[0,T ], with period T , such that

|q(t,x)| ≤ α(t)|x|+β(t),

for all x ∈ R.

Lemma 5.3.3. Suppose that (D5) hold. Also suppose there exist constants λ >

0,R > 0, J ≥ 3 and γ > 0 such that

|α(t)|L3 + |β(t)| ≤ λLa(t), (5.9)

|r(t)| ≤ Ra(t), (5.10)

γ = max
t∈[0,T ]

|c(t)|, (5.11)

and

J(γ+λ+R)≤ 1. (5.12)

For A defined by (5.8), if φ ∈M, then |(Aφ)(t)| ≤ L/J ≤ L for all t.

91



Proof. Let φ ∈M. Then ||φ|| ≤ L. Thus for A defined by (5.8) we have that

|(Aφ)(t)| ≤ |c(t)φ(g(t))|

+ ρ
∫ t

t−T
|q(u,φ3(g(u)))|e−

∫ t
u a(r)drdu

+ ρ
∫ t

t−T
|r(u)φ(g(u))|e−

∫ t
u a(r)drdu

It follows from conditions (D5), (5.9), (5.10), (5.11) and (5.12) that

|(Aφ)(t)| ≤ γL

+ ρ
∫ t

t−T
[|α(u)|L3 + |β(u)|]e−

∫ t
u a(r)drdu

+ ρR
∫ t

t−T
a(u)Le−

∫ t
u a(r)drdu

≤ γL

+ ρλL
∫ t

t−T
a(u)e−

∫ t
u a(r)drdu

+ ρRL
∫ t

t−T
a(u)e−

∫ t
u a(r)drdu

≤ (γ+λ+R)L ≤ L
J
< L.

Therefore A maps M into itself. This completes the proof.

Lemma 5.3.4. Suppose (D1), (D2), (D3), (D4) and (D5) hold. Suppose also that the

hypotheses in Lemma 5.3.3 hold. For B,A defined by (5.7) and (5.8), if φ,ψ ∈ M

are arbitrary, then

Aφ+Bψ : M→M.

Moreover, B is a large contraction on M with a unique fixed point in M.

Proof. Let φ,ψ ∈M be arbitrary. Note that |ψ(t)| ≤
√

3/3 implies

|ψ(t)−ψ3(t)| ≤ (2
√

3)/9.
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Using the definition of B and the result of Lemma 5.3.3, we obtain

|(Aφ)(t)+(Bψ)(t)|

≤ |c(t)φ(g(t))|+ρ
∫ t

t−T
|q(u,φ3(g(u)))|e−

∫ t
u a(r)drdu

+ ρ
∫ t

t−T
|r(u)φ(g(u))|e−

∫ t
u a(r)drdu

+
∣∣∣ρ∫ t

t−T
a(u)|ψ(u)−ψ3(u)|e−

∫ t
u a(r)drdu

∣∣∣
≤

√
3

3J
+

2
√

3
9

≤ L.

Thus Aφ+Bψ ∈M.

We will next show that B is a large contraction with a unique fixed point in M.

Lemma 5.3.2 shows that ψ−ψ3 is a large contraction in the supremum norm. Thus

for any ε, we found a δ < 1 from the proof of that proposition such that

|(Bφ)(t)− (Bψ)(t)| ≤ ρ
∫ t

t−T
a(u)δ||φ−ψ||e−

∫ t
u a(r)drdu

≤ δ||φ−ψ||.

Furthermore, since 0 ∈M the above inequality shows that, B : M→M when ψ = 0.

This completes the proof.

Theorem 5.3.5. Let (PT , ||.||) be the Banach space of continuous T -periodic real

functions and M = {φ ∈ PT | ||φ|| ≤ L}, where L =
√

3/3. Suppose (D1), (D2),

(D3), (D4), (D5) and (5.9)-(5.12) hold. Then equation (5.1) possesses a periodic

solution φ in the subset M.

Proof. By Lemma 5.2.1, φ is a solution of (5.1) if

φ = Aφ+Bφ,

where B and A are given by (5.7) and (5.8) respectively. By Lemma 5.3.1, A : M→

M is completely continuous. By Lemma 5.3.4, Aφ+Bψ ∈M whenever φ,ψ ∈M.

Moreover, B : M → M is a large contraction. Thus all the hypotheses of Theorem

2.3.7 of Krasnoselskii are satisfied. Thus, there exists a fixed point φ ∈M such that

φ = Aφ+Bφ. Hence (5.1) has a T− periodic solution. This completes the proof.
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5.4 Existence of positive solutions

In this section we obtain sufficient conditions under which there exists positive

solutions of (5.1). We begin by defining some quantities. Let

z ≡ min
s∈[t−T,t]

e−
∫ t

s a(r)dr, Z ≡ max
s∈[t−T,t]

e−
∫ t

s a(r)dr.

Given constants 0 < L <K, define the set Mp = {ψ ∈ PT : L ≤ψ(t)≤K, t ∈ [0,T ]}.

In this section we make the following assumptions.

(D6) c ∈ C1(R,R) satisfies c(t +T ) = c(t) for all t and there exists a c∗ > 0 such

that c∗ < c(t) for all t ∈ [0,T ].

(D7) There exits α such that ||c|| ≤ α < 1.

(D8) There exists constants 0 < L < K such that

(1− c∗)L
ρzT

≤ a(u)[σ−σ3]+q(u,σ3)− r(u)σ ≤ (1−α)K
ρZT

for all σ ∈M and u ∈ [t −T, t].

Theorem 5.4.1. Suppose that conditions (D1), (D3), (D4), (D6), (D7) and (D8)

hold. Then there exists a positive solution of (5.1).

Proof. Let φ,ψ ∈M. Then

Aφ(t)+Bψ(t) = c(t)φ(g(t))+ρ
∫ t

t−T

[
a(u)[ψ(u)−ψ3(u)]

+ q(u,φ3(g(u)))− r(u)φ(g(s))
]
e−

∫ t
u a(r)drdu

≥ c∗L+ρzT
(1− c∗)L

ρzT
= L.

Likewise,

Aφ(t)+Bψ(t)≤ αK +ρZT
(1−α)K

ρZT
= K.

Thus condition (i) of Theorem 2.3.6 is satisfied. From Lemma 5.3.1 the operator A is

completely continuous and from Lemma 5.3.4 the operator B is a large contraction.

Therefore, by Theorem 2.3.7, the operator H has a fixed point in Mp. This fixed

point is a positive solution of (5.1).
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CHAPTER SIX

POSITIVE PERIODIC SOLUTIONS FOR NEUTRAL

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

6.1 Introduction

Motivated by the work of Zeng (1997), Li and Shen (1997), Wang (1999) and

Lui and Ge (2003) on the existence of periodic solutions of second order differential

equations we consider the second order nonlinear neutral differential equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t) = c
d
dt

x(t − τ(t))+ f (t,h(x(t)),g(x(t − τ(t)))),

(6.1)

where p and q are positive continuous real-valued functions. The function f : R×

R×R→ R is continuous in its respective arguments and c ∈ R. None of the above

papers considered neutral second order differential equations. In fact, the equations

that were considered by Zeng (1997), Li and Shen (1997), and Wang (1999) were

without delays. However, Lui and Ge (2003) extended the results on the existence

of periodic solutions to second order equations with delay. Results on the existence

of positive periodic solutions for second order neutral delay differential equations

of the form of (6.1) are not available. Thus, our main objective in this chapter is to

fill this gap, by obtaining sufficient conditions for the existence of positive periodic

solutions for neutral differential equation of the second order.

The rest of the Chapter is organized as follows. We introduce our notation and

state some preliminary results in section two. In section three, we state our results

and provide its proof. In the last section, we extend the results obtained in section

three to totally nonlinear neutral delay differential equations of the second order.
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Remark 6.1. The content of this Chapter has been published as:

E. Yankson, ”Positive Periodic Solutions for Neutral Differential Equations of the

Second-Order,” Electronic journal of differential equations, No. 14, 2012.

6.2 Preliminaries

For T > 0, let PT be the set of continuous scalar functions x that are periodic

in t, with period T . Then (PT ,∥ · ∥) is a Banach space with the supremum norm

∥x∥= sup
t∈R

|x(t)|= sup
t∈[0,T ]

|x(t)|.

In this Chapter we make the following assumptions.

p(t +T ) = p(t), q(t +T ) = q(t), τ(t +T ) = τ(t), (6.2)

with τ being scalar function, continuous, and τ(t)≥ τ∗ > 0. Also, we assume∫ T

0
p(s)ds > 0,

∫ T

0
q(s)ds > 0. (6.3)

We also assume that f (t,h,g) is periodic in t with period T ; that is,

f (t +T,h,g) = f (t,h,g). (6.4)

Next we state some lemmas that will be relevant for our work in this Chapter.

Lemma 6.2.1.[Liu and Ge (2004)] Suppose that (6.2) and (6.3) hold and

R1[exp(
∫ T

0 p(u)du)−1]
Q1T

≥ 1, (6.5)

where

R1 = max
t∈[0,T ]

∣∣∫ t+T

t

exp(
∫ s

t p(u)du)

exp(
∫ T

0 p(u)du)−1
q(s)ds

∣∣,
Q1 =

(
1+ exp

(∫ T

0
p(u)du

))2
R2

1.

Then there are continuous and T -periodic functions a and b such that b(t) > 0,∫ T
0 a(u)du > 0, and

a(t)+b(t) = p(t),
d
dt

b(t)+a(t)b(t) = q(t), for t ∈ R.
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Lemma 6.2.2.[Wang, Lian and Ge (2007)] Suppose the conditions of Lemma 6.1.1

hold and ϕ ∈ PT . Then the equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t) = ϕ(t),

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =
∫ t+T

t
G(t,s)ϕ(s)ds,

where

G(t,s) =
∫ s

t exp[
∫ u

t b(v)dv+
∫ s

u a(v)dv]du+
∫ t+T

s exp[
∫ u

t b(v)dv+
∫ s+T

u a(v)dv]du

[exp
(∫ T

0 a(u)du
)
−1][exp

(∫ T
0 b(u)du

)
−1]

.

Corollary 6.2.3.[Wang, Lian and Ge (2007)] Green’s function G satisfies the fol-

lowing properties

G(t, t +T ) = G(t, t), G(t +T,s+T ) = G(t,s),

∂
∂s

G(t,s) = a(s)G(t,s)−
exp

(∫ s
t b(v)dv

)
exp

(∫ T
0 b(v)dv

)
−1

,

∂
∂t

G(t,s) =−b(t)G(t,s)+
exp

(∫ s
t a(v)dv

)
exp

(∫ T
0 a(v)dv

)
−1

.

We next state and prove the following lemma which will play an essential role

in obtaining our results.

Lemma 6.2.4. Suppose (6.2)-(6.5) hold. If x ∈ PT , then x is a solution of (6.1) if and

only if

x(t) =
∫ t+T

t
cE(t,s)x(s− τ(s))ds

+
∫ t+T

t
G(t,s)[−a(s)cx(s− τ(s))+ f (s,h(x(s)),g(x(s− τ(s))))]ds,

(6.6)

where

E(t,s) =
exp(

∫ s
t b(v)dv)

exp(
∫ T

0 b(v)dv)−1
. (6.7)

Proof. Let x ∈ PT be a solution of (6.1). From Lemma 6.1.2, we have

x(t) =
∫ t+T

t
G(t,s)[c

∂
∂s

x(s− τ(s))+ f (s,h(x(s)),g(x(s− τ(s))))]ds. (6.8)
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Integrating by parts, we have∫ t+T

t
cG(t,s)

∂
∂s

x(s− τ(s))ds

=−
∫ t+T

t
c[

∂
∂s

G(t,s)]x(s− τ(s))ds

=
∫ t+T

t
cx(s− τ(s))[E(t,s)−a(s)G(t,s)]ds,

(6.9)

where E is given by (6.7). Then substituting (6.9) in (6.8) completes the proof.

Lemma 6.2.5.[Wang, Lian and Ge (2007)] Let A =
∫ T

0 p(u)du,

B = T 2 exp
( 1

T
∫ T

0 ln(q(u))du
)
. If

A2 ≥ 4B, (6.10)

then

min
{∫ T

0
a(u)du,

∫ T

0
b(u)du

}
≥ 1

2
(A−

√
A2 −4B) := l,

max
{∫ T

0
a(u)du,

∫ T

0
b(u)du

}
≤ 1

2
(A+

√
A2 −4B) := m.

Corollary 6.2.6.[Wang, Lian and Ge (2007)] Functions G and E satisfy

T
(em −1)2 ≤ G(t,s)≤

T exp
(∫ T

0 p(u)du
)

(el −1)2 , |E(t,s)| ≤ em

el −1
.

To simplify notation, we introduce the constants

β =
em

el −1
, α =

T exp
(∫ T

0 p(u)du
)

(el −1)2 , γ =
T

(em −1)2 . (6.11)

6.3 Existence of positive periodic solutions

We present our existence results in this section by considering two cases; c≥ 0,

c ≤ 0. For some non-negative constant K and a positive constant L we define the set

D= {φ ∈ PT : K ≤ φ ≤ L},

which is a closed convex and bounded subset of the Banach space PT . In addition

we assume that there exist a positive constant σ such that

σ < E(t,s), for all (t,s) ∈ [0,T ]× [0,T ], (6.12)

c ≥ 0 (6.13)
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and for all s ∈ R, µ ∈ D

K(1−σcT )
γT

≤ f (s,h(µ),g(µ))− ca(s)µ ≤ L(1−βcT )
αT

. (6.14)

To apply Theorem 2.3.6, we construct two mappings in which one is a contraction

and the other is completely continuous. Thus, we define the map A : D→ PT by

(Aφ)(t)

=
∫ t+T

t
G(t,s)[ f (s,h(φ(s)),g(φ(s− τ(s))))− ca(s)φ(s− τ(s))]ds.

(6.15)

Similarly, we define the map B : D→ PT by

(Bφ)(t) =
∫ t+T

t
cE(t,s)φ(s− τ(s))ds. (6.16)

Lemma 6.3.1. If B is given by (6.16) with

cβT < 1, (6.17)

then B : D→ PT is a contraction.

Proof. Let φ ∈ D, then

(Bφ)(t +T ) =
∫ t+2T

t+T
cE(t +T,s)φ(s− τ(s))ds.

With k = s−T, we obtain

(Bφ)(t +T ) =
∫ t+T

t
cE(t +T,k+T )φ(k+T − τ(k+T ))dk

=
∫ t+T

t
cE(t,k)φ(k− τ(k))dk

= (Bφ)(t).

Let φ,ψ ∈ D then

∥Bφ−Bψ∥ = sup
t∈[0,T ]

|(Bφ)(t)− (Bψ)(t)|

= sup
t∈[0,T ]

∣∣∣∫ t+T

t
cE(t,s)φ(s− τ(s))ds−

∫ t+T

t
cE(t,s)ψ(s− τ(s))ds

∣∣∣
≤ cβ

∫ t+T

t
∥φ−ψ∥ds

≤ cβT∥φ−ψ∥.
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Hence B : PT → PT is a contraction.

Lemma 6.3.2. Suppose that conditions (6.2)-(6.4), and (6.12)-(6.14),(6.17) hold.

Then A : PT → PT is completely continuous on D.

Proof. Let A be defined by (6.15) and φ ∈ D . Then

(Aφ)(t +T ) =
∫ t+2T

t+T
G(t +T,s)[ f (s,h(φ(s)),g(φ(s− τ(s))))

−ca(s)φ(s− τ(s))]ds.

With k = s−T, we obtain

(Aφ)(t +T ) =
∫ t+T

t
G(t +T,k+T )

×[ f (k+T,h(φ(k+T )),g(φ(k+T − τ(k+T ))))

−ca(k+T )φ(k+T − τ(k+T ))]dk

=
∫ t+T

t
G(t,k)

×[ f (k,h(φ(k)),g(φ(k− τ(k))))

−ca(k)φ(k− τ(k))]dk

= (Aφ)(t).

For t ∈ [0,T ] and for φ ∈ D we have that

|(Aφ)(t)| ≤ |
∫ t+T

t
G(t,s)[ f (s,h(φ(s)),g(φ(s− τ(s))))

− ca(s)φ(s− τ(s))]ds|

≤
∫ t+T

t
α

L(1−βcT )
αT

ds

≤ T α
L(1−βcT )

αT
= L(1−βcT ).

Thus from the estimation of |(Aφ)(t)| we have

∥Aφ∥ ≤ L(1−βcT ).

This shows that A(D) is uniformly bounded. We next show that A(D) is equicontin-

uous. Let φ ∈ D. By using (6.2), (6.3) and (6.4) we obtain by taking the derivative
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in (6.15) that

d
dt
(Aφ)(t) = G(t, t +T )[ f (t +T,h(φ(t +T )),g(φ(t +T − τ(t +T ))))

− ca(t +T )φ(t +T − τ(t +T ))]

− G(t, t)[ f (t,h(φ(t)),g(φ(t − τ(t))))

− ca(t)φ(t − τ(t))]

+
∫ t+T

t

∂
∂t

G(t,s)

×[ f (s,h(φ(s)),g(φ(s− τ(s))))

−ca(s)φ(s− τ(s))]ds

= G(t, t)[ f (t,h(φ(t)),g(φ(t − τ(t))))

− ca(t)φ(t − τ(t))]

− G(t, t)[ f (t,h(φ(t)),g(φ(t − τ(t))))

− ca(t)φ(t − τ(t))]

+
∫ t+T

t
[−b(t)G(t,s)+

exp
(∫ s

t a(v)dv
)

exp
(∫ T

0 a(v)dv
)
−1

]

×[ f (s,h(φ(s)),g(φ(s− τ(s))))

−ca(s)φ(s− τ(s))]ds

=
∫ t+T

t
[−b(t)G(t,s)+

exp
(∫ s

t a(v)dv
)

exp
(∫ T

0 a(v)dv
)
−1

]

×[ f (s,h(φ(s)),g(φ(s− τ(s))))

−ca(s)φ(s− τ(s))]ds.

Consequently, by invoking (6.11), and (6.14), we obtain

| d
dt
(Aφ)(t)| ≤ T (∥b∥α+β)

L(1−βcT )
αT

≤ M,

for some positive constant M. Hence (Aφ) is equicontinuous. Then by the Ascoli-

Arzela theorem we obtain that A is a compact map. Due to the continuity of all the

terms in (6.15), we have that A is continuous. This completes the proof.

Theorem 6.3.3. Let α, β and γ be given by (6.11). Suppose that conditions (6.2)-

(6.5), (6.10),(6.13),(6.14) and (6.17) hold, then Equation (6.1) has a positive periodic

solution z satisfying K ≤ z ≤ L.
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Proof. Let φ,ψ ∈ D. Using (6.15) and (6.16) we obtain

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
cE(t,s)φ(s− τ(s))ds+

∫ t+T

t
G(t,s)[ f (s,h(ψ(s)),g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≤ cβLT +α
∫ t+T

t
[ f (s,h(ψ(s)),g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds

≤ cβLT +αT
L(1−βcT )

αT
= L.

On the other hand,

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
cE(t,s)φ(s− τ(s))ds+

∫ t+T

t
G(t,s)[ f (s,h(ψ(s)),g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≥ cσKT + γ
∫ t+T

t
[ f (s,h(ψ(s)),g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds

≥ cσKT + γT
K(1−σcT )

γT
= K.

This shows that Bψ+Aφ ∈ D. Thus all the hypotheses of Theorem 2.3.6 are sat-

isfied and therefore equation (6.1) has a periodic solution in D. This completes the

proof.

We next consider the case when c ≤ 0. To this end we substitute conditions

(6.13) and (6.14) with the following conditions respectively.

c ≤ 0 (6.18)

and for all s ∈ R,µ ∈ D

K − cβLT
γT

≤ f (s,h(µ),g(µ))− ca(s)µ ≤ L− cσKT
αT

. (6.19)

Theorem 6.3.4. Let α, β and γ be given by (6.11). Suppose that conditions (6.2)-

(6.5), (6.10),(6.17), (6.18), and (6.19) hold, then (6.1) has a positive periodic solution

z satisfying K ≤ z ≤ L.
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Proof. Let φ,ψ ∈ D. Using (6.15) and (6.16) we obtain

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
cE(t,s)φ(s− τ(s))ds+

∫ t+T

t
G(t,s)[ f (s,h(ψ(s)),g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≤ cσLT +α
∫ t+T

t
[ f (s,h(ψ(s)),g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds

≤ cσLT +αT
(L− cσKT

αT

)
= L.

On the other hand,

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
cE(t,s)φ(s− τ(s))ds+

∫ t+T

t
G(t,s)[ f (s,h(ψ(s)),g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≥ cβKT + γ
∫ t+T

t
[ f (s,h(ψ(s)),g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds

≥ cβKT + γT
(K − cβLT

γT

)
= K.

This shows that Bψ+Aφ ∈ D. Thus all the hypotheses of Theorem 2.3.6 are sat-

isfied and therefore equation (6.1) has a periodic solution in D. This completes the

proof.

6.4 Totally nonlinear neutral second order differential equations

In this section we turn our attention to totally nonlinear second order differ-

ential equations. In particular, we establish sufficient conditions for the existence of

positive periodic solution of the equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)h(x(t)) =
d
dt

c(t,x(t − τ(t)))

+ f (t,h(x(t)),g(x(t − τ(t)))),

(6.20)

where p and q are positive continuous real-valued functions. The functions f :

R×R×R → R,c : R×R → R, and h : R → R, are continuous in their respec-

tive arguments.
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Equation (6.20) is a more general form of (6.1)in the sense that, the neu-

tral term d
dt c(t,x(t − τ(t))) in (6.20) produces non-linearity in the derivative term

d
dt x(t − τ(t)), whereas the neutral term in (6.1) enters linearly. Also, h(x(t)) = x(t)

in (6.1), thus making (6.20) totally nonlinear. In view of the above differences, the

results obtained in the previous section does not carry over to equation (6.20).

In addition to the assumptions in section 6.1 we also assume that c(t,x) is

periodic in t with period T. That is,

c(t +T,x) = c(t,x). (6.21)

We further assume that there exist positive constants σ, c∗ and µ such that

σ < E(t,s), for all (t,s) ∈ [0,T ]× [0,T ], (6.22)

c∗ < c(t, t − τ(t)), (6.23)

∥c(t,x)∥ ≤ µ, (6.24)

βµT < L, c∗σT < K, (6.25)

and for all s ∈ R, ϕ,φ ∈ D

K − c∗σT
γT

≤ q(s)[ϕ(s)−h(ϕ(s))]+ f (s,h(φ),g(φ))−a(s)c(s,φ)≤ L−βµT
αT

.

(6.26)

We next state and prove the following lemma which will play an essential role in

obtaining our results.

Lemma 6.4.1. Suppose (6.2)-(6.5) hold. If x ∈ PT , then x is a solution of (6.20) if

and only if

x(t) =
∫ t+T

t
G(t,s)q(s)[x(s)−h(x(s))]ds

+
∫ t+T

t

[
c(s,x(s− τ(s)))[E(t,s)−a(s)G(t,s)]

+G(t,s) f (s,h(x(s)),g(x(s− τ(s))))
]
ds,

(6.27)
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where E(t,s) is given by (6.7).

Proof. Let x ∈ PT be a solution of (6.20). Rewrite (6.20) as

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t) = q(t)[x(t)−h(x(t))]+
d
dt

c(t,x(t − τ(t)))

+ f (t,h(x(t)),g(x(t − τ(t)))).

From Lemma 6.1.2, we have

x(t) =
∫ t+T

t
G(t,s)q(s)[x(s)−h(x(s))]ds

+
∫ t+T

t
G(t,s)

[ ∂
∂s

c(s,x(s− τ(s)))+ f (s,h(x(s)),g(x(s− τ(s))))
]
ds.

(6.28)

Integrating by parts, we have∫ t+T

t
G(t,s)

∂
∂s

c(s,x(s− τ(s)))ds

=−
∫ t+T

t

[ ∂
∂s

G(t,s)
]
c(s,x(s− τ(s)))ds

=
∫ t+T

t
c(s,x(s− τ(s)))[E(t,s)−a(s)G(t,s)]ds,

(6.29)

where E is given by (6.7). Then substituting (6.29) in (6.28) completes the proof.

To apply theorem 2.3.7, we construct two mappings in which one is a large

contraction and the other is completely continuous. Thus, we set the map A : D→D

(Aφ)(t) =
∫ t+T

t

[
c(s,φ(s− τ(s)))[E(t,s)−a(s)G(t,s)]

+ G(t,s) f (s,h(φ(s)),g(φ(s− τ(s))))
]
ds. (6.30)

Similarly, we define the map B : D→ D

(Bφ)(t) =
∫ t+T

t
G(t,s)q(s)[φ(s)−h(φ(s))]ds. (6.31)

In the next lemma we prove that z(φ(s)) = φ(s)−h(φ(s)) is a large contrac-

tion on D. To this end we make the following assumptions on the function h :R→R.

(H1) h is continuous and differentiable on U = [K,L].
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(H2) h is strictly increasing on U.

(H3) sups∈U h′(s)≤ 1.

(H4) (s− r)
{

supt∈U h′(t)
}
≥ h(s)− h(r) ≥ (s− r)

{
inft∈U h′(t)

}
≥ 0 for s,r ∈ U

with s ≥ r.

Lemma 6.4.2. Let h : R → R be a function satisfying (H1)− (H4). Then z =

φ(s)−h(φ(s)) is a large contraction on the set D.

Proof. Let ϕ,φ ∈ D with ϕ ̸= φ. Then ϕ(t) ̸= φ(t) for some t ∈ R. Define the set

S(ϕ,φ) =
{

t ∈ R : ϕ(t) ̸= φ(t)
}
.

Note that φ(t) ∈U for all t ∈ R whenever φ ∈ D. Since h is strictly increasing

h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

=
h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)
> 0 (6.32)

holds for all t ∈ S(ϕ,φ). By (H3) we have

1 ≥ sup
t∈U

h′(t)≥ inf
s∈U

h′(s)≥ 0. (6.33)

Define the set Ut ⊂U by Ut = [φ(t),ϕ(t)]∩U if ϕ(t)> φ(t), and Ut = [ϕ(t),φ(t)]∩U

if ϕ(t) < φ(t), for t ∈ S(ϕ,φ). Hence, for a fixed t0 ∈ S(ϕ,φ) we get by (H4) and

(6.32) that

sup{h′(u) : u ∈Ut0} ≥
h(ϕ(t0))−h(φ(t0))

ϕ(t0)−φ(t0)
≥ inf{h′(u) : u ∈Ut0}.

Since Ut ⊂U for every t ∈ S(ϕ,φ), we find

sup
u∈U

h′(u)≥ sup{h′(u) : u ∈Ut0} ≥ inf{h′(u) : u ∈Ut0} ≥ inf
u∈U

h′(u),

and therefore,

1 ≥ sup
u∈U

h′(u)≥ h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

≥ inf
u∈U

h′(u)≥ 0 (6.34)

for all t ∈ S(ϕ,φ). So, (6.34) yields

|(zϕ)(t)− (zφ)(t)| = |ϕ(t)−h(ϕ(t))−φ(t)+h(φ(t))|

= |ϕ(t)−φ(t)|
∣∣∣1−(h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)

)∣∣∣
≤ |ϕ(t)−φ(t)|

(
1− inf

u∈U
h′(u)

)
(6.35)
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for all t ∈ S(ϕ,φ). Thus, (6.34) and (6.35) imply that z is a large contraction in the

supremum norm. To see this choose a fixed ε ∈ (0,1) and assume that ϕ and φ are

two functions in D satisfying

∥ϕ−φ∥= sup
t∈[K,L]

|ϕ(t)−φ(t)| ≥ ε.

If |ϕ(t)−φ(t)| ≤ ε/2 for some t ∈ S(ϕ,φ), then from (6.35)

|(zϕ)(t)− (zφ)(t)| ≤ |ϕ(t)−φ(t)| ≤ 1
2
∥ϕ−φ∥. (6.36)

Since h is continuous and strictly increasing, the function h(u+ ε
2)−h(u) attains its

minimum on the closed and bounded interval [K,L]. Thus, if ε
2 < |ϕ(t)−φ(t)| for

some t ∈ S(ϕ,φ), then from (6.34) and (H3) we conclude that

1 ≥ h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

> λ,

and therefore,

|(zϕ)(t)− (zφ)(t)| ≤ |ϕ(t)−φ(t)|
{

1− h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

}
≤ (1−λ)∥ϕ(t)−φ(t)∥, (6.37)

where

λ :=
1

2L
min

{
h(u+

ε
2
)−h(u),u ∈ [K,L]

}
> 0.

Consequently, it follows from (6.36) and (6.37) that

|(zϕ(t)− (zφ)(t)| ≤ δ∥ϕ−φ∥,

where δ = max
{

1
2 ,1−λ

}
< 1. The proof is complete.

The next result gives a relationship between the mappings z and B in the

sense of large contraction.

Lemma 6.4.3. Suppose that

K
γT

≤ q(s)[φ(s)−h(φ(s))]≤ L−βµT
αT

, (6.38)

then B maps D into itself. Moreover, if z is a large contraction on D, and

α||q||T ≤ 1, (6.39)
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then so is the mapping B.

Proof. We first show that (Bφ)(t +T ) = (Bφ)(t). Evaluating (Bφ)(t) at t +T gives

(Bφ)(t +T ) =
∫ t+2T

t+T
G(t +T,s)q(s)[φ(s)−h(φ(s))]ds.

With k = s−T we obtain

(Bφ)(t +T ) =
∫ t+T

t
G(t +T,k+T )q(k+T )[φ(k+T )−h(φ(k+T ))]dk

=
∫ t+T

t
G(t,k)q(k)[φ(k)−h(φ(k))]dk

= (Bφ)(t).

Let φ ∈ D then

(Bφ)(t) ≤ αT
(L−βµT

αT

)
= L−βµT < L.

On the other hand,

(Bφ)(t) ≥ γT (
K
γT

) = K.

Thus showing that B maps D into itself.

If z is a large contraction on D, then for x,y ∈ D, with x ̸= y, we have ∥zx−

zy∥ ≤ ∥x− y∥. Thus,

|Bx(t)−By(t)| ≤ α||q||T ||x− y|| ≤ ||x− y||.

Thus,

∥Bx−By∥ ≤ ∥x− y∥.

One may also show in a similar way that

∥Bx−By∥ ≤ δ∥x− y∥

holds if we know the existence of a 0 < δ < 1, such that for all ε > 0

[
x,y ∈ D, ∥x− y∥ ≥ ε

]
⇒∥zx−zy∥ ≤ δ∥x− y∥.

108



The proof is complete.

Lemma 6.4.4. Suppose that conditions (6.2)-(6.4), (6.21) and (6.22)-(6.26). hold.

Then A : D→ D is completely continuous on D.

Proof. Let A be defined by (6.30). We begin by showing that (Aφ)(t + T ) =

(Aφ)(t). Evaluating (Aφ)(t) at t +T gives

(Aφ)(t +T ) =
∫ t+2T

t+T

[
c(s,φ(s− τ(s)))[E(t +T,s)−a(s)G(t +T,s)]

+ G(t +T,s) f (s,h(φ(s)),g(φ(s− τ(s))))
]
ds.

With k = s−T we obtain,

(Aφ)(t +T ) =
∫ t+T

t

[
c(k+T,φ(k+T − τ(k+T )))[E(t +T,k+T )

− a(k+T )G(t +T,k+T )]

+ G(t +T,k+T )

× f (k+T,h(φ(k+T )),g(φ(k+T − τ(k+T ))))
]
dk

=
∫ t+T

t

[
c(k,φ(k− τ(k)))[E(t,k)−a(k)G(t,k)]

+ G(t,k) f (k,h(φ(k)),g(φ(k− τ(k))))
]
dk

= (Aφ)(t).

For t ∈ [0,T ] and for φ ∈ D we have that

(Aφ)(t) ≤ µβT +αT
(L−βµT

αT

)
≤ L.

Also,

(Aφ)(t) ≥ c∗σT + γT
(K − c∗σT

γT

)
≥ K.
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Thus A maps D into itself.

|(Aφ)(t)| ≤
∣∣∣∫ t+T

t
c(s,φ(s− τ(s)))E(t,s)ds

∣∣∣
+
∣∣∣∫ t+T

t
G(t,s)

[
f (s,h(φ(s)),g(φ(s− τ(s))))

− a(s)c(s,φ(s− τ(s)))
]
ds
∣∣∣

≤ µβT +αT
(L−βµT

αT

)
≤ L.

Thus from the estimation of |(Aφ)(t)| we have that

∥Aφ∥ ≤ L.

This shows that A(D) is uniformly bounded. We next show that A(D) is equicon-

tinuous by first computing d
dt (Aφn(t)). We obtain by taking the derivative in (6.30)

that

d
dt
(Aφ)n(t) =

exp
(∫ t+T

t b(v)dv−1
)

exp
(∫ T

0 b(v)dv
)
−1

c(t,φn(t − τ(t)))

+
∫ t+T

t
c(s,φn(s− τ(s)))

[
−b(t)E(t,s)−a(s)

(
−b(t)G(t,s)

+
exp(

∫ s
t a(v)dv

exp(
∫ T

0 a(v)dv−1

)]
ds

+
∫ t+T

t

(
−b(t)G(t,s)+

exp(
∫ s

t a(v)dv

exp(
∫ T

0 a(v)dv−1

)
× f (s,h(φn(s)),g(φn(s− τ(s))))ds.

=
exp

(∫ t+T
t b(v)dv−1

)
exp

(∫ T
0 b(v)dv

)
−1

c(t,φn(t − τ(t)))

+
∫ t+T

t
c(s,φn(s− τ(s)))

[
−b(t)E(t,s)

− a(s)
exp(

∫ s
t a(v)dv

exp(
∫ T

0 a(v)dv−1

]
ds

+
∫ t+T

t

exp(
∫ s

t a(v)dv

exp(
∫ T

0 a(v)dv−1
f (s,h(φn(s)),g(φn(s− τ(s))))ds

+
∫ t+T

t
−b(t)G(t,s)

[
f (s,h(φn(s)),g(φn(s− τ(s))))

− a(s)c(s,φn(s− τ(s)))
]
ds.
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Consequently, by invoking (6.11), and (6.24), we obtain

| d
dt
(Aφ)(t)| ≤ βµ+T µ[||b||β+ ||a||β]+T β

(L−βµT
αT

)
+ ||b||αT

(L−βµT
αT

)
≤ M,

for some positive constant M. Hence (Aφ) is equicontinuous. Then by the Ascoli-

Arzela theorem we obtain that A is a compact map. Due to the continuity of all the

terms in (6.30), we have that A is continuous. This completes the proof.

Theorem 6.4.5. Suppose that conditions (6.2)-(6.4), (6.10), (6.21), (6.22)-(6.26)

hold, then Equation (6.20) has a positive periodic solution z satisfying K ≤ z ≤ L.

Proof. Let φ,ψ ∈ D. Using (6.30) and (6.31) we obtain

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
G(t,s)q(s)[ψ(s)−h(ψ(s))]ds

+
∫ t+T

t

[
c(s,φ(s− τ(s)))[E(t,s)−a(s)G(t,s)]

+ G(t,s) f (s,h(φ(s)),g(φ(s− τ(s))))
]
ds

=
∫ t+T

t
c(s,φ(s− τ(s)))E(t,s)ds

+
∫ t+T

t
G(t,s)

(
q(s)[ψ(s)−h(ψ(s))]

+ f (s,h(φ(s)),g(φ(s− τ(s))))−a(s)c(s,φ(s− τ(s)))
)

ds

≤ βµT +αT
(L−βµT

αT

)
= L.

On the other hand,

(Bψ)(t)+(Aφ)(t)

=
∫ t+T

t
c(s,φ(s− τ(s)))E(t,s)ds

+
∫ t+T

t
G(t,s)

(
q(s)[ψ(s)−h(ψ(s))]

+ f (s,h(φ(s)),g(φ(s− τ(s))))−a(s)c(s,φ(s− τ(s)))
)

ds

≥ c∗σT + γT
(K − c∗σT )

γT

)
= K.
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This shows that Bψ+Aφ ∈ D. Thus all the hypotheses of Theorem 2.3.7 are satis-

fied and therefore equation (6.20) has a periodic solution in D. This completes the

proof.
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CHAPTER SEVEN

PERIODICITY IN A SYSTEM OF DIFFERENTIAL

EQUATIONS

7.1 Introduction

In this Chapter we study the existence and uniqueness of a periodic solution

of the system of equations

d
dt

x(t) = A(t)x(t − τ), (7.1)

where A(t) is an n×n matrix with continuous real-valued functions as its elements

and τ is a positive constant. A number of researchers have studied the existence of

periodic solutions of systems of equations of the form of (7.1) where the delay τ= 0.

Floquet theory offers a lot of results on the periodicity of the system (7.1) when

τ = 0. Weikard (2000) extended the theory to nonautonomous linear systems of the

form z′ =A(x)z, where A :C→C is an ω− periodic function in the complex variable

x, whose solutions are meromorphic. There are however no corresponding results

for system (7.1). Therefore, we prove the existence and uniqueness of solutions

of system (7.1) using the notion of the fundamental solution coupled with Floquet

theory in this Chapter.

7.2 Preliminaries

We assume throughout this Chapter that there exist a nonsingular n×n matrix

G(t) with continuous real-valued functions as its elements such that

d
dt

x(t) = G(t)x(t)− d
dt

∫ t

t−τ
G(s)x(s)ds+[A(t)−G(t − τ)]x(t − τ). (7.2)

113



Lemma 7.2.1. Equation (7.1) is equivalent to (7.2).

Proof. By differentiating the integral term in (7.2) we obtain

d
dt

∫ t

t−τ
G(s)x(s)ds = G(t)x(t)−G(t − τ)x(t − τ). (7.3)

Substituting this into (7.2) gives

d
dt

x(t) = G(t)x(t)−G(t)x(t)+G(t − τ)x(t − τ)+ [A(t)−G(t − τ)]x(t − τ)

= A(t)x(t − τ).

For T > 0 let PT be the set of all n-vector valued functions x(t), periodic in t

of period T . Then (PT ,∥.∥) is a Banach space with the supremum norm

∥x(.)∥= sup
t∈R

|x(t)|= sup
t∈[0,T ]

|x(t)|,

where |.| denotes the infinity norm for x ∈Rn. Also, if A is an n×n real matrix, then

we define the norm of A by |A|= max1≤i≤n ∑n
j=1 |ai j|.

Definition 7.2.2. If the matrix G(t) is periodic of period T , then the linear system

y′ = G(t)y (7.4)

is said to be noncritical with respect to T if it has no periodic solution of period T

except the trivial solution y = 0.

In this Chapter we assume that

A(t +T ) = A(t),G(t +T ) = G(t) (7.5)

Throughout this Chapter it is assumed that the system (7.4) is noncritical. We next

state some known results about system (7.4) which will be useful in the rest of the

Chapter.

Let K(t) represent the fundamental matrix of the system (7.4) with K(0) = I,

where I is the n×n identity matrix. Then:

(i) det K(t) ̸= 0.
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(ii) There exists a constant matrix B such that K(t + T ) = K(t)eBT , by Floquet

theory.

(iii) System (7.4) is noncritical if and only if det(I −K(T )) ̸= 0.

7.3 Existence and Uniqueness

We begin this section by stating the following lemma.

Lemma 7.3.1. Suppose (7.5) hold. If x(t) ∈ PT , then x(t) is a solution of (7.2) if and

only if

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{
+

∫ t+T

t
K−1(u)[A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds]du

}
(7.6)

Proof. Let x(t) ∈ PT be a solution of (7.2) and K(t) is a fundamental system of

solutions of (7.4). We first rewrite (7.2) as

d
dt

[
x(t)+

∫ t

t−τ
G(s)x(s)ds

]
= G(t)

[
x(t)+

∫ t

t−τ
G(s)x(s)ds

]
−G(t)

∫ t

t−τ
G(s)x(s)ds

+ A(t)x(t − τ)−G(t − τ)x(t − τ).

Since K(t)K−1(t) = I, it follows that

0 =
d
dt
(K(t)K−1(t)) =

d
dt
(K(t))K−1(t)+K(t)

d
dt
(K−1(t))

= (G(t)K(t))K−1(t)+K(t)
d
dt
(K−1(t))

= G(t)+K(t)
d
dt
(K−1(t)).

This implies

d
dt
(K−1(t)) =−K−1(t)G(t).

If x(t) is a solution of (7.2) with x(0) = x0, then

d
dt

[
K−1(t)

(
x(t)+

∫ t

t−τ
G(s)x(s)ds

)]
=

d
dt

K−1(t)
[
x(t)+

∫ t

t−τ
G(s)x(s)ds

]
+K−1(t)

d
dt

(
x(t)+

∫ t

t−τ
G(s)x(s)ds

)
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=−K−1(t)G(t)
[
x(t)+

∫ t

t−τ
G(s)x(s)ds

]
+K−1(t)

{
G(t)

[
x(t)+

∫ t

t−τ
G(s)x(s)ds

]
− G(t)

∫ t

t−τ
G(s)x(s)ds+A(t)x(t − τ)−G(t − τ)x(t − τ)

}

= K−1(t)A(t)x(t − τ)−K−1(t)G(t − τ)x(t − τ)−K−1(t)G(t)
∫ t

t−τ
G(s)x(s)ds.

An integration of the above equation from 0 to t yields

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)

[
x0 +

∫ 0

−τ
G(s)x(s)ds

]
+ K(t)

∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du. (7.7)

Since x(T ) = x0 = x(0), we obtain from (7.7) that

x0 +
∫ 0

−τ
G(s)x(s)ds = (I −K(T ))−1

∫ T

0
K(T )K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du.

(7.8)

Substituting (7.8) into (7.7) yields

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)

(
(I −K(T ))−1

∫ T

0
K(T )K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

)
+ K(t)

∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du. (7.9)

We will now show that (7.9) is equivalent to (7.6).

Since

(I −K(T ))−1 = (K(T )(K−1(T )− I))−1 = (K−1(T )− I)−1K−1(T ),
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equation (7.9) becomes

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K(T ))−1 − I)−1

∫ T

0
K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

+ K(t)
∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du.

= −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T ))− I)−1

{∫ T

0
K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

+
∫ t

0
K−1(T )K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du.

−
∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

}
.

= −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T ))− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

+
∫ t

0
K−1(T )K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du.

}
.

By letting u = i−T, the above expression implies

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T ))− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

+
∫ t+T

T
K−1(T )K−1(i−T )

[
A(i−T )x(i−T − τ)

− G(i−T − τ)x(i−T − τ)−G(i−T )
∫ i−T

i−T−τ
G(s)x(s)ds

]
di
}

(7.10)

By (ii) we have K(t−T ) =K(t)e−BT and K(T ) = eBT . Hence, K−1(T )K−1(i−T ) =
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K−1(i). Consequently, (7.10) becomes

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T ))− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

+
∫ t+T

T
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)
∫ u

u−τ
G(s)x(s)ds

]
du

}
.

Combining the two integrals in the above equation gives equation (7.6). This com-

pletes the proof.

Define a mapping H by

(Hφ)(t) = −
∫ t

t−τ
G(s)φ(s)ds+K(t)(K−1(T )− I)−1

{∫ t+T

t
K−1(u)[A(u)φ(u− τ)

− G(u− τ)φ(u− τ)−G(u)
∫ u

u−τ
G(s)φ(s)ds]du

}
. (7.11)

It is clear from (7.11) that H : PT → PT by the way it was constructed in Lemma

7.2.1.

To apply Theorem 2.3.6 we need to construct two mappings of which one is a

contraction and the other is compact. Therefore we express equation (7.11) as

(Hφ)(t) = (Bφ)(t)+(Cφ)(t),

where C,B : PT → PT are given by

(Bφ)(t) =−
∫ t

t−τ
G(s)φ(s)ds (7.12)

(Cφ)(t) = K(t)(K−1(T )− I)−1
∫ t+T

t
K−1(u)[A(u)φ(u− τ)−G(u− τ)φ(u− τ)

− G(u)
∫ u

u−τ
G(s)φ(s)ds]du. (7.13)

Lemma 7.3.2. Suppose the assumptions of Lemma 7.3.1 hold. If C is defined by

(7.13) then C is continuous and the image of C is contained in a compact set.
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Proof. Let φ,ψ ∈ PT . Given ε > 0, take δ = ε/N with N = rT (|A|+ |G|+ |G|2|τ),

where

r = sup
t∈[0,T ]

(
sup

t≤u≤t+T
|[K(u)(K−1(T )− I)K−1(t)]−1|

)
. (7.14)

Now for ∥φ−ψ∥< δ, we have that

∥Cφ(.)−Cψ(.)∥ ≤ r
∫ T

0

[
|A|∥φ−ψ∥+ |G|∥φ−ψ∥+ |G|2τ∥φ−ψ∥

]
du

≤ N∥φ−ψ∥< ε.

This proves that C is continuous. To show that the image of C is contained in a

compact set, we consider D = {φ ∈ PT : ∥φ∥ ≤ R}, where R is a fixed positive

constant. Let φn ∈ D where n is a positive integer. Thus,

∥Cφn(.)∥ ≤ r
∫ T

0

[
|A|R+ |G|R+ |G|2τR

]
du

≤ rT
[
|A|R+ |G|R+ |G|2τR

]
≤ L,

for some positive constant L. Next we calculate (Cφn)
′(t) and show that it is uni-

formly bounded. By making use of (7.5) we obtain by taking the derivative in (7.13)

that

(Cφn)
′(t) = K′(t)(K−1(T )− I)−1

∫ t+T

t
K−1(u)

[
A(u)φn(u− τ)

− G(u− τ)φn(u− τ)−G(u)
∫ u

u−τ
G(s)φn(s)ds

]
du

+ K(t)(K−1(T )− I)−1K−1(t +T )
[
A(t)φn(t − τ)

− G(t − τ)φn(t − τ)−G(t)
∫ t

t−τ
G(s)φn(s)ds

]
− K(t)(K−1(T )− I)−1K−1(t)

[
A(t)φn(t − τ)−G(t − τ)φn(t − τ)

− G(t)
∫ t

t−τ
G(s)φn(s)ds

]
= G(t)(Cφn)(t)+K(t)(K−1(T )− I)−1

[
K−1(t +T )−K−1(t)

]
×
(

A(t)φn(t − τ)−G(t − τ)φn(t − τ)−G(t)
∫ t

t−τ
G(s)φn(s)ds

)
By noting that K−1(t +T ) = e−BT K−1(t), we have

K−1(t +T )−K−1(t) = (e−BT − I)K−1(t) = (K−1(T )− I)K−1(t).
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Using this in the last expression, yields

(Cφn)
′(t) = G(t)(Cφn)(t)

+
(

A(t)φn(t − τ)−G(t − τ)φn(t − τ)−G(t)
∫ t

t−τ
G(s)φn(s)ds

)
≤ |G|L+ |A|R+ |G|R+ |G|2Rτ.

Thus the sequence (φn) is uniformly bounded and equi-continuous. Hence by Arzela-

Ascoli theorem C(D) is compact. The proof is complete.

Lemma 7.3.3. Suppose that

|G|τ < 1, (7.15)

then B is a contraction.

Proof. Let B be defined by (7.12). Then for φ,ψ ∈ PT we have

∥Bφ(.)−Bψ(.)∥ = sup
t∈[0,T ]

|Bφ(t)−Bψ(t)|

≤ τ|G|∥φ−ψ∥.

Hence B defines a contraction mapping with contraction constant τ|G|.

Lemma 7.3.4. Suppose the hypothesis of Lemma 7.2.3 holds. Let r be given by

(7.14). Suppose further that (7.5) hold. Let J be a positive constant satisfying the

inequality

rT
[
|A|+ |G|+ |G|2τ

]
J+ τ|G|J ≤ J. (7.16)

Let M= {φ ∈ PT : ∥φ∥ ≤ J}. Then (7.1) has a solution in M.

Proof. Define M = {φ ∈ PT : ||φ|| ≤ J}. By Lemma 7.3.2, C is continuous and

CM is contained in a compact set. Also, from Lemma 7.3.3, the mapping B is a

contraction and it is clear that C,B : PT → PT . Next we show that if φ,ψ ∈ M, we

have ||Cφ+Bψ|| ≤ J. Let φ,ψ ∈M with ||φ||, ||ψ|| ≤ J. Then

||Cφ(.)+Bψ(.)||

r
∫ T

0

[
|A|||φ||+ |G|||φ||+ |G|2τ||φ||

]
du+

∫ t

t−τ
|G|||ψ||ds

rT
[
|A|+ |G|+ |G|2τ

]
J+ τ|G|J ≤ J.

120



We now see that all conditions of Krasnoselskii’s theorem are satisfied. Thus there

exists a fixed point z in M such that z = Az+Bz. By Lemma 7.3.1, this fixed point

is a solution of (7.1). Hence (7.1) has a T -periodic solution.

Theorem 7.3.5. Suppose (7.5) hold. If

τ|G|+ rT
[
|A|+ |G|+ |G|2τ

]
< 1, (7.17)

then (7.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (7.11). For φ,ψ ∈ PT , we have that

∥Hφ(.)−Hψ(.)∥ ≤
∫ t

t−τ
|G|∥φ−ψ∥ds+ r

∫ T

0

[
|A|+ |G|+ |G|2τ

]
∥φ−ψ∥ds

≤
(

τ|G|+ rT [|A|+ |G|+ |G|2τ]
)
∥φ−ψ∥

< ∥φ−ψ∥.

Thus, H is a contraction. Thus by the contraction mapping principle, (7.1) has a

unique T -periodic solution. This completes the proof.
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CHAPTER EIGHT

POSITIVE SOLUTIONS FOR A SYSTEM OF PERIODIC

NEUTRAL DIFFERENCE EQUATIONS AND EQUATIONS

WITH ASYMPTOTICALLY CONSTANT OR PERIODIC

SOLUTIONS

8.1 Existence of positive solutions for a system of periodic difference

equations

8.1.1 Introduction

Let R denote the real numbers, Z the integers, Z− the negative integers, and

Z+ the non-negative integers. In this section we consider the system of neutral

difference equations

x(n+1) = A(n)x(n)+C(n)∆x(n− τ(n))+g(n,x(n− τ(n))), (8.1)

where A(n) = diag[a1(n),a2(n), ...,ak(n)], a j is T -periodic, C(n) = diag[c1(n),

c2(n), ...,ck(n)], c j is T -periodic, g : Z×Rk → Rk is continuous in x and g(n,x) is

T -periodic in n and x, whenever x is T -periodic, T ≥ 1 is an integer. Let PT be the

set of all real T -periodic sequences ϕ : Z→ Rk. Endowed with the maximum norm

||ϕ||= maxθ∈Z∑k
j=1 |ϕ j(θ)| where ϕ = (ϕ1,ϕ2, ...,ϕk)

t , PT is a Banach space. Here t

stands for the transpose.

Let R+ = [0,+∞), for each x = (x1,x2, ...,xk)
t ∈ Rk, the norm of x is defined

as |x| = ∑k
j=1 |x j|. Rk

+ = {(x1,x2, ...,xk)
t ∈ Rk : x j ≥ 0, j = 1,2, ...,k}. Also, we

denote g = (g1,g2, ...,gk)
t , where t stands for transpose. We say that x is ”positive”

whenever x ∈ Rk
+.
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Raffoul and Yankson (2010) proved the existence of positive periodic solu-

tions of the scalar version of (8.1). Motivated by this work, we obtain sufficient

conditions for the existence of positive periodic solutions of system (8.1).

Remark 8.1.1.1 The content of this Chapter has been published as: E. Yank-

son, ”Positive solutions for a system of periodic neutral delay difference equations”,

African Diaspora Journal of Mathematics, Volume 11, Number 2, pp. 90-97(2011).

8.1.2 Preliminaries

In this section, we make the following assumptions.

(H1) There exist a constant σ j > 0 such that σ j < c j(n), j = 1, ...,k, for all n ∈

[0,T −1].

(H2) 0 < a j(n)< 1 for all n ∈ [0,T −1], j = 1, ...,k.

(H3) There exist constants α j, such that ||c j|| ≤ α j ≤ 1, j = 1,2, ...,k.

Let

G j(n,u) =
∏n+T−1

s=u+1 a j(s)

1−∏n+T−1
s=n a j(s)

, u ∈ [n,n+T −1]. (8.2)

Note that the denominator in G j(n,u) is not zero since 0 < a j(n)< 1 for n ∈ [0,T −

1].

Define

G(n,u) = diag[G1(n,u),G2(n,u), ...,Gk(n,u)]. (8.3)

It is clear that G(n,u) = G(n+T,u+T ) for all (n,u) ∈ Z2. Also, let

q j := min{G j(n,u) : n ≥ 0, u ≤ T}= G j(n,n)> 0, j = 1, ...,k. (8.4)

Q j := max{G j(n,u) : n ≥ 0, u ≤ T}= G j(n,n+T −1)

= G j(0,T −1)> 0, j = 1, ...,k. (8.5)

Set q = min{q1,q2, ...,qk} and Q = max{Q1,Q2, ...,Qk}.
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It must be noted that the scalar equations making up the system of equations in (8.1)

are of the form

x j(n+1) = a j(n)x j(n)+ c j(n)∆x j(n− τ(n))+g j(n,x j(n− τ(n))), j = 1, ...,k.

(8.6)

Lemma 8.1.2.1. Suppose (H2) holds. Then x j(n) ∈ PT is a solution of (8.6) if and

only if

x j(n) = c j(n−1)x j(n−g(n))+
n+T−1

∑
u=n

G j(n,u)
[
g j(u,x j(u− τ(u)))

−x j(u−g(u))ϕ j(u)a j(u)
]
. (8.7)

where ϕ j(u) = c j(u)− c j(u−1).

Proof. Rewrite (8.6) as

∆
[
x j(n)

n−1

∏
s=0

a−1
j (s)

]
=
[
c j(n)∆x j(n− τ(n))+g j(n,x j(n− τ(n)))

] n

∏
s=0

a−1
j (s).

(8.8)

Summing equation (8.8) from n to n+T −1 we obtain

n+T−1

∑
u=n

∆
[
x j(u)

u−1

∏
s=0

a−1
j (s)

]
=

n+T−1

∑
u=n

[
c j(u)∆x j(u− τ(u))+g j(u,x j(u− τ(u)))

] u

∏
s=0

a−1
j (s).

Thus,

x(n+T )
n+T−1

∏
s=0

a−1
j (s)− x(n)

n−1

∏
s=0

a−1
j (s) =

n+T−1

∑
u=n

[
c j(u)∆x j(u− τ(u))

+ g j(u,x j(u− τ(u)))
] u

∏
s=0

a−1
j (s).

Since x(n+T ) = x(n), we obtain

x(n)
[n+T−1

∏
s=0

a−1
j (s)−

n−1

∏
s=0

a−1
j (s)

]
=

n+T−1

∑
u=n

[
c j(u)∆x j(u− τ(u))

+ g j(u,x j(u− τ(u)))
] u

∏
s=0

a−1
j (s).

(8.9)
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But

n+T−1

∑ c j(u)∆x j(u− τ(u))
u

∏
s=0

a−1
j (s)

= c j(n−1)x j(n− τ(u))
[n+T−1

∏
s=0

a−1
j (s)−

n−1

∏
s=0

a−1
j (s)

]
−

n+T−1

∑
u=n

x j(u− τ(u))∆
[
c j(u−1)

u−1

∏
s=0

a−1
j (s)

]
= c j(n−1)x j(n− τ(u))

[n+T−1

∏
s=0

a−1
j (s)−

n−1

∏
s=0

a−1
j (s)

]
−

n+T−1

∑
u=n

x j(u− τ(u))
[
c j(u)− c j(u−1)a j(u)

] u

∏
s=0

a−1
j (s)

(8.10)

Substituting (8.10) into (8.9) gives

x(n)
[n+T−1

∏
s=0

a−1
j (s)−

n−1

∏
s=0

a−1
j (s)

]
= c j(n−1)x j(n− τ(u))

[n+T−1

∏
s=0

a−1
j (s)−

n−1

∏
s=0

a−1
j (s)

]
−

n+T−1

∑
u=n

x j(u− τ(u))
[
c j(u)− c j(u−1)a j(u)

] u

∏
s=0

a−1
j (s)

+g j(u,x j(u− τ(u)))
] u

∏
s=0

a−1
j (s).

(8.11)

Dividing through by
[

∏n+T−1
s=0 a−1

j (s)−∏n−1
s=0 a−1

j (s)
]

gives the desired result.

8.1.3 Positive periodic solutions

In this section we obtain sufficient conditions for the existence of positive

periodic solutions for (8.1). For some nonnegative constant L and a positive constant

J we define the set

M= {ϕ ∈ PT : L ≤ ||ϕ|| ≤ J, with
L
k
≤ ϕ j ≤

J
k
, j = 1,2, ...,k.}, (8.12)
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which is a closed convex and bounded subset of the Banach space PT . We also

assume that for all u ∈ Z and ρ ∈M,

(1−σ j)L
T q jk

≤ g j(u,ρ j,ρ j)−ρ jϕ j(u)a j(u)≤
(1−α j)J

T Q jk
. (8.13)

Define a mapping H : M→ PT by

(Hx)(n) = C(n−1)x(n− τ(n))

+
n+T−1

∑
u=n

G(n,u)
[
g(u,x(u),x(u− τ(u)))−Φ(u)A(u)x(u− τ(u))

]
.

We denote

(Hx) = (H1x1,H2x2, ...,Hkxk)
t . (8.14)

It is clear that (Hx)(n+ T ) = (Hx)(n). In order to apply Thoerem 2.3.6 we will

construct two mappings of which one is a contraction and the other is compact.

Thus we define the map D : M→ PT by

(Dφ)(n) =C(n−1)φ(n− τ(n)). (8.15)

We also define the map F : M→ PT by

(Fφ)(n) =
n+T−1

∑
u=n

G(n,u)
[
g(u,φ(u),φ(u− τ(u)))−Φ(u)A(u)φ(u− τ(u))

]
.

(8.16)

Lemma 8.1.3.1. Suppose (H3) hold. Then the operator D defined by (8.15) is a

contraction.

Proof. Let φ,ψ ∈M and α = max1≤ j≤k α j. Then

||(Dφ)− (Dψ)||= max
n∈[0,T−1]

k

∑
j=1

|(D jφ j)(n)− (D jψ j)(n)|

But,

|(D jφ j)(n)− (D jψ j)(n)| = |c j(n−1)φ j(n)− c j(n−1)ψ j(n)|

≤ α j||φ j −ψ j||.
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Thus,

||(Dφ)− (Dψ)|| ≤
k

∑
j=1

α j||φ j −ψ j||

≤ α||φ−ψ||.

This completes the proof.

Lemma 8.1.3.2. Suppose that (H1), (H2), (H3) and (8.13) hold. Then the operator

F defined by (8.16) is completely continuous on M.

Proof. For n ∈ [0,T −1] and for φ ∈M, we have by (8.13) that

|(Fjφ j)(n)| ≤
∣∣∣n+T−1

∑
u=n

G j(n,u)
[
g j(u,φ j(u− τ(u)))−φ j(u−g(u))ϕ j(u)a j(u)

]∣∣∣
≤ Q jT

(1−α)J
T Q jk

≤ (1−α)J
k

Thus,

||(Fφ)|| ≤
k

∑
j=1

(1−α)J
k

= (1−α)J.

It therefore follows that

||(Fφ)|| ≤ J.

This shows that F(M) is uniformly bounded. Due to the continuity of all terms, we

have that F is continuous.

Next we show that F maps bounded subsets into compact sets. Let S = { φ ∈ PT :

||φ|| ≤ µ} and Q = { (Fφ)(n) : φ ∈ S}, then S is a subset of RT k which is closed

and bounded and thus compact. As F is continuous in φ, it maps compact sets into

compact sets. Therefore Q = F(S) is compact. This completes the proof.
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Theorem 8.1.3.3. Suppose that (H1),(H2), (H3) and (3.2) hold. Also suppose that

the hypothesis of Lemma 8.1.3.2 also hold. Then equation (8.1) has a positive peri-

odic solution.

Proof. Let φ,ψ ∈M. Then we have that

(D jφ j)(n)+(Fjψ j)(n) = c j(n−1)φ j(n− τ(n))

+
n+T−1

∑
u=n

G j(n,u)
[
g j(u,ψ j(u),ψ j(u− τ(u)))

−ψ j(u− τ(u))ϕ j(u)a j(u)
]

≤
α jJ

k
+Q j

n+T−1

∑
u=n

[
g j(u,ψ j(u),ψ j(u− τ(u)))

−ψ j(u− τ(u))ϕ j(u)a j(u)
]

≤
α jJ

k
+

Q jT (1−α j)J
T Q jk

=
J
k

Thus,

||(Dφ)(n)+(Fψ)(n)|| ≤
k

∑
j=1

J
k
= J

On the other hand,

(D jφ j)(n)+(Fjψ j)(n) = c j(n−1)φ j(n− τ(n))

+
n+T−1

∑
u=n

G j(n,u)
[
g j(u,ψ j(u),ψ j(u− τ(u)))

−ψ j(u− τ(u))ϕ j(u)a j(u)
]

≥
σ jL

k
+q j

n+T−1

∑
u=n

[
g j(u,ψ j(u),ψ j(u− τ(u)))

−ψ j(u− τ(u))ϕ j(u)a j(u)
]

≥
σ jL

k
+

q jT (1−σ j)L
T q jk

=
L
k

Thus,

||(Dφ)(n)+(Fψ)(n)|| ≥
k

∑
j=1

L
k
= L.
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This shows that (D jφ j)(n)+(Fjψ j)(n) ∈M. Therefore by Theorem 2.3.6 equation

(8.1) has a positive periodic solution in M.

8.2 Neutral functional difference equations with asymptotically constant or

periodic solutions

8.2.1 Introduction

In this section we consider a special class of neutral difference equations with

the property that every constant is a solution. In particular we consider neutral dif-

ference equations of the form

∆
(

x(n)−h(x(n−L1))
)
= g(x(n))−g(x(n−L2)), n ∈ Z, (8.17)

where Z is the set of integers. Clearly, any constant function is a solution. We

suppose that g,h : R → R and their continuous in x with R denoting the set of all

real numbers.

In addition to (8.17) we will also consider

∆
(

x(n)−h(x(n−L1 −L2))
)
= g(x(n−L1))−g(x(n−L1 −L2)), (8.18)

and

∆
(

x(n)−h(x(n−L))
)

= g(n,x(n))−g(n,x(n−L)), (8.19)

g(n+L,x) = g(n,x).

Let L = max(L1,L2) and let ψ : [−L,0]→ R be a given bounded initial func-

tion. We say x(n,0,ψ) is a solution of (8.17) if x(n,0,ψ) = ψ on [−L,0] and

x(n,0,ψ) satisfies (8.17) for n ≥ 0. This section is motivated by the work of Raf-

foul (2011) where (8.17) with h(x(n−L1)) = 0 was considered.

8.2.2 Convergence and Stability

In this subsection we determine the constant that all solutions of (8.17) con-

verge to. In particular we prove a theorem which for any given initial function gives
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explicitly the limit to which the solution converges to. Thus in this subsection we

make the following assumptions.

The functions g and h are globally Lipschitz. That is, there exist positive constants

K1,K2 such that for all x,y ∈ R we have

|h(x)−h(y)| ≤ K1|x− y| (8.20)

and

|g(x)−g(y)| ≤ K2|x− y| (8.21)

with an α < 1 such that

K1 +L2K2 ≤ α. (8.22)

Let ψ : [−L,0] → R be a given initial function. Then for any constant c, equation

(8.17) can be written as

x(n) =
n−1

∑
s=n−L2

g(x(s))+h(x(n−L1))+ c. (8.23)

Substituting n = 0 in (8.23) gives

ψ(0) =
−1

∑
s=−L2

g(x(s))+h(x(−L1))+ c. (8.24)

From (8.24),

c = ψ(0)−
−1

∑
s=−L2

g(x(s))−h(x(−L1)). (8.25)

Substituting (8.25) into (8.23) gives

x(n) =
n−1

∑
s=n−L2

g(x(s))+h(x(n−L1))+ψ(0)−
−1

∑
s=−L2

g(ψ(s))−h(ψ(−L1)).

(8.26)

Theorem 8.2.2.1. Suppose that (8.20)-(8.22) hold and let ψ : [−L,0]→R be a given

initial function. Then, the unique solution x(n,0,ψ) of (8.17) satisfies x(n,0,ψ)→ r,

where r is unique and is given by

r = g(r)L2 +h(r)+ψ(0)−
−1

∑
s=−L2

g(ψ(s))−h(ψ(−L1)). (8.27)
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Proof. Let |.| denote the absolute value then the metric space (R, |.|), is complete.

Define the mapping H : R→ R, by

Hr = g(r)L2 +h(r)+ψ(0)−
−1

∑
s=−L2

g(ψ(s))−h(ψ(−L1)).

For a,b ∈ R, we have

|Ha−Hb| ≤ L2|g(a)−g(b)|+ |h(a)−h(b)|

≤ L2K2|a−b|+K1|a−b|

= (L2K2 +K1)|a−b|

≤ α|a−b|.

Thus showing that H is a contraction on the complete metric space (R, |.|). It there-

fore follows from the Banach principle that H has a unique fixed point r, and this

implies that (8.27) has a unique solution. We next show that (8.17) has a unique

solution and that it converges to the constant r.

Let ∥.∥ denote the maximum norm and let B be the set of bounded functions

ϕ : [−L,∞) → R with ϕ(n) = ψ(n) on [−L,0], ϕ(n) → r as n → ∞. Then (B,∥.∥)

defines a complete metric space. For ϕ ∈ B, define P : B→ B by

(Pϕ)(n) = ψ(n), for −L ≤ n ≤ 0,

and

(Pϕ)(n) =
n−1

∑
s=n−L2

g(ϕ(s))+h(ϕ(n−L1))+ψ(0)−
−1

∑
s=−L2

g(ψ(s))

− h(ψ(−L1)), n ≥ 0. (8.28)

For ϕ ∈ B with ϕ(n) → r, we have ∑n−1
s=n−L2

g(ϕ(s)) → g(r)L2 and h(ϕ(n−L1)) →

h(r) as n → ∞. Hence,

(Pϕ)(n)→ g(r)L2 +h(r)+ψ(0)−
−1

∑
s=−L2

g(ψ(s))−h(ψ(−L1)) = r.

This shows that P maps from B into itself. Finally, we show that P is a contraction.
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Let a,b ∈ B, then we have

|(Pa)(n)− (Pb)(n)| ≤
n−1

∑
s=n−L2

|g(a)−g(b)|+ |h(a(n−L1)−h(b(n−L1)))|

≤ L2K2||a−b||+K1||a−b||

≤ (L2K2 +K1)||a−b|| ≤ α||a−b||.

Thus, P is a contraction and by the Banach’s theorem P has a unique fixed point

ϕ ∈ B which satisfies (8.17) due to how the mapping P was constructed.

Remark 8.2.2.2. For any arbitrary initial function, say η : [−L,0] → R, Theorem

8.2.2.1 shows that x(n,0,η)→ r. Thus, we may think of r as being a global attractor.

Theorem 8.2.2.1 may also be thought of as a stability result in the following

sense. We know in general that solutions depend continuously on initial functions.

That is, solutions which start close remain close on finite intervals. However, un-

der the conditions in Theorem 8.2.2.1 such solutions remain close forever, and their

asymptotic respective constants remain close too. This fact is verified in the follow-

ing theorem.

Theorem 8.2.2.3. Suppose the hypotheses of Theorem 8.2.2.1 hold. Then every

initial function is stable. Moreover, if ψ1 and ψ2 are two initial functions with

x(n,0,ψ1)→ r1, and x(n,0,ψ2)→ r2, then |r1 − r2|< ε for positive ε.

Proof. Denote by ||ψ||[−L,0] the supremum norm of ψ on the interval [−L,0]. Let

ψ1 be a fixed initial function and ψ2 any other initial function. Let Pi, i = 1,2 be the

mapping defined by (8.28). From Theorem 8.2.2.1 there are unique functions θ1,θ2

and unique constants r1 and r2 such that

P1θ1 → θ1, P2θ2 → θ2, θ1(n)→ r1 θ2(n)→ r2.

Let ε > 0 be any given positive number and set δ = ε(1−k1−L2K2)
1+k1+L2K2

. Then

|θ1(n)−θ2(n)| = |(P1θ1)(n)− (P2θ2)(n)|

≤ |ψ1(0)−ψ2(0)|+
−1

∑
s=−L2

|g(ψ1(s))−g(ψ2(s))|
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+ |h(ψ1(−L1))−h(ψ2(−L1))|+ |h(θ1(n−L1))

− h(θ2(n−L1))|+
n−1

∑
s=n−L2

|g(θ1(s))−g(θ2(s))|

≤ |ψ1(0)−ψ2(0)|+L2K2||ψ1 −ψ2||

+ K1||ψ1 −ψ2||+K2||θ1 −θ2||

+ L2K2||θ1 −θ2||

This yields

||θ1 −θ2||<
1+ k1 +L2K2

1− k1 −L2K2
||ψ1 −ψ2||[−L,0] < ε,

provided that

||ψ1 −ψ2||[−L,0] <
ε(1− k1 −L2K2)

1+ k1 +L2K2
:= δ.

This shows that

|x(n,0,ψ1)− x(n,0,ψ2)|< ε, whenever ||ψ1 −ψ2||[−L,0] < δ.

To complete the proof we note that |θi(t)− ri| → 0, as n → ∞ implies that

|r1 − r2| = |r1 −θ1(n)+θ1(n)−θ2(n)+θ2(n)− r2|

≤ |r1 −θ1(n)|+ ||θ1 −θ2||+ |θ2(n)− r2| → ||θ1 −θ2||, (as n → ∞)

< ε.

This completes the proof.

Finally, we study the periodicity of solutions of (8.19). Thus we consider the

equation

∆
(

x(n)−h(x(n−L))
)

= g(n,x(n))−g(n,x(n−L)),

where

g(n+L,x) = g(n,x) (8.29)
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for all x. In view of condition (8.29) we rewrite (8.19) in the form

∆
(

x(n)−h(x(n−L))
)

= g(n,x(n))−g(n−L,x(n−L))

= ∆
n−1

∑
s=n−L

g(s,x(s)). (8.30)

We assume that the function g(n,x) is globally Lipschitz. That is, there exists a

constant k3 > 0 such that

|g(n,x)−g(n,y)| ≤ K3|x− y|. (8.31)

We also assume that

K3L ≤ ρ, for some 0 < ρ < 1. (8.32)

Theorem 8.2.2.4. Suppose that conditions (8.29), (8.31) and (8.32) hold. If (8.19)

has an L-periodic solution, then that solution is constant.

Proof. The existence of a unique solution of (8.19) is given by conditions (8.29),

(8.31) and (8.32). Summing (8.30) from u = 0 to u = n−1 gives

x(n) = h(x(n−L))+
n−1

∑
s=n−L

g(s,x(s))+ x(0)−h(x(−L))

−
−1

∑
s=−L

g(s,x(s)). (8.33)

Set

G(n) := g(n,x(n)).

Since x(n+L) = x(n) we have by (8.29) that G(n) satisfies G(n+L) = G(n). This

implies that the sum of G over any interval of length L is constant. In other words,

n−1

∑
s=n−L

g(s,x(s)) =
n−1

∑
s=n−L

G(s) =
−1

∑
s=−L

G(s) =
−1

∑
s=−L

g(s,x(s)).

Moreover, since x(n − L) = x(n) we have that x(−L) = x(0) thus h(x(n − L)) =

h(x(−L)). It then follows from (8.33) that x(n) = x(0) for n ≥ −L. Hence x is

constant.
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8.2.3 Convergence and Stability for (8.18)

In this subsection we consider (8.18). In particular we will show that the

behaviour of solutions of (8.18) is the same as Equation (8.17) and that it has no

periodic solutions except constants.

Let ψ : [−L1 −L2,0]→ R be a given initial function. Then for any constant c,

equation (8.18) can be written as

x(n) =
n−L1−1

∑
s=n−L1−L2

g(x(s))+h(x(n−L1 −L2))+ c. (8.34)

Substituting n = 0 in (8.34) gives

ψ(0) =
−L1−1

∑
s=−L1−L2

g(x(s))+h(x(−L1 −L2))+ c. (8.35)

From (8.35),

c = ψ(0)−
−L1−1

∑
s=−L1−L2

g(x(s))−h(x(−L1 −L2)). (8.36)

Substituting (8.36) into (8.34) gives

x(n) =
n−L1−1

∑
s=n−L1−L2

g(x(s))+h(x(n−L1 −L2))

+ ψ(0)−
−L1−1

∑
s=−L1−L2

g(ψ(s))−h(ψ(−L1 −L2)). (8.37)

Theorem 8.2.3.1. Suppose that (8.20)-(8.22) hold and let ψ : [−L1 − L2,0] → R

be a given initial function. Then, the unique solution x(n,0,ψ) of (8.18) satisfies

x(n,0,ψ)→ r, where r is unique and satisfies

r = g(r)L2 +h(r)

+ ψ(0)−
−L1−1

∑
s=−L1−L2

g(ψ(s))−h(ψ(−L1 −L2)). (8.38)

Proof. Let |.| denote the absolute value then the metric space (R, |.|), is complete.

Define the mapping J : R→ R, by

Jr = g(r)L2 +h(r)

+ ψ(0)−
−L1−1

∑
s=−L1−L2

g(ψ(s))−h(ψ(−L1 −L2)).
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For a,b ∈ R, we have

|Ja− Jb| ≤ L2|g(a)−g(b)|+ |h(a)−h(b)|

≤ L2K2|a−b|+K1|a−b|

= (L2K2 +K1)|a−b|

≤ α|a−b|.

Thus showing that J is a contraction on the complete metric space (R, |.|). It there-

fore follows from the Banach principle that J has a unique fixed point r, and this

implies that (8.38) has a unique solution. We next show that (8.18) has a unique

solution and that it converges to the constant r.

Let ∥.∥ denote the maximum norm and let B be the set of bounded functions

ϕ : [−L1−L2,∞)→R with ϕ(n) = ψ(n) on [−L1−L2,0], ϕ(n)→ r as n → ∞. Then

(B,∥.∥) defines a complete metric space. For ϕ ∈ B, define P : B→ B by

(Pϕ)(n) = ψ(n), for −L1 −L2 ≤ n ≤ 0,

and

(Pϕ)(n) =
n−L1−1

∑
s=n−L1−L2

g(ϕ(s))+h(ϕ(n−L1 −L2))

+ ψ(0)−
−L1−1

∑
s=−L1−L2

g(ψ(s))−h(ψ(−L1 −L2)), n ≥ 0. (8.39)

For ϕ ∈ B with ϕ(n)→ r, we have ∑n−L1−1
s=n−L1−L2

g(ϕ(s))→ g(r)L2 and h(ϕ(n−L1 −

L2))→ h(r) as n → ∞. Hence,

(Pϕ)(n)→ g(r)L2 +h(r)+ψ(0)−
−L1−1

∑
s=−L1−L2

g(ψ(s))−h(ψ(−L1 −L2)) = r.

This shows that P maps from B into itself. Finally, we show that P is a contraction.

Let a,b ∈ B, then we have

|(Pa)(n)− (Pb)(n)| ≤
n−1

∑
s=n−L2

|g(a)−g(b)|+ |h(a(n−L1 −L2)

− h(b(n−L1 −L2)))|

≤ L2K2||a−b||+K1||a−b||

≤ (L2K2 +K1)||a−b|| ≤ α||a−b||.
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Thus, P is a contraction and by the Banach’s theorem P has a unique fixed point

ϕ ∈ B which satisfies (8.18) due to how the mapping P was constructed.
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CHAPTER NINE

STABILITY AND PERIODICITY IN NEUTRAL

DIFFERENCE EQUATIONS WITH VARIABLE DELAYS

9.1 Asymptotic stability of difference equations

9.1.1 Introduction

Let R denote the real numbers, R+ = [0,∞), Z the integers, Z− the negative

integers, and Z+ = {x ∈ Z : x ≥ 0}. In this section we consider the scalar delay

equation

∆x(n) =−a(n)x(n− τ(n)) (9.1)

and its generalization

∆x(n) =−
N

∑
j=1

a j(n)(x(n− τ j(n)), (9.2)

where a,a j : Z+ →R and τ,τ j : Z+ →Z+ with n−τ(n)→ ∞ as n → ∞. For each n0,

define m j(n0) = inf{s− τ j(s) : s ≥ n0},m(n0) = min{m j(n0) : 1 ≤ j ≤ N}. Note

that (9.2) becomes (9.1) for N = 1.

Islam and Yankson (2005) showed that the zero solution of the equation

x(n+1) = b(n)x(n)+a(n)x(n− τ(n)) (9.3)

is asymptotically stable with one of the assumptions being that

n−1

∏
s=0

b(s)→ 0 as n → ∞. (9.4)

Condition (9.4) cannot hold for (9.2) since b(n) = 1, for all n ∈ Z. Raffoul (2006)

obtained results to overcome the requirement of (9.4) for (9.1) when the delay τ(n)=
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c, where c is a positive constant. Our objective in this Chapter is to obtain stability

results for (9.2) that will also overcome requirement of (9.4).

Remark 9.1.1.1 The content of this Chapter has been published as:

E. Yankson, ” Stability in discrete equations with variable delays,” Electronic Journal

of Qualitative Theory of Differential Equations, No. 8, 2009.

Let D(n0) denote the set of bounded sequences ψ : [m(n0),n0] → R with the

maximum norm ||.||. Also, let (B, ||.||) be the Banach space of bounded sequences

φ : [m(n0),∞)→R with the maximum norm. Define the inverse of n−τi(n) by gi(n)

if it exists and then set

Q(n) =
N

∑
j=1

b(g j(n)),

where
N

∑
j=1

b(g j(n)) = 1−
N

∑
j=1

a(g j(n)).

For each (n0,ψ) ∈ Z+ × D(n0), a solution of (9.2) through (n0,ψ) is a function

x : [m(n0),n0 +α) → R for some positive constant α > 0 such that x(n) satisfies

(9.2) on [n0,n0 +α) and x(n) = ψ(n) for n ∈ [m(n0),n0]. We denote such a solution

by x(n) = x(n,n0,ψ). For a fixed n0, we define

||ψ||= max{|ψ(n)| : m(n0)≤ n ≤ n0}.

9.1.2 Asymptotic Stability

In this subsection we obtain conditions for the zero solution of (9.2) to be

asymptotically stable.

We begin by rewriting (9.2) as

∆x(n) =−
N

∑
j=1

a j(g j(n))x(n)+∆n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s), (9.5)

where ∆n represents that the difference is with respect to n. But (9.5) implies that

x(n+1)− x(n) = −
N

∑
j=1

a j(g j(n))x(n)+∆n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

x(n+1) =
(

1−
N

∑
j=1

a j(g j(n))
)

x(n)+∆n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s).
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If we let

N

∑
j=1

b j(g j(n)) = 1−
N

∑
j=1

a j(g j(n)),

then (9.5) is equivalent to

x(n+1) =
N

∑
j=1

b j(g j(n))x(n)+∆n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s). (9.6)

Lemma 9.1.2.1. Suppose that Q(n) ̸= 0 for all n∈Z+ and the inverse function g j(n)

of n− τ j(n) exists. Then x(n) is a solution of (9.2) if and only if

x(n) =
(

x(n0)−
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))x(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))x(u)
)
, n ≥ n0.

Proof. By the variation of parameters formula we obtain

x(n) = x(n0)
n−1

∏
s=n0

Q(s)

+
n−1

∑
k=0

(n−1

∏
s=k

Q(s)∆k

N

∑
j=1

k−1

∑
s=k−τ j(k)

a j(g j(s))x(s)
)
. (9.7)

Using the summation by parts formula we obtain

n−1

∑
k=0

(n−1

∏
s=k

Q(s)∆k

N

∑
j=1

k−1

∑
s=k−τ j(k)

a j(g j(s))x(s)
)

=
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

−
n−1

∏
s=n0

Q(s)
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))x(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(k)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))x(u)
)
. (9.8)

Substituting (9.8) into (9.7) gives the desired result. This completes the proof.

We next state and prove the main results in this section.
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Theorem 9.1.2.2. Suppose that the inverse function g j(n) of n− τ j(n) exists, and

assume there exists a constant α ∈ (0,1) such that

N

∑
j=1

n−1

∑
s=n−τ j(n)

|a j(g j(s))|

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(k)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)
≤ α. (9.9)

Moreover, assume that there exists a positive constant M such that∣∣∣ n−1

∏
s=n0

Q(s)
∣∣∣≤ M.

Then the zero solution of (9.2) is stable.

Proof. Let ε > 0 be given. Choose δ > 0 such that

(M+Mα)δ+αε ≤ ε.

Let ψ ∈ D(n0) such that | ψ(n) |≤ δ. Define S = {φ ∈ B : φ(n) = ψ(n) if n ∈

[m(n0),n0],∥ φ ∥≤ ε}. Then (S,∥ . ∥) is a complete metric space where, ∥ . ∥ is

the maximum norm.

Define the mapping P : S → S by

(Pφ)(n) = ψ(n) for n ∈ [m(n0),n0],

and

(Pφ)(n) =
(

ψ(n0)−
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))φ(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))φ(u)
)
(9.10)
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We first show that P maps from S to S. By (9.10),

| (Pφ)(n) | ≤ Mδ+Mαδ+
{ N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))

+
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(k)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))
}
∥ φ ∥

≤ (M+Mα)δ+αε

≤ ε.

Thus P maps from S into itself. We next show that Pφ is continuous.

Let φ,ϕ ∈ S. Given any ε > 0, choose δ = ε
α such that ||φ−ϕ||< δ. Then,

||(Pφ)− (Pϕ)|| ≤
N

∑
j=1

n−1

∑
s=n−τ j(n)

|a j(g j(s))|||φ−ϕ||

−
n−1

∑
s=n0

(
[1−Q(s)]

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)

× ||φ−ϕ||

≤ α||φ−ϕ||

≤ ε.

Thus showing that Pφ is continuous. Finally we show that P is a contraction.

Let φ,η ∈ S. Then

|(Pφ)(n)− (Pη)(n)|

=
∣∣∣(ψ(n0)−

N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))φ(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))φ(u)
)
|

−
(

ψ(n0)−
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

−
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))η(s)

+
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))η(u)
)∣∣∣
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≤
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))∥φ−η∥

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)
∥φ−η∥

≤
{ N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)}

∥φ−η∥

≤ α∥φ−η∥.

This shows that P is a contraction. Thus, by the contraction mapping principle, P

has a unique fixed point in P which solves (9.2) and for any φ ∈ S, ∥P∥ ≤ ε. This

proves that the zero solution of (9.2) is stable.

Theorem 9.1.2.3. Assume that the hypotheses of Theorem 9.1.2.2 hold. Also as-

sume that

n−1

∏
k=n0

Q(k)→ 0 as n → ∞. (9.11)

Then the zero solution of (9.2) is asymptotically stable.

Proof. We have already proved that the zero solution of (9.2) is stable. Let ψ∈D(n0)

such that |ψ(n)| ≤ δ and define

S∗ =
{

φ ∈ B | φ(n) = ψ(n) if n ∈ [m(n0),n0], ||φ|| ≤ ε and

φ(n)→ 0, as n → ∞
}
.

Define P : S∗ → P∗ by (9.10). From the proof of Theorem 9.1.1.2, the map P is a

contraction and for every φ ∈ S∗, ||(Pφ)|| ≤ ε.

We next show that (Pφ)(n)→ 0 as n → ∞. The first term on the right hand side of

(9.10) goes to zero because of condition (9.11). It is clear from (9.9) and the fact

that φ(n)→ 0 as n → ∞ that

N

∑
j=1

n−1

∑
s=n−τ j(n)

∣∣∣a j(g j(s))
∣∣∣|φ(s)| → 0 as n → ∞.

Now we show that the last term on the right hand side of (9.10) goes to zero

as n → ∞. Since φ(n)→ 0 and n−τ j(n)→ ∞ as n → ∞, for each ε1 > 0, there exists
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an N1 > n0 such that s ≥ N1 implies |φ(s−τ j(s))|< ε1 for j = 1,2,3, ...,N. Thus for

n ≥ N1, the last term, I3 in (9.10) satisfies

|I3| =
∣∣∣ n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))φ(u)
)∣∣∣

≤
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))||φ(u)|
)

+
n

∑
s=N1

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))||φ(u)|
)

≤ max
σ≥m(n0)

|φ(σ)|
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|

+ ε1

n

∑
s=N1

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)

By (9.11), there exists N2 > N1 such that n ≥ N2 implies

max
σ≥m(n0)

|φ(σ)|
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣∣∣ n−1

∏
k=s+1

Q(s)
∣∣∣ N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|< ε1.

Applying (9.9) gives |I3| ≤ ε1+ε1α< 2ε1. Thus, I3 → 0 as n→∞. Hence (Pφ)(n)→

0 as n → ∞, and so Pφ ∈ S∗.

By the contraction mapping principle, P has a unique fixed point that solves (9.2)

and goes to zero as n goes to infinity. Therefore the zero solution of (9.2) is asymp-

totically stable.

9.2 Stability of totally nonlinear difference equations

In this section we turn our attention to the totally nonlinear delay difference

equation

∆x(n) =−a(n) f (x(n− τ(n)), (9.12)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1)− x(n),

a : Z+ → R, τ : Z+ → Z+, f (0) = 0, f is continuous, locally Lipschitz, and odd,

while x− f (x) is nondecreasing and f (x) is increasing on an interval [0,L] for some
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L > 0.

For each n0 define m(n0)= inf{s−τ(s) : s≥ n0},Z+= [0,∞)∩Z, and Zm(n0)=

[m(n0),∞)∩Z. Note that if 0< L1 < L, then the conditions on f given with the (9.12)

hold on [−L1,L1]. Also note that if ϕ : Zm(n0) → R with ϕm(n0) = ψ, if |ϕ| ≤ L, then

for n ∈ Z+ we have

|ϕ(n)− f (ϕ(n))| ≤ L− f (L),

since x − f (x) is odd and nondecreasing on [0,L]. The symbol ϕm(n0) denotes a

segment of ϕ on [m(n0),n0]∩Z.

Let (C, ||.||) be the Banach space of real sequences ϕ : Zm(n0) → R with supremum

norm ||.||. For any sequence ψ with |ψ|< L we define

M= {ϕ : Zm(n0) → R | ϕm(n0) = ψ, ϕ ∈ C, |ϕ(n)| ≤ L}.

We will also use ||.|| to denote the supremum norm of an initial sequence. It will

be obvious from the sequence to which it is applied whether the norm denotes the

supremum norm on [m(n0),n0]∩Z or on Zm(n0). Finally, note that (M, ||.||) is a Ba-

nach space since M is a closed subset of C.

Also define the inverse of n− τ(n) by g(n) if it exists.

9.2.1 Stability

In this section we obtain sufficient conditions for the zero solution of (9.12) to

be stable.

We begin by writing (9.12) as

∆x(n) = −a(g(n)) f (x(n))+∆n

n−1

∑
s=n−τ(n)

a(g(s)) f (x(s))

= −a(g(n))x(n)+a(g(n))[x(n)− f (x(n))]+∆n

n−1

∑
s=n−τ(n)

a(g(s)) f (x(s)).

(9.13)
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Lemma 9.2.1.1. Suppose the inverse function g(n) of n−τ(n) exists. Also, suppose

that a(g(n)) ̸= 1 for all n ∈ Z+. Then x(n) is a solution of (9.13) if and only if

x(n) = x(n0)
n−1

∏
s=n0

[1−a(g(s))]−
n−1

∏
u=n0

[1−a(g(u))]
n0−1

∑
s=n0−τ(n0)

a(g(s)) f (x(s))

+
n−1

∑
s=n0

a(g(s))
n−1

∏
k=s

[1−a(g(k))][x(s)− f (x(s))]

−
n−1

∑
s=n0

a(g(s))
n−1

∏
k=s+1

[1−a(g(k))]
s−1

∑
u=s−τ(s)

a(g(u)) f (x(u))

+
n−1

∑
s=n−τ(n)

a(g(s)) f (x(s)), n ≥ n0. (9.14)

Proof. Applying the variation of parameters formula to (9.13) gives

x(n) = x(n0)
n−1

∏
s=n0

[1−a(g(s))]+
n−1

∑
k=n0

(n−1

∏
s=k

[1−a(g(s))]
[
a(g(k))[x(k)− f (x(k))]

+ ∆k

k−1

∑
s=k−τ(k)

a(g(s)) f (x(s))
])

. (9.15)

Using the summation by parts formula we obtain

n−1

∑
k=n0

(n−1

∏
s=k

[1−a(g(s))]∆k

k−1

∑
s=k−τ(k)

a(g(s)) f (x(s))
)

=
n−1

∑
s=n−τ(n)

a(g(s)) f (x(s))−
n−1

∏
s=n0

[1−a(g(s))]
n0−1

∑
s=n0−τ(n0)

a(g(s)) f (x(s))

−
n−1

∑
s=n0

(
a(g(s))

n−1

∏
k=s+1

[1−a(g(k))]
n−1

∑
u=s−τ(s)

a(g(u)) f (x(u))
)

(9.16)

Substituting (9.16) into (9.15) gives the desired results. This completes the proof.

We next state and prove our main results.

Theorem 9.2.1.2. Suppose the inverse function g(n) of n−τ(n) exists. Let f be odd,

increasing on [0,L], satisfy a Lipschitz condition, and let x− f (x) be nondecreasing
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on [0,L]. Suppose also that |a(n)|< 1 and for each L1 ∈ (0,L] we have

|L1 − f (L1)| sup
n∈Z+

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s

[1−a(g(k))]

+ f (L1) sup
n∈Z+

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s+1

[1−a(g(k))]
s−1

∑
u=s−τ(s)

|a(g(u))|

+ f (L1) sup
n∈Z+

n−1

∑
s=n−τ(n)

|a(g(s))|< L1. (9.17)

Then the zero solution of (9.12) is stable.

Proof. Let L > 0 be given. Choose δ > 0 such that

δ+Kδ
n0−1

∑
s=n0−τ(n0)

|a(g(s)|+αL ≤ L.

Let ψ : [m(n0),n0]∩Z→R be a bounded initial function such that |ψ(n)|< δ. Define

a mapping H : M→M using (9.21) so that for ϕ ∈M we have

(Hϕ)(n) = ψ(n), n ∈ [m(n0),n0]∩Z,

and for n ∈ Z+

(Hϕ)(n) = ψ(n0)
n−1

∏
s=n0

[1−a(g(s))]−
n−1

∏
u=n0

[1−a(g(u))]
n0−1

∑
s=n0−τ(n0)

a(g(s)) f (ψ(s))

+
n−1

∑
s=n0

a(g(s))
n−1

∏
k=s

[1−a(g(k))][ϕ(s)− f (ϕ(s))]

−
n−1

∑
s=n0

a(g(s))
n−1

∏
k=s+1

[1−a(g(k))]
s−1

∑
u=s−τ(s)

a(g(u)) f (ϕ(u))

+
n−1

∑
s=n−τ(n)

a(g(s)) f (ϕ(s)).

We first show that P maps from M to M. By (9.17) there is α < 1 such that if ϕ ∈M,

then

|(Hϕ)(n)| ≤ ||ψ||+ || f (ψ)||
n0−1

∑
s=n0−τ(n0)

|a(g(s))|

+ |L− f (L)| sup
n∈Z+

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s

[1−a(g(k))]

+ f (L) sup
n∈Z+

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s+1

[1−a(g(k))]
s−1

∑
u=s−τ(s)

|a(g(u))|
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+ f (L) sup
n∈Z+

n−1

∑
s=n−τ(n)

|a(g(s))|

≤ ||ψ||+ || f (ψ)||
n0−1

∑
s=n0−τ(n0)

|a(g(s))|+αL

≤ ||ψ||+K||ψ||
n0−1

∑
s=n0−τ(n0)

|a(g(s))|+αL

≤ δ+Kδ
n0−1

∑
s=n0−τ(n0)

|a(g(s))|+αL

≤ L.

Thus showing that H maps from M to M. We will next show that H is a contraction.

Let d >max{3, 1
K}, where K is the common Lipschitz constant for f (x) and x− f (x)

on [−L,L]. Define a metric ρ on M as follows:

ρ(ϕ,η) = |ϕ−η|K := sup
n∈Z+

n−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

|ϕ(n)−η(n)|.

Then (M,ρ) is a complete metric space.

We now use this metric to show that H is a contraction with constant 3
d . For ϕ,η∈M

we have

|(Hϕ)(n)− (Hη)(n)|

≤
n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s

[1−a(g(k))]|ϕ(s)− f (ϕ(s))−η(s)+ f (η(s))|

+
n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s+1

[1−a(g(k))]
s−1

∑
u=s−τ(s)

|a(g(u))| f (ϕ(u))− f (η(u))|

+
n−1

∑
s=n−τ(n)

|a(g(s))|| f (ϕ(s))− f (η(u))|. (9.18)

Since f (x) and w(x) = x− f (x) both satisfy a Lipschitz condition with the same

constant K, then the first term on the right hand side of (9.18) satisfies

n−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s

[1−a(g(k))]|w(ϕ(s))−w(η(s))|

≤ K
n−1

∑
s=n0

|a(g(s))|
s−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

|ϕ(s)−η(s)|

×
n−1

∏
k=s

[1−a(g(k))][1−|a(g(k))|]
dK[1+ |a(g(k))|]
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≤ 1
d
|ϕ−η|K

n−1

∑
s=n0

|a(g(s))|
s−1

∏
j=0

[1−|a(g( j))|]

≤ 1
d
|ϕ−η|K.

Similarly, the second term on the right hand side of (9.18) satisfies
n−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s+1

[1−a(g(k))]

×
s−1

∑
u=s−τ(s)

|a(g(u))| f (ϕ(u))− f (η(u))|

≤ K
n−1

∑
s=n0

|a(g(s))|[1−|a(g(s))|]
dK[1+ |a(g(s))|]

n−1

∏
k=s+1

[1−a(g(k))][1−|a(g(k))|]
dK[1+ |a(g(k))|]

×
s−1

∑
u=s−τ(s)

|a(g(u))|ϕ(u)−η(u)|
u−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

×
s−1

∏
j=u

1−|a(g( j))|
dK[1+ |a(g( j))|]

≤ (
1
d
)|ϕ−η|K

n−1

∑
s=n0

|a(g(s))|
n−1

∏
k=s+1

[1−|a(g(k))|]

×
s−1

∑
u=s−τ(s)

|a(g(u))|
s−1

∏
j=u

[1−|a(g( j))|]

≤ (
1
d
)|ϕ−η|K.

Finally, the third term on the right hand side of (9.18) satisfies
n−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

n−1

∑
s=n−τ(n)

|a(g(s))|| f (ϕ(s))− f (η(u))|

≤ K
n−1

∑
s=n−τ(n)

|a(g(s))||ϕ(s)−η(u)|
s−1

∏
j=0

1−|a(g( j))|
dK[1+ |a(g( j))|]

×
n−1

∏
j=s

1−|a(g( j))|
dK[1+ |a(g( j))|]

≤ (
1
d
)|ϕ−η|K

n−1

∑
s=n−τ(n)

|a(g(s))|
n−1

∏
j=s

[1−|a(g( j))|]

≤ (
1
d
)|ϕ−η|K.

Thus |Hϕ−Hη|K ≤ ( 3
d )|ϕ−η|K. Therefore, by the contraction mapping principle

H has a unique fixed point in M. This completes the proof.
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In the next theorem, we consider a situation when the coefficient a(n) of equa-

tion (9.12) does not satisfy theorem 9.2.1.2. In that case, we can remove a portion

of a(n) which has a sufficiently small average.

Theorem 9.2.1.3. Let f satisfy the conditions in Theorem 9.2.1.2 and suppose the

inverse function g(n) of n− τ(n) exists. Suppose also that

a(n) = c(n)−b(n), (9.19)

where 0 ≤ c(n)< 1, |b(n)|< 1, while

sup
n∈Z+

n−1

∑
s=n0

|b(s)|
n−1

∏
k=s

[1− c(g(k))]+2 sup
n∈Z+

n−1

∑
u=n−τ(n)

c(g(u))< 1. (9.20)

Then the zero solution of (9.12) is stable.

Proof. Rewrite equation (9.12) as

∆x(n) = −c(g(n)) f (x(n))+∆n

n−1

∑
s=n−τ(n)

c(g(s)) f (x(s))+b(n) f (x(n− τ(n)))

= −c(g(n))x(n)+ c(g(n))[x(n)− f (x(n))]

+ ∆n

n−1

∑
s=n−τ(n)

c(g(s)) f (x(s))+b(n) f (x(n− τ(n))).

Using the variation of parameters formula followed by summation by parts as we

have done before we obtain

x(n) = x(n0)
n−1

∏
s=n0

[1− c(g(s))]−
n−1

∏
u=n0

[1− c(g(u))]
n0−1

∑
s=n0−τ(n0)

c(g(s)) f (x(s))

+
n−1

∑
s=n0

c(g(s))
n−1

∏
k=s

[1− c(g(k))][x(s)− f (x(s))]

+
n−1

∑
s=n0

b(s)
n−1

∏
k=s

[1− c(g(k))] f (x(s− τ(s)))

−
n−1

∑
s=n0

c(g(s))
n−1

∏
k=s+1

[1− c(g(k))]
s−1

∑
u=s−τ(s)

c(g(u)) f (x(u))

+
n−1

∑
s=n−τ(n)

c(g(s)) f (x(s)), n ≥ n0.

Note that w(x) = x− f (x) has a maximum on [0,L] at L. Define

M= {ϕ : Zm(n0) → R | ϕm(n0) = ψ, ϕ ∈ C, |ϕ(n)| ≤ L}.
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Define a mapping H on M using the last equation at x as before. Thus

|(Hx(n)| ≤ ||ψ||+ f (||ψ||) sup
n∈Z+

n0−1

∑
s=n0−τ(n0)

c(g(s))

+ L− f (L)+ f (L) sup
n∈Z+

n−1

∑
s=n0

|b(s)|
n−1

∏
k=s

[1− c(g(k))]

+ 2 f (L) sup
n∈Z+

n−1

∑
s=n−τ(n)

c(g(s)).

In order to say that H : M→M we need

L− f (L)+ f (L) sup
n∈Z+

n−1

∑
s=n0

|b(s)|
n−1

∏
k=s

[1− c(g(k))]+2 f (L) sup
n∈Z+

n−1

∑
s=n−τ(n)

c(g(s))< L.

Subtracting L from each side and dividing by f (L), we arrive at (9.20). The contrac-

tion argument parallel to Theorem 9.2.1.2 uses the metric

ρ(ϕ,η) = |ϕ−η|K := sup
n∈Z+

n−1

∏
j=0

[1−|b( j)|][1− c(g( j))]
dK[1+ |b( j)|][1+ |c(g( j))|]

|ϕ(n)−η(n)|,

where d > max{4,1/K}. The rest of the proof is exactly as before and so we omit

it.

9.3 Periodic Solutions

In this section we study the existence of periodic solutions of the equation

∆x(n) = −a(n)h(x(n+1))+ c(n)∆x(n− τ(n))

+ G(n,x(n),x(n− τ(n))), ∀n ∈ Z, (9.21)

where

G : Z×R×R→ R,

with Z and R being the set of integers and real numbers respectively.

Let T be an integer such that T ≥ 1. Define PT = {φ ∈C(Z,R) : φ(n+T ) =

φ(n)} where C(Z,R) is the space of all real valued functions. Then (PT , ||.||) is a

Banach space with the maximum norm

||φ||= max
n∈[0,T−1]

|φ(n)|.
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Also, for any L > 0, define

M= {φ ∈ PT : ||φ|| ≤ L}.

We make the following assumptions in this section.

a(n+T ) = a(n), c(n+T ) = c(n), τ(n+T ) = τ(n), τ(n)≥ τ∗ > 0, (9.22)

for some constant τ∗. Suppose further that

a(n)> 0, (9.23)

and

G(n+T,x,y) = G(n,x,y). (9.24)

Moreover, we also assume that G is Lipschitz continuous in x and y. That is, there

are positive constants k1,k2 such that

|G(n,x,y)−G(n,z,w)| ≤ k1||x− z||+ k2||y−w||, for x,y,z,w ∈ R. (9.25)

Lemma 9.3.1. Suppose that (9.22) and (9.23) hold. If x ∈ PT , then x is a solution of

equation (9.21) if and only if

x(n) =
c(n−1)

1+a(n−1)
x(n− τ(n))+

(
1−

n−1

∏
s=n−T

(1+a(s))−1
)−1

×
[ n−1

∑
r=n−T

a(r)(x(r+1)−h(x(r+1)))
n−1

∏
s=r

(1+a(s))−1

+
n−1

∑
r=n−T

{x(r− τ(r))ϕ(r)+G(r,x(r),x(r− τ(r)))}
n−1

∏
s=r

(1+a(s))−1
]
,

(9.26)

where

ϕ(r) =
c(r−1)

1+a(r−1)
− c(r). (9.27)

Proof. Let x ∈ PT be a solution of (9.21). Rewrite (9.21) as

∆x(n)+a(n)x(n+1)

= a(n)x(n+1)−a(n)h(x(n+1))+ c(n)∆x(n− τ(n))+G(n,x(n),x(n− τ(n))).
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We consider two cases; n ≥ 1 and n ≤ 0. Considering first the case when n ≥ 1 by

multiplying both sides of the above equation by ∏n−1
s=0 (1+a(s)) and summing from

(n−T ) to (n−1) we obtain

n−1

∑
r=n−T

∆
[ r−1

∏
s=0

(1+a(s))x(r)
]

=
n−1

∑
r=n−T

a(r){x(r+1)−h(x(r+1))}
r−1

∏
s=0

(1+a(s))

+
n−1

∑
r=n−T

{c(r)∆x(r− τ(r))+G(r,x(r),x(r− τ(r)))}
r−1

∏
s=0

(1+a(s)).

Which gives

n−1

∏
s=0

(1+a(s))x(n)−
n−T−1

∏
s=0

(1+a(s))x(n−T )

=
n−1

∑
r=n−T

a(r){x(r+1)−h(x(r+1))}
r−1

∏
s=0

(1+a(s))

+
n−1

∑
r=n−T

{c(r)∆x(r− τ(r))+G(n,x(r),x(r− τ(r)))}
r−1

∏
s=0

(1+a(s)).

By dividing both sides of the above expression by ∏n−1
s=0 (1+a(s)) and the fact that

x(n) = x(n−T ), we obtain

x(n) =
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

(9.28)

×
[ n−1

∑
r=n−T

a(r)(x(r+1)−h(x(r+1)))
n−1

∏
s=r

(1+a(s))−1

+
n−1

∑
r=n−T

{c(r)∆x(r− τ(r))+G(r,x(r),x(r− τ(r)))}
n−1

∏
s=r

(1+a(s))−1
]
.

But,

n−1

∑
r=n−T

c(r)∆x(r− τ(r))
n−1

∏
s=r

(1+a(s))−1

=
n−1

∑
r=n−T

c(r)
n−1

∏
s=r

(1+a(s))−1∆x(r− τ(r)).

By considering z = x(r − τ(r)) and Ey = c(r)∏n−1
s=r (1+ a(s))−1 we get y = c(r −

1)∏n−1
s=r−1(1 + a(s))−1. Thus, by performing a summation by parts on the above

equation using the summation by parts formula

∑Ey∆z = yz−∑z∆y,
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we obtain

n−1

∑
r=n−T

c(r)∆x(r− τ(r))
n−1

∏
s=r

(1+a(s))−1

=
[
c(r−1)

n−1

∏
s=r−1

(1+a(s))−1x(r− τ(r))
]n

n−T

−
n−1

∑
r=n−T

x(r− τ(r))∆
(

c(r−1)
n−1

∏
s=r−1

(1+a(s))−1
)

= c(n−1)
n−1

∏
s=n−1

(1+a(s))−1x(n− τ(n))

− c(n−T −1)
n−1

∏
s=n−T−1

(1+a(s))−1x(n−T − τ(n−T ))

−
n−1

∑
r=n−T

x(r− τ(r))∆
(

c(r−1)
n−1

∏
s=r−1

(1+a(s))−1
)

=
c(n−1)

1+a(n−1)
x(n− τ(n))− c(n−1)

n−1

∏
s=n−T−1

(1+a(s))−1x(n− τ(n))

−
n−1

∑
r=n−T

x(r− τ(r))
{

c(r)
n−1

∏
s=r

(1+a(s))−1 − c(r−1)
n−1

∏
s=r−1

(1+a(s))−1
}
.

Thus

n−1

∑
r=n−T

c(r)∆x(r− τ(r))
n−1

∏
s=r

(1+a(s))−1 (9.29)

=
c(n−1)

1+a(n−1)
x(n− τ(n))

(
1−

n−1

∏
s=n−T

(1+a(s))−1
)

+
n−1

∑
r=n−T

x(r− τ(r))ϕ(r)
n−1

∏
s=r

(1+a(s))−1,

where ϕ is given by (9.27). Finally, substituting (9.29) into (9.28) completes the

proof.

Now for n ≤ 0, equation (9.21) is equivalent to

∆
[ 0

∏
s=n−1

(1+a(s))x(n)
]

= a(t){x(n+1)−h(x(n+1))}
0

∏
s=n−1

(1+a(s))

+ {c(n)∆x(n− τ(n))+G(n,x(n),x(n− τ(n)))}
0

∏
s=n−1

(1+a(s)).
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Summing the above equation from (n−T ) to n−1 we obtain (9.26).

For the next lemma we make the following assumptions on the function h :

R→ R.

(H1) h is continuous on UL = [−L,L].

(H2) h is strictly increasing on UL.

(H3) sups∈UL∩Z∆h(s)≤ 1.

(H4) (s− r)
{

supi∈UL∩Z∆h(i)
}
≥ h(s)− h(r) ≥ (s− r)

{
infi∈UL∩Z∆h(i)

}
≥ 0 for

s,r ∈UL with s ≥ r.

Lemma 9.3.2. Let L be a positive constant and h : R→ R be a function satisfying

(H1)− (H4). If (Hφ)(n) = φ(n+1)−h(φ(n+1)), then H is a large contraction on

the set M.

Proof. Let ϕ,φ ∈M with ϕ ̸= φ. Then ϕ(n+1) ̸= φ(n+1) for some n ∈ Z. Define

the set

D(ϕ,φ) =
{

n ∈ Z : ϕ(n+1) ̸= φ(n+1)
}
.

Note that φ(n+1) ∈UL for all n ∈ Z whenever φ ∈M. Since h is strictly increasing

h(φ(n+1))−h(ϕ(n+1))
φ(n+1)−ϕ(n+1)

=
h(ϕ(n+1))−h(φ(n+1))

ϕ(n+1)−φ(n+1)
> 0 (9.30)

holds for all n ∈ D(ϕ,φ). By (H3) we have

1 ≥ sup
i∈UL∩Z

∆h(i)≥ inf
s∈UL∩Z

∆h(s)≥ 0. (9.31)

Define the set Un ⊂UL by Un = [φ(n+1),ϕ(n+1)]∩UL if ϕ(n+1)> φ(n+1), and

Un = [ϕ(n+1),φ(n+1)]∩UL if ϕ(n+1)< φ(n+1), for n ∈ D(ϕ,φ). Hence, for a

fixed n0 ∈ D(ϕ,φ) we get by (H4) and (9.30) that

sup{∆h(u) : u ∈Un0 ∩Z} ≥ h(ϕ(n0 +1))−h(φ(n0 +1))
ϕ(n0 +1)−φ(n0 +1)

≥ inf{∆h(u) : u ∈Un0 ∩Z}.

Since Un ⊂UL for every n ∈ D(ϕ,φ), we find

sup
u∈UL∩Z

∆h(u)≥ sup{∆h(u) : u ∈Un0 ∩Z} ≥ inf{∆h(u) : u ∈Un0 ∩Z} ≥ inf
u∈UL∩Z

∆h(u),
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and therefore,

1 ≥ sup
u∈UL∩Z

∆h(u)≥ h(φ(n+1))−h(ϕ(n+1))
φ(n+1)−ϕ(n+1)

≥ inf
u∈UL∩Z

∆h(u)≥ 0 (9.32)

for all n ∈ D(ϕ,φ). So, (9.32) yields

|(Hϕ)(n)− (Hφ)(n)| = |ϕ(n+1)−h(ϕ(n+1))−φ(n+1)+h(φ(n+1))|

= |ϕ(n+1)−φ(n+1)|
∣∣∣1−(h(ϕ(n+1))−h(φ(n+1))

ϕ(n+1)−φ(n+1)

)∣∣∣
≤ |ϕ(n+1)−φ(n+1)|

(
1− inf

u∈UL∩Z
∆h(u)

)
(9.33)

for all n ∈ D(ϕ,φ). Thus, (9.32) and (9.33) imply that H is a large contraction in the

supremum norm. To see this choose a fixed ε ∈ (0,1) and assume that ϕ and φ are

two functions in M satisfying

∥ϕ−φ∥= sup
n∈[−L,L]∩Z

|ϕ(n+1)−φ(n+1)| ≥ ε.

If |ϕ(n+1)−φ(n+1)| ≤ ε/2 for some n ∈ D(ϕ,φ), then from (9.33)

|(Hϕ)(n)− (Hφ)(n)| ≤ |ϕ(n+1)−φ(n+1)| ≤ 1
2
∥ϕ−φ∥. (9.34)

Since h is continuous and strictly increasing, the function h(u+ ε
2)−h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |ϕ(n+1)−φ(n+

1)| for some n ∈ D(ϕ,φ), then from (9.32) and (H3) we conclude that

1 ≥ h(ϕ(n+1))−h(φ(n+1))
ϕ(n+1)−φ(n+1)

> λ,

and therefore,

|(Hϕ)(n)− (Hφ)(n)| ≤ |ϕ(n+1)−φ(n+1)|
{

1− h(ϕ(n+1))−h(φ(n+1))
ϕ(n+1)−φ(n+1)

}
≤ (1−λ)∥ϕ(n+1)−φ(n+1)∥, (9.35)

where

λ :=
1

2L
min

{
h(u+

ε
2
)−h(u),u ∈ [−L,L]

}
> 0.

Consequently, it follows from (9.34) and (9.35) that

|(Hϕ(n)− (Hφ)(n)| ≤ δ∥ϕ−φ∥,
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where δ = max
{

1
2 ,1−λ

}
< 1. The proof is complete.

Define the maps A,B : M→M as follows

(Aφ)(n) =
c(n−1)

1+a(n−1)
φ(n− τ(n))+

(
1−

n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

{φ(r− τ(r))ϕ(r)+G(r,φ(r),φ(r− τ(r)))}
n−1

∏
s=r

(1+a(s))−1,

(9.36)

and

(Bφ)(n) =
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

a(r)(x(r+1)−h(x(r+1)))
n−1

∏
s=r

(1+a(s))−1. (9.37)

For the rest of the section we make the following assumptions.

(k1 + k2)L+ |G(n,0,0)| ≤ βLa(n), (9.38)

|ϕ(n)| ≤ δa(n), (9.39)

max
n∈[0,T−1]

∣∣∣ c(n−1)
1+a(n−1)

∣∣∣= α, (9.40)

J(β+α+δ)≤ 1, (9.41)

where α,β,δ and J are positive constants with J ≥ 3.

Lemma 9.3.3. Suppose (9.22)-(9.25) and (9.38)-(9.41) hold. Then the mapping

A : M→M defined in (9.36) is continuous in the maximum norm and maps M into

compact subsets of M.
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Proof. We first show that A : M→M. Let φ ∈M. Then

(Aφ)(n+T ) =
c(n+T −1)

1+a(n+T −1)
φ(n+T − τ(n+T ))+

(
1−

n+T−1

∏
s=n

(1+a(s))−1
)−1

×
n+T−1

∑
r=n

{φ(r− τ(r))ϕ(r)+G(r,φ(r),φ(r− τ(r)))}
n+T−1

∏
s=r

(1+a(s))−1

=
c(n−1)

1+a(n−1)
φ(n− τ(n))+

(
1−

n+T−1

∏
s=n

(1+a(s))−1
)−1

×
n+T−1

∑
r=n

{φ(r− τ(r))ϕ(r)+G(r,φ(r),φ(r− τ(r)))}
n+T−1

∏
s=r

(1+a(s))−1

Let j = r−T, then

(Aφ)(n+T ) =
c(n−1)

1+a(n−1)
φ(n− τ(n))+

(
1−

n+T−1

∏
s=n

(1+a(s))−1
)−1

×
n+T−1

∑
j=n−T

{φ( j+T − τ( j+T ))ϕ( j+T )

+ G( j+T,φ( j+T ),φ( j+T − τ( j+T )))}
n+T−1

∏
s= j+T

(1+a(s))−1.

Now let k = s−T , then

(Aφ)(n+T ) =
c(n−1)

1+a(n−1)
φ(n− τ(n))+

(
1−

n−1

∏
k=n−T

(1+a(k))−1
)−1

×
n−1

∑
j=n−T

{φ( j− τ( j))ϕ( j)

+ G( j,φ( j),φ( j− τ( j)))}
n−1

∏
k= j

(1+a(k))−1.

= (Aφ)(n).

Consequently, A : PT → PT .

In view of (9.25) we have that

|G(n,x,y)| = |G(n,x,y)−G(n,0,0)+G(n,0,0)|

≤ |G(n,x,y)−G(n,0,0)|+ |G(n,0,0)|

≤ k1∥k1∥+ k2∥y∥+ |G(n,0,0)|.
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Also it follows from (9.23) that 1−∏n−1
s=n−T (1+a(s))−1 > 0. So, for any φ ∈M, we

obtain

|(Aφ)(n)| ≤
∣∣∣ c(n−1)
1+a(n−1)

∣∣∣|φ(n− τ(n))|+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

{|φ(r− τ(r))||ϕ(r)|+ |G(r,φ(r),φ(r− τ(r)))|}

×
n−1

∏
s=r

(1+a(s))−1

≤ αL+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

{δLa(r)+(k1 + k2)L+ |G(r,0,0)|}
n−1

∏
s=r

(1+a(s))−1

≤ αL+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

{(δ+β)La(r)}
n−1

∏
s=r

(1+a(s))−1

≤ αL+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×(δ+β)L
n−1

∑
r=n−T

∆r

[n−1

∏
s=r

(1+a(s))−1
]

= (α+δ+β)L ≤ L
J
< L.

Thus Aφ ∈M. Consequently, we have A : M→M.

We next show that A is continuous in the maximum norm. Let φ,ψ ∈M, and

let

µ1 = max
n∈[0,T−1]

∣∣∣ c(n−1)
1+a(n−1)

∣∣∣, µ2 = max
n∈[0,T−1]

(
1−

n−1

∏
s=n−T

(1+a(s))−1
)−1

,

µ3 = max
r∈[n−T,T−1]

|ϕ(r)|.

Let ε > 0 be given. Choose η = ε/ρ where ρ = µ1 + µ2T (µ3 + k1 + k2) such that

∥φ−ψ∥< η. Note that from (9.23), we have maxr∈[n−T,T−1]∏n−1
s=r (1+a(s))−1 ≤ 1.

Thus,

|(Aφ)(n)− (Aψ)(n)|

≤
∣∣∣ c(n−1)
1+a(n−1)

∣∣∣∥φ−ψ∥
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+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1 n−1

∑
r=n−T

{
∥φ−ψ∥|ϕ(r)|

+|G(r,φ(r),φ(r− τ(r)))−G(r,ψ(r),ψ(r− τ(r)))|
}n−1

∏
s=r

(1+a(s))−1

≤ µ1∥φ−ψ∥+µ2

n−1

∑
r=n−T

{
µ3∥φ−ψ∥+(k1 + k2)∥φ−ψ∥

}
≤
{

µ1 +µ2T (µ3 + k1 + k2)
}
∥φ−ψ∥< ε.

Therefore showing that A is continuous.

Next, we show that A maps bounded subsets into compact sets. Since M is

bounded and A is continuous, AM is a subset of RT which is bounded. So, AM is

contained in a compact subset of M. The proof is complete.

Lemma 9.3.4. Suppose (9.22)-(9.25) and (9.38) hold. Also, suppose that(
1−

n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

|a(r)||H(φ(r+1))|
n−1

∏
s=r

(1+a(s))−1 ≤ (J−1)L
J

. (9.42)

For A,B defined by (9.36) and (9.37) respectively, if φ,ψ ∈M are arbitrary, then

Aφ+Bψ : M→M.

Proof. Let φ,ψ ∈M be arbitrary. Using the result of Lemma 3.1 we obtain

|(Aφ)(n)+(Bψ)(n)|

≤
∣∣∣ c(n−1)
1+a(n−1)

∣∣∣|φ(n− τ(n))|+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

{|φ(r− τ(r))||ϕ(r)|+ |G(r,φ(r),φ(r− τ(r)))|}
n−1

∏
s=r

(1+a(s))−1

+
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

|a(r)||H(φ(r+1))|
n−1

∏
s=r

(1+a(s))−1

≤ L
J
+

(J−1)L
J

= L.

Thus Aφ+Bψ ∈M. This completes the proof.
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The next result gives a relationship between the mappings H and B in the sense

of a large contraction.

Lemma 9.3.5. Let B be defined by (9.37) and assume that (9.22)-(9.23) and (9.42)

hold. If H is a large contraction on M then so is the mapping B : M→M.

Proof. We will first show that B maps M into itself. Let φ ∈M then

(Bφ)(n+T ) =
(

1−
n+T−1

∏
s=n

(1+a(s))−1
)−1

×
n+T−1

∑
r=n

a(r)(x(r+1)−h(x(r+1)))
n+T−1

∏
s=r

(1+a(s))−1

Let j = r−T , then

(Bφ)(n+T ) =
(

1−
n+T−1

∏
s=n

(1+a(s))−1
)−1

×
n+T−1

∑
r=n

a( j+T )(x( j+T +1)−h(x( j+T +1)))

×
n+T−1

∏
s= j+T

(1+a(s))−1.

Now let k = s−T, then

(Bφ)(n+T ) =
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

a( j)(x( j+1)−h(x( j+1)))
n−1

∏
k= j

(1+a(s))−1

= (Bφ)(n).

That is, B : PT → PT .

In view of (9.42), we have

|(Bφ)(n)| ≤
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

|a(r)||H(φ(r+1))|
n−1

∏
s=r

(1+a(s))−1 (9.43)

≤ (J−1)L
J

< L. (9.44)

That is Bφ ∈M and consequently we have B : M→M.

We next show that B is a large contraction. If H is a large contraction on M,
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for x,y ∈ M, with x ̸= y, we have ∥Hx−Hy∥ ≤ ∥x− y∥. Thus, it follows from the

equality

a(r)
n−1

∏
s=r

(1+a(s))−1 = ∆
[n−1

∏
s=r

(1+a(s))−1
]

that

|Bx(n)−By(n)| ≤
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

a(r)|H(x(r+1))−H(y(r+1))|
n−1

∏
s=r

(1+a(s))−1

≤ ∥x− y∥
(

1−
n−1

∏
s=n−T

(1+a(s))−1
)−1

×
n−1

∑
r=n−T

a(r)
n−1

∏
s=r

(1+a(s))−1 = ∥x− y∥.

Thus

∥Bx−By∥ ≤ ∥x− y∥.

One may also show in a similar way that

∥Bx−By∥ ≤ δ∥x− y∥

holds if we know the existence of a δ ∈ (0,1) and that for all ε > 0

[x,y ∈M,∥x− y∥> 0]⇒∥Hx−Hy∥ ≤ δ∥x− y∥.

The proof is complete.

Theorem 9.3.6. Let (PT ,∥.∥) be the Banach space of T -periodic real valued func-

tions and M = {φ ∈ PT : ∥φ∥ ≤ L}, where L is a positive constant. Suppose that

(9.22)-(9.25) and (9.38)-(9.41) hold. Then equation (9.21) has a T -periodic solution

φ in M.

Proof. By Lemma 9.3.1, φ is a solution of (9.21) if

φ = Aφ+Bφ,

where A and B are given by (9.36) and (9.37) respectively. By Lemma 9.3.3, A :

M→M is completely continuous. By Lemma 9.3.4, Aφ+Bψ ∈M whenever φ,ψ ∈
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M. Moreover, B : M → M is a large contraction by Lemma 9.3.5. Thus all the

hypotheses of Theorem 2.3.7 of Krasnoselskii are satisfied. Thus, there exists a

fixed point φ ∈M such that φ = Aφ+Bφ. Hence (9.21) has a T− periodic solution.
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CHAPTER TEN

PERIODICITY AND STABILITY OF DYNAMIC EQUATIONS

ON TIME SCALE

10.1 Introduction

In this Chapter, we obtain sufficient conditions for solutions of nonlinear neu-

tral dynamic equations to be periodic on time scales. We further prove that the zero

solution of Volterra dynamic equations are asymptotically stable on time scales. The

concept of time scale analysis is a fairly new idea. It combines the traditional areas

of continuous and discrete analysis into one theory. The study of dynamic equations

brings together the traditional research areas of differential and difference equations.

In the first section, we obtain sufficient conditions for the existence of periodic so-

lutions of the nonlinear neutral dynamic equation

x∆(t) = −a(t)h(x(σ(t))+(Q(t,x(t),x(t −g(t)))))∆

+ G
(
t,x(t),x(t −g(t))

)
, t ∈ T,

on the time scale T. Adivar and Raffoul (2009) considered the above equation when

Q(t,x(t),x(t −g(t)))) = 0.

Motivated by the work of Wong and Soh (2005), Wong and Boey (2004) and

Kulik and Tisdell (2008) on the theory of Fredholm-type and Volterra-type equations

on time scales we consider the nonlinear dynamic equation

x∆(t) =−a(t)xσ(t)+ c(t)x∆̃(t − r(t))+
∫ t

t−r(t)
k(t,s)h(x(s)) ∆s, t ∈ T,

on the time scale T. In particular, we prove that the zero solution of the above equa-

tion is asymptotically stable.
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10.2 Periodic solutions of totally nonlinear neutral dynamic equations on

time scale

We begin this section by giving some definitions.

Definition 10.2.1. We say that a time scale T is periodic if there exist a p > 0 such

that if t ∈ T then t ± p ∈ T. For T ̸= R, the smallest positive p is called the period

of the time scale.

For example, the following time scales are periodic.

1. T=
∪∞

i=−∞[2(i−1)h,2ih], h > 0 has period p = 2h.

2. T= hZ has period p = h.

3. T= R.

4. T= {t = k−qm : k ∈ Z,m ∈ N0} where, 0 < q < 1 has period p = 1.

Remark 10.2.2. All periodic time scales are unbounded above and below.

Definition 10.2.3. Let T ̸= R be a periodic time scale with period p. We say that

the function f : T→ R is periodic with period T if there exists a natural number n

such that T = np, f (t ±T ) = f (t) for all t ∈ T and T is the smallest number such

that f (t ±T ) = f (t).

If T= R, we say that f is periodic with period T > 0 if T is the smallest pos-

itive number such that f (t ±T ) = f (t) for all t ∈ T.

Remark 10.2.4. If T is a periodic time scale with period p, then σ(t ±np) = σ(t)±

np. Consequently, the graininess function µ satisfies µ(t ± np) = σ(t ± np)− (t ±

np) = σ(t)− t = µ(t) and so, is a periodic function with period p.

In this section we show that the neutral dynamic equation

x∆(t) = −a(t)h(x(σ(t))+(Q(t,x(t),x(t −g(t)))))∆

+ G
(
t,x(t),x(t −g(t))

)
, t ∈ T, (10.1)
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has a periodic solution.

Let T > 0, T ∈ T be fixed and if T ̸= R, T = np for some n ∈ N. By the notation

[a,b] we mean

[a,b] = {t ∈ T : a ≤ t ≤ b}

unless otherwise specified. The intervals [a,b),(a,b], and (a,b) are defined simi-

larly. Define PT = {φ ∈ C(T,R) : φ(t +T ) = φ(t)} where, C(T,R) is the space of

all real valued continuous functions on T. Then PT is a Banach space when it is

endowed with the supremum norm

∥x∥= sup
t∈[0,T ]

|x(t)|.

Lemma 10.2.5.[Kaufmann and Raffoul (2006)] Let x ∈ PT . Then ∥xσ∥ exists and

∥xσ∥= ∥x∥.

In this section we assume that a ∈ R + is continuous, a(t)> 0 for all t ∈ T and

a(t +T ) = a(t),
(
id −g

)
(t +T ) =

(
id −g

)
(t), (10.2)

where, id is the identity function on T. We also require that Q(t,x) and G(t,x,y) are

continuous and periodic in t and Lipschitz continuous in x and y. That is,

Q(t +T,x) = Q(t,x), G(t +T,x,y) = G(t,x,y), (10.3)

and there are positive constants E1,E2,E3 such that

|Q(t,x)−Q(t,y)| ≤ E1∥x− y∥, for x,y ∈ R, (10.4)

and

|G(t,x,y)−G(t,z,w)| ≤ E2∥x− z∥+E3∥y−w∥, for x,y,z,w ∈ R. (10.5)

Lemma 10.2.6. Suppose (10.2), (10.3) hold. If x ∈ PT , then x is a solution of

equation (10.1) if, and only if,

x(t) = Q
(
t,x(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
a(s)[xσ(s)−h(x(σ(s)))]−a(s)Qσ(s,x(s−g(s))

)
+G

(
s,x(s),x(s−g(s))

)]
e⊖a(t,s)∆s.

(10.6)
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Proof. Let x ∈ PT be a solution of (10.1). First we write (10.1) as

{x(t)−Q
(
t,x(t −g(t))

)
}∆ =−a(t){xσ(t)−Qσ(t,x(t −g(t))

)
}

+a(t)[xσ(t)−h(x(σ(t)))]

−a(t)Qσ(t,x(t −g(t))
)
+G

(
t,x(t),x(t −g(t))

)
.

Multiply both sides by ea(t,0) and then integrate from t −T to t to obtain∫ t

t−T

[
ea(s,0){x(s)−Q

(
s,x(s−g(s))

)
}
]∆ ∆s

=
∫ t

t−T

[
a(s)[xσ(s)−h(x(σ(s)))]−a(s)Qσ(s,x(s−g(s))

)
+G

(
s,x(s),x(s−g(s))

)]
ea(s,0)∆s.

Consequently, we have

ea(t,0)
(

x(t)−a(t)Q
(
t,x(t −g(t))

))
− ea(t −T,0)

(
x(t −T )−a(t −T )Q

(
t −T,x(t −T −g(t −T ))

))
=

∫ t

t−T

[
a(s)[xσ(s)−h(x(σ(s)))]−a(s)Qσ(s,x(s−g(s))

)
+G

(
s,x(s),x(s−g(s))

)]
ea(s,0)∆s.

After making use of (10.2), (10.3) and x ∈ PT , we divide both sides of the above

equation by ea(t,0) to obtain

x(t) = Q
(
t,x(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
a(s)[xσ(s)−h(x(σ(s)))]−a(s)Qσ(s,x(s−g(s))

)
+G

(
s,x(s),x(s−g(s))

)]
e⊖a(t,s)∆s.

Since each step is reversible, the converse follows. This completes the proof.

Define the mapping H : PT → PT by

(Hφ)(t)

= Q
(
t,φ(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
a(s)[xσ(s)−h(x(σ(s)))]−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
e⊖a(t,s)∆s.

(10.7)
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We express equation (10.7) as

(Hφ)(t) = (Bφ)(t)+(Aφ)(t)

where, A,B are given by

(Bφ)(t) =
(
1− e⊖a(t, t −T )

)−1
∫ t

t−T
a(s)[xσ(s)−h(x(σ(s)))]e⊖a(t,s)∆s. (10.8)

and
(Aφ)(t)

= Q
(
t,φ(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
e⊖a(t,s)∆s.

(10.9)

In the rest of the section we require the following conditions.

E1L+ |Q(t,0)| ≤ αL, (10.10)

E2L+E2L+ |G(t,0,0)| ≤ Lγa(t), (10.11)

and

J(2α+ γ)≤ 1, (10.12)

where α, γ, L and J are constants with J ≥ 3.

Lemma 10.2.7. Suppose (10.2)–(10.5) and (10.10)–(10.12) hold. Then A : M →

M, as defined by (10.9), is continuous in the supremum norm and maps M into a

compact subset of M.

Proof. We first show that A : M→M. Evaluate (10.9) at t +T .

(Aφ)(t +T ) = Q
(
t +T,φ(t +T −g(t +T ))

)
+
(
1− e⊖a(t +T, t)

)−1 ×
∫ t+T

t

[
−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
e⊖a(t +T,s)∆s.

(10.13)
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With u = s−T and conditions (10.2) – (10.3) to get

(Aφ)(t +T ) = Q
(
t,φ(t −g(t))

)
+
(
1− e⊖a(t +T, t)

)−1

×
∫ t

t−T

[
−a(u+T )Qσ(u−T,φ(u−T −g(u−T ))

)
+G

(
s,φ(u−T ),φ(u−T −g(u−T ))

)]
e⊖a(t +T,u+T )∆u.

But we have that e⊖a(t+T,u+T ) = e⊖a(t,u) and e⊖a(t+T, t) = e⊖a(t, t−T ). Thus

(10.13) becomes

(Aφ)(t +T ) = Q
(
t,φ(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
−a(u)Qσ(u,φ(u−g(u))

)
+G

(
u,φ(u),φ(u−g(u))

)]
e⊖a(t +T,u)∆u

= (Aφ)(t).

Note that in view of (10.4) and (10.5) we have

|Q(t,x)|= |Q(t,x)−Q(t,0)+Q(t,0)|

≤ |Q(t,x)−Q(t,0)|+ |Q(t,0)|

≤ E1∥x∥+ |Q(t,0)|.

Similarly,

|G(t,x,y)|= |G(t,x,y)−G(t,0,0)+G(t,0,0)|

≤ |G(t,x,y)−G(t,0,0)|+ |G(t,0,0)|

≤ E2∥x∥+E3∥y∥+ |G(t,0,0)|.

Thus, for any φ ∈M we have

|(Aφ)(t)|

=
∣∣∣Q(

t,φ(t −g(t))
)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
e⊖a(t,s)∆s

∣∣∣
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≤ |Q
(
t,φ(t −g(t))

)
|+

(
1− e⊖a(t, t −T )

)−1
∫ t

t−T

∣∣−a(s)
∣∣ ∣∣Qσ(s,φ(s−g(s))

)∣∣
+
∣∣G(

s,φ(s),φ(s−g(s))
)∣∣e⊖a(t,s)∆s

≤ E1L+ |Q(t,0)|+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
a(s)(E1L+ |Q(s,0)|)+(E2 +E3)L+ |G(s,0,0)|

]
e⊖a(t,s)∆s

≤ αL+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
αL+ γL

]
a(s)e⊖a(t,s)∆s

≤ (2α+ γ)L ≤ L
J
< L.

Thus showing that A maps M into itself.

To see that A is continuous, we let φ,ψ ∈M and define

η := max
t∈[0,T ]

∣∣(1− e⊖a(t, t −T )
)−1∣∣, ρ := max

t∈[0,T ]
|a(t)|,

γ := max
u∈[t−T,t]

e⊖a(t,u), µ := max
t∈[0,T ]

|(Q(t,x(t),x(t −g(t)))))∆ |,

α := sup
t∈[0,T ]

|Q(t,0)|, β := sup
t∈[0,T ]

|G(t,0,0)|. (10.14)

Given ε > 0, take δ = ε/M with M = E1 +η γ T (ρ E1 +E2 +E3) where, E1, E2 and

E3 are given by (10.4) and (10.5) such that ∥φ−ψ∥< δ. Using (10.9) we get

∥∥Aφ−Aψ
∥∥≤ E1∥φ−ψ∥+ηγ

∫ T

0

[
ρ E1∥φ−ψ∥+(E2 +E3)∥φ−ψ∥

]
∆u

≤ M∥φ−ψ∥< ε.

This proves that A is continuous.

We next show that A is compact. Consider the sequence of periodic functions{
φn

}
⊂M. Thus as before we have that

∥A(φn)∥ ≤ L,

showing that the sequence {Aφn} is uniformly bounded. Now, it can be easily

checked that

(Aφn)
∆(t) = (Q(t,x(t),x(t −g(t)))))∆ −a(t)Qσ(t,φ(t −g(t))

)
+ G

(
t,φ(t),φ(t −g(t))

)
−a(t)

{(
1− e⊖a(t, t −T )

)−1
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×
∫ t

t−T

[
−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
× e⊖a(t,s)∆s

}
= (Q(t,x(t),x(t −g(t)))))∆ −a(t)Qσ(t,φ(t −g(t))

)
+ G

(
t,φ(t),φ(t −g(t))

)
−a(t)

{(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
−a(s)Qσ(s,φ(s−g(s))

)
+G

(
s,φ(s),φ(s−g(s))

)]
× e⊖a(t,s)∆s+Q(t,φ(t −g(t)))

}
+a(t)Q(t,φ(t −g(t))).

(Aφn)
∆(t) = (Q(t,x(t),x(t −g(t)))))∆ −a(t)(Aφn)

σ(t)−a(t)Qσ(t,φ(t −g(t))
)

+ G
(
t,φ(t),φ(t −g(t))

)
+a(t)Q(t,φ(t −g(t))).

Consequently,

|(Aφn)
∆(t)| ≤ µ+Lρ+2ρ(E1L+α)+(E2 +E3)L+β

for all n. That is ∥(Aφn)
∆∥ ≤ F , for some positive constant F . Thus the sequence

{Aφn} is uniformly bounded and equi-continuous. The Arzelà-Ascoli theorem im-

plies that there is a subsequence {Aφnk} which converges uniformly to a continuous

T -periodic function φ∗. Thus A is compact.

Lemma 10.2.8. Suppose g : T → R is pre-differentiable with D. Suppose U is a

compact interval with enpoints r,s ∈ T and g∆(t) ≥ 0 for all t ∈ Uκ ∩D. Then we

have

g(s)−g(r)≥ |s− r|
{

inf
t∈Uκ∩D

g∆(t)
}
. (10.15)

Proof. Let the function f : T→ R be defined by

f (t) = (t − r)
{

inf
t∈Uκ∩D

g∆(t)
}

for t ∈ T.

Evidently, f is pre-differentiable with D and

| f ∆(t)|= f ∆(t) =
{

inf
t∈Uκ∩D

g∆(t)
}
≤ g∆(t).

From (2.29) we derive

g(s)−g(r)≥ | f (s)− f (r)|= |s− r|
{

inf
t∈Uκ∩D

g∆(t)
}
.
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as desired. The proof is complete.

Corollary 10.2.9. Suppose g : T→ R is pre-differentiable with D. Suppose U is a

compact interval with enpoints r,s ∈ T and g∆(t) ≥ 0 for all t ∈Uκ ∩D if and only

if g is non-decreasing on U.

Proof. If g∆(t)≥ 0 for all t ∈Uκ ∩D, then from (10.15), we have

g(s)−g(r)≥ |s− r|
{

inf
t∈Uκ∩D

g∆(t)
}
≥ 0

for s,r ∈U with s ≥ r. Conversely, let g be non-decreasing on U. For a t ∈Uκ ∩D,

there are two possible cases:

µ(t) = 0 or µ(t)> 0.

If µ(t) = σ(t)− t > 0, then we have

g∆(t) =
g(σ(t))−g(t)

µ(t)
> 0.

If µ(t) = 0, then we obtain

g∆(t) = lim
s→t

g(t)−g(s)
s− t

≥ 0.

This completes the proof.

In the next lemma we prove that H is a large contraction on M. To this end we

make the following assumptions on the function h : R→ R.

(H1) h is continuous on UL = [−L,L] and differentiable on Uκ
L .

(H2) h is strictly increasing on UL.

(H3) sups∈Uκ
L

h∆(s)≤ 1.

Lemma 10.2.10. Let h : R → R be a function satisfying (H1)− (H3). Then the

mapping H is a large contraction on the set M.

Proof. The function h satisfies the assumptions of Lemma 10.2.8 on the compact

interval UL = [−L,L]∩T. Thus it follows from (2.30) and (10.15) that

(s− r)
{

sup
t∈Uκ

L

h∆(t)
}
≥ h(s)−h(r)≥ (s− r)

{
inf

t∈Uκ
L

h∆(t)
}
≥ 0 (10.16)
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Let ϕ,φ ∈M with ϕ ̸= φ. Then ϕ(t) ̸= φ(t) for some t ∈ T. Define the set

D(ϕ,φ) =
{

t ∈ T : ϕ(t) ̸= φ(t)
}
.

Note that φ(t) ∈UL for all t ∈ T whenever φ ∈M. Since h is strictly increasing

h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

=
h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)
> 0 (10.17)

holds for all t ∈ D(ϕ,φ). By (H3) we have

1 ≥ sup
t∈Uκ

L

h∆(t)≥ inf
s∈Uκ

L

h∆(s)≥ 0. (10.18)

Define the set Ut ⊂UL by Ut = [φ(t),ϕ(t)]∩UL if ϕ(t)> φ(t), and Ut = [ϕ(t),φ(t)]∩

UL if ϕ(t)< φ(t), for t ∈ D(ϕ,φ). Hence, for a fixed t0 ∈ D(ϕ,φ) we get by (10.16)

and (10.17) that

sup{h∆(u) : u ∈Uκ
t0} ≥

h(ϕ(t0))−h(φ(t0))
ϕ(t0)−φ(t0)

≥ inf{h∆(u) : u ∈Uκ
t0}.

Since Ut ⊂UL for every t ∈ D(ϕ,φ), we find

sup
u∈Uκ

L

h∆(u)≥ sup{h∆(u) : u ∈Uκ
t0} ≥ inf{h∆(u) : u ∈Uκ

t0} ≥ inf
u∈Uκ

L

h∆(u),

and therefore,

1 ≥ sup
u∈Uκ

L

h∆(u)≥ h(φ(t))−h(ϕ(t))
φ(t)−ϕ(t)

≥ inf
u∈Uκ

L

h∆(u)≥ 0 (10.19)

for all t ∈ D(ϕ,φ). So, (10.19) yields

|(Hϕ)(t)− (Hφ)(t)| = |ϕ(t)−h(ϕ(t))−φ(t)+h(φ(t))|

= |ϕ(t)−φ(t)|
∣∣∣1−(h(ϕ(t))−h(φ(t))

ϕ(t)−φ(t)

)∣∣∣
≤ |ϕ(t)−φ(t)|

(
1− inf

u∈Uκ
L

h∆(u)
)

(10.20)

for all t ∈ D(ϕ,φ). Thus, (10.19) and (10.20) imply that H is a large contraction in

the supremum norm. To see this choose a fixed ε ∈ (0,1) and assume that ϕ and φ

are two functions in ML satisfying

∥ϕ−φ∥= sup
t∈[−L,L]

|ϕ(t)−φ(t)| ≥ ε.
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If |ϕ(t)−φ(t)| ≤ ε/2 for some t ∈ D(ϕ,φ), then from (10.20)

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)| ≤ 1
2
∥ϕ−φ∥. (10.21)

Since h is continuous and strictly increasing, the function h(u+ ε
2)−h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |ϕ(t)−φ(t)| for

some t ∈ D(ϕ,φ), then from (10.19) and (H3) we conclude that

1 ≥ h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

> λ,

and therefore,

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)−φ(t)|
{

1− h(ϕ(t))−h(φ(t))
ϕ(t)−φ(t)

}
≤ (1−λ)∥ϕ(t)−φ(t)∥, (10.22)

where

λ :=
1

2L
min

{
h(u+

ε
2
)−h(u),u ∈ [−L,L]

}
> 0.

Consequently, it follows from (10.21) and (10.22) that

|(Hϕ(t)− (Hφ)(t)| ≤ δ∥ϕ−φ∥,

where δ = max
{

1
2 ,1−λ

}
< 1. The proof is complete.

The next result gives a relationship between the mappings H and B in the sense

of large contraction.

Lemma 10.2.11. If H is a large contraction on M, then so is the mapping B.

Proof. If H is a large contraction on M, then for x,y ∈ M, with x ̸= y, we have

∥Hx−Hy∥ ≤ ∥x− y∥. Then it follows from the equality

a(u)e⊖a(t +T,σ(u)) = [e⊖a(t +T,u)]∆s ,

where ∆s indicates the delta derivative with respect to s ( ) that

|Bx(t)−By(t)| ≤
∫ t+T

t

e⊖a(t +T,σ(u))
1− e⊖a(t, t +T )

a(u)
∣∣H(x(u))−H(y(u))

∣∣∆u

≤ ∥x− y∥
1− e⊖a(t, t +T )

∫ t+T

t
a(u)e⊖a(t +T,σ(u))∆u

= ∥x− y∥.
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Thus,

∥Bx−By∥ ≤ ∥x− y∥.

One may also show in a similar way that

∥Bx−By∥ ≤ δ∥x− y∥

holds if we know the existence of a 0 < δ < 1, such that for all ε > 0

[
x,y ∈M, ∥x− y∥ ≥ ε

]
⇒∥Hx−Hy∥ ≤ δ∥x− y∥.

The proof is complete.

Lemma 10.2.12. Suppose (10.2)-(10.5), and (10.10)-(10.12) hold. Suppose also

that

(
1− e⊖a(t, t −T )

)−1
∫ t

t−T
a(s)|H(x(σ(s)))|e⊖a(t,s)∆s ≤ (J−1)L

J
.

(10.23)

For B,A defined by (10.8) and (10.9), if φ,ψ ∈M are arbitrary, then

Aφ+Bψ : M→M.

Proof. Let φ,ψ ∈M be arbitrary. Using the definition of B and the result of Lemma

1.6 we obtain

∥A(φ)+B(ψ)∥ ≤ Q
(
t,φ(t −g(t))

)
+
(
1− e⊖a(t, t −T )

)−1

×
∫ t

t−T

[
−a(s)Qσ(s,φ(s−g(s))

)
+ G

(
s,φ(s),φ(s−g(s))

)]
e⊖a(t,s)∆s

+
(
1− e⊖a(t, t −T )

)−1
∫ t

t−T
a(s)[ψσ(s)−h(ψ(σ(s)))]

× e⊖a(t,s)∆s

≤ L
J
+

(J−1)L
J

= L.

Theorem 10.2.13. Let (S,∥.∥) be the Banach space of rd-continuous T -periodic real

functions. Suppose (10.2)-(10.5) and (10.10)-(10.12) hold. Then equation (10.1) has
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a periodic solution in the subset M.

Proof. By Lemma 10.2.6, φ is a solution of (10.1) if

φ = Aφ+Bφ,

where B and A are given by (10.8) and (10.9) respectively. By Lemma 10.2.7, A :

M → M is completely continuous. By Lemma 10.2.12, Aφ+Bψ ∈ M whenever

φ,ψ ∈M. Moreover, B : M→M is a large contraction by Lemma 10.2.11. Thus all

the hypotheses of Theorem 2.3.7 are satisfied. Thus, there exists a fixed point φ ∈M

such that φ = Aφ+Bφ. Hence (10.1) has a T− periodic solution.

10.3 Stability of dynamic equations on time scale

Let T be a time scale which is unbounded above and below with 0 ∈ T. Also,

let id − r : T→ T be such that (id − r)(T) is a time scale. We consider the neutral

nonlinear Volterra dynamic equation

x∆(t) =−a(t)xσ(t)+ c(t)x∆̃(t − r(t))+
∫ t

t−r(t)
k(t,s)h(x(s)) ∆s, t ∈ T, (10.24)

where, a : T → R, k : T×T → R, h : R → R are continuous and that c : T → R

is continuously delta-differentiable. In order for the function x(t − r(t)) to be well-

defined and differentiable over T, we assume that r : T → R is positive and twice

continuously delta-differentiable, and that id − r : T→ T is an increasing mapping

such that (id − r)(T) is closed where id is the identity function on the time scale T.

Here we assume that h is locally Lipschitz continuous in x. That is, there is an L > 0

so that if |x| ≤ L, then

|h(x)−h(z)| ≤ L1|x− z| (10.25)

for some positive constant L1. Also, we assume that

h(0) = 0. (10.26)

We assume further that

r∆(t) ̸= 1, for all t ∈ T. (10.27)
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Lemma 10.2.1. Suppose (10.27) hold. If x(t) is a solution of (10.24) on an interval

[0,T )T,(T > 0) satisfying the initial condition x(t) = ψ(t) for t ∈ (−∞,0]T, then x(t)

is a solution of the integral equation

x(t) =
(

ψ(0)− c(0)
1− r∆(0)

x(−r(0))
)

e⊖a(t,0)+
c(t)

1− r∆(t)
x(t − r(t)) (10.28)

−
∫ t

0
[ϕ(u)xσ(u− r(u))−

∫ u

u−r(u)
k(u,s)h(x(s))∆s]e⊖a(t,u)∆u,

where

ϕ(u) =
(
c∆(u)+ cσ(u)a(u)

)
(1− r∆(u))+ r∆∆(u)c(u)

(1− r∆(u))(1− r∆(σ(u)))
. (10.29)

Conversely, if rd-continuous function x(t) satisfies x(t) = ψ(t) for t ∈ (−∞,0]T and

is a solution of (10.28) on some interval [0,T )T, (T > 0), then x(t) is a solution of

equation (10.24) on [0,T )T.

Proof. Rewrite (10.24) as

x∆(t)+a(t)xσ(t) = c(t)x∆̃(t −g(t))+
∫ t

t−r(t)
k(t,s)h(x(s)) ∆s, t ∈ T,

Multiply both sides of the above equation by ea(t,0) and then integrate from 0 to t

to obtain

∫ t

0
(ea(u,0)x(u))∆∆u

=
∫ t

0

[
c(u)x∆̃(u−g(u))+

∫ u

u−r(u)
k(u,s)h(x(s))

]
ea(u,0)∆u.

As a consequence, we arrive at

ea(t,0)x(t)− x(0)

=
∫ t

0

[
c(u)x∆̃(u−g(u))+

∫ u

u−r(u)
k(u,s)h(x(s))

]
ea(u,0)∆u.

Multiply both sides of the above equation to get

x(t)

= x(0)e⊖a(t,0)+
∫ t

0

[
c(u)x∆̃(u−g(u))+

∫ u

u−r(u)
k(u,s)h(x(s))

]
e⊖a(t,u)∆u.

(10.30)
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But,

∫ t

0
c(u)x∆̃(u−g(u))e⊖a(t,u)∆u

=
∫ t

0
x∆̃(u−g(u))(1− r∆(u))

c(u)
(1− r∆(u))

e⊖a(t,u)∆u.

Using the integration by parts formula we obtain

∫ t

0
c(u)x∆̃(u−g(u))e⊖a(t,u)∆u

=
c(t)

1− r∆(t)
x(t − r(t))− c(0)

1− r∆(0)
x(−r(0))e⊖a(t,0)

−
∫ t

0
ϕ(u)xσ(u− r(u))e⊖a(t,u)∆u, (10.31)

where ϕ is given by (10.29). Substituting the right hand side of (10.31) into (10.30)

we obtain (10.28).

Conversely, suppose that a rd-continuous function x(t) satisfying x(t) = ψ(t)

for t ∈ (−∞,0]T and is a solution of (10.28) on an interval [0,T )T. Then it is ∆−

differentiable on [0,T )T. By ∆− differentiating (10.29) we obtain (10.24).

Let ψ : (−∞,0]T →R be a given ∆-differentiable bounded initial function. We

say x(t) := x(t,0,ψ) is a solution of (10.24) if x(t) = ψ(t) for t ≤ 0 and satisfies

(10.24) for t ≥ 0. We say the zero solution of (10.24) is stable at t0 if for each

ε > 0, there is a δ = δ(ε) > 0 such that
[
ψ : (−∞, t0]T → R with ∥ψ∥ < δ

]
implies

|x(t, t0,ψ)|< ε.

Let Crd = Crd(T,R) be the space of all rd-continuous functions from T→ R

and define the set S by

S = {φ ∈Crd : ||φ|| ≤ E, φ(t) = ψ(t) if t ≤ 0, φ(t)→ 0 as t → ∞} .

Then,
(
S,∥ · ∥

)
is a complete metric space where, ∥ · ∥ is the supremum norm. For

the next theorem we impose the following conditions.

e⊖a(t,0)→ 0, as t → ∞, (10.32)
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there is an α > 0 such that∣∣∣ c(t)
1− r∆(t)

∣∣∣+∫ t

0

[
|ϕ(u)|+L1

∫ u

u−r(u)
|k(u,s)|∆s

]
e⊖a(t,u)∆u ≤ α < 1, t ≥ 0,

(10.33)

t − r(t)→ ∞,as t → ∞. (10.34)

Theorem 10.2.2. If (10.25)–(10.27) and (10.32)–(10.34) hold, then every solution

x(t,0,ψ) of (10.24) with small continuous initial function ψ(t), is bounded and goes

to zero as t → ∞. Moreover, the zero solution is stable at t0 = 0.

Proof. Let E > 0 be given. Choose δ > 0 such that∣∣∣1− c(0)
1− r∆(0)

∣∣∣δ+αE ≤ E.

Let ψ : (−∞,0]T→R be a given small bounded initial function with ||ψ||< δ. Define

the mapping P : S → S by

(
Pφ

)
(t) = ψ(t) if t ≤ 0

and

(
Pφ)(t)

)
=

(
ψ(0)− c(0)

1− r∆(0)
ψ(−r(0))

)
e⊖a(t,0)+

c(t)
1− r∆(t)

φ(t − r(t))

−
∫ t

0
[ϕ(u)φσ(u− r(u))−

∫ u

u−r(u)
k(u,s)h(φ(s))∆s]e⊖a(t,u)∆u.

It is clear that for φ ∈ S, Pφ is continuous. Let φ ∈ S , then

|
(
Pφ)(t)

)
| ≤

∣∣∣ψ(0)− c(0)
1− r∆(0)

ψ(−r(0))
∣∣∣+ ∣∣∣ c(t)

1− r∆(t)
φ(t − r(t))

∣∣∣
+

∫ t

0

(∣∣∣ϕ(u)φσ(u− r(u))
∣∣∣+∫ u

u−r(u)

∣∣∣k(u,s)h(φ(s))∣∣∣∆s
)

e⊖a(t,u)∆u.

≤
∣∣∣1− c(0)

1− r∆(0)

∣∣∣δ+ ∣∣∣ c(t)
1− r∆(t)

∣∣∣E
+

∫ t

0

(∣∣∣ϕ(u)∣∣∣E +L1E
∫ u

u−r(u)

∣∣∣k(u,s)∣∣∣∆s
)

e⊖a(t,u)∆u

≤
∣∣∣1− c(0)

1− r∆(0)

∣∣∣δ+{∣∣∣ c(t)
1− r∆(t)

∣∣∣
+

∫ t

0

(∣∣∣ϕ(u)∣∣∣+L1

∫ u

u−r(u)

∣∣∣k(u,s)∣∣∣∆s
)

e⊖a(t,u)∆u
}

E

≤
∣∣∣1− c(0)

1− r∆(0)

∣∣∣δ+αE,
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which implies that |(Pφ)(t)| ≤ E for the chosen δ. Thus we have ||Pφ|| ≤ E.

Next we show that
(
Pφ

)
(t) → 0 as t → ∞. The first term on the right side

of
(
Pφ

)
(t) tends to zero, by condition (10.32). Also, the second term on the right

side tends to zero, because of (10.34) and the fact that φ ∈ S. We next show that the

integral term goes to zero as t → ∞.

Let ε > 0 be given and φ ∈ S with ∥φ∥ ≤ E, E > 0. Then, there exists a t1 > 0

so that for t > t1, |φ(t − g(t))| < ε. Due to condition (10.32), there exists a t2 > t1

such that for t > t2 implies that e⊖a(t, t1)< ε
αE .

Thus for t > t2, we have∣∣∣− ∫ t

0

[
ϕ(u)φσ(u− r(u))−

∫ u

u−r(u)
k(u,s)h(φ(s))∆s

]
e⊖a(t,u)∆u

∣∣∣
≤ E

∫ t1

0

[
|ϕ(u)|+L1

∫ u

u−r(u)
|k(u,s)|∆s

]
e⊖a(t,u)∆u

+ ε
∫ t

t1

[
|ϕ(u)|+L1

∫ u

u−r(u)
|k(u,s)|∆s

]
e⊖a(t,u)∆u

≤ Ee⊖a(t, t1)
∫ t1

0

[
|ϕ(u)|+L1

∫ u

u−r(u)
|k(u,s)|∆s

]
e⊖a(t1,u)∆u+αε

≤ αEe⊖a(t, t1)+αε

≤ ε+αε.

Hence,
(
Pφ

)
(t)→ 0 as t → ∞.

Finally, we show that P is a contraction under the supremum norm. Let ζ,η ∈

S. Then∣∣∣(Pζ)(t)− (Pη)(t)
∣∣∣ ≤

∣∣∣ c(t)
1− r∆(t)

∣∣∣||ζ−η||

+
∫ t

0

(∣∣∣ϕ(u)(ζσ(u− r(u))−ησ(u− r(u)))
∣∣∣

+
∫ u

u−r(u)

∣∣∣k(u,s)(h(ζ(s))−h(η(s)))
∣∣∣∆s

)
e⊖a(t,u)∆u.

≤
{∣∣∣ c(t)

1− r∆(t)

∣∣∣+∫ t

0

[
|ϕ(u)|

+ L1

∫ u

u−r(u)
|k(u,s)|∆s

]
e⊖a(t,u)∆u

}
∥ζ−η∥

≤ α∥ζ−η∥.

Thus, by the contraction mapping principle, P has a unique fixed point in S which
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solves (10.24), is bounded and tends to zero as t tends to infinity. The stability of

the zero solution at t0 = 0 follows from the above work by simply replacing E by ε.

This completes the proof.
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CHAPTER ELEVEN

SUMMARY, CONCLUSION AND FUTURE DIRECTIONS

11.1 Summary

In this thesis, as set out in the objectives of the research, we investigated the

qualitative properties of solutions of certain classes of neutral functional differen-

tial and difference equations. We also studied the qualitative properties of neutral

dynamic equations on time scale. The fixed point theory was used to investigate

the qualitative behaviour of classes of of first order and second nonlinear functional

differential equations. The same method was also used to study the qualitative be-

havoiur of neutral difference equations and neutral dynamic equations on time scale.

We inverted or transformed the equations into equivalent integral equations in

the case of neutral functional differential equations or dynamic equations on time

scale. In the case of difference equations however, the inversion resulted into equiv-

alent summation equations. The integral or summation equation was then used to

define a mapping that was used for the discussion of the qualitative behaviour of the

classes of equations considered. In some situations, the mapping was expressed as

a sum of a completely continuous map and a large contraction map. In those cases,

the reformulated version of Krasnoselskii’s fixed point theorem was used to prove

the main results. In particular, the periodicity, stability, and positivity of solutions

of totally nonlinear equations were proved with this theorem. Moreover, in some

other situations the mapping was expressed as a sum of a completely continuous

operator and a contraction. The Krasnoselskii’s fixed point theorem was then used

to establish the main results. Particularly, this was used to establish periodicity and
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positivity of neutral equations that are not totally nonlinear. Finally, in the cases

when the mappings were contraction mappings, the Banach’s fixed point theorem

was used. This theorem was mainly used to prove the asymptotic stability of the

zero solution of certain classes of difference equations and neutral Volterra dynamic

equations on time scale.

11.2 Conclusion

Sufficient conditions for the existence of periodic solutions of both functional

neutral first order differential, difference and dynamic equations have been estab-

lished. It has also been established that solutions of a system of functional differen-

tial equations with finite delay are periodic.

Criteria for the existence of positive periodic solutions of functional neutral

second order differential equations have been obtained. New results for the exis-

tence of positive periodic solutions for a system of neutral difference equations with

delay has also been obtained.

The zero solution of a certain class of neutral dynamic equation on time scale

has been proved to be asymptotically stable. Moreover, the zero solution of neutral

functional differential equations as well as neutral functional difference equations

have also been proved to be asymptotically stable.

11.3 Future Directions

In most of the problems studied by means of contractions we have first shown

that the mapping maps a bounded set into itself before we ever bring up the topic

contractions. We then assume a Lipschitz condition. Many of these problems can

fruitfully be studied again by dropping the Lipschitz condition and using a Schauder-

type fixed point theorem.
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