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ABSTRACT

Acoustic effects such as absorption/amplification of acoustic phonons,

Acoustoelectric Effect (AE) and Acoustomagnetoelectric Effect (AME) were

studied in Carbon Allotropes. In this thesis, the Carbon Allotropes considered

are Graphene Nanoribbon (GNR), 2-dimensional Graphene sheet, and Carbon

Nanotubes (CNT). The Boltzmann transport equation (BTE) and the phonon

kinetic equation (PKE) were used. All results were analysed numerically and

graphically presented. Using BTE for Armchair Graphene Nanoribbon

(AGNR), amplification of acoustic waves (Γ/Γ0) and acoustomagnetoelectric

field (Esame) were studied in the presence of an external electric and magnetic

fields. Γ/Γ0 and Esame were found to depend on the sub-band index (pi), the

nanoribbon width (N), and the dimensionless factor (η = Ωτ).

Using the PKE, amplification (absorption) and AE in 2D graphene and Carbon

Nanotubes (CNTs) were studied. On hypersound amplification, a mechanism

due Cerenkov emission was employed where the ratio of the drift velocity (Vd)

to the velocity of sound (Vs) was considered. In both materials, the dependence

of amplification (absorption) on frequency (ωq) were analysed. Here the

acoustic waves were considered as phonons in the hypersound regime. In CNT,

it was observed that the maximum amplification was attained as Vd = 1.1Vs

which occurred at E = 51.7 Vcm−1. For n = 2, (where n is an integer) the

absorption obtained qualitatively agree with an experimental measurement.
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CHAPTER ONE

INTRODUCTION

Background

This thesis deals with the study of acoustic effects in Allotropes of Carbon in

the hypersound regime having ql >> 1. The interactions of acoustic waves

with Carbon Allotropes such as Graphene (2D), Armchair Graphene

Nanoribbon (AGNR), and Carbon Nanotubes (CNT) are treated. The effects

discussed are acoustic phonon amplification, acoustic phonon absorption,

Acoustoelectric Effect (AE), and Acoustomagnetoelectric Effect (AME). In

this chapter, a brief overview of the various forms of Carbon Allotropes, how

they are produced, their energy dispersion, their physical and electrical

properties. The scope, objective and organization of the thesis are also

presented.

Carbon Allotropes

Among all the known elements on earth, the most versatile and unique material

which is capable of forming different architectures at the nanoscale is

carbon [1]. In nature, two kinds of pure free carbon known to exit are graphite

and diamond [2], but nowadays different forms has been discovered [3]. The

different molecular configurations that pure carbon can take are referred to as

allotropes of Carbon. These are graphite, diamond, C60 fullerene [4],

1
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Nanotube [5], Graphene [6], Carbon Nanocone [7], Nanochain [8],

Graphdiyne [9], and many others.

These allotropes of carbon are determined by the possibility of carbon atoms

binding to each other in different ways which gives the variety of the properties

of carbon allotropes [10]. Diamond for instance, has each carbon atom

covalently bounded to four equivalent neighboring carbon atoms located in the

vertices’s of a tetrahedron [11]. Each of the four carbon valence electrons

therefore participates in the formation of four equivalent covalent bonds. This

explains the high hardness and insulating properties of diamond. Graphite on

the other hand, has each carbon atoms covalently bonded to three neighboring

carbon atoms located at the edges of an equilateral triangle on one plane with

the central carbon [12]. Three of the four valence electrons in carbon are

involved in the formation of three equivalent bonds in one plane. The density

of the fourth electrons are delocalized in a π-electron cloud over and under the

graphite plane. This gives the conducting properties of graphite along its

layers [13]. The dispersion interactions of the π-electrons (π − π interaction)

causes attraction between the planes of the graphite. The attraction is

≈ 1.4 ± 0.1 kcalmol−1 per carbon atom [14]. This is strong enough to keep

them bound to each other, but much weaker than covalent bonding, which

explains the softness of graphite [15].

2
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Hybridization of carbon atoms

Hybridisation (or hybridization) is the concept of mixing atomic orbitals into

new hybrid orbitals (with different energies, shapes, etc., than the component

atomic orbitals) which is suitable for the pairing of electrons to form chemical

bonds in valence bond theory [16]. Hybridization of carbon atomic orbitals

into hybrid orbitals can be used to explain the properties of carbon bonding in

diamond and graphite. The classification is generally based on the contribution

of the s and p orbitals in hybridized orbital forming π bonds [17].

In Diamond, four valence electrons of carbon are involved in the formation of

four equivalent σ -bonds in diamond. That is, one s and three p atomic orbitals

form four equivalent sp3 hybrid orbitals. In the case of graphite, one s and two

p atomic orbitals form three equivalent sp2 hybrid orbitals contributing to the

formation of three equivalent σ -bonds lying in a plane and the remaining p

orbitals are perpendicular to this plane contributing to σ -bonds [18]. Thus,

diamond and graphite are designated sp3 and sp2 carbon allotropes,

respectively [19].

spn Carbon Allotropes

The spn formulation for carbon allotropes are possible for 1 < n < 3. That is

when n is an integer, a pure sp, sp2 and sp3 hybridizations occurs, but if n is

non-integer, then the allotropes have intermediate hybridization. Carbon atoms

can have different hybridizations within one framework which constitute

another large family of carbon allotropes with mixed hybridization [20].

Generally, infinite number of combining spn, spm, spl , with non-integer n,m, l

3
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is possible. However, it is convenient to approximate the intermediate

hybridizations to the nearest pure ones and consider only four different types of

mixed carbon allotropes: sp− sp2, sp− sp3, sp2 − sp3 and sp− sp2 − sp3 as

shown in Figure 1.

Figure 1: Schematic classification of carbon allotropes with representatives of
each type [21]

Different sp3-carbons can exist depending on their crystal structure. The most

abundant conventional diamond has a face-centered cubic crystal structure

(thus given the name diamond lattice). However, other crystal structures can be

prepared by compressing graphite under different conditions.

4
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Graphene

Graphene is an allotrope of carbon in the form of a two-dimensional,

atomic-scale, hexagonal lattice in which one atom forms each vertex (see

Figure 2).

Figure 2: Graphitic forms is a 2D building material for carbon materials
wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked
into 3D graphite [30]

Graphene has exceptional properties for future nano-electronics [22–25]. It is

an ideal two-dimensional electron gas (2D) system made up of one layer of

carbon atom having a high electron mobility (µ) at room temperature with high

mechanical and thermodynamic stability [26]. Several unusual phenomena

5
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such as half-integer quantum Hall effect [27], non-zero Berry’s phase [28], and

minimum conductivity [29] have been observed experimentally in Graphene. It

is the basic structural element of other allotropes, including graphite, charcoal,

Carbon Nanotubes (CNT) and buckminsterfullerene. Graphene-based

electronics has attracted much attention due to high carrier mobility in bulk

graphene devices such as sub-terahertz field-effect transistors [31], infrared

transparent electrodes [32] and THz plasmonic devices [33].

Electronic band structure of Graphene

In 2D systems, the most popular description of band structure is the

tight-binding one, given by Wallace [34]. In Graphene, the band structure

exhibits very unique features: the conduction and the valence bands are not

separated by a gap, and do not overlap either. In fact, they intersect in two

inequivalent points, called Dirac points in the first Brillouin zone [35]. The

electron dispersion in the vicinity of the Dirac points is conical (which is the

reason for the name) and not parabolic, as in most semiconductors. Hence, the

group velocity is independent of the energy. The Fermi level for undoped

Graphene lies exactly at the intersection points, and Graphene is a gap-less

material. It’s dispersion curve resembles that of ultra-relativistic particle,

therefore, one can write a relativistic dynamic equation for electron excitations.

Such equation can be derived from the tight-binding model [36], and the

resulting equation is in fact the well known Dirac equation for massless

particles.

6
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The dispersion relation of Graphene

The structure of Graphene is in the form of a honeycomb lattice where the

carbon atoms condense due to their sp2 hybridization. The honeycomb lattice

is not a Bravais lattice because two neighbouring sites are not equivalent (see

figure 3a and b).

Figure 3: (a) Honeycomb lattice of Graphene. (b) Reciprocal lattice of the
triangular lattice [30]

Each carbon atom in the honeycomb lattice is surrounded by three neighbours,

with which it shares electrons. Three out of four valence electrons form the

chemical bonds, and form a relatively low-lying band. The one, which is left,

has a character of a p orbital, perpendicular to the Graphene plane. These

electrons form the upper, valence and conductance, bands. Graphene has

potential applications in single molecule gas detection due to its 2D structure,

in transistors because of its high electronic quality, in integrated circuits, in

transparent conducting electrodes, as well as in solar cells, ultra capacitors, and

bio-devices because of its super physical properties in electric, electronic,

optical, thermal, and mechanical properties [30].

7
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In Figure 3a, the vectors δ1, δ2, and δ3 connect the carbon atoms, separated by

a distance a = 0.142 nm. The vectors a1 and a2 are basis vectors of the

triangular Bravais lattice. Its primitive lattice vectors are a∗1 and a∗2 (see Figure

3b). The shaded region represents the first Brillouin zone (BZ), with its center

Γ and the two inequivalent corners K (black squares) and K′ (white squares).

In Graphene, the Hamiltonian that govern the dynamics of electrons is given by

the matrix element HAA as

HAA =
∫

d3rΦ∗
AHΦA (1)

where, ΦA and Φ∗
A are the electronic wave function. Introducing the expression

for the Bloch function ΦA in Eqn. (1) gives

HAA =
∫

d3r
1√
N

N

∑
RA

exp(−iRA)
∗(r−RA)H

1√
N

N

∑
R′

A

exp(−iR′
A)

∗(r−R′
A) (2)

R is the position of the center of the honeycomb lattice. Considering the nearest

neighbour hopping between A atom and all B sub-lattices, and making RA = R′
A

gives ∫
d3r∗(r−RA)H(r−RA) = E0 (3)

where E0 is the energy of the state where

HAA = HBB (4)

8
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To calculate the off-diagonal element, the definitionHAB =
∫

d3rΦ∗
AHΦB is used.

By inserting the Bloch functions, the Eqn. (2) transforms to

HAA =
∫

d3r
1√
N

N

∑
RA

exp(−iRA)
∗(r−RA)H

1√
N

N

∑
R′

A

exp(−iR′
B)

∗(r−R′
B)

HAA =
1
N

N

∑
RA

N

∑
RB

exp(−iRA −RB)
∫

d3r∗(r−RA)H(r−RB) (5)

In Eqn. (5) the difference of RA−RB appears in the exponential. The B atom has

3 nearest neighbour A atoms. The difference corresponds to 3 vectors ml with

l = 1,2,3. Therefore the matrix element with these vectors become

HAB =
1
N

N

∑
RB

N

∑
ml

exp(−ikml)
∫

d3r∗(r−ml)H(r) (6)

k is a unit vector. letting
∫

d3r∗(r−ml)H(r) = −t, where t is the hopping

parameter between nearest neighbour t = 2.8 eV. Eqn. (6) becomes

HAB =−t ∑
ml

exp(−ikml) =−t f (k) (7)

The f (k) is the geometrical factor which can be expressed in terms of the x, y,

and z axis. The off-diagonal element HAB can be obtained from

HAB = H∗
AB =−t f ∗(k) =−t f (k) (8)

9
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The geometric values for the vectors ml are

m1 = aky

m2 =

√
3

2
a(kx −

1√
3

ky)

m3 =

√
3a
2

(−kx −
1√
3

ky) (9)

Inserting Eqn. (9) into the exponential part of Eqn. (7) gives

f (k) = exp(−ikya)+ exp(−ikx

√
3a
2

)exp(ikya/2)+

exp(ikx

√
3a
2

)exp(ikya/2)

= exp(−ikya)+2exp(ikya/2)cos(kx

√
3a
2

)

= [(exp(−ikya)+2exp(ikya/2)cos(kx

√
3a
2

))

(exp(ikya)+2exp(−kya/2)cos(kx

√
3a
2

))]1/2

= [1+2exp(−ky
3a
2

cos(kx

√
3a
2

))+2exp(iky
3a
2

cos(kx

√
3a
2

+

4cos2(kx

√
3a
2

)))]1/2

= [1+4cos2(kx

√
3a
2

)+4cos(kx

√
3a
2

)cos(ky
3a
2
)]1/2 (10)

In deriving Eqn. (10) , f (k) =
√
| f (k)|2 was utilized. The energy levels of a

sheet of Graphene can be found by diagonalizing the matrix into (2× 2) form

where,

h0 ≡−t(1+ exp(ika1)+ exp(ika2)) =−t(1+2exp(ikxa)cos(kyb)) (11)

10
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The eigenvalue is given by

E =±|h0|=±t
√

1+4cos(kyb)cos(kxa)+4cos2(kyb) (12)

with the nearest-neighbour hopping energy t ≈ 2.8 eV and the lattice constant

a ≈ 2.46 nm. The± sign in Eqn. (12) correspond to the conduction and valence

bands, respectively, as in Figure 4

Figure 4: Graphene energy dispersion from π-bonding [37]

making h0(k) = 0, the E = 0 at the six corners of the Brillouin zone. Therefore,

exp(ikxa)cos(kyb) = −1/2, kxa = 0, kyb = ±2π/3, and kxa = π , kyb = ±π/3.

These points provide the states around the Fermi energy which determine the
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electronic properties and can be grouped into two of three as

(kxa,kyb) = (0,−2π/3), (−π,+π/3), (+π,+π/3)

(kxa,kyb) = (0,+2π/3), (−π,−π/3), (+π,−π/3)

The reciprocal lattice showing Brillouin zone is shaded (see Figure 3b). The

electric conduction is determined by the states around the Fermi energy.

Therefore, it is useful to develop approximate relation that describe the regions

of the E − k plot around E = 0. This can be done by replacing the expression

for h0(k) = −ρ(1 + 2eikxa cos(kyb)) with a Taylor Expansion around

(kxa,kyb) = (0,±2π
3 ), where the Energy gap is zero (note that h0 = 0 at these

points) as in Figure 4. In the linear regime, the valence band maximum and the

conduction band minimum are degenerate at the K-point, yielding a zero

energy band-gap (see Figure 5). Eqn. (12), therefore reduces to

E =±h̄VF |k| (13)

(the Fermi velocity VF ≈ 108 ms−1) at the Fermi level with low-energy

excitation.

Figure 5: Valence and conduction band edges for Graphene [37]
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Production of Graphene

There are various ways of producing Graphene, these involves the following:

Mechanical exfoliation, epitaxial growth and chemical exfoliation.

Mechanical exfoliation

Mechanical exfoliation [38] is a process whereby Graphene flakes are

produced by continuously cleaving a bulk graphite crystal with a common

adhesive tape. This is then transferred onto a cleaned oxidized silicon wafer

substrate with visible color. This system of producing Graphene remains the

best method to provide a small amount of high-quality samples for the study of

a variety of Graphene properties. Also, this technique has been used to easily

obtain large size of Graphene (up to 100 µm), with high-quality that has

brought enormous experimental results [39–42].

Epitaxial growth

Another method used in the industrial production of graphene is the epitaxial

growth method [43]. This involves the growth of Graphene layers on metal

carbides using thermal desorption of metal atoms from the carbides surface.

The direct deposition on the metal surfaces is by chemical vapor deposition

(CVD) [44]. A typical carbide is silicon carbide (SiC) heated to very high

temperatures leads to evaporation of Si and the reformation of graphite; where

the control of sublimation results in a very thin Graphene coatings over the

entire surface of SiC wafers. For economical fabrication of Graphene, Aristov

et al., [45] developed a method compatible with mass production. The
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commercially synthesized Graphene on Cubic β -SiC/Si substrates, was a

simple and cheap procedure used in mass production, but now many other

types of carbide have been exploited to produce supported Graphene. For

example TiC (111), TiC (410), and TaC (111).

From this method, metal surfaces can efficiently be used as catalyze

decomposition of hydrocarbons into graphitic materials which support the

growth of Graphene on metallic surfaces by CVD. Even though epitaxial

growth is for large-scale area, it is difficult to control morphology, adsorption

energy, and high-temperature process.

Chemical exfoliation

Chemical exfoliation deals with the insertion of reactants in the interlayer

space of graphite to weaken the Van der Waals cohesion [46]. During the

process of chemical exfoliation, the graphite flakes are first forced upon

oxidative intercalation of potassium chlorate (KCLO3) in concentrated

sulphuric and nitric acid which received carbon sheets with hydroxyl and

carboxyl moieties. This suspension is known as graphite oxide (GO). The GO

is highly dispersible in water, and can be easily deposited onto SiO2 substrates.

The precipitate of GO obtained is sonicated to form separated Graphene oxide

sheet which undergoes another reduction process to form Graphene sheet.

In this chemical exfoliation process, when KClO3 is used, it generates a lot of

chlorine dioxide gas which emits a great deal of heat, making the mixture,

highly hazardous. Hummers and Offeman (1958) [47] reported a technique

based on chemical exfoliation where, graphite is dispersed into a mixture of
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concentrated sulfuric acid, sodium nitrate, and potassium permanganate in

contrast to KClO3 [48] but H2O2 has to be used eliminate MnO2 generated

from KMnO4. They further tried using m−CPBA [49] as an oxidant but the

same problem was encounted. Chandra et al., [50] used a novel synthetic

procedure for oxidation acidified dichromate, to get high quality and stable

aqueous dispersed graphene sheets. Using different reductants such as

hydrazine [51], dimethylhydrazine [52], hydroquinone [53], and NaBH4 [54],

under alkaline conditions [55] or with thermal methods [56], when GO′s are

deposited, the chemical reduction of GO was accompanied by the elimination

of epoxy and carboxyl groups. Due to the hazardous nature of the reductants,

there are lots of interests on green routes to speed de-oxygenation of Graphene

oxide. One of such techniques was introduced by Wakeland et al., [56] which

describes the synthesis of Graphene from GO using urea as expansion reducing

agent heated in an inert gas environment (N2) for a very short time to a

moderate temperature (600oC). Chen et al., [57] with the assistance of

microwaves in a mixed solution of N, N-dimethylacetamide, and water

(DMAc/H20) achieved thermal reduction of Graphene oxide (GO) to

Graphene.

Electronic properties of Graphene and Graphite

The electronic properties of Graphene, and graphite are determined by the

bonding π- and anti-bonding π∗-orbitals that form wide electronic valence and

conduction bands [5]. Theoretical calculations show that the π-band overlap in

graphite disappears as the layers are further separated over their equilibrium
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distance in graphite. This leads to decoupled Graphene layers that can be

described as a zero-gap semiconductor.

The π-band electronic dispersion for Graphene near the six corners of the 2D

hexagonal Brillouin zone is found to be linear. Thus, “cones” of carriers (holes

and electrons) appear in the corners of a 2D Brillouin zone whose points touch

at the Fermi energy. In Graphene, most of the experimental research focuses

on the electronic properties. This is mostly utilized in designing Graphene

transistors with the ability to continuously tune the charge carriers from holes

to electrons. This is an example of the gate dependence in single layer

Graphene. This effect is most pronounced in the thinnest samples whereas

samples from multiple layers show much weaker gate dependence due to

screening of the electric field by the other layers. At low temperatures and also,

high magnetic fields, the exceptional mobility of Graphene allows for the

observation of the quantum hall effect for both electrons and holes [5]. Due to

its unique band structure, the Graphene quantum Hall effect exhibits a subtle

difference from the conventional quantum Hall effect in that plateaus occur at

half integers of 4e2

h̄ . For more practical applications, one would like to utilize

the strong gate dependence of Graphene for either sensing or transistor

applications. Unfortunately, Graphene has no band gap and correspondingly

resistivity changes are small. Therefore, a Graphene transistor by its very

nature is plagued by a low on/off ratio. However, one way around this

limitation is to carve Graphene into narrow ribbons. By shrinking the ribbon

the momentum of charge carriers in the transverse direction becomes quantized

which results in the opening of a band gap.
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Fullerene

Fullerene belongs to zero-dimensional carbon nanomaterials. Fullerenes are

spherically shaped molecules with carbon atoms located at the corner of a

polyhedral structure consisting of pentagons and hexagons [58]. It is referred

to as “buckyball” due to its shape and was named after Richard Buckminster

Fuller. In a Laser spectroscopy experiments, fullerenes were discovered in

1985, by researchers at Rice University. Kroto et al., [59] used laser

vaporization of carbon in an inert atmosphere to produce microscopic amounts

of fullerenes. However, Kretschmer et al., [60] produced isolable quantities of

C60 by using an arc to vaporize graphite. Alekseyev and Dyuzhev [61],

further, explained the formation of fullerene in an arc discharge and the

problems associated with arc discharge calculations to the immediate fullerene

molecule assembly.

Research in fullerene formation has become a field of intense study in the last

two decades with a variety of fullerene derivatives with unique properties

produced. Howard et al., (1991 and 1992) [62, 63], developed a method of

synthesis of fullerenes in combustion and observed fullerenes C60 and C70

from benzene/oxygen flames whilst, Xie et al., (1999) [64] synthesized

fullerenes C60 and C70 via microwave plasma from chloroform at

low-pressure argon atmosphere. This method by [65] opened a new way to

large quantity and low-cost production of fullerenes, various perchlorinated

intermediates of fullerenes, and the perchlorinated carbon clusters. In 1993,

Taylor et al., [66] synthesised C60 and C70 by pyrolysis of naphthalene at

1,0000 C. From this method, closed fullerene cages can be prepared from
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well-defined aromatic fragments. Koshio et al., [65], in 2002 used pyrolysis

method to produce fullerene. In 2009, a new method by Chen and Lou [67]

was reported. Here, they revealed that, C60 can be synthesized from the

reduction of CO2 via metallic lithium or MgCO3 at 7000 C, ca. 100 MPa.

Applications of fullerene include their use in medicine to produce the specific

antibiotics and drugs for certain cancers particularly melanoma. On the other

hand, due to their specific properties, fullerenes have had great applications in

the field of superconductivity.

Fullerence structures

Fullerence structures (Fs) with incorporated iron atoms were reported by

Koprinarov et al., [68]. These were obtained via d.c arc discharge between

carbon electrodes in air and ferrocene gas mixture ambient. This method made

fullerene creation easier and increased the product quantity. Richter et al., [69]

also, devised a novel method of fullerene production by using

acetylene/oxygen/argon flat flames by adding chlorine and burning at low

pressure. These and many other chemical syntheses of fullerenes also have

been reported [70].

Graphene Nanoribbon (GNR)

Graphene ribbons (GNRs) are a few nanometres in width (≤ 50 nm) and are

one of the many carbon nanostructures based materials which have been

extensively studied [71–84]. These GNRs are geometrically terminated

Graphene, having their electronic structure modelled by imposing appropriate
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boundary conditions. They are one-dimensional structures with hexagonal two

dimensional carbon lattices, which are stripes of Graphene. GNR’s exist in two

forms: Armchair and Zigzag . GNRs with Armchair edges (AGNR) can be

either metallic or semiconducting depending on their widths [85, 86] and that

GNRs with “zigzag” edges (ZGNR) are metallic with peculiar edge states on

both sides of the ribbon regardless of their widths [87, 88]. The Armchair

Graphene Nanoribbon (AGNR) and Zigzag Graphene Nanoribbon (ZGNR)

(see Figure 6), with well-defined width have being extensively studied using

the tight-binding approach [89–91] and edge functionalization method in

Density Functional Theory (DFT) [93].

Figure 6: Graphene Nanoribbon edges showing (a) Armchair edge and (b)
Zigzag edge [90]

Mostly, -H, -F, -Cl, -Br, -S, -SH and -OH are used to engineer the band gap so

as to utilize the various properties of GNRs for electronic applications.

Although the tight-binding approximation based on π-states of carbon can

accurately describe the energy dispersion of the carbon sheet, a careful
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consideration of edge effects in GNRs is required to determine their band

structures accurately [94, 95]. Recent ab-initio calculations [96–98] reveal that

all GNRs with hydrogen-passivated armchair or zigzag-shaped edges have

nonzero direct bandgaps. The gap size decreases as the width of the GNR

increases, approaching zero in Graphene in the limit of infinite width.

Energy dispersion of Graphene Nanoribbon

The energy dispersion relation ε(p⃗) for GNRs band near the Fermi point is

expressed [37] as

ε(p⃗) =
Eg

2

√
[(1+

p⃗2

h̄2β 2
)] (14)

where the energy gap Eg = 3tac−cβ , with β being the quantized wave vector

given as

β =
2π

ac−c
√

3

(
pi

N +1
− 2

3

)
(15)

The pi is the subband index, N the number of dimmer lines which determine

the width of the AGNR, ac−c = 1.42 Ȧ is the carbon-carbon (c-c) bond length,

t = 2.7 eV is the nearest neighbor (c-c) tight-binding overlap energy.

Carbon Nanotubes (CNT)

Carbon Nanotubes (CNT) (also known as a buckytube) discovered by Iijima

[99] is a member of the fullerene structural family and are emerging as

important materials for electronic applications. Due to the remarkable

electrical and mechanical properties [100–102] which are attributed to its

unusual band structures [103–105], the π-bonding and anti-bonding (π∗)
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energy band of CNT crosses at the Fermi level in a linear manner [106–108].

CNT occur by wrapping Graphene into cylinders and are categorized as

single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs) (see

Figure 7).

Figure 7: One, two and three walls of Carbon Nanotube [109]

The SWNTs can be formed in three different designs: Armchair, Chiral, and

Zigzag depending on the way the Graphene is wrapped into a cylinder. A

SWNT’s structure is represented by a pair of indices (n,m) called the chiral

vector (see Figure 8).

The metallic and semi-conducting Single-Walled Carbon Nanotube (SWCNT)

have been proposed as the most viable materials to develop high performance

thin films to completely eliminate the use of critical metals in electronic

devices such as: i) Indium in transparent conducting films (TCF, indium oxide

doped by tin, ITO) and ii) Indium and Gallium as semiconductor InGaZnO

(a − IGZO) in thin film field effect transistors (T FT s) for applications in

optoelectronic [112, 113]. The unusual band structure [114] of CNT , coupled
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Figure 8: The (n,m) denotes the nanotube naming scheme. T denotes the tube
axis, and a1 and a2 are the unit vectors of Graphene in real space [109]

with large electron densities and high drift velocities (with electron mobility of

µ ≈105 cm2/V s) at room temperatures opens a way for employing carrier

control processes rather than direct electrical control. From the tight-binding

approach, the dispersion law for Zigzag CNT is given as

E(p) =±γ0

√
1+4cos(apz)cos(

as∆pϕ√
3

)+4cos2(
as∆pϕ√

3
) (16)

In view of the transverse quantization of the quasi-momentum, its transverse

component can take m discrete values, pϕ = s∆pϕ = π
√

3s/am(s = 1, ...,m)

and we used E(s∆pϕ , pz)≡ Es(pz) in both equations. As different from pϕ , we

assume pz continuously varies within the range 0 ≤ pz ≤ 2π/a which

corresponds to the model of infinitely long CN(L = ∞). In the linear
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approximation, the energy dispersion ε(p⃗) relation is given as

E(pz) = ε0 ±
√

3
2h̄

γ0b(p⃗− p⃗0) (17)

The ε0 is the electron energy in the Brillouin zone at momentum p0, b is the

lattice constant , γ0 is the tight-binding overlap integral (γ0 = 2.54 eV). The ±

sign indicates that in the vicinity of the tangent point, the bands exhibit mirror

symmetry with respect to each point. For Armchair CNT, the dispersion relation

yields

E(pz) =±γ0

√
1+4cos(

vπ
n
)cos(

k
√

3acc

2
)+4cos2(

k
√

3acc

2
) (18)

Here γ0 ≈ 3.0 eV is the overlapping integral, a = 3b
2h̄ , b = 0.142 nm is the c− c

bond length. The− and+ signs correspond to the valence and conduction bands,

respectively. At the Fermi points, the conduction and valence band cross each

other , therefore when v = 0, kF =±2π/3
√

3acc which gives the metallic nature

to the armchair nanotube. Making the substitution, k = kt +3k0/2 gives

E =±t0(1−2cos(
kt
√

3acc

2
)) (19)

where, k0 = 2kF/3
√

3acc ≈ 1.7×1010 m−1.
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Properties of Carbon Nanotubes

The structure and properties of Carbon nanotubes (CNTs), have great

applications in very wide areas of science and technology including

nano-technology [115], electronics [116], optics [117], materials science, and

architecture [118]. The structural applications of CNTs cover a wide ranges of

industries such as clothes, sports equipment such as stronger and lighter tennis

rackets, bike, various kinds of balls, combat jacket like combat jackets,

concrete as the increase of the tensile strength, polyethylene, the possibility of

the space elevator, synthetic muscles in medical science and sports, high tensile

strength fibers, applications in the build of bridges, ultrahigh-speed flywheels,

and applications in fire protection [118–120].

In electromagnetic field, the applications of CNTs are grouped in respect of

their uses in chemical nanowires, conductive films, electric motor brushes,

magnets, optical ignition, their applications to produce light bulb filament (as

an alternative for tungsten filaments), the applications relating to their fine

superconductivity properties, in display screens such as field emission displays

(FEDs), the applications in industrial transistor and the electromagnetic

antenna [121, 122]. Other applications of CNTs are in respect of their chemical

applications, including air pollution filters, biotech containers, hydrogen

storage, water filtration, and the mechanical applications such as using them as

the faster oscillators, nanotube membrane, slick surface, carbon nanotube

actuators, infrared detector, radiometric standard, and their application as the

thermal radiation for space satellites [123, 124]. It is worth noting that the wide

range of applications of CNTs mentioned is due to their unique mechanical,
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electrical, thermal, and optical properties which are briefly introduced in this

section.

Strength of Carbon Nanotube

Carbon nanotubes (CNTs) are the strongest materials known. This is is due to

the covalent sp2 bonds between the individual carbon atoms. Yu et al.,

(2000) [125] tested the tensile strength of a multiwalled carbon nanotube

(MWCNT) to access up to 63 GPa. The specific strength is defined as the

material’s strength (force per unit area at breaking point) divided by its density.

Considering the low density of CNTs (1.3 to 1.4 gcm3), the specific strength of

CNTs is obtained up to kNmkg−1 which is the the best of the known materials.

Electrical properties of Carbon Nanotubes

The electrical properties of a nanotube strongly depend on its structure due to

the symmetrical and exceptionally electronic structure of Graphene [126–128].

Lu and Chen [129], reported armchair nanotubes to be metallic otherwise, is

semiconducting with a very small band. (5,0) SWNTs is a semiconductor; but,

due to the curvature effects in small diameter carbon nanotubes, it is metallic.

Zigzag and chiral SWNTs with small diameters that are expected to be metallic

have actually a finite gap [129].

Zhou et al., [130] suggested SWNTs can show excellent electronic properties

such as the carrier mobility about 104 cm2V−1s−1 which is higher than that of

silicon. Dai et al., [131], explained that CNTs can carry an electrical current

density of about 200 Acm−2. Such a current density is three orders of magnitude
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higher than a typical metal, for example, Cu or Al [132]. In 2006, Pierson [134]

noted that the electrical properties of multiwalled carbon nanotubes (MWNTs)

exhibit superconductivity with a transition temperature as high as 12 K which

is approximately 30 times greater than that for ropes of SWNTs or for MWNTs

with noninterconnected shells [134].

Onion-like Carbons

Carbon onions are spherically closed carbon shells which owe their name to the

concentric layered structure resembling that of an onion. Carbon onions are

sometimes called carbon nano-onions (CNOs) or OLC. In 1992, the

quasispherical particles of carbon soot and tubular graphitic structures were

radiated by intense electron-beam were reported by Ugarte [71]. In 1997,

Harris and Tsang [135] observed fullerene-like structure which were close to

carbon nano-particles when they used heat treatment to study the structure of

two typical nongraphitizing carbons. From this model, nongraphitizing carbons

were proposed which were different from the other representatives of the

carbon family such as graphite, fullerenes, and nanotubes [135]. These OLCs

have three to eight closed graphitic shell structures with the hollow core. Their

outer diameters are in the range of 20−100 nm. They are polyhedral

nanoparticles which exhibit a well aligned concentric and high degree of

symmetry structure. Such quasispherical shape, nanometer size, and surface

specificity of OLCs have attracted enormous attention. Zhao et al., [136]

reported a technique for a large quantity of synthesis of OLCs using

carbonization of the solid-state catalyst of PF resin as the carbon resource and
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ferric nitrate as the precursor at 10000 C. Iancu et al., [138] further synthesized

OLCs using Fe/Al2O3 as catalyst by chemical vapor deposition (CVD) at a

relatively low temperature (4000 C) and efficiently avoided the growth of

CNTs whilst Pervolaraki et al., [137] synthesized high-purity OLCs in high

yields from coal by radio frequency plasma.

Carbon Nanofibers

Carbon nanofibers (CNFs) are composed of stacked and curved Graphene

layers from a quasi-one-dimensional (1D) filament [139]. CNFs have

cylindrical or conical nanostructures. Carbon nanofibers (CNFs) are composed

of stacked and curved Graphene layers from a quasi-one-dimensional (1D)

filament which are cylindrical or conical nanostructures. CNFs diameters vary

from a few to hundred nanometers, while their lengths ranges from less than a

micrometer to millimeters. Generally, CNFs can be synthesized through the

traditional vapor growth methods such as cocatalyst deoxidization

process [139], catalytic combustion technique [140], plasma-enhanced

chemical vapor deposition [141], hot filament-assisted sputtering [142],

ultrasonic spray pyrolysis [143], and ion beam irradiation [144].

Carbon Nanowalls

Carbon nanowalls (CNWs) consist of vertical aligned Graphene sheets

standing on the substrates, form two-dimensional wall structure with large

surface areas and sharp edges with thickness ranges from a few nm to a few

tens nm [145, 146]. Different synthesis methods of CNWs based on
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plasma-enhanced chemical vapor deposition techniques have been explored.

The main approaches are as follows.

• Microwave plasma-enhanced chemical vapor deposition (MWPECVD).

• Radio-frequency plasma-enhanced chemical vapor deposition

(RFPECVD) (RF inductively coupled plasma (ICP) and RF capacitively

coupled plasma (CCP)).

• Hot-wire chemical vapor deposition (HWCVD).

• Electron beam excited plasma-enhanced chemical vapor deposition

(EBEPECVD).

Hiramatsu et al. [145] using MWPECVD discovered CNWs by using

NiFe-catalyze substrate (Si, SiO2/Si, sapphire) preheated to about

650−700o C in hydrogen plasma; the mixtures of CH4 and H2 were utilized as

flow gases. The well-controlled MWPECVD synthesis process induced further

studies to search more flexible control of the growth of CNWs [147].

Diamond and Graphite

Diamond is known to be one of the hardest materials, while graphite is soft

enough and is thus used for making pencils. About the property of color,

diamond is considered transparent while graphite is an opaque material and

black. Graphite is a good conductor but diamond has a low electrical

conductivity. On the other hand, diamond is normally referred to as being a

highly thermal conductive, while graphite is considered as the most

thermodynamically stable material [148].
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Studies on Carbon Allotropes

There are several approaches of investigating the properties of carbon

allotropes. These includes tight-binding calculations [146], density functional

theory (DFT) calculations [148], and many-electron Greens function

approach [149]. The most popular ones are based on the various ab-initio

computations [150–152], molecular dynamics (MD) [153, 154], Cauchy-Born

rule [155] and the so-called braced-truss models [156, 157]. Apart from the

methods described, which are used mainly for understanding the electronic ,

magnetic and electrical properties of carbon allotropes, the understanding of

acoustic effects resulting from the electron-phonon interaction is limited.

Despite this limitation, a few experimental works on acoustic effects in carbon

allotropes have been carried out.

Objectives and scope of study

Main Objectives

Among the numerous methods used in studying the properties of carbon

allotropes is the interaction between electrons and phonons [158–160]. Such

interaction in carbon allotropes offers very interesting phenomena which have

important applications in areas related to electronics, spintronics, composites,

medicine and many others. This research provides the theoretical treatment of

acoustic effects of electron-phonon interaction in carbon allotropes and

concentrates on novel one- and two-dimensional layered carbon (sp2

hybridized) including 2D Graphene and Graphene nanoribbons as well as

carbon nanotubes.
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To date, there is no theoretical frame work for analyzing the acoustic properties

of materials such as 2D Graphene, Graphene Nanoribbon, and Carbon

Nanotubes. The need to study acoustic effects in Carbon allotropes are due to

the applications derived from the electron - phonon interactions in the material.

It includes (I) generation of high-frequency electric oscillation, (II) phonon

spectrometer, (III) a non-destructive testing of microstructure and also for

acoustic scanning systems.

Experimental studies of acoustic effect in Carbon Allotropes have yielded a

range of different and conflicting results but the theoretical effort to explain the

results obtained is lacking. This thesis is focused on explaining theoretically

the acoustic effect in the above mentioned Carbon allotropes. This is achieved

by studying the electron-phonon interaction in the materials where the acoustic

wave is considered as monochromatic phonon of frequency (ωq) in the

short-wave region ql >> 1 (q is the acoustic wavenumber, l is the electron

mean free path). Effect such as Amplification (absorption) of

hypersound [160], Acoustoelectric Effect (AE) [161–171],

Acoustomagnetoelectric effect (AME) [172–177], and Acoustothermal

Effect [178] are studied in the samples and the results obtained compared to

experimental results.

Specific Objectives

The objective for this thesis is to provide the theoretical framework that can

lead to the attainment of SASER in 2D Graphene, AGNR, and CNT. From this

study, the hypersound absorption (amplification) in Graphene, CNT in the
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regime ql >> 1 (q is the acoustic wave number and l is the electron mean free

path) is considered where the acoustic wave is considered as a flow of

monochromatic phonons of frequency (ωq). The main mechanism for

understanding the acoustic effect in these materials is the phenomenon of

electron-phonon interactions which leads to the exchange of energy and

momentum between the carrier charges (electrons) and phonon. The

Boltzmann transport equation is utilized in understanding the dynamics of the

interactions in the materials. The resulting equations are numerically analyzed

and graphically presented.

Organization Of Thesis

In chapter one, the introduction of carbon allotropes was outlined. This

includes the synthsis, the preparation and the production of carbon allotropes

such as Graphene, carbon nanotube and Graphene nanoribbon. The energy

dispersion of these materials were also discussed. Chapter two also discusses

the electron-phonon interaction and the fundamentals of the theoretical

methods that were used in deducing the main kinetic equation. Chapter three

deals with acoustic effects such as Acoustoelectric and Acoustomagneto

electric effect and absoprtion/ amplification of in AGNR, 2D Graphene and

Carbon Nanotube. The results and discussion with conclusions drawn are

presented in chapters four and five.
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CHAPTER TWO

LITERATURE REVIEW

Electron-Phonon Interaction

Electron-phonon interactions in bulk and low-dimensional semiconductors has

been studied extensively in the past two decades with much attention focused

on the effect such as acoustic and optical amplification of phonons [179, 180].

The confinement of electrons and phonons in nano-structured materials affects

the electron transport, inelastic light scattering and many other properties

including the response of the electronic system to electromagnetic waves.

Electron-phonon interactions are important to the properties of carbon

allotropes because activities such as:

• ballistic transport,

• superconductivity,

• excited-state dynamics,

• Raman spectra and phonon dispersions are dependent on it.

In two, one and zero dimensional systems such as superlattice [181–183],

quantum wire [184–186], nanorodes [187, 188] and quantum wells [189, 190],

it is well established that phonons (quantum of lattice vibration) provide the

principal channel of energy transfer between the electrons and their

surroundings. The main energy exchange is dependent on the relaxation time τ

32

Digitized by Sam Jonah Library

© University of Cape Coast



where, the net transfer rate is determined by the rate at which energy flows out

of the electron gas by phonon emission and the rate at which energy flows into

the electron gas by phonon absorption from the lattice [191, 192]. The energy

exchange between longitudinal acoustic phonons with electrons causes

deformation potential scattering in the material which is due to electrons

undergoing inelastic scattering [193, 194].

Graphene is a 2D system, which is very informative when compared with the

more standard 2D material that has been studied extensively since the

development of heterostructure and the discovery of the quantum Hall effect.

In metallic systems, there are two main kinds of excitations: electron-hole pairs

and collective modes such as plasmons [194]. Electron-hole pairs are

incoherent excitations of the Fermi sea and a direct result of Pauli’s exclusion

principle. That is, an electron inside the Fermi sea with momentum k is excited

outside the Fermi sea to a new state with momentum k + q, leaving a hole

behind. The energy associated with such an excitation is simply: ω = εk+q − εk

and for states close to the Fermi surface (k ≈ kF ) their energy scales linearly

with the excitation momentum, ωq ≈VFq.

In a system with non-relativistic dispersion such as normal metals and

semiconductors, the electron-hole continuum is made out of intra-band

transitions only and exists even at zero energy since it is always possible to

produce electron-hole pairs with arbitrarily low energy close to the Fermi

surface. In systems with relativistic-like dispersion, such as Graphene, these

excitations change considerably, especially when the Fermi energy is at the

Dirac point. In this case, the Fermi surface shrinks to a point and hence
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intra-band excitations disappear and only inter-band transitions between the

lower and upper cones can exist. Therefore, neutral Graphene has no electron-

hole excitations at low energy, instead each electron-hole pair has energy and

hence the electron-hole occupies the upper part of the energy versus

momentum diagram. If the chemical potential is moved away from the Dirac

point then intra-band excitations are restored and the electron-hole continuum

of Graphene shares features of the 2D and undoped Graphene. As the chemical

potential is raised away from the Dirac point, Graphene resembles more and

more as 2D material.

Bosons and Fermions

Bosons

In quantum mechanics, a boson is a particle that follows the Bose-Einstein

statistics [195–197]. They are made up of fundamental particles such as

photons, gluons, W and Z bosons, the Higgs Bosons and some quasiparticles

such as Cooper pairs, plasmons and phonons. They have an integer spin (s = 0,

1, 2, etc) and a symmetric wave function ψ . The statistics of bosons do not

restrict the number of them that occupy the same quantum state. The

elementary bosons are force carriers that function as the ’glue’ that holds

matter together [197].
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Fermions

These are particles characterized by Fermi-Dirac statistics which obey the

Pauli exclusion principle [198]. These includes all quarks and Leptons as well

as composite particles made of an old number such as baryons, atoms and

nuclei. Fermions can be elementary particle such as electron or composite

particles as protons [199, 200]. They posses conserved baryon or lepton

quantum numbers with half-integer spin.

The Hamiltonian of the System

The Hamiltonian describing the electron-phonon system can be represented as

the sum of the individual Hamiltonian of electron (el), phonon (ph), coulomb

(coul) and their interactions (int) [201–204]. This is expresed

mathematically [205,206] as

H = H0
el +H0

ph +H0
coul +H0

int (20)

where

H0
el = ∑⃗

kσ⃗

ε⃗ka†
k⃗σ⃗

a†
k⃗σ⃗

(21)

H0
ph = ∑⃗

k⃗λ

ω⃗k⃗λ

(
a†

k⃗⃗λ
b⃗k⃗λ +

1
2

)
(22)

H0
coul =

1
2 ∑

k⃗⃗k′⃗q

V (⃗q)
(

a†
k⃗′+q⃗σ⃗ ′a

†
k⃗σ⃗

a⃗k+q⃗σ⃗ ak′σ ′

)
(23)

H0
int = ∑

k⃗⃗k′σ⃗ λ⃗

g⃗k⃗k′a
†
k⃗σ⃗

a⃗k′σ⃗

(
b†
−q⃗⃗λ

+ b⃗q⃗λ

)
(24)
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b†
k⃗⃗λ

creates a phonon with wave vector q⃗ = k⃗′ − k⃗ and polarization λ⃗ and

g ∝ M− 1
2 is the bare electron-phonon coupling. The second-quantization

representation [207–210] of the H0
el in Eqn. (21) can be expressed in terms of

the momentum-spin (i.e. α = k,σ ) single-particle basis. The single-particle

basis function is given as

Φα(x) = Φkσ (r,s) =
1√
Ω

ek·rδsσ (25)

The kinetic energy operator in Eqn. (21) is a single-particle operator and the

second-quantization representation is given as

H0
el = ∑

α,α ′
α ′ p2

2m
αa†

α ′aα (26)

where the matrix element

α ′ p2

2m
α =

∫
xΦ∗

α ′(x)
(
− h̄2

2m
∇2

)
Φα(x) (27)

using the Bloch function for Φα ′ , Eqn. (26) can be expressed as

α ′ p2

2m
α = ∑

s

∫ 3
r
(

1√
Ω

e−ik̃′·rδ⃗sσ⃗ ′

)(
− h̄2

2m
∇2

)(
1√
Ω

ek̃·rδ⃗sσ⃗

)
= ∑

s

∫ 3
r
(

1√
Ω

e−ik̃′·rδ⃗sσ⃗ ′

)(
− h̄2k2

2m

)(
1√
Ω

ek·rδ⃗sσ⃗

)
=

h̄2k2

2m

(
1
Ω

∫ 3
r e(k̃−k̃′)·r

)(
∑
s

δ⃗sσ⃗ ′ δ⃗sσ⃗

)
=

h̄2⃗k2

2m
δ⃗k⃗k′δσ⃗ σ⃗ ′ (28)
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substituting Eqn. (28) in Eqn. (26) gives

H0
el = ∑⃗

kσ⃗

h̄2⃗k2

2m
a†

k⃗σ⃗
a⃗kσ⃗ δ⃗k⃗k′δσ⃗ σ⃗ ′ (29)

The Quantized Theory Of Phonons

For a one dimensional model of a crystal lattice, the equilibrium position xi for

the atoms are shown [211,212] in the Figure (9). The Hamiltonian of the system

Figure 9: Equilibrium positions of atoms in a one-dimensional crystal
lattice [214]

of atoms is

H = ∑
i

p2
i

2m
+

K
2 ∑

i
(xi − xi+1)

2 (30)

where [xi, pi] = δnm . Diagonalizing the Hamiltonian in normal modes using

Fourier series such as

x̂i =
1
N

ekax̂k, (31)

x̂i+1 = ∑
n

ekax̂−k (32)

From Eqn. (31) and (32)

K
2 ∑

i
(xi − xi+1)

2 =
K
2 ∑⃗

k

x̂kx̂−⃗k

(
2− ek⃗a − e−⃗ka

)
(33)

=
m
2 ∑⃗

k

ω2
k⃗
x̂⃗kx̂−⃗k (34)

37

Digitized by Sam Jonah Library

© University of Cape Coast



where ω2
k⃗
= 2K

m (1− cosk). In the k⃗ basis, the Hamiltonian becomes

H =
1

2m ∑⃗
k

p̂⃗k p̂−⃗k +
m
2 ∑⃗

k

ω2
k⃗
x̂⃗kx̂−⃗k (35)

with
[
x̂⃗k, p̂⃗k′

]
= δ⃗k⃗k′ . The raising and lowering operators can be written as

bk =

(
mω⃗k

2

) 1
2
(

x̂⃗k −
p̂−⃗k

mω

)
(36)

b†
k⃗
=

(
mω⃗k

2

) 1
2
(

x̂−⃗k −
p̂⃗k

mω

)
(37)

From Eqn. (36) and (37), the Hamiltonian Eqn. (35) can be written as

Hph = ∑⃗
kλ

ω⃗kλ b†
k⃗λ

b⃗kλ (38)

The Electron-Phonon Coupling (Hint)

For an ion localised at position Ri at a displacement ui from its equilibrium

position R0
i , the interaction energy of the electronic charge density with the ions

is

Hint = ∑
i⃗σ

∫ 3
r Ψ†

σ⃗ (r)Ψσ⃗ (r)V (r−Ri) (39)

For small amplitude vibrations, Eqn. (39) can be expressed in powers of ui,

Hint = ∑
i⃗σ

∫ 3
r Ψ†

σ⃗ (r)Ψσ⃗ (r)V (r−R0
i )

+∑
i⃗σ

∫ 3
r Ψ†

σ⃗ (r)Ψσ⃗ (r)ui ·∇Ri V (r−Ri)|R0
i
+ · · · (40)
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Expanding the field operators Ψσ⃗ in terms of Bloch waves

Ψ(r) = ∑⃗
k

a⃗k,⃗σ Ψ⃗k(r) (41)

where

Ψ⃗kσ⃗ = ek̃·R0
i Ψ⃗k(r)

Performing a shift by a Bravais lattice vector and using the periodicity of

∇R0
i
V (r−R0

i )

∫ 3
r Ψ∗

k⃗′σ⃗ (r)Ψ⃗kσ⃗ (r)∇R0
i
(r−R0

i )

=
∫ 3

r Ψ∗
k⃗′σ⃗ (r+R0

j)Ψ⃗kσ⃗ (r+R0
j)∇R0

i
V (r−R0

i )

= e(k̃−k̃′·R0
j)
∫ 3

r Ψ∗
k⃗′σ⃗ (r)Ψ⃗kσ⃗ (r)∇R0

i
(r−R0

i )︸ ︷︷ ︸
W⃗k⃗k′

(42)

Second-quantizing the displacement u in Eqn. (40) gives

ui(t) =
1√
NM ∑

kλ
Qλ (k, t)eλ (k)ek·R0

i (43)

where

Qλ (k̃) =
1√

2ωλ (k̃)

(
bλ (k̃)+b†(−k̃)

)
(44)
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Interaction Hamiltonian can be written as

Hint = ∑
kk′σ

a†
k′σ akσ ∑

j
Wkk′e

(k−k′)·R0
j

1√
NM ∑

kλ
Qλ (k)eλ (k)ek·R0

j (45)

= ∑
kk′σ

∑
λ

a†
k′σ akσ

(
Wkk′e

λ (q)
)

Qλ (q)
√

N
M

= ∑
kk′σ

gkk′λ a†
k′σ akσ

(
bλ (k)+b†

λ (−k)
)

(46)

where k⃗ is the momentum conservation interpreted as

k̃ = k−k′+G (47)

G being a vector of reciprocal lattice (k̃ lies in the 1st Brillouin zone). The

electron-phonon coupling constant is

gkk′λ =
(

Wkk′e
λ (k̃)

)√ N
2Mω im

pl (k̃)
(48)

Landau Quantization

The electron states in the presence of a magnetic field H̃ are described by the

Schrödinger equation [215–218].

1
2m

(
p⃗− eA⃗c

)2
Ψr = EΨr, A⃗ = (0, H⃗x,0)
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From Eqn. (20) the Hamiltonian is expressed in momentum space as, ignoring

the spin,

H = ∑⃗
p

(p⃗− eA⃗c)2

2m
a†

pap +∑
k

ωk(b
†
kbk)+∑

p,k
gpka†

p+kak(bp,k +b†
p,k) (49)

The General Quantum Equation

The general quantum equation for statistical average value of the electron

particle number operator (or the electron distribution function) [219–221] is

n p⃗(t) =
⟨

a†
p⃗a p⃗

⟩
t
= S p⃗

(
a†

p⃗a p⃗ρ(t)
)

(50)

where S p⃗ is the trace and ρ(t) is the statistical operator. The derivative of the

density matrix over time is expressed as

∂n p⃗

∂ t
= S p⃗

(
a†

p⃗a p⃗
∂ρ(t)

∂ t

)
(51)

Using the Heisenberg equation [222,223]

∂ρ
∂ t

= [H,ρ ] = (Hρ −ρH) (52)

This describes the evaluation of the quantum system. Substituting Eqn. (52)

into Eqn. (51) gives

∂n p⃗

∂ t
= S p⃗

(
a†

p⃗a p⃗ρH −a†
p⃗a p⃗Hρ

)
= S p⃗

[(
a†

p⃗a p⃗H −a†
p⃗a p⃗H

)
ρ
]

(53)
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The initial condition in the case of a pure state may be expressed with ρt = t.

This gives

∂n p⃗

∂ t
=
⟨[

H,a†
p⃗a p⃗

]⟩
t

(54)

The Hamiltonian in Eqn. (52) can be substituted into Eqn. (54) and using the

algebra of the commutator gives

[
a†

p⃗′a p⃗′ ,a
†
p⃗a p⃗

]
= a†

p⃗′a p⃗′a
†
p⃗a p⃗ −a†

p⃗a p⃗a†
p⃗′a p⃗′, (55)

a†
p⃗′a p⃗′a

†
p⃗a p⃗ = a†

p⃗ p⃗′

(
δ p⃗′ −a†

p⃗a p⃗′
)

a p⃗

using the identity a p⃗′a
†
p⃗ +a†

p⃗a p⃗′ = δ p⃗ p⃗′ ,

δ p⃗ p⃗′a
†
p⃗′a p⃗ −a†

p⃗

(
δp⃗ p⃗′ −a p⃗a†

p⃗′

)
a p⃗′ = a†

p⃗a p⃗a p⃗′a p⃗′a p⃗′ (56)

[
a†

p⃗a p⃗,a
†
p⃗′+ka p⃗′

]
= a†

p⃗a p⃗a†
p⃗′+ka p⃗′ −a†

p⃗′+ka p⃗′a
†
p⃗a p⃗ (57)

= δp⃗ p⃗′+ka†
p⃗a p⃗′ −a†

p⃗′+ka†
p⃗a p⃗′a p⃗ −a†

p⃗′+⃗k
a p⃗′a

†
p⃗a p⃗

= δp⃗ p⃗′+ka†
p⃗a p⃗′ −δp⃗ p⃗′a

†
p⃗′+ka p⃗ +a†

p⃗′+⃗k
a p⃗′a

†
p⃗a p⃗ −a†

p⃗′+ka p⃗′a
†
p⃗a p⃗

∂n p⃗

∂ t
= ∑

p⃗,⃗k

g p⃗,⃗k

[
a†

p⃗+⃗k
a p⃗

(
b⃗k +b†

−⃗k

)
t
−a†

p⃗a p⃗−⃗k

(
b⃗k +b†

−⃗k

)
t

]
(58)

The time-dependent Schrödinger equation [224, 225]

ĤΨ(t) =
∂
∂ t

Ψ (59)
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But the operators remain independent of time. The solution of Eqn. (59) is

Ψ(t) = e−ĤtΨ(0) (60)

The exponential of an operator is defined by the Taylor expansion

eĤt = 1− Ĥt +
1
2
(
−Ĥt

)2
+ · · ·+ 1

n!
(
−Ĥt

)n
+ · · · (61)

If ΨE is an eigenstate of the Hamiltonian, ĤΨE = EΨE . Then the operator

solution simplifies

ΨE = e−EtΨE(0) (62)

To calculate the expectation value of a state as the system evolves in time, the

expectation value will change

F(t) = Ψ(t)F̂Ψ(t)

= Ψ(0)eĤt F̂e−Ĥt︸ ︷︷ ︸
F̂(t)

Ψ(0) (63)

In the Schrödinger equation, the states have the time dependence. In the

Heisenberg approach, the states remain time-independent at the expense of the

operator acquiring dependence. The differential of F̂(t) gives

∂F(t)
∂ t

= (ĤF̂ − F̂Ĥ) (64)
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It is convenient to introduce a correlation operator F

Fp1,p2,q(t) = a†
p1

ap2bqt (65)

which satisfies

∂np

∂ t
= ∑

k
Ck

{
Fp+k,p,k(t)+F∗

p,p+k,−k(t)−Fp,p−k,k(t)−F∗
p−k,p,−k(t)

}
(66)

Apart from the relaxation contribution due to phonon-phonon collisions, a

driving force is introduced by electron-phonon interaction

∂Fp1,p2,q(t)
∂ t

=
1
h̄

[
a†

p1
ap2bq, Ĥ

]
t

(67)

From Eqn. (67) the algebra of the operators

[a†
p1

ap2 ,a
†
pap] = a†

p1
ap2a†

pap −δp1 pa†
pap2 +a†

pap2 +a†
p1

a†
papap

=−δp1 pa†
pap2 +δp1 p2a†

p1
ap (68)

=
2m

[(
p1 −

e
c

A(t)
)2

−
(

p2 −
e
c

A(t)
)2

]
a†

p1
ap2bqt (69)

=
2m

[
p2

1 − p2
2 − (p1 − p2,A(t))

2e
c

]
a†

p1
ap2bqt (70)

=
[
εp1 − εp2 − (p1 − p2,A(t))

e
mc

]
a†

p1
ap2bqt (71)

=
[
εp1 − εp2 − (p1 − p2,A(t))

e
mc

]
Fp1,p2,q (72)
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where εp =
p2

2m . Substituting Eqn. (72) into Eqn. (67) gives

∂Fp1,p2,q(t)
∂ t

=
[
εp1 − εp2 −ωq − (p1 − p2,A(t))

e
mc

]
Fp1,p2,q(t)

+∑
p3

C−qa†
p1

a†
p3−qap2ap3 t +∑

q1

Cq1

[
a†

p1+q1
ap2

(
bq +b†

−q

)
bq

t

−a†
p1

ap2bq

(
bq +b†

−q

)
t

]
(73)

a†
p1+q1

ap2b−q1bq = ap1+q1ap2b†
−qbq (74)

a†
p1

a†
p3−qap2ap3 = δp1 p3np1δp2,p3−qnp2 (75)

The phonon occupation number [226, 227] is given as Nq(t) = b†
qbqt with

Fp,p−k,k, where p1 − p2 =±k

(p1 − p2,A(t)) =⇒
(

k,
Eo

Ω

)
cos(Ωt) (76)

E(t) = E0 sin(Ωt) =−1
c

A
t

(77)

Letting Φ(t) =
(
εp+k − εp −ωk − e

m
k
ΩEo cos(Ωt)

)
, Eqn. (73) reduces to

∂F
∂ t

= Φ(t)F(t)+ [. . .] (78)

∂F
∂ t = Φ(t)F(t) grouping like terms gives ∂F

F(t) = Φ(t)∂ t

F(t) =C(t)exp
{∫ t ′1

∞
Φ(t) t

}
(79)
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Differentiating Eqn. (79)

F ′(t) =C′(t)exp
{∫ t ′1

∞
Φ(t) t

}
+C(t)Φ(t)exp

{∫ t ′1

∞
Φ(t) t

}
(80)

C′(t)exp
{∫ t ′1

∞
Φ(t) t

}
+C(t)Φ(t)exp

{∫ t ′1

∞
Φ(t) t

}
=

Φ(t)C(t)exp
{∫ t ′1

∞
Φ(t) t

}
+[. . .] (81)

C′(t) = exp
{
−
∫ t ′1

∞
Φ(t) t

}
[. . .]

C(t) =
∫ t

−∞
exp

{
−
∫ t ′1

∞
Φ(t) t

}
[. . .] t (82)

From Eqn. (82)

F(t) =
∫ t

−∞
[. . .]exp

{∫ t

−∞
Φ(t) t −

∫ t1

−∞
Φ(t) t

}
(83)

The exponential part of Eqn. (83) can be expanded as

exp
{∫ t

−∞
Φ(t) t

}
= exp

{(
εp+kt − εpt −ωkt − e

m
koEo

Ω2 sin(Ωt)+δ t
)}

= exp
{(

εp+k − εp −ωk +δ
)

t
}

exp
{
− e

m
koEo

Ω2 sin(Ωt)
}

= e(εp+k−εp−ωk+δ)t ∑
s

Js(a)e−sΩt (84)
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since ezsin(Ωt) =
∞
∑

l=−∞
Jl(z)elΩt

exp
{
−
∫ t

−∞
Φ(t) t

}
= exp

{
−
(

εp+kt − εpt −ωkt − e
m

koEo

Ω2 sin(Ωt)+δ t
)}

= exp
{
−
(
εp+k − εp −ωk +δ

)
t
}

exp
{
− e

m
koEo

Ω2 sin(Ωt)
}

= e−(εp+k−εp−ωk+δ)t ∑
l

Jl(a)esΩt (85)

Taking the product of Eqn. (84) and Eqn. (85)

exp
{∫ t

−∞
Φ(t) t

}
· exp

{
−
∫ t

−∞
Φ(t) t

}
= ∑

s,l
Js(a)Jl(a)exp(−sΩt)exp(lΩt)×

exp
(
εp+k − εp −ωk +δ t)−

(
εp+k − εp −ωk +δ t)

simplifies to

= ∑
s,l

Js(a)Jl(a)exp((l − s)Ωt)exp(
(
εp+k − εp −ωk +δ

)
t)

exp(−
(
εp+k − εp −ωk +δ

)
t) (86)

Solving the operations in Eqn. (83)

i∑
q1

cq[⟨a+p1+q1
ap2(bq1 +b+−q)bq⟩t −⟨a+p1

ap2−qbq(bq1 +b+−q1
)⟩t ] (87)

i∑
q1

cq[⟨a+p1+q1
ap2b+−qbq⟩t −⟨a+p1

ap2−qbqb+−q⟩t ] (88)

Assuming that ⟨bqbq⟩= 0

i∑
q1

cq[⟨a+p1+q1
ap2⟩⟨b

+
−q1

bq⟩−⟨a+p1
ap2−q⟩⟨bqb+−q⟩] (89)
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i∑
q1

cq[n(t ′)δp1+q1,p2Nq(t)−n(t ′)δp1,p2−q(Nq(t ′)+1)] (90)

∑
q

cq[np+q(t ′)Nq(t)−np1−q1(t
′)(Nq1(t)+1)] (91)

i∑c−qnpδp1,p3δp2,p3−qnp2 (92)

i∑c−q[np1np1−q] (93)

Therefore the driving force equation becomes

∂Fp,p+k,k(t)
∂ t

= i[εp+q − εp −ωk −
e

mc
(pp+k − pp,A(t))]

Fp+k,p,k(t ′)+ i∑
k

ck[np(t ′)(1−np+k(t ′))Nk(t ′)

−np+k(t ′)(1−np(t ′))(Nk(t)+1)] (94)

where

F(t) = i∑
k

ck ∑
s,l

Js(a,k)Je(a,k)ei(l−s)Ωt
∫ t

−∞
dt ′{[np(t ′)

×(1−np+k(t ′))Nk(t ′)np+k(t ′)(1−np(t ′)(Nk(t ′)+1))]

×exp[i(εp+k − εp −ωk − lΩ+ iδ )(t − t ′)]} (95)
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Substituting Eqn. (95) into Eqn. (73) gives the quantum kinetic equations as

∂Nq(t)
∂ t

=−∑
k
| ck |2 ∑

s,l
Js(a.k)Jl(a.k)e(i(l−s)Ωt)

∫ t

∞
dt ′{[np(t ′)

×(1−np+k(t ′))Nk(t ′)−np+k(t ′)(1−np(t ′))(Nk(t)H)]}

exp[i(εp+k − εp −ωk − lΩ+ iδ )(t − t ′)]+ [np(t ′)(1−np+k(t ′))

×(Nk(t ′)+1)−np+k(t ′)(1−np(t ′))(Nk(t ′))]

exp[i(εp+k − εp −ωk − lΩ+ iδ )(t − t ′)]− [np−k(t ′)(1−np(t ′))

×(Nk(t ′)−np(t ′)(1−np−k(t ′))(Nk(t ′)+1)] (96)

Considering the average phonon occupation number to be Nq(t) = ⟨b+q bq⟩t

∂Nq(t)
∂ t

=−∑
k
| ck |2 ∑

p
∑
s,l

Js(a.q)Jl(a.q)e(l−s)Ωt
∫ t

−∞
dt ′{np(t ′)

×[1−np+q(t ′)]Nq(t ′)−np+q(t ′)[1−np(t ′)][Nq(t ′)+1]

×expi(εp+k − εp −ωk − lΩ+ iδ )(t − t ′)} (97)

The electron occupation number transform in a Fourier series [228] as

np(ω) =
∫ +∞

−∞
np(t)e+iωtdt (98)

Thus

∂np(ω)

∂ t
=+iωnp(ω) (99)
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The quantum kinetic equation for electron distribution [230, 231] is given as

−iωnp(ω) = i∑ | ck |2
∞

∑
l=−∞

J2
l (a,k){[np+k(ω)(Nk +1)−np(ω)Nk]

×[∆(+)
1 −∆(−)

1 ]+ [np−k(ω)Nk −np(ω)(Nk +1)][∆(+)
2 −∆(−)

2 ]} (100)

where

∆(+) = (εp+k − εp −ωk ±ω − lΩ∓ iδ )−1 (101)

∆(−) = (εp−k − εp +ωk ∓ω − lΩ± iδ )−1 (102)

With the time Fourier transform, the electron occupation number is

np(t) =
∫ ∞

−∞
np(ω)e−iωt dω

2π
(103)

with ω ≈ 1
τ ⇒ ω ≈ 1. For a quasi-classical case where Ωτ ≫ 1, gives Ω ≫ ω.

Therefore, the electron quantum kinetic equation becomes

∂np(t)
∂ t

= 2π ∑
k
| ck |2

∞

∑
l=−∞

J2
l (a,k){[np+k(Nk +1)−npNk]δ (εp+k

−εp −ωk − lΩ)+ [np−kNk −np(Nk +1)]δ (εp+k − εp +ωk − lΩ)} (104)

The rate of change of the electron occupation number is proportional to the

occupation of the electron

∂np(t)
∂ t

= st[np(t)] (105)

where st is the collision integral.
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Boltzmann Distribution Function

A distribution-function f (k,r, t) is the probability of occupation of an electron

at time t at r with wavevectors lying between k, k + dk. Under equilibrium

(E = B = ∇r f = ∇T f = 0, i.e., no external electric (E) or magnetic (B) field

and no spatial and thermal gradients), the distribution function is found from

quantum-statistical analysis to be given by the Fermi-Dirac function for fermions

-

f0(ε) = {1+ exp(
εk −µ
Kβ T

)} (106)

where εk is the energy of the electron, µ is the Fermi energy, and kβ is the

Boltzmann constant. Any external perturbation drives the distribution function

away from the equilibrium; the Boltzmann-transport equation (BTE) governs

the shift of the distribution function from equilibrium. It may be written

formally as [232]

∂ f
∂ t

=
Ft

h̄
·∇k f (k)+ v ·∇r f (k)+

∂ f
∂ t

(107)

where on the right hand side, the first term reflects the change in distribution

function due to the total field force Ft = E + v × B, the second term is the

change due to concentration gradients, and the last term is the local change in

the distribution function. Since the total number of carriers in the crystal is

constant, the total rate of change of the distribution is identically zero by

Liouville’s theorem. Hence the local change in the distribution function is

written as

∂ f
∂ t

=
∂ f
∂ t

|coll =
Ft

h̄
·∇k f (k)+ v ·∇r f (k)+

∂ f
∂ t

(108)
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The ∂ f
∂ t |coll is the collision term where the first term has been split off from the

field term since collision effects are not easily described by fields. The second

term is due to applied field only and the third is due to concentration gradients.

Denoting the scattering rate from state k → k′ as S(k,k′), the collision term is

given by

∂ f (k)
∂ t

|coll =
′

∑
k
[S(k′,k) f (k′)[1− f (k)]−S(k,k′) f (k)[1− f (k′)]] (109)

Figure (10) provides a visual representation of the scattering processes that form

Figure 10: Scattering term of Boltzmann transport equation depicting the inflow
and outflow of the distribution function [233]

the collision term. The increase of the distribution function in the small volume

∆k by particles flowing in by the field term is balanced by the net flow out by the

two collision terms. At equilibrium ( f = f0), the principle of detailed balance

enforces the condition

S(k′,k) f0(k′)[1− f0(k)] = S(k,k′) f0(k)[1− f0(k′)]
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which translate into

S(k′,k)exp(
εk

Kβ T
) = S(k,k′)exp(

εk′

Kβ T
) (110)

In the special case of elastic scattering, εk = ε ′k, and as a result, S(k′,k) = S(k,k′)

irrespective of the nature of the distribution function. Using this, one rewrites

the collision term as

∂ f (k)
∂ t

|coll =
′

∑
k

S(k′,k) f (k′)− f (k) (111)

The collision equation can be written as

f (k)
dt

+
f (k)
τ(k)

=
′

∑
k

S(k,k′) f (k′) (112)

where the scattering time τ(k) is defined as

1
τ(k)

=
′

∑
k

S(k,k′)

A particle prepared in state |k⟩ at time t = 0 by an external perturbation will

be scattered into other states |k′⟩ due to collisions, and the distribution function

in that state will approach the equilibrium distribution exponentially fast with

the time constant τq(k) upon the removal of the applied field. The scattering

time τq(k)may be viewed as a lifetime of the particle in the state |k⟩. Let us now

assume that the external fields and gradients have been turned on for a long time.

They have driven the distribution function to a steady state value f from f0. The

perturbation is assumed to be small, i.e., distribution function is assumed not to
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deviate far from its equilibrium value of f0. Under this condition, it is common

practice to assume that

∂ f
∂ t

=
∂ f
∂ t

|coll =− f − f0

τ
(113)

where τ is a time scale characterizing the relaxation of the distribution. This is

the relaxation time approximation, which is crucial for getting a solution of the

Boltzmann transport equation. When the distribution function reaches a steady

state, the Boltzmann transport equation may be written as

∂ f
∂ t

=− f − f0

τ
− Ft

h̄
·∇k f (k)− v ·∇r f (k) = 0 (114)

where the relaxation time approximation to the collision term has been used. In

the absence of any concentration gradients, the distribution function is given by

f (k) = f0(k)− τ
Ft

h̄
·∇k f (115)

Using the definition for the velocity v = ∂εk
∂k the distribution function become

f (k) = f0(k)− τFt · v
f (k)
∂ε

(116)

and since the distribution function is assumed to be close to f0, we can make the

replacement f (k)→ f0(k), whence the distribution function

f (k) = f0(k)− τFt · v
f0(k)
∂ε

(117)
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is the solution for the Boltzmann transport equation for a perturbing force Ft .

The electron-phonon interaction can be considered in three cases:

• the interaction through the piezo-electric coupling,

• the interaction through the deformation potential and

• the interaction through the polar scattering.

Generally, we consider the interaction irrespective of the coupling type.

Therefore, considering fk as the distribution function of the conduction

electrons and that of the phonons as Nq where q is the wave number vector of

the phonons. The distribution functions fk and Nq are assumed to obey the

following equations:

∂ fk

∂ t
=−eF

h̄
(
∂ fk

∂kx
)+(

∂ fk

∂ t
)c (118)

and

∂Nq

∂ t
= (

∂Nq

∂ t
)c +(

∂Nq

∂ t
)p (119)

where F is the intensity of the electric field applied in the −x direction, and e

is the absolute value of the electronic charge. Here, the collision term (∂ fk
∂ t )c is

given by

(
∂ fk

∂ t
)c =

2π
h̄ ∑

q
C2

q{ fk+q(Nq +1)− fkNq}δ (εk+q − ε − h̄ωq)+

2π
h̄ ∑

q
C2

q{ fk−qNq − fk(Nq +1)}δ (εk−q − ε + h̄ωq) (120)
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where Cq is a quantity characterizing the interaction between the conduction.

electrons and phonons with the wave number q and the angular frequency ωq.

The explicit form ofCq will be given afterwards. On the other hand, the collision

term (
∂Nq
∂ t )c is given by

(
∂Nq

∂ t
)c = (

2π
h̄
)∑

k
C2

q{ fk+q(Nq +1)− fkNq}δ (εk+q − εk − h̄ωq) (121)

Considering the electrical conductivity, the distribtution function is assumed to

be

fx(k) = f0(ε)− h̄v(ε , t)kx
∂ f0

∂ε

where f0(ε) is the Maxwell’s distribution function given as

f0(ε) = (2π)3nc(h̄/2∗ kβ T )3/2exp(−ε/kβ T )

Further, the v(ε) is related to the drift velocity of the electrons through the

following equation :

vd =
1

6π2ne
(
2m∗
h̄2 )3

∫ ∞

0
ε3v(ε)(−d f0

dε
)dε (122)
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CHAPTER THREE

ACOUSTIC EFFECT

In this chapter, the theory underlying acoustic effect in Carbon Allotropes will

be treated. This includes acoustic phonon amplification and

Acoustomagnetoelectric effect (AME) in AGNR, Amplification and

Acoustoelectric Effect (AE) in Graphene, hypersound absorption and

acoustoelectric effect in CNT.

Background of acoustic effects in materials

Acoustic effect in semiconductor materials have been considered in many

works [234–238]. This was first observed by Hutson, et al., [239, 240] who

amplified radio-frequency ultrasound in CdS. By using a strong piezoelectric

coupling between electrons and elastic waves in CdS, amplification was

achieved. In semiconductor materials, it is known that, when an acoustic

phonon passes through a semiconductor, it may interact with various elemental

excitations which may lead to amplification or absorption of phonons. An

amplification of acoustic phonons occurs when there is energy loss from the

charge carriers to the phonons, but vice-versa, attenuation occurs which leads

to acoustic wave absorption [241, 242]. Among the variety of nonequilibruim

effects that can cause amplification or absorption of phonons are the drift

velocity of the charge carriers, application of an external bias, temperature
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difference and chemical concentration. For velocity change, when drift

velocity of the charge carriers exceeds the velocity of sound, leads to

amplification but when it is less attenuation occurs. This effect is referred to as

Cerenkov effect [244,245]. Akin to Cerenkov acoustic-phonon emission, when

the drift velocity of electrons VD exceeds the sound velocity (Vs) of the host

material [246] it causes amplification of the acoustic-phonons but when

VD < Vs, causes absorption of acoustic-phonons. This has been ultilised

experimentally to confirm the breakdown of quantum Hall effect [247], the

generation of coherent phonon-polariton radiation [248], and large acoustic

gain in coherent phonon oscillators in semiconductors [249–256].

Furthermore, the emission and absorption of acoustic-phonons is used to

provide detailed information on the excitation and relaxation mechanisms in

semiconductors via deformation potential, where the effect of interactions can

be used to determine the physical properties of the material.

Acoustic phonon amplification in Graphene Nanoribbon (GNR)

The idea of acoustic wave amplification in bulk material was theoretically

predicted by Tolpygo and Uritskii (1956) [257], and Weinreich [258] and in

N-Ge by Pomerantz [167]. Hypersound generation in bulk [252] and

low-dimensional materials such as Superlattices [253–257], Cylindrical

Quantum Wire [258], and Quantum Wells [259] has been studied. In

low-dimensional systems, the acoustic wave amplification (absorption) was

studied theoretically and experimentally [260–263]. Recently the study of

acoustic effect in semiconductor nanostructure materials has been extended to
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(CNT) and graphene with few experimental work carried out [264–268]. These

carbon based materials have interesting properties as well as an excellent

combination of electronic, optoelectronic, and thermal properties compared to

conventional rigid silicon which makes them excellent systems for application

in electronic and optoelectronic systems. Graphene [270–272] is a single-atom

sheet of graphite. The most interesting property of graphene is its linear energy

dispersion E =±h̄VF |k| (the Fermi velocity VF ≈ 108 ms−1) at the Fermi level

with low-energy excitation. Graphene-based electronics has attracted much

attention due to high carrier mobility in bulk graphene devices such as

sub-terahertz field-effect transistors [273], infrared transparent electrodes [274]

and THz plasmonic devices [275]. In particular, acoustic-phonons providing

terahertz (1012 Hz) hypersonic sources can lead to the attainment of phonon

laser or SASER [276, 277] in graphene via Cerenkov effect which is an intense

field of research. Following the works of [269, 278], Zhao et al., [279]

proposed the possibility of attaining Cerenkov acoustic-phonon emission in

graphene whilst Insepov et al., [280], performed experimentally the surface

acoustic wave amplification by D.C voltage supply in Graphene. Under an

external bias, this effect is also observed to occur in semiconductors. Other
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effects such as absorption of acoustic phonons [281, 282]; Acoustoelectric

Effect (AE) [283–289]; Acoustomagnetoelectric Effect (AME) [290–294];

Acoustothermal Effect [295] and Acoustomagnetothermal Effect [296]. The

concept of sound generation by the electron drift comes from the modification

of the electron-phonon interaction form factor due to change of the phonon

modes structure [297]. In GaAs/AlAs superlattice, phonon amplification

occurs under an external source of non-equilibrium phonons. A possible

evidence for phonon amplification can be observed in phonon assisted

transport measurement where a resonance-like emission of terahertz acoustic

phonons occurs. This observation suggests the possibility to develope an

electrically pumped high-intensity source of terahertz coherent acoustic phonon

based on a superlattice structure. Such a device, which could be called a

SASER (sound amplification by stimulated emission of radiation), would have

potential applications in photon optics, phonon spectroscopy, and acoustical

imaging of nanostructures [299]. The general kinetic equation becomes

−{eE + ωH [p,h]}
∂ fp

∂ p
= 2π ∑

k
|Ck |2 {[ fp+k(Nk +1)− fpNk]

δ (εp+k − εp − h̄ωq)+ [ fp−kNk − fp(Nk +1)]δ (εp−k − εp + h̄ωq)}

+
πΛ2W̄

ρS3 ×{( f(p+q)− fp)δ (εp+q − εp − h̄ωq)

+ ( fp−q − fp)δ (εp−q − εp + h̄ωq)} (123)
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For small deviations of the distribution function from the equilibrium state the

collision term when the external field is not zero thus becomes

−{eE +ωH [p,h]}
∂ fp

∂ p
=−

fp − f0(εp)

τ(εp)
+

πε2W̄
ρS3 {( fp+q − fp)

δ (εp+q − εp − h̄ωq)+( fp−q − fp)δ (εp−q − εp + h̄ωq)} (124)

To calculate for the amplification of acoustic waves in AGNR, the method

developed in [46] was adopted, where the sound flux (W⃗ ), d.c. electric field

(E⃗) and a constant magnetic field (H̃) are considered mutually perpendicular to

the plane of the AGNR. The acoustic wave is considered in the hypersound

regime ql >> 1 (q is the acoustic wavenumber and l is the mean free path of an

electron). To solve for the partial current generated in the AGNR, the

Boltzmann kinetic equation

−
(

eE⃗
∂ f p⃗

∂ p⃗
+Ω[p⃗, H⃗],

∂ f p⃗

∂ p⃗

)
=−

f p⃗ − f0(εp⃗)

τ(εp⃗)
+

πξ 2W⃗
ρV 3

s
×{

[ f p⃗+q⃗ − f p⃗]δ (εp⃗+q⃗ − εp⃗ − h̄ωq⃗)+ [ f p⃗−q⃗ − f p⃗]δ (εp⃗−q⃗ − εp⃗ + h̄ωq⃗)
}

(125)

is employed. Here, ξ is the constant of deformation potential, e the electronic

charge, E⃗ is the constant electric field produced by the acoustic wave in the

open-circuited field, ωq⃗ is frequency, W⃗ is the density of the acoustic flux, ρ is

the density of the sample and p⃗ the characteristic quasi-momentum of the

electron. The relaxation time is τ(εp⃗) and the cyclotron frequency, Ω = µH
c .

Where µ is the mobility, c is the speed of light, h̄ is the planck constant, f0(ε)

is the equilibrium function of the electron distribution, and q⃗ is the acoustic

wavenumber of the sound. The energy dispersion relation ε(p⃗) for AGNRs
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band near the Fermi point is expressed [300] as

ε(p⃗) =
Eg

2

√
[(1+

p⃗2

h̄2β 2
)] (126)

where the energy gap Eg = 3tac−cβ , with β being the quantized wave vector

given as

β =
2π

ac−c
√

3

(
pi

N +1
− 2

3

)
(127)

The pi is the subband index, N the number of dimmer lines which determine

the width of the AGNR, ac−c = 1.42 Ȧ is the carbon-carbon (c-c) bond length,

t = 2.7 eV is the nearest neighbor (c-c) tight-binding overlap energy. The

distribution function fp(ε) is expressed by Taylor expansion as

f p⃗ = f0(ε)− p⃗ f1(ε)+ ... (128)

The f1(ε) = χ⃗(ε)∂ f0
∂ε is the perturbative part. The χ⃗(ε) characterises the

deviation of the fp from its equilibruim and is determined from the Boltzmann

kinetic equation. Multiplying the Eqn. (125) by p⃗δ (ε − εp⃗) and summing over

p⃗ reduces the Boltzmann kinetic equation to

R⃗(ε)
τ(ε)

+Ω
[
H⃗, R⃗(ε)

]
= Λ⃗(ε)+ S⃗(ε) (129)

where R⃗(ε) is the partial current density given as

R⃗(ε)≡ e∑⃗
p

p⃗ f p⃗δ (ε − εp⃗) (130)
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with Λ⃗(ε) and S⃗(ε) given as

Λ⃗(ε) =−e∑⃗
p

(
E⃗,

∂ f p⃗

∂ p⃗

)
p⃗δ (ε − εp⃗) (131)

S⃗(ε) =
πξ 2W⃗
ρV 3

s
∑⃗
p

p⃗δ (ε − εp⃗){[ f p⃗+q⃗ − f p⃗]δ (εp⃗+q⃗ − εp⃗ − h̄ωq⃗)

+ [ f p⃗−q⃗ − f p⃗]δ (εp⃗−q⃗ − εp⃗ + h̄ωq⃗)} (132)

Considering p⃗ →−p⃗, f p⃗ → f0(εp⃗), by transforming the summation into

integrals and integrating gives

Λ⃗(ε) = E⃗
(

2h̄2β 2

h̄⃗q
α − h̄⃗q

2

)
∂ f0

∂ε
Θ
(
1−α2)

√
1−α2

(133)

S⃗(ε) =
2πW⃗ϕ
ρVsα

(
2h̄2β 2

h̄q
α − h̄q

2

)
Θ
(
1−α2)

√
1−α2

1
f0(ε)

∂ f0

∂ε
(134)

whereα =
h̄ωq
Eg
, ζ =

E2
g α2

2V 2
s

f0(εp⃗) andΘ is the Heaviside step function represented

as

Θ(1−α2) =


1 if (1−α2)> 0

0 if (1−α2)< 0
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Substituting Eqn. (131) and Eqn. (132) into Eqn. (125) and solving for R⃗(ε)

gives

R⃗(ε) = { 2πζ
ρVsα

(
2h̄β 2

q
α − h̄q

2

)
1

f0(ε)
∂ f0

∂ε

{W⃗τ(ε)+ Ω⃗[⃗h,W⃗ ]τ2(ε)+Ω2⃗h(⃗h,W⃗ )τ3(ε)}+
(

2h̄β 2

q
α − h̄q

2

)
∂ f0

∂ε

{E⃗τ(ε)+Ω[⃗h, E⃗]τ2(ε)+Ω2τ 3⃗h(⃗h, E⃗)}}
Θ
(
1−α2)

√
1−α2

{1+Ω2τ2(ε)}−1 (135)

which can be written as R⃗(ε) = χ⃗(ε)∂ f0
∂ε . In the linear approximation of E⃗, χ⃗(ε)

reduces to

χ⃗(ε) = {E⃗τ(ε)+Ω[⃗h, E⃗]τ2(ε)}
(

2h̄β 2

q
α − h̄q

2

)
{1+Ω2τ2(ε)}−1 (136)

The integral of R⃗(ε) gives the total current density j⃗ as

j⃗ =−
∫ ∞

0
R⃗(ε)dε (137)

Averaging Eqn. (136) over energy, the j⃗ in the y-direction is

j⃗y = {⟨ τ(ε)
1+Ω2τ2(ε)

⟩E⃗y −Ω⟨ τ2(ε)
1+Ω2τ2(ε)

⟩[⃗h, E⃗]y}
(

2h̄β 2

q
α − h̄q

2

)
(138)

Here, the sound is considered propagating along the Ox axis and the magnetic

field H̃ parallel to the Oz axis. For j = 0 (i.e the sample open), solving for E⃗y in
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Eqn. (138) and substituting into Eqn. (136) for ⟨⟨⃗χ(ε)⟩⟩y yields

⟨⟨⃗χ(ε)⟩⟩y = ΩE⃗x[⟨⟨
τ(ε)

1+Ω2τ2(ε)
⟩⟩
⟨ τ2(ε)

1+Ω2τ2(ε)⟩

⟨ τ(ε)
1+Ω2τ2(ε)⟩

−⟨⟨ τ2(ε)
1+Ω2τ2(ε)

⟩⟩]

(
2h̄β 2

q
α − h̄q

2

)
(139)

Ex is the electric field in the x-direction. In Eqn. (138 and 139), the averages

used are expressed as

⟨ τk(ε)
1+Ω2τ2(ε)

⟩=−
∫ ∞

0
(

τk(ε)
1+Ω2τ2(ε)

)
∂ f0

∂ε
dε

⟨⟨ τk(ε)
1+Ω2τ2(ε)

⟩⟩=− 2π
f0(ε)

∫ ∞

0
(

τk(ε)
1+Ω2τ2(ε)

)
∂ f0

∂ε
dε

where k = 1,2,3 and f0 = [1 + exp( 1
kBT (ε − εF))]

−1 is the Fermi-Dirac

distribution function. εF is the Fermi energy, kB the Boltzmann constant and T

the absolute temperature.

Sound Absorption in GNR

The general formula for the electronic sound absorption coefficient (Γ(q)) has

the form

Γ(q) = Γ0[1−
(q,⟨⟨⃗χ(ε)⟩⟩)

qVs
] (140)

where Γ0 is the absorption coefficient in the absence of external fields, Vs is the

speed of sound. Inserting Eqn. (139) into Eqn. (140) gives the sound
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amplification (Γ⊥) perpendicular to the electric current ( j⃗y) as

Γ⊥ = Γ0{1− ΩE⃗x

Vs
[⟨⟨ τ(ε)

1+Ω2τ2(ε)
⟩⟩
⟨ τ2(ε)

1+Ω2τ2(ε)⟩

⟨ τ(ε)
1+Ω2τ2(ε)⟩

−⟨⟨ τ2(ε)
1+Ω2τ2(ε)

⟩⟩]

(
2h̄β 2

q
α − h̄q

2

)
} (141)

The Eqn. (141) is a general expression for the calculation of the sound

amplification in AGNR.The relaxation time τ is dependant on energy and is

given as

τ =
3
√

π
4

τ0(
ε

kBT
)v

where τ0 is a constant, and for acoustic phonons, v = −1/2. At low

temperatures, the Fermi-Dirac distribution function reduces to

f0 = exp(−ε/kBT ) (considering εF = 0) and ulitising the expression

∫ ∞

0

xv−1exp(−µx)
x+φ

dx = φv−1exp(φµ)Γ(v)Γ(1− v,φµ)

Eqn. (141) simplifies to

Γ⊥/Γ0 = [1− 9π
8Vs

ΩExτ2
0 exp(ϕ 2){9π

16
Γ(−3/2,ϕ 2)Γ(−1/2,ϕ 2)

Γ(−2,ϕ 2)
−

Γ(0,ϕ 2)}
(

2h̄β 2

q
α − h̄q

2

)
] (142)

where ϕ = 3
√

π
4 Ωτ0 and Γ(n,m) is gamma function (where n, m are integers).
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Acoustomagnetoelectric Effect in GNR

Acoustomagnetoelectric Effect (AME) in semiconductors and their related

materials deals with the appearance of a d.c electric field in the Hall direction

when the material is placed in a magnetic field H with the sample on open

circuit. This interaction is treated as that between the sound wave and the field

which leads to a collective drift of acoustically bunched electrons. The study of

AME in semiconductors and its related materials have generated lot of interest

recently . AME in materials such as Superlattices [301–303], Quantum

Wires [304], CNT [305] deals with appearance of a d.c electric field in the Hall

direction when the sample is on open circuit. Studies have shown that the

propagation of acoustic waves causes the transfer of energy and momentum to

the conducting electrons [303]. The AME was predicted by Grinberg and

Kramer [306] for bipolar semiconductors and experimentally observed in

Bismuth by Yamada [307]. By applying the sound flux (W⃗ ), electric current

(⃗ j), and magnetic fields (H̃) perpendicularly to the sample, it is interesting to

note that, with the sample opened in direction perpendicular to the Hall

direction, can leads to a non-zero AME [308]. Mensah et. al., [301] studied

these effect in superlattice in the hypersound regime, Bau et. al., [309] studied

the AME of cylindrical quantum wires. Also, AME effect in mono-polar

semiconductor for both weak and quantizing field were studied [310].

Experimentally, AME has been observed in n-InSb [311], and in graphite [312]

for ql << 1. In this thesis, AME in graphene nanoribbon is studied where the

Boltzmann kinetic equation is used to study the SAME in GNR. This is

achieved by applying sound flux (W⃗ ) to the GNR sample in the presence of
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electric field (E⃗) and magnetic fields (H̃). With the sample open ( j = 0), give

the ESAME in GNR.

The configuration for suface acoustomagnetoelectric field in GNR will be

considered with the acoustic phonon W⃗ , the magnetic field H̃ and the measured

ESAME lying in the same plane. Based on the method developed in [313], the

partial current density generated in the sample is solved from the Boltzmann

transport equation given in Eqn. (125). The Eqn. (136) can further be

simplified with the following substitutions g = 1/1+Ω2τ(ε)2, γk ≡ ⟨gτ(ε)k⟩,

and η ≡ ⟨⟨gτ(ε)k⟩⟩ where k = 1,2,3. This yields

j⃗ =
∆Γ0

ρVsα
Θ(1−α2)√

1−α2

{
η1W⃗ +Ωη2[⃗h,W⃗ ]+Ω2η3⃗h(⃗h,W⃗ )

}
+

∆
Θ
(
1−α2)

√
1−α2

{
γ1E⃗ + γ2Ω[⃗h, E⃗]+Ω2γ3⃗h(⃗h, E⃗)

}
(143)

With the sample opened (⃗ j = 0), and ignoring higher powers of Ω gives

γ1E⃗x − γ2ΩE⃗y = −γ1E⃗α (144)

γ2ΩE⃗x + γ2ΩE⃗y = −γ2ΩE⃗α (145)

where Eα = Γ0
ρSα . Making the E⃗y the subject of the equation yields

E⃗y = E⃗αΩ
{

η1γ2 −η2γ1

γ2
1 + γ2

2 Ω2

}
(146)
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substituting the expressions for η1,η2,γ1,γ2 into Eqn. (146), with E⃗y = E⃗SAME

gives

E⃗SAME = E⃗αΩ


⟨ τ(ε)2

1+Ω2τ(ε)2 ⟩⟨⟨
τ(ε)

1+Ω2τ(ε)2 ⟩⟩−⟨⟨ τ(ε)2

1+Ω2τ(ε)2 ⟩⟩⟨
τ(ε)

1+Ω2τ(ε)2 ⟩

⟨ τ(ε)
1+Ω2τ(ε)2 ⟩

2
+ ⟨ τ(ε)2

1+Ω2τ(ε)2 ⟩
2
Ω2

 (147)

In Eqn. (146), the following averages were used

⟨....⟩=−
∫ ∞

0
(....)

∂ f0

∂ε
dε

⟨⟨....⟩⟩=− 2π
f0(ε)

∫ ∞

0
(....)

∂ f0

∂ε
dε

where f0 = [1− exp(− 1
kT (ε − εF))]

−1 is the Fermi-Dirac distribution function.

In solving for Eqn. (3.26), the following were assumed: At low temperature

kT << 1, and ∂ f0
∂ε = −1

kβ T exp(− ε−µ
kβ T ). The equation for E⃗SAME simplifies to

E⃗SAME =
EgW⃗ h̄ωq⃗η

2ρV 3
s

{
Γ(−1/2,η2)Γ(−3/2,η2)−Γ(0,η2)Γ(−2,η2)

}
×{

3
√

π
4

Γ(−1/2,η2)
2
+

9π
16

η2Γ(0,η2)
2
}−2

(148)
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Amplification Of Hypersound In Graphene

We will proceed following the works of [269], here the acoustic wave will be

consisdered as phonons of frequency (ωq) in the short-wave region ql >> 1 (q is

the acoustic wave number, l is the electron mean free path). The kinetic equation

for the acoustic phonon population N⃗q(t) in the graphene sheet is given by

∂ N⃗q

∂ t
=

2π
h̄

gsgv ∑
k,k′

|C⃗q|2δk,k′+q⃗{[N⃗q(t)+1] f⃗k(1− f⃗k′)δ (ε⃗k′ − ε⃗k + h̄ωq⃗)

−N⃗q(t) f⃗k′(1− f⃗k)δ (ε⃗k′ − ε⃗k − h̄ωq⃗)} (149)

where gs = gv = 2 accounts for the spin and valley degeneracies respectively,

N⃗q(t) represent the number of phonons with a wave vector q⃗ at time t. The

factor N⃗q + 1 accounts for the presence of N⃗q phonons in the system when the

additional phonon is emitted. The f⃗k(1− f⃗k) represents the probability that the

initial k⃗ state is occupied and the final electron state k⃗′ is empty whilst the factor

N⃗q f⃗k′(1− f⃗k) is that of the boson and fermion statistics. The unperturbed electron

distribution function is given by the shifted Fermi-Dirac function as

f p⃗ = [exp(−β (ε(p⃗−mvD)−χ))]−1 (150)

where f p⃗ is the Fermi-Dirac equilibrium function, with χ being the chemical

potential, p⃗ is momentum of the electron, β = 1/kT , k is the Boltzmann constant

and VD is the net drift velocity relative to the ion lattice site. In Eqn. (149), the
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summation over k and k′ can be transformed into integrals by the prescription

∑
k,k′

→ A2

(2π)4

∫
d2kd2k′

where A is the area of the sample, and assuming that Nq(t)>> 1 yields

∂ N⃗q

∂ t
= Γq⃗N⃗q (151)

where

Γq⃗ =
A|Λ|2h̄q

(2π)3h̄VFρVs

∫ ∞

0
kdk

∫ ∞

0
k′dk′

∫ 2π

0
dϕ

∫ 2π

0
dθ{[ f (k)− f (k′)]

δ (k− k′− 1
h̄VF

(h̄ωq −VD · h̄⃗q))} (152)

with k′= k− 1
h̄VF

(h̄ωq−VD · h̄⃗q). Λ is the deformation potential constant, and ρ is

the density of the graphene sheet. At low temperature kBT << 1, the distribution

function become f (k) = exp(−β (ε(k))). Eqn. (152) can be expressed as

Γq⃗ =
A|Λ|2h̄q

(2π)3h̄VFρVs

∫ ∞

0
kdk(k− 1

h̄VF
(h̄ωq −VD · h̄⃗q))[exp(−β h̄VFk)

−exp(−β h̄VF(k−
1

h̄VF
(h̄ωq −VD · h̄⃗q)))] (153)

Using standard intergrals, Eqn. (152) can be expressed finally as

Γ = Γ0{2−β h̄ωq(1−
VD

Vs
)}[1− exp(−β h̄ωq(1−

VD

Vs
))] (154)

where

Γ0 =
A|Λ|2kT h̄q

(2π)3β 3h̄4VF
4ρVs

(155)
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Acoustoelectric effect in Graphene

The appearance of a direct current when an acoustic wave is passing through a

conducting medium is referred to as ”acoustoelectric effect” which was named

and first discussed by Parmenter [314]. Recently, much work, both theoretical

and experimental has been done on the absorption of ultrasonic waves via an

interaction with the conduction electrons in metals, semimetals, and

semiconductors. Hutson, et al., [315] discovered the amplification of ultrasonic

waves in CdS via the same interaction in the presence of a d.c field. Using a

phenomenological treatment, Weinreich [316] showed that when the

conduction electrons drift with a velocity greater than sound in the presence of

a d.c field, the wave is amplified instead of absorption. But this is valid only

when the sound wavelength is longer than the mean free path, i.e., ql << 1

(where q is the acoustic wave lenght and l is the mean free path).

Acoustoelectric effect (AE) in Bulk and Low-dimensional semiconducting

materials has been extensively studied both experimentally [317–322] and

theoretically [322, 323]. Recently, AE studies in nano-materials such as

graphene [325] and CNT [326, 327] has attracted special attention. This is due

to the remarkable electrical and mechanical properties of these materials

especially the extreme electron mobility which persist at room temperatures.

This makes graphene and CNT suitable for applications in electronic systems

such as light storage in quantum wells [328], generating single electrons [329]

and photons, particularly for quantum information processing [330–332] and

for inducing charge pumping in nanotube quantum dots. Experimentally, AE

studies have been reported in graphene [333, 334]. We will proceed following
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the works of [269, 271], the acoustoelectric current in graphene is given as

ja⃗c =−
eτA|Cq|2

(2π)2Vs

∫ ∞

0
kdk

∫ ∞

0
k′dk′

∫ 2π

0
dϕ

∫ 2π

0
dθ{[ f (k)− f (k′)]×

Viδ (k− k′− 1
h̄VF

(h̄ωq))} (156)

with k′ = k − 1
h̄VF

(h̄ωq). For accoustic phonons, Cq =
√

|Λ|2h̄q/2ρ h̄ωq, Λ is

the constant of deformation potential, ρ is the density of the graphene sheet. τ

is the relaxation constant, Vs is the velocity of sound, and A is the area of the

graphene sheet. Here the acoustic wave will be considered as phonons of

frequency (ωq) in the short-wave region ql >> 1 (q is the acoustic wave

number, l is the electron mean free path). The linear energy dispersion

E(k) = ±h̄VF |k| (the Fermi velocity VF ≈ 108 ms−1) at the Fermi level with

low-energy excitation. From Eqn. (156), the velocity Vi = V (k′)−V (k).

Differentiating the energy dispersion yields

Vi =
2h̄ωq

h̄VF
(157)

At low temperature kBT << 1, the Fermi-Dirac distribution function becomes

f (k) = exp(−β (ε(k))) (158)

Inserting Eqn. (157) and Eqn. (158) into Eqn. (156) gives

ja⃗c =−
2A|Cq|2τ h̄ωq

(2π)3h̄VFVs

∫ ∞

0
kdk(k− 1

h̄VF
(h̄ωq))[exp(−β h̄VFk)

−exp(−β h̄VF(k−
1

h̄VF
(h̄ωq)))] (159)
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Using standard integrals and after a cumbersome manipulations of Eqn. (159)

yields the Acoustoelectric Current ( jac) as

jac = j0{2−β h̄ωq}[1− exp(−β h̄ωq)] (160)

where

j0 =− 2τA|Λ|2kT h̄q
(2π)3β 3h̄4VF

4ρVs
(161)

Hypersound Absorption in Carbon Nanotube

Carbon Nanotubes (CNT’s) have recently attracted a lot of interest for use in

many semiconductor devices due to their remarkable electrical [335],

mechanical [336], and thermal [337–340] properties which are mainly

attributed to their unusual band structures [341]. The π-bonding and

anti-bonding (π∗) energy band of a CNT crosses at the Fermi level in a linear

manner [341]. In the linear regime, electron-phonon interactions in CNT at low

temperatures leads to the emission of large number of coherent acoustic

phonons. Studies of the effect of phonons on thermal transport [339, 341], on

Raman scattering [342] and on electrical transport [343] in CNT is an active

area of research. Also, the speed of electrons in the linear region is extremely

high. This makes CNT a good candidate for application of high frequency

electronic systems such as field effect transistors (FET’s) [344], single electron

memories [345] and chemical sensors [346]. Another important investigation

in the linear regime is interaction of acoustic phonons with drift charges in

CNT. It is worthy to note that the mechanism of absorption (amplification) is

due to Cerenkov effect. For practical use of the Cerenkov acoustic-phonon
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emission, the material must have high drift velocities and large densities of

electrons [17]. Carbon Nanotubes (CNT) has electron mobility of 105 cm2/Vs

at room temperature. At low temperatures (T = 10 K), CNT exhibit good AE

effect, which indicates that Cerenkov emission can take place in them [52]. We

will proceed following the works of [267, 304] where the kinetic equation for

the phonon distribution is given as

∂ N⃗q

∂ t
=

2π
h̄ ∑

p
|C⃗q|2{[N⃗q(t)+1] f p⃗(1− f p⃗′)δ (εp⃗′ − εp⃗ + h̄ω p⃗)

− N⃗q(t) f p⃗′(1− f p⃗)δ (εp⃗′ − εp⃗ + h̄ωq⃗)} (162)

where N⃗q(t) represents the number of phonons with wave vector q⃗ at time t.

The factor N⃗q +1 accounts for the presence of N⃗q phonons in the system when

the additional phonon is emitted. The f p⃗(1− f p⃗) represents the probability that

the initial p⃗ state is occupied and the final electron state p⃗′ is empty whilst the

factor N⃗q f p⃗′(1− f p⃗) is that of the boson and fermion statistics. The unperturbed

electron distribution function is given by the shifted Fermi-Dirac function as

f p⃗ = [exp(−β (ε(p⃗−mvD)−µ))]−1 (163)

where f p⃗ is the Fermi-Dirac equilibrium function, with µ being the chemical

potential, p⃗ is momentum of the electron, β = 1/kT , k is the Boltzmann constant

andVD is the net drift velocity relative to the ion lattice site. In a more convenient
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form, Eqn. (162) can be written as

∂ N⃗q(t)
∂ t

= 2π|C⃗q|2[
N⃗q(t)+1

1−exp(−β (h̄ωq⃗−h̄⃗q·VD))
+

N⃗q
1−exp(−β (h̄ωq⃗−h̄⃗q·VD))

]

×∑p⃗ ( f p⃗ − f p⃗′)δ (εp⃗′ − εp⃗ + h̄ωq⃗) (164)

To simplifiy Eqn. (164), the following were utilised

Q = ∑⃗
p

f p⃗ − f p⃗′

εp⃗ − εp′ − h̄ωq − iδ
(165)

f p⃗ = [exp(−β (εp⃗ −µ))+1]−1 (166)

Given that

Γq⃗ =−2|C⃗q|2ImQ(h̄⃗q, h̄ωq⃗ − h̄⃗q ·VD) (167)

the phonon generation rate simplifies to

Γq⃗ = 2π|C⃗q|2 ∑⃗
p
( f p⃗ − f p⃗′)δ (εp⃗ − εp⃗′ − (h̄ωq⃗ − h̄⃗q ·VD)) (168)

In Eqn. (168), f p⃗ > f p⃗′ if εp⃗ < εp⃗′ . When h̄ωq⃗ − h̄⃗q ·VD > 0, the system would

return to its equilibrium configuration when perturbed where

N0
q⃗ = [exp(−β (h̄ωq⃗ − h̄⃗q ·VD)−1)]−1

But h̄ωq⃗ − h̄⃗q ·VD < 0 leads to the Cerenkov condition of phonon instability

(amplification). The linear energy dispersion ε(p⃗) relation for the CNT is given

as [347]

ε(p⃗) = ε0 ±
√

3
2h̄

γ0b(p⃗− p⃗0) (169)
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The ε0 is the electron energy in the Brillouin zone at momentum p0, b is the

lattice constant , γ0 is the tight-binding overlap integral (γ0 = 2.54 eV). The ±

sign indicates that in the vicinity of the tangent point, the bands exhibit mirror

symmetry with respect to each point. The phonon and the electric field are

directed along the CNT axis. Therefore p⃗′ = (p⃗+ h̄⃗q)cos(θ), where θ is the

scattering angle. At low temperature, the kT << 1, Eqn. (166) reduces to

f p⃗ = exp(−β (ε(p)−µ)) (170)

Inserting Eqn. (169 and 170) into Eqn. (168), and after some cumbersome

calculations yield

Γ =
4h̄π|C⃗q|2 exp(−β (ε0 −χ p⃗0))

γ0b
√

3(1− cos(θ))
{exp(−β (χη + h̄⃗q)cos(θ))− exp(−β χη)}

(171)

where χ =
√

3γ0b/2h̄, and

η =
2h̄2ωq⃗(1− VD

Vs
)+ γ0b

√
3h̄⃗qcos(θ)

γ0b
√

3(1− cos(θ))

Acoustoelectric effect in CNT

Acoustoelectric effect in CNT’s is now receiving attention with few

experimental work done on it. Ebbecke et al., [111] studied the AE current

transport in a single walled CNT, whilst Reulet et al., [112] studied AE in

CNT, but in all these research there is no theoretical studies of AE in CNT. It is

worthy to note that the mechanism of absorption (amplification) is due to

Cerenkov effect. For practical use of the Cerenkov acoustic-phonon emission,
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the material must have high drift velocities and large densities of

electrons [348]. Carbon Nanotubes (CNT) have electron mobility of 105

cm2/Vs at room temperature. At low temperatures (T = 10 K), CNT exhibit

good AE effect, which indicates that Cerenkov emission can take place in

them. Proceeding from [260, 261], the Acoustoelectric current jac in the

hypersound regime ql >> 1 is given as

j =− 4πτe
(2π)3 |Cq|2

∫ ∞

0
vi[ f (p+q)− f (p)]δ (ε(p+q)− ε(p)− h̄ω)d3 p (172)

where the velocity vi = v(p+ q)− v(p), f (ε(p)) is the distribution function, p

is the momentum of electrons and τ is the relaxation constant. The linear energy

dispersion ε(p⃗) relation for the CNT is given as [349]

ε(p⃗) = ε0 ±
√

3
2h̄

γ0b(p⃗− p⃗0) (173)

The ε0 is the electron energy in the Brillouin zone at momentum p0, b is the

lattice constant. The± sign indicates that in the vicinity of the tangent point, the

bands exhibit mirror symmetry with respect to each point. After collision, p⃗′ =

(p⃗+ h̄⃗q)cos(θ) is the component directed along the CNT axis, where θ is the

scattering angle. At low temperature (kT << 1), the Fermi-Dirac equilibrium

function is given as

f p⃗ = exp(−β (εp⃗ −µ)) (174)

with µ being the chemical potential, β = 1/kT , k is the Boltzmann constant.

Inserting Eqn. (174) and Eqn. (173) into Eqn. (172), and after some
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cumbersome calculations yield

jac =
2eπ|C⃗q|2

h̄
exp(−β (ε0−χ p⃗0)){exp(−β (χη + h̄⃗q)cos(θ))−exp(−β χη)}

(175)

where χ =
√

3γ0b/2h̄, and

η =
−2h̄2ωq⃗ + γ0b

√
3h̄⃗qcos(θ)

γ0b
√

3(cos(θ)−1)

For acoustic phonons, |C⃗q| =
√

Λ2h̄⃗q/2ρVs, where Λ is the deformation

potential constant and ρ is the density of the material. Taking ε0 = p⃗0 = 0, the

Eqn. (175) finally reduces to

jac =
2e|Λ|2τ h̄q2 exp(−β χη)

2π h̄ωq
{

∞

∑
n=−∞

exp(−n(θ +β χη))

In(β (χη + h̄⃗q))
−1} (176)

where In(x) is the modified Bessel function. Considering the finite electron

concentration, the matrix element can be modified as

|C⃗q|2 →
|Cq|2

|ℵ(el)(⃗q)|2
(177)

where ℵ(el)(⃗q) is the electron permitivity. However, for acoustic phonons,

|C⃗q| =
√

Λ2h̄⃗q/2ρVs, where Λ is the deformation potential constant and ρ is

the density of the material. Taking ε0 = p⃗0 = 0, the Eqn. (176) finally reduces

to

Γ =
|Λ|2h̄3q2 exp(−β χη)

2π h̄ωqγ0b
√

3(1− cos(θ))
{

∞

∑
n=−∞

exp(−n(θ +β χη))

In(β (χη + h̄⃗q))
−1} (178)
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

Amplification in Graphene Nanoribbon

The parameters used in the numerical calculations are as follows: τ = 10−10 s,

ωq = 1010 s−1, Vs = 5∗103 ms−1, H = 2∗103 Am−1, q = 2.23∗106 cm−1.

The Eqn. (141) is analyzed graphically for varying electric field Ex, acoustic

wavenumber q, the energy gap Eg and Ωτ . The results are graphically

displayed. Figure 11, shows the amplification of acoustic waves obtained for

Figure 11: Dependence of Γ/Γ0 on the electric field E0 for 7-AGNR with the
sub-band index pi = 2,4,6,7

80

Digitized by Sam Jonah Library

© University of Cape Coast



7-AGNR by varying the sub-band index pi = 2,4,6,7 at specified electric

fields. The maximum amplification was obtained at p = 6 but at p = 7, the

amplification decreased. For a graph of Γ/Γ0 against q, Figure 12, showed the

Figure 12: Dependence of Γ/Γ0 on acoustic wave number q at widths of AGNR
n = 7,9,12

non-linear graph for different widths of AGNR (7,9,12). From the graph, at

q < 1.5×107 cm−1, there was an absorption. Above this value

(q > 1.5×107 cm−1), absorption switched over to amplification and converges

at higher values of q.
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Figure 13: Dependence of Γ/Γ0 on the energy gap (Eg) of 7-AGNR at sub-band
index pi = 2,4,6

For that of energy gap Eg against the amplification Γ/Γ0 (see Figure 13), the

Γ/Γ0 varies for values of Eg between 0− 0.5 for 7-AGNR at pi = 1,2,3. The

graph of (Ωτ) versus Γ/Γ0 is presented in Figure 14. From the graph, (Ωτ)

increased steadily to a maximum at 0.92 then decreased again.

82

Digitized by Sam Jonah Library

© University of Cape Coast



Figure 14: Dependence of Γ/Γ0 on Ωτ for the varying width of AGNR n =
7,9,12

In 3D representation, the dependence of Γ/Γ0 on q and E are shown in Figures

15 and 16. There is amplification for 7-AGNR at q = 2.0∗106 cm−1 but

increasing q = 2.5∗106 cm−1 modulates the graph.
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Figure 15: A 3D graph of Γ/Γ0 on E0 and q for p = 1 7-AGNR at
q = 2.0∗106 cm−1

Figure 16: A 3D graph of Γ/Γ0 on E0 and q for p = 1 7-AGNR,
q = 2.5∗106 cm−1
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Studies of the transitions in sub-band in the AGNR by tight-binding energy

dispersions agrees quantitatively to that of acoustic wave amplification using

Boltzmann kinetic equation.

Figure 17: A 3D graph of Γ/Γ0 on E0 and q for 7-AGNR at p = 6

In tight-binding approximation, the electronic structure of AGNR strongly

depends on its width [93]. This is verified by using 7-AGNR and 8-AGNR at

p = 6 and an energy gap of 0.3 eV (see Figures 17 and 18). The 8-AGNR is

purely absorbing but 7-AGNR is partially amplifying. The amplification of the

acoustic wave in an external electric and magnetic field is studied using

Boltzmann kinetic equation for electron-phonon interactions in AGNR.

Analytical expressions for the amplification under different conditions are

numerically analysed. The dependence of Γ/Γ0 on E0 and q are determined at

different values of Ωτ , pi and the width where the maximum value of the

magnetic strength occurs at 0.93. That of Γ/Γ0 against q is also analysed. In
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Figure 18: A 3D graph of Γ/Γ0 on E0 and q for 8-AGNR, at p = 6

particular, when q is increased from 2.0∗106 cm−1 to 2.5∗106 cm−1, the

amplification is modulated.
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Acoustomagnetoelectric Effect in Graphene Nanoribbon

From Eqn. (148), the E⃗SAME is a function of the following parameters:

magnetic field strength (η = Ωτ), α and the energy gap Eg = 3tac−cβ . The Eg

depends on the quantized wave vector β . The parameters used in the numerical

calculations are τ = 10−10 s, ωq = 1010 s−1, s = 5∗103 ms−1,

q = 2.23∗106 cm−1. In analysing the Eqn. (148), the condition ((1−α2)> 0)

was considered. Figure 19 shows the dependence of E⃗SAME against the

Figure 19: Dependence of E⃗SAME versus η for N = 7-GNR at different sub-
bands. The insert shows the experimental observation of E⃗AME in
graphite [312]

magnetic field strength η at various sub-bands for η << 1. Generally, E⃗SAME

increased to a maximum value for three different values of pi. The results

obtained (see insert Figure 19) qualitatively agreed with an experimental graph
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measured in graphite. Figure 20 is the general case when there is no limitation

on η . It can be seen that, E⃗SAME decreased rapidly after the maximum point to

a minimum value. For pi = 6, there is an inversion of the graph. Figure 21,

shows the dependence of E⃗SAME against N with different pi.

Figure 20: Dependence of E⃗SAME versus η for an extended graph of E⃗SAME
against η
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Figure 21: The E⃗SAME versus width for p = 1,2,3,4

A 3D graph of E⃗SAME versus η at pi = 1 and width at pi = 6 are presented (see

Figures 22 and 23) where Figure 22 shows an inversion of Figure 23.

Figure 22: A 3D graph of E⃗SAME on width of GNR and η at p = 1
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The acoustomagnetoelectric field ESAME in GNR was studied. The dependence

of ESAME on the magnetic field strength η and the width N were numerically

studied. The ESAME obtained for low magnetic field strength in GNR

Figure 23: A 3D graph of E⃗SAME on width of GNR and η at p = 6

qualitatively agreed with experimentally observed graph in graphite but for

strong magnetic fields, the ESAME rapidly falls to a minimum. The graph is

modulated by varying the sub-band index pi with an inversion occuring at

pi = 6. At the maximum point, a magnetic field of H = 3.2 Am−1 was

calculated which is far lower than that measured in graphite. The ESAME also

varies when plotted against the width of GNR at various sub-band indices pi.
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Hypersound Amplification of Graphene

The Eqn (125) is analysed numerically for a normalized graph of Γ
Γ0

against VD
Vs

and ωq. The following parameters were used Λ = 9 eV, T = 10 K, Vs = 2.1×

106 cms−1 and q⃗ = 105 cm−1. In Figure 24, the graph for the dependence of Γ
Γ0

on ωq is plotted.

Figure 24: Dependence of Γ/Γ0 on ωq. Insert is the experimental verification
of Acoustoelectric current versus acoustic phonon frequency [272]
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In Figure 25, the dependence of Γ
Γ0
on VD

Vs
is analysed. From the graph, when VD

Vs
<

1, an absorption graph was observed, but when VD
Vs

> 1, gave an amplification of

hypersound as is indicated in the work of Nunes and Fonseca [269]. The graph

Figure 25: Dependence of Γ/Γ0 on VD
Vs

for varying ωq

was obtained at VD
Vs

< 1. The insert shows an experimentally obtained graph of

an acoustoelectric current for gate-controlled Graphene [272]. The hypersound

absorption graph qualitively agreed with the experimentally obtained graph via

the Weinriech relation [350].
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Figure 26: 3D representation of Γ/Γ0 on VD
Vs

and ωq at 0.2 THz

To enhance the observed Amplification (Absorption), a 3D graph was plotted

for frequencies ωq = 0.2, 0.4, and 1 THz (see Figures 26, 27 and 28). In Figure

26, the maximum amplification was obtained at Γ
Γ0

=−0.16 at ωq = 2 THz for

VD = 1.1Vs.
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For Figure 27, at VD = 1.1Vs, Γ
Γ0

= −0.34 whislt in Figure 28, for VD = 1.1Vs,

Γ
Γ0

=−0.08 was obtained.

Figure 27: 3D representation of Γ/Γ0 on VD
Vs

and ωq at 0.4 THz
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Figure 28: 3D representation of Γ/Γ0 on VD
Vs

and ωq at 1 THz

It is interesting to note that, acoustic phonon frequencies above 10 THz can be

attained. In Figure 29, at VD = 1.1Vs, gave Γ
Γ0

= −3.17 which was obtained at

ωq = 20 THz. For a gate controlled graphene, withVD = 1.1Vs, the field E can be

calculated since E =VD/µ . The electron mobility µ in graphene given as 2.0×

104 cm2/Vs,Vs = 2.1× 105cm/s gives E = 11.5 V/cm. For the source-to-drain

voltage, Vsd =VDL/µ , (L being the length from the source to drain electrode in

graphene), the in-plane current I = enVDL (n being the electron density) can be

calculated. The generation of hypersound amplification (absorption) of acoustic

- phonons in a gated controlled graphene is studied. The absorption obtained

qualitatively agreed with an experimentally obtained acoustoelectric current in

a gate-controlled graphene via the Weinrich relation.
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Figure 29: A graph of Γ/Γ0 on VD
Vs

and ωq at 2 THz

For VD
Vs

> 1, the hypersound amplification obtained is similar to that of Nunes

and Fonseca. For a drift velocity of VD = 1.1Vs, a field of E = 11.5V/cm was

calculated. At frequency of 0.2THz, an amplification of Γ/Γ0 = −3.17 is

attained. From this work, the hypersound studies in graphene offers a much

better source of higher phonon frequencies than the homogenous

semiconductors which permit the use of graphene as hypersound phonon laser

(SASER).
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Acoustoelectric Current In Graphene

The Eqn. (160) is analysed numerically for a normalized graph of j/ j0 against

ωq and T . The following parameters were used Λ = 9 eV,

Vs = 2.1 × 106 cms−1 and q⃗ = 105 cm−1. In Figure 30, the graph for the

dependence of j/ j0 on ωq for varying T is plotted. From the Figure 30, the

Figure 30: (a) Dependence of j/ j0 on ωq for varying T . Insert: Dependence of
Acoutoelectric Current (Iae) on SAW intensity for varying T [272]

non-linear graph of Acoustoelectric current j/ j0 decreases with an increase in

temperature. The insert is an experimentally obtained results of acoustoelectric

current versus Surface Acoustic Wave (SAW) intensity. For acoustic phonons,

the intensity is proportional to the frequency of the acoustic phonon

i.e.I = h̄ωq f lux. Therefore, the theoretically obtained graph (see Figure 30)

qualitatively agrees with that obtained experimentally by Bandhu and

Nash [272].
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Figure 31: Dependence of j/ j0 on temperature T on varying ωq(1010) s−1,
insert was plotted with ωq(1012) s−1

The acoustoelectric current jac relates the hypersound absorption as

jac =
−2eτ
h̄VF

Γ (179)

which is the Weinreich relation [350]. In Figure 31, the dependence of

acoustoelectric current j/ j0 on temperature T is plotted with varying ωq. At

ωq = 1012 s−1, the acoustoelectric current decreases sharply to a minimum

point and remain constant but at ωq = 1010 s−1 (see insert graph), the graph

decreased pass the j/ j0 = 0 point to a minimum then raises to a constant

values. For better understanding of the relation between j/ j0, ωq and T , a 3-D

graph was plotted (See Figure 32). From the Figure 32, the maximum point

was obtained at T = 1.5 K, ωq = 6 × 1011s−1 and j/ j0 = 1.006 whilst the

minimum point, T = 1.5 K, ωq = 1.2 ×1011s−1 and j/ j0 = −0.635. The

acoustoelectric effect in graphene is studied in the hypersound regime ql >> 1.
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Figure 32: A 3D graph of the dependence of j/ j0 on ωq and T

At low temperatures, the theoretically obtained acoustoelectric current j/ j0

qualitatively agreed with an experimentally obtained results.
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Hypersound Absorption In Carbon Nanotube

The parameters used in the numerical evaluation of Eqn(171) are: |Λ|= 9 eV,

b = 1.42 nm, q = 107 cm−1, ωq = 1012 s−1, Vs = 4.7× 105 cms−1, T = 10 K,

and θ > 0. The dependence of the absorption coefficient (Γ) on the acoustic

wave number (⃗q), the frequency (ωq) and (γ) at various harmonics

(n = 0,±1,±2) are presented below. For n = 0, the graph of Γ versus q⃗ at

Figure 33: Dependence of Γ on q for varying ωq at VD = 1.2Vs
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varying frequencies and that of Γ versus ωq for various acoustic wave numbers

are shown in Figures 33 and 34. In Figure 33, an amplification curve was

observed, where the minimum value increases by increasing ωq but above

ωq = 1.6×1012 s−1, an absorption was obtained. In Figure 34, it was observed

that absorption switched over to amplification when the q⃗ values were

increased.

Figure 34: Γ on ωq for varying q⃗ at VD = 1.2Vs
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For n = ±1 (first harmonics), in Figure 35, it was observed that absorption

exceeds amplification and the peaks shift to the right. A further increase in ωq

values caused an inversion of the graph where amplification exceeds

absorption (see Figure 36).

Figure 35: Dependence of Γ on q⃗ at VD = 1.2Vs showing Absorption exceeds
Amplification
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Figure 36: Dependence of Γ on q⃗ at VD = 1.2Vs showing amplification exceeds
absorption
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A similar observation was seen in Figure 37 and 38, where, the peak values shift

to the right and decreases with increasing q⃗ values (see Figure 37) but in Figure

38, an inversion of the graph occurred for increasing values of q⃗.

Figure 37: Dependence of Γ on ωq where absorption exceeds amplification
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Figure 38: Dependence of Γ on ωq where amplification exceeds absorption

Figures 39 and 40, shows the dependence of Γ on γ by varying either ωq or q⃗.

In both graphs, when γ = −0.10, a maximum amplification was obtained. In

both graphs, when γ < 0, produce non-linear graphs which satisfy the Cerenkov

condition, but at γ > 0, the graph returns to zero.
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The observed peaks in Figure 39, shift to the left by increasing ωq whilst in

Figure 40, they shift to the right for increasing q⃗.

Figure 39: Dependence of Γ on γ at θ = 800 C by increasing ωq
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Figure 40: Dependence of Γ on γ at θ = 800 C by increasing T = 15,25,35 K

For further elucidation, a 3D graph of Γ versus ωq and γ or Γ versus q⃗ and γ are

presented in Figures 41 and 42.
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Figure 41: Dependence of Γ on ωq and γ

Figure 42: Dependence of Γ on q⃗ and γ
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For n =±2 (second harmonics), the dependence of the absorption coefficient Γ

on ωq is presented in 2D and 3D forms as shown in Figures 43 and 44. In

Figure 43, an absorption graph was obtained. The insert shown is an

experimental results obtained for the acoustoelectric current in SWCNT [111].

Figure 43: Second harmonic graph of the dependence of Γ on ωq. Insert
shows the experimental graph for acoustoelectric current versus
frequency [111]
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Figure 44: Dependence of Γ on q⃗ and γ

Figure 44 is the 3D representation of the absorption in second harmonics. From

Weinreich relation [350], the absorption coefficient is directly related to the

acoustoelectric current, therefore from Figure 46, the results obtained for the

absorption coefficient qualitatively agree with the experimental results

presented (see insert). In the 3D graphs,the maximum amplification and

absorption occurred at γ = −0.1 which is equivalent to VD = 1.1Vs. With the

electric field E = VD
µ gives E = 51.7 V/cm. The expression for Hypersound

Absorption of acoustic phonons in a degenerate Carbon Nanotube (CNT) was

deduced theoretically and graphically presented. In this work, the acoustic

waves were considered to be a flow of monochromatic phonons in the short

wave region (ql >> 1). The general expression obtained was analysed

numerically for n = 0,±1,±2 (where n is an integer). From the graphs, at
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certain values of ωq and q⃗, an Amplification was observed to exceed

Absorption or vice-versa . For γ < 0, the maximum Amplification was

observed at VD = 1.1Vs which gave us a field of E = 51.7 Vcm−1. This field is

far lower than that observed in superlattice and homogeneous semiconductors

permitting the CNT to be a suitable material for hypersound generator

(SASER). A similar expression can be seen in the works of Nunes and Fonseca

[54]. Very interesting to this work is the qualitative agreement of the

absorption graph to an experimental graph resulting from an acoustoelectric

current via the Weinriech relation.
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Acoustoelectric in Carbon Nanotube

The analytical solution of Eqn(178) is obtained numerically and the results

presented graphically. The parameters used in the numerical evaluation are:

|Λ| = 9 eV, b = 1.42 nm, q = 107 cm−1, ωq = 1012 s−1,Vs = 4.7×105 cms−1,

T = 10 K, and θ > 0. The dependence of jac on the acoustic wave number (⃗q)

and the frequency (ωq) at various harmonics (n = ±1,±2) are presented. For

n = ±1, the non-linear graph (with an initial curve) increases sharply to a

maximum then decreases to a constant minimum value (see Figure 45). By

Figure 45: Dependence of jac on ωq at varying q⃗
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increasing the values of q⃗, the graph shifts to the right with decreasing

amplitude. In Figure 46, it was observed that at ωq = 0.6×1012 s, the jac

increases to a maximum point and then falls to a minimum value. Increasing

Figure 46: Dependence of jac on q⃗ for varying ωq

the values of ωq, shift the graph to the right. More interesting is the nature of

the acoustoelectric current jac. At ωq = 0.6×1012 s, the ratio of the peaks

balances on both side of the jac axis. At ωq = 0.65×1012 s, the ratio of the jac

peaks is more towards the negative side but a reverse occurs when

ωq = 0.7×1012 s.
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For n = ±2 (see Figures 47 and 48), the graph obtained for jac versus ωq

qualitatively agreed with an experimentally obtained results. In Figure 47, it is

also observed that the dependence of jac on q is strongly non-linear.

jac

Γ
=

2eτγ0b
√

3
h̄

(cos(θ)−1) (180)

Figure 47: Dependence of jac onωq at various q⃗ insert shows the experimentally
obtained acoustoelectric current [111]
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Figure 48: Dependence of jac on q⃗ for a given ωq

The ratio of jac

Γ (where Γ is the hypersound absorption) in the absence of a drift

velocity VD [43] is given as

jac

Γ
=

2eτγ0b
√

3
h̄

(cos(θ)−1) (181)

which is the Weinreich relation [350] and is dependent on the scattering angel

θ . For n =±1, the ratio of the height of the peaks in the positive side of jac far

exceeded that in the negative side (see Figure 48).
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For better understanding of the obtained graphs, a 3D graph of jac versus ωq and

q⃗ are presented in Figure (49 and 50).

Figure 49: Dependence of jac on γ and q⃗ at the first harmonics n =±1
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Figure 50: Dependence of jac on γ and q⃗ at the second harmonics n =±2

In Figure 50, for n = ±2, the graph showed peaks at certain intervals. The AE

in a degenerateCNT is studied for hypersound in the regime ql >> 1. A strong

nonlinear dependence of jac on the acoustic wavenumber q⃗ and the frequency

ωq are observed. The dominant mechanism for such non-linear behaviour is the

AE which give rise to the acoustoelectric current jac. The analytically obtained

acoustoelectric current jac qualitatively agrees with an experimentally obtained

result.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

Studies of acoustic effects in Carbon Allotropes such as Graphene, Carbon

Nanotube, and Graphene Nanoribbon were done in the hypersound regime

having ql > 1. Topics treated include hypersound amplification/absorption,

Acoustoelectric Effect (AE), and Acoustomagnetoelectric Effect (AME) in the

said materials of Carbon Allotropes. From the Boltzmann kinetic equation, the

general formula for Amplification and Acoustomagnetoeletric field (ESAME) in

Graphene Nanoribbon (GNR) was derived using the energy dispersion ε(p)

near the Fermi point.

Conclusions

The amplification of the acoustic wave in an external electric and magnetic

fields was studied using the kinetic equation for electron-phonon interactions

in AGNR. Analytical expressions for the Amplification under different

conditions were numerically analysed. The dependence of Γ/Γ0 on E0 and q

are determined at different values of ϕ , pi and the width where the maximum

value of the magnetic strength occurs at 0.93. That of Γ/Γ0 against q was also

analysed. In particular, when q is increased from 2.0 ∗ 106 cm−1 to

2.5 ∗ 106 cm−1, the amplification obtained is modulated. This indicates
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intraband transition of SASER in AGNR. The ESAME is analysed numerically

at various sub-bands for parameters including the width of the GNR, the

magnetic strength η and α . The graphs of E⃗SAME against these parameters are

presented and analysed. For E⃗SAME against the width of GNR and α , it was

observed that E⃗SAME increases to a saturation value of 15Vcm−1 and remains

constant but asymptotically increases at approximately α = 1. For a graph of

E⃗SAME against η or α , the ESAME varies for increases in the sub-band but invert

at pi = 6.

The generation of hypersound amplification (absorption) of acoustic phonons

in graphene is studied. For VD
Vs

> 1, the hypersound amplification obtained is

similar to that of Nunes and Fonseca but for VD
Vs

< 1, an absorption is obtained

which could lead to acoustoelectric effect in graphene. The absorption

obtained qualitatively agreed with an experimentally obtained acoustoelectric

current in a graphene via the Weinrich relation. For a drift velocity of

VD = 1.1Vs, a field of E = 11.5 V/cm was calculated. At frequency of

0.2 THz, an amplification of Γ/Γ0 = −3.17 is attained. From this work, the

hypersound studies in graphene offers a much better source of higher phonon

frequencies than the homogenous semiconductors which permit the use of

graphene as hypersound phonon laser (SASER).

The acoustoelectric effect in graphene is studied in the hypersound regime

ql >> 1. At low temperatures , the theoretically obtained Acoustoelectric

current j/ j0 qualitatively agreed with an experimentally obtained results.

The expression for Hypersound Absorption of acoustic phonons in a

degenerate CNT was deduced theoretically and graphically presented. In this
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work, the acoustic waves were considered to be a flow of monochromatic

phonons in the short wave region (ql >> 1). The general expression obtained

was analysed numerically for n = 0,±1,±2 (where n is an integer). From the

graphs, at certain values of ωq and q⃗, an Amplification was observed to exceed

absorption or vice-versa . For γ < 0, the maximum amplification was observed

at VD = 1.1Vs which gave us a field of E = 51.7 Vcm−1. This field is far lower

than that observed in superlattice and homogeneous semiconductors permitting

the CNT to be a suitable material for hypersound generator (SASER). A

similar expression can be seen in the works of Nunes and Fonseca [269]. Very

interesting to our work is the qualitative agreement of the absorption graph to

an experimental graph resulting from an acoustoelectric current via the

Weinriech relation.

The AE in a degenerate CNT is studied for hypersound in the regime ql >> 1.

A strong nonlinear dependence of jac on the acoustic wavenumber q⃗ and the

frequency ωq are observed. The dominant mechanism for such non-linear

behaviour is the acoustoelectric effect which gives rise to the acoustoelectric

current jac. The analytically obtained acoustoelectric current jac qualitatively

agrees with an experimentally obtained result.
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Recommendations

Research conducted in this thesis on the study of acoustic effects in Carbon

allotropes opens up a range of possibilities for further studies in this area.

These are

• This work could be done using Silicon, and Germanium since they are in

the same period as that of Carbon.

• Further, the extension of this work probably to Black phosphorus is

possible since it also have a band gap just like Silicon.

• Acousto-concentration and Acousto-thermal effects could be studied in all

the Allotropes of Carbon.
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APPENDIX

Numerical Analysis

To solve the equations (142), (148), (154), (160), (171) and (178), a high level

programming language (MATLAB) was used. Here, the algorithms for

Graphene Nanoribbon (GNR), Graphene, and Carbon Nanotubes (CNT ) are

presented.

Graphene Nanoribbon

The numerical calculations for GNR are as follows. This code is used for plotting

the 3D graph of the Γ/Γ0 versus the electric field by varying the width N of the

GNR. This is a function code which requires an input of the electric field and

the width.

function [n,E0] = Nanoribbon(n,E);

Eg = 0.5∗1.6∗10e−19./hbar; the energy gap

p = 2; the sub-band index,

w = 5∗10e−9; the width of the Nanoribbon

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

B is the quantized wave vector with π being the

al pha = wq./Eg;

k = (2∗B.2 ∗alpha./(q)− (0.5∗q));

g = −exp(eta.2). ∗ 2. ∗ 10e5. ∗ FD − int − approx(eta.2,−1/2). ∗ E0. ∗ pi2. ∗

tau.2.∗ k;
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x1 = (1−g./(4.∗ v));

p = 3; w = 5∗10e−9;

B = pi∗ (p/(w+a∗ sqrt(3))−2./(a∗ sqrt(3)));

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

alpha = wq./Eg;

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

g = −exp(eta.2). ∗ 2. ∗ 10e5. ∗ FD − int − approx(eta.2,−1/2). ∗ E0. ∗ pi2. ∗

tau.2.∗ k;

x2 = (1−g./(4.∗ v));

p = 4; w = 5∗10e−9;

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

alpha = wq./Eg;

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

x3 = (1−g./(4.∗ v));

p = 6;w = 5∗10e−9;

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

alpha = wq./Eg;

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

g = −exp(eta.2). ∗ 2. ∗ 10e5. ∗ FD − int − approx(eta.2,−1/2). ∗ E0. ∗ pi2. ∗

tau.2.∗ k;

x4 = (1−g./(4.∗ v));

p = 7;w = 5∗10e−9;

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

alpha = wq./Eg;
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k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

g = −exp(eta.2). ∗ 2. ∗ 10e5. ∗ FD − int − approx(eta.2,−1/2). ∗ E0. ∗ pi2. ∗

tau.2.∗ k;

x5 = (1−g./(4.∗ v));

plot(E0,x1,′−−m′,E0,x2,′−−r′,E0,x3,′−−b′, E0,x4,′−−k′,E0,

x5,′−−c′,’LineWidth’,1.5,’MarkerSize’,10)

, ... ’MarkerEdgeColor’,’b’,’MarkerFaceColor’,[0.50.50.4]);

title(’Currentless Amplification’, ’color’, axiscolor);

xlabel(′Electric f ield(E)Vm−1’) ylabel(’Γ⊥/Γ0’)
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Analyzing the Bandgap of the Graphene Nanoribbon

To analyse the Bandgap of GNR as a function of the electric field and Γ/Γ0, a

3D graph was plotted . The code below is a function with E and Eg as inputs.

[E0,Eg] = meshgrid((E),(Eg));

m = 1; i = 1;

alpha = (2.23∗0.25∗1.6∗10e−19)./(B.2); alpha

n = 15; width of the nanoribbon

p = 1; p = 2∗m+ i;

w = 23∗10−9;

B = 2 ∗ pi. ∗ (p./(n+ 1)− 0.67)./(a ∗ sqrt(3)); B is the quantized wave vector

with pi being the

H = wq./Eg;

k = (2.∗hbar2 ∗B∗wq)./(q∗hbar ∗Eg)−hbar ∗q/2;

alpha = hbar ∗wq./Eg;

alpha = wq./Eg;

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

g= exp(eta2).∗e.∗10e6.∗FD− int−approx(eta,−1/2).∗E0.∗ pi.∗tau.2.∗k;

x = (1−g./(0.32∗20∗10e4∗16.∗ v));

p = 2;w =23*10-9;

B = 2*pi.*(p./(n+1) - 0.67)./(a*sqrt(3));

alpha = wq./Eg;

k = (2*B.2 ∗alpha./(q)− (0.5∗q));

g= exp(eta2).∗e.∗10e6.∗FD− int−approx(eta,−1/2).∗E0.∗ pi.∗tau.2.∗k;

x = (1−g./(0.32∗16.∗ v));
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x2 = real(x);

plot(Eg, x,′−−r′,Eg,x1,′−−b′,Eg,x2,′−−g′,Eg,x3,’–k’,’Linewidth’,1.5)

sur f (E0,Eg./10e15,x./10e4)

xlabel(’ E (V/cm)’)ylabel(’ Eg(eV )′)zlabel(′Γ/Γ′
0)
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Numerical Fermi-Dirac integrals

This code is that of the Fermi-Dirac integral in the equations.

Functiony = FD− int −approx(eta, j)

Analytic approximations for Fermi-Dirac integrals of order j >−1/2

if j <−1/2

error( ’The order should be equal to or larger than −1/2.’)

else

x = eta;

switch j

case 0

y = log(1+ exp(x)); analytic expression

case 1/2

mu = x.4 +50+33.6∗ x.∗ (1−0.68∗ exp(−0.17∗ (x+1).2));

xi = 3∗ sqrt(pi)./(4∗mu.(3/8));

y = (exp(−x)+ xi).−1;

case 3/2

a = 14.9;

b = 2.64;

c = 9/4;

y = (( j+1)∗2( j+1)./(b+ x+(abs(x−b).c +a).(1/c)).( j+1)...

+exp(−x)./gamma( j+1)).−1./gamma( j+1);

otherwise

a = (1+15/4∗ ( j+1)+1/40∗ ( j+1)2)(1/2);

b = 1.8+0.61∗ j;
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c = 2+(2− sqrt(2))∗2(− j);

y = (( j+1)∗2( j+1)./(b+ x+(abs(x−b).c +ac).(1/c)).( j+1)...

+exp(−x)./gamma( j+1)).−1./gamma( j+1);

end

end
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This code is a 3D code for analysing Γ/Γ0 as against the η and the electric

field E0.

[E0,eta] = meshgrid(E0,eta);

τ = 10e−12;

h = 0.2∗10e3; magnetic field

ωh = 8∗10e13; cyclotron freq

η = ωh̄.∗h.∗τ;

η = (0 : 0.02 : 2.3)/(2);

v = 5∗10e5; the velocity of sound

q = 2.5∗10e6; acoustic wave number

ωq = 10e11; frequency of the sound

a = 1.42∗10e−9; the lattice constant

m = 6; m is an integer,

eg = 0.25∗1.6∗10e−19; the energy gap

m = 2; i = 1;

wh = 2; cyclotron freq

E0 = 0.5;

n = 9; width of the nanoribbon

p = 1;w = 5∗10e−9;

B = pi∗ (p/(w+a∗ sqrt(3))−2./(a∗ sqrt(3))); alpha = wq./Eg;

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

FD =

3∗ pi./16.∗FD− int −approx(eta.2,3/2).∗FD− int −approx(eta.2,−1/2)

./(FD-int-approx(eta2,−1/2))−FD− int −approx(eta2,0);
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g =−exp(eta.2).∗FD.∗E0.∗ sqrt(pi).∗ k;

x1 = (1−g./(4.∗ v));

plot(eta.2,x1,′ g′,′LineWidth′,1.5)

xlabel(′ϕ ′)

ylabel(′Γ/Γ′
0)
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Acoustomagneto electric field

To analyse the acoustomagnetoelectric effect in Eqn. (154), the numerical

calculations are as follows

[E0,eta] = meshgrid(n,eta)

h = 0.2∗10e3; magnetic field

wh = 0.5∗10e10; cyclotron freq

η = wh.∗h.∗ tau;

v = 5∗10e5 ; the velocity of sound

q = 2.5∗10e6; acoustic wave number

ωq = 5∗10e9 ; frequency of the sound

a = 1.42∗10e−9; the lattice constant

m = 6; m is an integer

alpha = (0 : 0.01 : 1);

t = 2.7; the overlapp integral (eV)

n = 7; width of the nanoribbon

p = 3;w = 5∗10e−9;

eg = 0.25∗1.6∗10e−19; the energy gap

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

B is the quantized wave vector with pi being the subband index

H = (0 : 0.02 : 10)∗108/100;

Eg = B∗a∗ t ∗ e./hbar;

B = pi∗ (p/(w+a∗ sqrt(3))−2./(a∗ sqrt(3)));

alpha = wq./Eg;

c = (1)./abs(sqrt(1−al pha.2));
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k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

Ey = 3∗Eg.∗ eta.∗wq./(8∗1000∗ v3);

F = FD − int − approx(eta.2,−1/2). ∗ FDinta pprox(eta.2,−1/2) − FD −

int −approx(eta.2,0).∗FDinta pprox(eta.2,−1/2);

F1 = 0.4219∗ sqrt(pi3)∗ (FD− int −approx(eta.2,−1/2)).2 +(7∗ pi∗FD−

int −approx(eta.2,0)).2.∗ eta.2;

E = Ey.∗F./(F1).∗ c;

plot(al pha,E,′ b′,′LineWidth′,1.5)
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For the acoustomagnetoelectric field against the alpha

[E0,eta] = meshgrid(E0,eta);

t = 2.7; the overlapp integral (eV)

n = 7; width of the nanoribbon

p = 6;w = 5∗10e−9;

B = 2∗ pi.∗ (p./(n+1)−0.67)./(a∗ sqrt(3));

B is the quantized wave vector with pi being the

H = (0 : 0.02 : 10)∗108/100;

Eg = B∗a∗ t ∗ e./hbar;

B = pi∗ (p/(w+a∗ sqrt(3))−2./(a∗ sqrt(3)));

alpha = wq./Eg;

c = (1)./abs(sqrt(1−al pha.2));

k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

Ey = 3∗Eg.∗ eta.∗wq./(8∗1000∗ v3);

F = FD − int − approx(eta.2,−1/2). ∗ FD − int − approx(eta.2,−1/2) −

FD− int −approx(eta.2,0).∗FDinta pprox(eta.2,−1/2);

F1 = 0.4219∗ sqrt(pi3)∗ (FD− int −approx(eta.2,−1/2)).2 +(7∗ pi∗FD−

int −approx(eta.2,0)).2.∗ eta.2;

E = Ey.∗F./(F1).∗1./abs(sqrt(1−al pha.2));

plot(eta,E,′ r′,′LineWidth′,1.5)
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The parameters used in the numerical calculations for the 3D

[E0,eta] = meshgrid((0 : 0.02 : 2),(0 : 0.02 : 2));

eta = 2∗ (0.001 : 0.002 : 0.035);

v = 5∗10e5; the velocity of sound

q = 2.5∗10e6; acoustic wave number

wq = 5∗10e9; frequency of the sound

a = 1.42∗10e−9; the lattice constant

m = 6; m is an integer,

alpha = 0.2;

eg = 0.25∗1.6∗10e−19; the energy gap

hbar = 6.626∗10e−34; the planck constant

e = 1.6∗10e−19;

tau = 10e−12;

t = 2.7; the overlapp integral (eV)

n = 7; width of the nanoribbon

p = 6;w = 5∗10e−9;

hbar = 1.05∗10e−34; Planck’s constant (eV-s)

m = 2; i = 1;wh = 2;

B = 2*pi.*(p./(n+1) - 0.67)./(a*sqrt(3));

B is the quantized wave vector with pi being the

H = (0 : 0.02 : 10)∗108/100;

Eg = B∗a∗ t ∗ e./hbar;

alpha = wq./Eg;

c = (1)./abs(sqrt(1−al pha.2));
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k = (2∗B.2 ∗al pha./(q)− (0.5∗q));

Ey = 3∗Eg.∗ eta.∗wq./(8∗1000∗ v3);

F = FD − int − approx(eta.2,−1/2). ∗ FD − int − approx(eta.2,−1/2) −

FD− int −approx(eta.2,0).∗FDinta pprox(eta.2,−1/2);

F1 = 0.4219∗ sqrt(pi3)∗ (FD− int −approx(eta.2,−1/2)).2 +(7∗ pi∗FD−

int −approx(eta.2,0)).2.∗ eta.2;

E = Ey.∗F./(F1).∗1./abs(sqrt(1−al pha.2));

plot(eta,E,′ r′,′LineWidth′,1.5)
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Graphene

Hypersound Absorption in Carbon Nanotube

To analyse Eqn.(160) the following code was used

gamma = 0.1; tight-bingding overlapp intergral(eV)

delta = 9; deformation potential (eV)

b = 1.42∗10e−9; lattice Constant

p0 = 10e4; Fermi wavevector

q = 2∗10e6; Acoustic wave vector (cm−1)

wq = 2∗ (0.1 : 0.01 : 3)∗10e10;

rho = 6.5∗10e−11; density (g/cm2)

s = 10e3; velocity of sound (m/s)

T = 10; Temperature

theta = 83;

E0 = 2∗gamma;

mu = 10;

V d = 0.94;

X = 1−V d;

y = n∗A.∗ (hbar.∗q)∗ (delta.2)∗ (K ∗T )∗10e16./(pi∗ rho∗ s.∗ (10e6)4);

beta = 1/(K ∗T );

y2 =(2-beta*hbar*wq.*X).*(1 - exp(-beta*hbar*wq.*X));

y3 = y2;

plot(wq,y3, ’r’,’LineWidth’,1.5)

xlabel(’ωq(s−1)′)

ylabel(′Rq(s−1)′)
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Acoustoelectric effect in Graphene

The numerical analysis of Eqn.(171) is as follows

p0 = 104; Fermi wavevector

q = 2∗10e6; Acoustic wave vector (cm−1)

q = 108; acoustic wave vector(m−1)

A = 2; Area of the sample in (m)

wq = 2∗ (0.1 : 0.01 : 15)∗1012;

rho = 6.5e−8; density (g/cm2)

s = 103; velocity of sound (m/s)

T = 50; Temperature

E0 = 3.57∗10e10;

theta = 85;

E0 = 2∗gamma;

E = 0.2∗10e3; Electric field (Vcm−1)

mu = 10;

y =n* A.*(hbar.*q)*(delta.2)∗ (K ∗T )∗10e16./(pi∗ rho∗ s.∗ (10e6)4);

beta = 1/(K ∗T );

y2 = (2−beta∗hbar ∗wq).∗ (1− exp(−beta∗hbar ∗wq));

y3 =−y2;

plot(wq,y3,′−g′,′LineWidth′,1.5)

xlabel(′ωq(s−1)′)

ylabel(′ j/ j′0)
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Acoustoelectric in Graphene

For Eqn. (178), the numerical analysis is as follows

A = 2; Area of the sample in (cm)

wq = 0.1.∗10e12; acoustic wave frequency

rho = 6.5∗10e−8; density (g/cm2)

s = 10e5; velocity of sound (m/s)

T = 10; Temperature

theta = 83;

E0 = 2∗gamma;

E = 35∗10e3; Electric field (Vm−1)

x =(-1:0.01:2.5);

y = n* A.*(hbar.*q)*(delta.2)∗ (K ∗T )∗10e16./(pi∗ rho∗ s.∗ (10e6)4);

beta = 1/(K ∗T );

y2 = (2−beta∗hbar ∗wq∗X).∗ (1− exp(−beta∗hbar ∗wq.∗X));

y3 = y2;

plot(X ,y3./y,′ r′)

184

Digitized by Sam Jonah Library

© University of Cape Coast


	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF FIGURES
	SYMBOLS
	PHYSICAL CONSTANTS
	ABBREVIATIONS
	數瀀愀渀搀愀昀琀攀牍慫eUppercase捨愀瀀琀攀爀渀愀洀攀 ⁎啍BERstringnum1: INTRODUCTION
	Background
	Carbon Allotropes
	Hybridization of carbon atoms
	spn Carbon Allotropes

	Graphene
	Electronic band structure of Graphene

	The dispersion relation of Graphene
	Production of Graphene
	Mechanical exfoliation
	Epitaxial growth
	Chemical exfoliation

	Electronic properties of Graphene and Graphite
	Fullerene
	Fullerence structures

	Graphene Nanoribbon (GNR)
	Energy dispersion of Graphene Nanoribbon
	Carbon Nanotubes (CNT)
	Properties of Carbon Nanotubes
	Strength of Carbon Nanotube
	Electrical properties of Carbon Nanotubes
	Onion-like Carbons
	Carbon Nanofibers

	Carbon Nanowalls
	Diamond and Graphite
	Studies on Carbon Allotropes
	Objectives and scope of study
	Main Objectives
	Specific Objectives

	Organization Of Thesis

	數瀀愀渀搀愀昀琀攀牍慫eUppercase捨愀瀀琀攀爀渀愀洀攀 ⁎啍BERstringnum2: LITERATURE REVIEW
	Electron-Phonon Interaction
	Bosons and Fermions
	Bosons
	Fermions
	The Hamiltonian of the System

	The Quantized Theory Of Phonons
	The Electron-Phonon Coupling (Hint) 
	Landau Quantization
	The General Quantum Equation
	Boltzmann Distribution Function

	數瀀愀渀搀愀昀琀攀牍慫eUppercase捨愀瀀琀攀爀渀愀洀攀 ⁎啍BERstringnum3: ACOUSTIC EFFECT
	Background of acoustic effects in materials
	Acoustic phonon amplification in Graphene Nanoribbon (GNR)
	Sound Absorption in GNR
	Acoustomagnetoelectric Effect in GNR

	Amplification Of Hypersound In Graphene
	Acoustoelectric effect in Graphene

	Hypersound Absorption in Carbon Nanotube
	Acoustoelectric effect in CNT


	數瀀愀渀搀愀昀琀攀牍慫eUppercase捨愀瀀琀攀爀渀愀洀攀 ⁎啍BERstringnum4: RESULTS AND DISCUSSIONS
	Amplification in Graphene Nanoribbon
	Acoustomagnetoelectric Effect in Graphene Nanoribbon
	Hypersound Amplification of Graphene
	Acoustoelectric Current In Graphene
	Hypersound Absorption In Carbon Nanotube
	Acoustoelectric in Carbon Nanotube

	數瀀愀渀搀愀昀琀攀牍慫eUppercase捨愀瀀琀攀爀渀愀洀攀 ⁎啍BERstringnum5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
	Summary
	Conclusions
	Recommendations

	REFERENCES
	APPENDIX
	Numerical Analysis
	Graphene Nanoribbon
	Analyzing the Bandgap of the Graphene Nanoribbon
	Numerical Fermi-Dirac integrals
	 Acoustomagneto electric field

	Graphene
	Hypersound Absorption in Carbon Nanotube

	Acoustoelectric effect in Graphene
	Acoustoelectric in Graphene





