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ABSTRACT

The non-differentiable L1-norm penalty in the L1-norm regularized least

squares problem poses a major challenge to obtaining an analytic solution. The

study thus explores smoothing and non-smoothing approximations that yields

differentiable loss functional that ensures a close-form solution in over-determined

systems. Three smoothing approximations to the L1-norm penalty have been

examined. These include the Quadratic, Sigmoid and Cubic Hermite. Tikho-

nov regularization is then applied to the resulting loss function. The approx-

imations are a modification of the Lee’s approximation to the L1-norm term.

The regularized solution using this approximation has been presented in various

forms. Using the Hilbert 12×12 matrix, it is found that for all three methods, a

good approximation to the exact solution converges at a regularization parame-

ter µ = 10−30. The solutions show an accuracy to nine digits. In each approx-

imation, a suitable value of the parameter is obtained for which the absolute

value function approximates the L1-norm penalty. The results of the Modified

Newton’s method based on the Lee’s approximation however shows an accuracy

of at most two digits. The solution of the smoothing methods also compares fa-

vourably with l1 ls method. Analytic solution of the L1-norm problem is also

obtained by means of the sub-gradient method, after casting the constrained

formulation as unconstrained. Attempt at achieving sparsity of the Least Ab-

solute Shrinkage and Selection Operator (LASSO) solution has been made in

two ways. The initial solution is expressed in terms of the singular value de-

composition so that by truncating smaller singular values, the desired sparsity is

achieved using suitable regularization parameter obtained by the K-fold cross-

validation of the fit. In another way, the LASSO solution itself has been induced

to ensure sparsity. The results show that the LASSO formulation and solution

must be appropriately designed for certain type of datasets, particularly those

that are severely ill-conditioned and those with monotone trends.
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CHAPTER ONE

INTRODUCTION

In this introductory chapter, the motivation for this study has been speci-

fied in the background to the study. This section explains the problem associated

with the L1-norm regularized least squares. In particular, the concepts of least

squares method for solving over-determined systems have been explained as

well as the Tikhonov (L2-norm) regularization and the L1-norm regularization

(LASSO). These explanations enable us to make a statement of the problem for

the study, and hence identify the main objectives that would guide the thesis.

The chapter also introduces a number of datasets that would be needed to illus-

trate the main ideas developed in Chapters Four and Five. The rationale for the

choice of these datasets is clearly highlighted by the description of the features

of these datasets. The last section specifies the organisation of the thesis.

Background to the Study

Many optimization problems arising in many applications require mini-

mization of an objective cost function that is convex but not differentiable.

Such a minimization arises, for example, in signal reconstruction, image pro-

cessing, data fitting and general allocation problems. To solve convex but non-

differentiable problems, we have to employ special methods that can work in

the absence of differentiability, while taking advantage of convexity and possi-

bly other special structures that the minimization problem may possess. In this

thesis, we study ways of solving convex problems that are not differentiable.

The method of least squares is a standard approach to the approximate so-

lution of over-determined systems of the form

Xα = y, (1.1)

1
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where X ∈ℜm×p, m > p, y ∈ℜm and α ∈ℜp. Thus, in such sets of equations,

there are more equations than unknowns. By least squares method, the overall

solution minimizes ‖Xα−y‖2
2 , the sum of squares of errors made in the results

of every single equation.

The most important application of this method is in data fitting. The best

fit in the least squares sense minimizes the sum of squared residuals, a residual

being the difference between an observed value and the fitted value provided

by a model. When the problem has substantial uncertainties in the independent

variable (the x variable), then least squares regression is not suitable; in such

a case, the methodology required for fitting errors-in-variables models may be

considered instead of least squares.

Least squares problems fall into two categories: linear or ordinary least

squares and non-linear least squares, depending on whether or not the residuals

are linear in all unknowns. The linear least squares problem occurs in statistical

regression analysis which has a closed-form solution that can be evaluated in

a finite number of standard operations. The non-linear problem has no closed-

form solution and is usually solved by iterative refinement; at each iteration, the

system is approximated by a linear one, and thus the core calculation is similar

in both cases.

This thesis focuses on optimizing the least squares objective function with

an L1-penalty on the parameters. There is currently significant interest in this

and related problems in a wide variety of fields, due to the appealing idea of

creating accurate predictive models that also have interpretable or parsimonious

representations. Rather than focus on applications or properties of these mo-

dels, the main contribution of this thesis is an examination of a variety of the

approaches that have been proposed for parameter estimation in these models.

It then proposes other ways to some of the approaches using regularization. Le-

ast square problems often have their origin in fitting models to observations. In

2
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its simplest form, we know this from the problem of fitting a regression line,

y = ax+ b, through a set of data points (xi, yi), i = 1, . . . ,m. When m > 2, it

is in general impossible to put the line through all points. However, we try to

determine an optimal line, for example, by determining the pair {a∗, b∗} which

minimizes the objective function

f (a, b) =
m

∑
i=1

(axi +b− yi)
2.

In this simple case, it is easy to derive the solution analytically, but in general

the solution has to be found numerically. Since these problems are so common,

there has been a lot of work involved in adapting the general algorithms for un-

constrained optimization to this special case. It is more effective to use specially

adapted algorithms instead of the more general ones. We first consider the linear

least squares problem and the normal equations.

Linear Least Squares Problem and the Normal Equations

Least square problems arise in statistical and geometric applications that

require fitting a polynomial or a curve to an experimental data. Methods for

numerically solving the least squares problem invariably lead to solving a linear

system. Linear least squares problems occur when solving over-determined li-

near systems. In general, over-determined system has no solution, but we may

find a meaningful approximate solution by minimizing some norm of the resi-

dual vector.

Given the matrix X in Equation (1.1), we find a vector α ∈ ℜp such that

the norm of the residual vector, r = Xα−y is minimized. That is, we solve the

problem

min
α∈ℜp

‖Xα−y‖2
2 . (1.2)

3

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



The calculations are simplest when we choose the norm-2. Thus, we will mini-

mize the square of the length of the residual vector

‖r‖2
2 = r2

1 + r2
2 + · · ·+ r2

m.

To see that this minimum exists and is attained by some α ∈ ℜp, we note that

E = {Xα−y| α ∈ℜp} is a non-empty, closed and convex subset of ℜm. Since

ℜm equipped with the Euclidean inner product is a Hilbert space, E contains a

unique element of smallest norm, so there exists an α∈ℜp (not necessarily uni-

que) such that ‖Xα−y‖2 is minimum. The minimization problem in Equation

(1.2) is the Least Squares Method. We characterise the least squares solution by

the following theorem.

Theorem 1: Least Squares Solution

Let

S =
{

α ∈ℜ
p : min

α
‖Xα−y‖2

2

}
be the set of solutions of Xα = y and let rα = Xα−y denote the residual for a

specific α. Then

α ∈ S⇐⇒ XT rα = 0⇐⇒ rα ⊥ R(X), (1.3)

where R(X) denotes the subspace spanned by the columns of X.

proof

We prove the first equivalence, from which the second one follows easily.

(⇐:) Let XT rα = 0 and z ∈ℜp be an arbitrary vector. It follows that

rz = Xz−y = Xα−y+X(z−α),

thus rz = rα +X(z−α). Now

‖rz‖2
2 = ‖rα‖2

2 +2(z−α)T XT rα +‖X(α− z)‖2
2 .

4
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But XT rα = 0 and therefore ‖rz‖2 ≥ ‖rα‖2 . Since this holds for every z, then

α ∈ S.

(⇒:) We show this by contradiction: assume XT rα = z 6= 0. We consider u =

α+ εz with ε > 0 :

ru = Xu−y = Xα−y− εXz = rα− εXz. Now

‖ru‖2
2 = ‖rα‖2

2−2εzT XT rα + ε
2 ‖Xz‖2

2 .

Since XT rα = z, we obtain

‖ru‖2
2 = ‖rα‖2

2−2ε‖z‖2
2 + ε

2 ‖Xz‖2
2 .

We conclude that, for sufficient small ε, we can obtain

‖ru‖2
2 < ‖rα‖2

2 .

This is a contradiction, since α cannot be in the set of solutions in this case.

Thus, the assumption is wrong, that is, we must have XT rα = 0, which proves

the first equivalence in Equation (1.3). This ends the proof.

The least squares solution has an important statistical property which is

expressed in the following Gauss-Markoff Theorem. Let the vector y of obser-

vations be related to an unknown parameter vector α by the linear relation

Xα = y+ ε, (1.4)

where X ∈ ℜm×p is a known matrix and ε is a vector of random errors. In this

standard linear model, it is assumed that the random variables ε j are uncorrela-

ted and all have zero mean and the same variance.

Theorem 2: Gauss-Markoff

Consider the standard linear model in Equation (1.4). Then the best linear

unbiased estimator of any linear function cT α is the least squares solution of

min
α
‖Xα−y‖2

2 .

5
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Equation (1.3) can be used to determine the least squares solution. From

XT rα = 0, it follows that XT (Xα−y) = 0, and we obtain the Normal Equations

of Gauss-Markoff:

XT Xα = XT y. (1.5)

We continue this section with typical examples (Gander, Gander & Kwok, 2014)

that lead to least squares problems.

Example 1: Measuring a line segment

Figure 1: Graph of a Line Segment.

Consider Figure 1 and assume that we have performed five measurements.

Let AD = 89 mm, AC= 67 mm, BD = 53 mm, AB = 35 mm and CD = 20

mm, and we want to determine the estimates of the length of the segments α1 =

AB, α2 = BC and α3 = CD. According to the observations, we obtain a linear

system with more equations than unknowns. The system is given by

α1 +α2 +α3 = 89

α1 +α2 = 67

α2 +α3 = 53

α1 = 35

α3 = 20

6

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



This can be written in the form

Xα = y, X =



1 1 1

1 1 0

0 1 1

1 0 0

0 0 1


, y =



89

67

53

35

20


.

It can be noticed that if we use the last three equations, then we obtain the least

squares solution α1 = 35, α2 = 33 and α3 = 20.

However, if we check the first two equations by inserting this solution we

obtain

α1 +α2 +α3−89 = −1

α1 +α2−67 = 1.

So, the equations contradict each other because of measurement errors, and the

over-determined system has no solution. A remedy is to find an approximate

solution that satisfies the equations as well as possible. For that purpose, one

introduces the residual vector r = y−Xα. One then looks for a vector α that

minimizes in some sense this residual vector.

Example 2

The amount h of a component in a chemical reaction decreases exponenti-

ally with time t according to the relation

h(t) = a0 +a1e−bt .

If the material is weighed at different times, we obtain measured values given

by t = t1, . . . , tm and y = y1, . . . , ym.

7
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The problem now is to estimate the model parameters a0, a1 and b from these

observations. Each measurement point (ti, yi) yields an equation:

h(ti) = a0 +a1e−bti ≈ yi, i = 1, . . . ,m. (1.6)

If there were no measurement errors, then we could replace the approxi-

mate symbol in Equation (1.6) by an equality and use three equations from the

set to determine the parameters. However, in practice, measurement errors are

inevitable. Furthermore, the model equations are often not quite correct and

only model the physical behaviour approximately. The equations will therefore

in general contradict each other and we need some mechanism to balance the

measurement errors, for example, by requiring that Equation (1.6) be satisfied

as well as possible.

The above examples are illustrations of different classes of approximation

problems. For instance, in Example 1, the equations are linear and in Example

2 (chemical reactions), the system of equations is non-linear.

Example 3

We return to Example 1 and solve it using the Normal Equations.

XT Xα = XT y⇒


3 2 1

2 3 2

1 2 3




α1

α2

α3

=


191

209

162

 .
The solution of this 3×3 system is

α =


35.125

32.500

20.625

 .

8
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The residual for this solution becomes

r = Xα−y =



0.7500

−0.6250

−0.1250

−0.1250

−0.6250


,

with ‖r‖2 = 1.1726.

We notice that for the solution α = (35, 33, 20)T obtained by solving the

last three equations in Example 1 has a larger residual ‖r‖2 = 1.4142.

There is also a way to understand the normal equations geometrically from

Equation (1.3). We want to find a linear combination of columns of the matrix

X to approximate the vector y. The space spanned by the columns of X is the

range of X, R(X), which is a hyperplane in ℜm, and the vector y in general does

not lie in this hyperplane, as shown in Figure 2. Thus, minimizing ‖Xα−y‖2 is

equivalent to minimizing the length of the residual vector r, and thus has to be

orthogonal to R(X), as shown in Figure 2.

Figure 2: Graph Showing r Orthogonal to R(X).

9
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The normal equations in Equation (1.5) is concentrated on the matrix

B = XT X which is p× p, and X is m× p. The matrix B is symmetric, and if

rank(X) = p, then it is also positive definite. Thus, the natural way to solve

the normal equations is by means of the Cholesky decomposition. We notice

that when solving linear systems Xα = y with p equations and p unknowns by

Gaussian elimination, reducing the system to triangular form, we make use of

the fact that equivalent systems have the same solutions:

Xα = y⇐⇒ BXα = By if B is non-singular.

For a system of equations Xα ≈ y to be solved in the least squares sense, it no

longer holds that multiplying by a nonsingular matrix B leads to an equivalent

system. This is because the transformed residual Br may not have the same

norm as r itself. However, if we restrict ourselves to the class of orthogonal

matrices,

Xα≈ y⇐⇒ BXα≈ By if B is orthogonal.

Then, the least squares problems remain equivalent, since r = Xα−y and

Br = By−BXα have the same length,

‖Br‖2
2 = (Br)T (Br) = rT BT Br = rT r = ‖r‖2

2 .

Orthogonal matrices and the matrix decompositions containing orthogo-

nal factors therefore play an important role in algorithms for the solution of

linear least squares problems. Often it is possible to simplify the equations by

pre-multiplying the system by a suitable orthogonal matrix. In this regard, the

singular value decomposition (SVD) is an important tool for analysing the linear

problem. The SVD solution enables us to identify the smaller singular values

which is believed to contribute to the distortions in the solution and hence pro-

duces a large residual norm. Methods that make use of SVD isolate these small

singular values in an attempt to improve on the solution. The study will explore
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the SVD in attempts at improving upon results that would be obtained by the

methods developed in the thesis. We will briefly describe here some important

aspects of the SVD and provide a more extensive discussion in Chapter Three

on review of methods.

Singular Value Decomposition

The singular value decomposition (SVD) of a matrix X is a very useful tool

in the context of least squares problems. It is also very helpful for analysing

properties of a matrix.

Theorem 3: Singular Value Decomposition

Let X ∈ ℜm×p with m ≥ p. Then there exists orthogonal matrices U ∈

ℜm×m and V ∈ ℜp×p and a diagonal matrix ∑ = diag (σ1, . . . , σp) ∈ ℜm×p

with σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0, such that

X = UΣVT

holds. The column vectors of U= [u1, . . . ,um] are called the left singular vectors

and similarly, V = [v1, . . . ,vp] are the right singular vectors. The values σi are

called the singular values of X. If σr > 0 is the smallest nonzero singular value,

then the matrix X has rank r.

proof

The norm-2 of X is defined by

‖X‖2 = max
‖α‖2=1

‖Xα‖2 .

Thus, there exists a vector α with ‖α‖2 = 1 such that z=Xα, ‖z‖2 = ‖X‖2 =: σ.

Let y := z/‖z‖2 . This yields Xα = σy with ‖α‖2 = ‖y‖2 = 1. Next we extend

α into an orthonormal basis of ℜp. If V ∈ ℜp×p is the matrix containing the
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basis vectors as columns, then V is an orthogonal matrix that can be written as

V = [α, V1], where VT
1 α = 0. Similarly, we can construct an orthogonal matrix

U ∈ℜm×m satisfying U = [y, U1], UT
1 y = 0. Now,

X1 = UT XV =

yT

UT
1

X[α, V1] =

 yT Xα yT XV1

UT
1 Xα UT

1 XV1

=

σ wT

0 B

 ,
because yT Xα = yT σy = σyT y = σ and UT

1 Xα = σUT
1 y = 0 since U1 ⊥ y.

We claim that wT := yT XV1 = 0. In order to prove this, we compute

X1

σ

w

=

σ2 +‖w‖2
2

Bw


and conclude from that equation that∥∥∥∥∥∥∥X1

σ

w


∥∥∥∥∥∥∥

2

2

=
(

σ
2 +‖w‖2

2

)2
+‖Bw‖2

2 ≥
(

σ
2 +‖w‖2

2

)2
.

Now, since V and U are orthogonal, ‖X1‖2 =
∥∥UT XV

∥∥
2 = ‖X‖2 = σ holds and

σ
2 = ‖X1‖2

2 = max
‖α‖2 6=0

‖X1α‖2
2

‖α‖2
2

≥

∥∥∥∥∥∥∥X1

σ

w


∥∥∥∥∥∥∥

2

2∥∥∥∥∥∥∥
σ

w


∥∥∥∥∥∥∥

2

2

≥

(
σ2 +‖w‖2

2

)2

σ2 +‖w‖2
2

The last equation reads

σ
2 ≥ σ

2 +‖w‖2
2 ,

and we conclude that w = 0. Thus, we have obtained

X1 = UT XV =

σ 0

0 B

 .
This ends the proof.
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We can now apply the same construction to the sub-matrix B and thus finally

end up with a diagonal matrix. Although the proof is constructive, the singular

value decomposition is not usually computed in this way. An efficient numerical

algorithm was designed by Golub and Reinsch (1970). They first transformed

the matrix by orthogonal householder transformations to bidiagonal form. Then

the bidiagonal matrix is further diagonalised in an iterative process by a variant

of the QR Algorithm.

If we write the equation X = UΣVT in partitioned form, in which Σr con-

tains only the non-zero singular values, we get

X = [U1, U2]

Σr 0

0 0

 [V1, V2]
T

= U1ΣrVT
1

=
r

∑
i=1

σiUiVT
i .

Given the SVD of X, the unique solution with the smallest norm is given as

α
∗ = VΣ

−1UT y =
r

∑
i=1

UT
i y

σi
Vi.

Discrete Ill-Posed Problems

We say that the algebraic problems Xα = y and minα∈ℜp ‖Xα−y‖2
2 are

discrete ill-posed problems if the matrix X is ill-conditioned and all its singular

values decay to zero in such a way that there is no particular gap in the singular

value spectrum.

When discrete ill-posed problems are analysed and solved by various nu-

merical regularization techniques, a very convenient way to display information

about the regularized solution is to plot the norm or seminorm of the solution

versus the norm of the residual vector. In particular, the graph associated with

Tikhonov regularization plays a central role. We will illustrate the use of this
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graph in the numerical treatment of discrete ill-posed problems. The graph is

characterised quantitatively, and several important relations between regularized

solutions and the graph are derived. It is also demonstrated that several methods

for choosing the regularization parameter are related to locating a characteristic

L-shaped “corner” of the graph.

Most numerical methods for treating discrete ill-posed problems seek to

overcome the problems associated with the large condition number of X by re-

placing the problem with a “nearby” well-conditioned problem whose solution

approximates the required solution and, in addition, is a more satisfactory so-

lution than the ordinary (least squares) solution. The latter goal is achieved by

incorporating additional information about the sought solution, often that the

computed solution should be smooth. Such methods are called regularization

methods, and they always include a so-called regularization parameter λ which

controls the degree of smoothing or regularization applied to the problem. As

the regularization parameter λ varies, we obtain a regularized solutions αλ ha-

ving properties that vary with λ. A convenient way to display and understand

these properties is to plot the norm or, more generally, a seminorm of the regu-

larized solution, ‖Lαλ‖ , versus the norm of the corresponding residual vector,

‖Xαλ−y‖ . This was originally suggested in the classic book by Lawson and

Hanson (1974).

Ill-Conditioning in Linear Systems

Let X be a p× p non-singular matrix and let α̂ be the computed solution

to the linear system in Equation (1.1). The error vector is given by e = α− α̂.

If ‖.‖ is the norm on ℜp, then ‖e‖ is a measure of the absolute error and
‖e‖
‖α‖

is a measure of the relative error. Generally, we have no way of determining the

exact value of ‖e‖ and
‖e‖
‖α‖

, since in most practical problems, the exact solution

is not known. One way of testing the accuracy of the computed solution α̂ is to
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compute the residual vector, r = y−xα̂ and see how small the relative residual

‖r‖
‖y‖

=
‖y−Xα̂‖
‖y‖

is. Unfortunately, a small residual does not always guarantee the accuracy of

the solution, as the following example shows.

Example 4

The linear system Xα = y given by1 2

1.0001 2


α1

α2

=

 3

3.0001


has the exact solution α = (1,1)T . Now, the vector α̂ = (3,0)T produces the

residual

r = y−Xα̂ =

 3

3.0001

−
1 2

1.0001 2


3

0

=

 0

0.0002


The relative residual

‖r‖
‖y‖

= 0.000066664, which is small, even though the so-

lution α̂ = (3,0)T is no where near the exact solution α = (1,1)T . Example 4

phenomena can be explained by the following Theorem.

Theorem 4: The Residual Theorem

Let α̂ be the computed solution to the linear system Xα = y. Then

‖α− α̂‖
‖α‖

≤ ‖X‖
∥∥X−1∥∥ ‖r‖

‖y‖
.

Proof

From r = y−Xα̂ = Xα−Xα̂ = X(α− α̂), we have α− α̂ = X−1r where X is

nonsingular. Taking norms gives

‖α− α̂‖ ≤
∥∥X−1∥∥‖r‖ . (1.7)
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Also, from y = Xα, we have ‖y‖ ≤ ‖X‖‖α‖ . That is,

1
‖α‖
≤ ‖X‖
‖y‖

. (1.8)

Combining Equations (1.7) and (1.8) gives

‖α− α̂‖
‖α‖

≤ ‖X‖
∥∥X−1∥∥ ‖r‖

‖y‖
.

Theorem 4 shows that the relative error in the computed solution α̂ de-

pends not only on the relative residual, but also on the quantity ‖X‖
∥∥X−1

∥∥ .
A computed solution can be guaranteed to be accurate only when the product

‖X‖
∥∥X−1

∥∥ ‖r‖
‖y‖

is small. This ends the proof.

The Condition Number of a Matrix

Let X be p× p non-singular matrix. The condition number of X, denoted

by κ(X) is defined as

κ(X) = ‖X‖
∥∥X−1∥∥ .

Example 5

Let

X =

3 3

4 5

 . Then X−1 =
1
3

 5 −3

−4 3


‖X‖

∞
= 9,

∥∥X−1∥∥
∞
=

8
3
. This implies that, κ(X) = 9.

8
3
= 24.

For any p× p non-singular matrix X and natural norm ‖.‖ ,

1 =
∥∥Ip
∥∥= ∥∥X X−1∥∥≤ ‖X‖∥∥X−1∥∥= κ(X).

If κ(X) is small (close to 1), then the matrix is said to be well-conditioned. On

the other hand, if κ(X) is large, that is, if it is significantly larger than 1, then it

is said to be ill-conditioned.
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Convex Optimization

A convex optimization problem is one of the form

minimize f0(x) (1.9)

subject to fi(x)≤ bi, i = 1, . . . , m,

where the functions f0, . . . , fm : ℜn→ℜ are convex, and satisfy the inequality

fi(αx+βy)≤ α fi(x)+β fi(y)

for all x, y∈ℜn and all α, β∈ℜ with α+β= 1, α≥ 0, β≥ 0. The least squares

problem in Equation (1.1) is a special cases of the general convex optimization

problem. Using convex optimization is, at least conceptually, very much like

using least squares or linear programming. If we can formulate a problem as

a convex optimization problem, then we can solve it efficiently, just as we can

solve a least-squares problem efficiently. With only a bit of exaggeration, we can

say that, if you formulate a practical problem as a convex optimization problem,

then you have solved the original problem. There are also some important diffe-

rences. Recognising a least squares problem is straightforward, but recognising

a convex function can be difficult. In addition, there are many more tricks for

transforming convex problems than for transforming linear programmes. Re-

cognising convex optimization problems, or those that can be transformed to

convex optimization problems, can therefore be challenging.

Regularization Methods

The primary difficulty with the discrete ill-posed problems is that they are

essentially under-determined due to the cluster of smaller singular values of the

matrix X. Hence, it is necessary to incorporate further information about the

desired solution in order to stabilise the problem and to single out a useful and
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stable solution. This is the purpose of regularization. Although many types of

additional information about the solution α is possible in principle, the dominant

approach to regularization of discrete ill-posed problems is to require that the

norm-2 or an appropriate semi-norm of the solution be small. An initial estimate

Λα of the solution may also be included in the side constraint. Hence, the side

constraint involves minimization of the quantity

Ω(α) = ‖Lα‖2 . (1.10)

Here, the matrix L is typically either the identity matrix Ip or a p× n discrete

approximation of the (n− p)-th derivative operator, in which case L is a banded

matrix with full row rank. When the side constraint Ω(α) is introduced, one

must give up the requirement that Xα equals y in the linear system in Equation

(1.1) and instead seek a solution that provides a fair balance between minimizing

Ω(α) and minimizing the residual norm ‖Xα−y‖2 . The underlying idea is that

a regularized solution with small semi-norm and a suitably small residual norm

is not too far from the desired unknown solution to the unperturbed problem

underlying the given problem. The same idea also applies to the least squares

problem in Theorem 1.

Undoubtedly, the most common form of regularization is the one known as

Tikhonov regularization. Here, the idea is to define the regularized solution αλ

as the minimizer of the weighted combination of the residual norm and the side

constraint given as

αλ = min
α
‖Xα−y‖2

2 +λ‖Lα‖2
2, (1.11)

where the regularization parameter λ, controls the weight given to minimization

of the side constraint relative to minimization of the residual norm. Clearly, a

large λ (equivalent to a large amount of regularization) favours a small solution

semi-norm at the cost of a large residual norm, while a small λ (that is, a small

amount of regularization) has the opposite effect. λ also controls the sensitivity
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of the regularized solution αλ to perturbations in α and y, and the perturbation

bound is proportional to λ−1. Thus, the regularization parameter λ is an impor-

tant quantity which controls the properties of the regularized solution, and λ

should therefore be chosen with care. We remark that an underlying assump-

tion for the use of Tikhonov regularization in the form of Equation (1.11) is that

the errors in the right-hand side are unbiased and that their covariance matrix is

proportional to the identity matrix. Besides Tikhonov regularization, there are

many other regularization methods with properties that make them better suited

to certain problems or certain computers.

L2-Norm Regularization (Ridge Regression)

In the case of over-determined systems, we minimize ‖Xα−y‖2
2 . Tikho-

nov regularization addresses the numerical instability of the matrix inversion

and subsequently produces lower variance models. This method adds a positive

constant to the diagonals of XT X, to make the matrix non-singular (Boyd &

Vandenberghe, 2004). The analytic solution then becomes

α = (XT X+λI)−1XT y.

proof

A common approach to obtain an approximate solution to a linear system

is to minimize the objective function:

φ(α) = ‖Xα−y‖2
2 +λ‖α‖2

2

where λ > 0. The function can be restated as

φ(α) = (Xα−y)T (Xα−y)+λα
T

α.

Simplifying gives

φ(α) = α
T XT Xα−2(XT y)T

α+yT y+λα
T

α.
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Now, taking the derivative with respect to α, we obtain

∂

∂α
φ(α) = XT Xα+(XT X)T

α−2XT y+2λα

= XT Xα+XT Xα−2XT y+2λα

= 2XT Xα−2XT y+2λα

= 2XT (Xα−y)+2λα.

Setting the derivative to zero gives

∂

∂α
φ(α) = 0 ⇒ XT Xα+λα = XT y

⇒ (XT X+λI)α = XT y.

Therefore, the minimum norm solution is given by

α = (XT X+λI)−1XT y.

Thus,

min
α
‖Xα−y‖2

2 +λ‖α‖2
2

implies that

α = (XT X+λI)−1XT y. (1.12)

This ends the proof.

L1-Norm Regularization (LASSO Regression)

While L2-norm regularization is an effective means of achieving numerical

stability and increasing predictive performance, it does not address other pro-

blems with least squares estimate: parsimony of the model and interpretability

of the coefficient values. While the size of the coefficient values is bounded,

minimizing the sum of squared residual with a penalty on the L2-norm does not

encourage sparsity and the resulting models typically have non-zero values asso-

ciated with all coefficients. It has been proposed that, rather than simply achie-

ving the goal of ‘shrinking’ the coefficients, higher λ values for the L2-penalty
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force the coefficients to be more similar to each other in order to minimize their

joint L2-norm (Tibshirani, 1994). It will be noticed in the review of the lite-

rature that this problem arises because the L2-norm method does not take into

consideration the sparsity of the solution. In other words, the solution produced

presupposes that all the independent variables in the model are significant. A

recent trend has been to replace the L2-norm with an L1-norm. This L1-norm

regularization has many of the beneficial properties of L2-norm regularization,

but yields sparse models that are more easily interpreted (Hastie, Tibshirani &

Friedman, 2001 ).

An additional advantage of L1-penalties is that the models produced of-

ten outperform those produced with an L2-penalty, when irrelevant features are

present in α. This property provides an alternative motivation for the use of

an L1-penalty. It provides a regularized feature selection method, and thus can

give low variance feature selection, compared to the high variance performance

of typical subset selection techniques (Hastie et al., 2001). Furthermore, this

does not come with a large disadvantage over subset selection methods, since it

has been shown that least squares with an L1-penalty comes as close as subset

selection techniques do to an ideal subset selector (Tibshirani, 1994).

Unconstrained Formulation of the L1-Norm Regularization

The L1-norm regularization may be formulated as

g(α) = min
α
‖Xα−y‖2

2

such that ‖Lα‖1 ≤ t.

This is the constrained formulation of the minimization problem. It can be

shown (see Chapter Five) that the problem may also be formulated as

g(α) = min
α
‖Xα−y‖2

2 +λ‖Lα‖1 . (1.13)
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It is clear that this remains an unconstrained convex optimization problem

in terms of α. However, this problem is now non-differentiable when αi = 0

for any αi. Thus, we cannot obtain a closed form solution for the global mi-

nimum in the same way that is done with the L2-penalty. This drawback has

led to the recent introduction of a multitude of techniques for determining the

optimal parameters. Several of these algorithms directly use the unconstrained

optimization problem (Perkins, Lacker & Theiler, 2003), while other techniques

(Sardy, Bruce & Tseng, 1998) use equivalent constrained formulations.

Statement of the Problem

Studies into least squares optimization with an L1- and L2-norm regula-

rization are well documented in the literature. Regularization of least squares

solution is mainly due to the fact that the solution may not be unique in gene-

ral. In particular, it is possible to obtain two least squares solutions that have

a variable with different signs on the two solutions. This creates problems for

interpretation of results. Recent studies on the subject focus particularly on

correcting this anomaly. Many of these researchers have proposed various mo-

difications to some of the optimization techniques to go round the problems that

have been encountered in the implementation of the procedures and algorithms

of these techniques.

Invariably, attempts at obtaining better approaches to the problem also end

up with some inherent difficulties. Usually such difficulties are as a result of the

ill-conditioning of the data matrix. For others, the weakness is as a result of a

sole focus on achieving a model that produces a minimal residual norm without

equal consideration for the structure of the data matrix. For example, Lee, Lee,

Abbeel and Ng (2006) obtained a smoothing approximation to the L1-norm re-

gularization functional and later used Modified Newton’s method which is an
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unconstrained minimization method. They later found the convergence rate of

the solution to be slow which was as a result of ill-conditioning of the data ma-

trix. Yet another challenge is that the L1-norm problem does not generally have

a close form solution and hence difficult to obtain an analytic solution. Soluti-

ons to such a problem therefore relies on numerical approach.

An attempt at obtaining an analytic solution relies on the use of smoothing

approximation that eventually becomes an L2-norm problem. Success at obtai-

ning a good approximation to the L1-norm regularization thus requires a sound

understanding of the L2-norm problem. It appears that efforts at obtaining an

optimal solution to the L1-norm problem cannot be said to be over. This thesis

is also concerned with the study of an L1-norm regularization functional.

Objectives of the Study

The task of this thesis is to carry out a general study of smoothing and non-

smoothing methods of Least Squares Optimization problems using tools from

regularization theory and the theory of ill-posed problems. In particular, we

study some methods in approximating the non-differentiable component in the

loss function. Specifically, we aim to

1. carry out a general study of Tikhonov Regularization;

2. determine techniques that help to overcome the non-differentiability of

the L1-norm regularization in order to improve on the solution to the least

squares problem;

3. investigate the effect of various regularization parameters on the degree

of disparity in the solution; and

4. apply both smoothing and non-smoothing approximations to data fitting.
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Illustrative Datasets

A number of datasets have been selected to illustrate the concepts develo-

ped in this study. These datasets are specifically chosen to enable us highlight

our results using their special features. One of these datasets is the Hilbert ma-

trix which is well known for its ill-conditioned nature and widely used as a

hypothetical test data for showing accuracy of solutions of optimization techni-

ques. We explore with other types of data that are real but are generally ill-

conditioned. These are datasets that exhibit time series components and may

require polynomial fitting. These involve Population Growth and Temperature

Variation over time. The other datasets cover Ozone concentration, Boston Hou-

sing, Crime data and the Prostate Cancer data.

In each of these datasets, we will use our derived method in Chapter Five

to obtain a model that minimizes the sum of squared residual and to determine

how well the model behaves in relation to the other standard methods. In what

follows, we provide detailed description of each of the datasets.

Hilbert Matrices

There are several examples of ill-conditioned matrices, but the class of

matrices that are most studied and that arise in applications are those named

after David Hilbert. Hilbert matrices are square matrices composed of fractional

entries with the largest values located for small values of i and j. In addition,

the smallest entries are located for larger values of i and j.

Definition 1

The n×n matrix Hn, with entries h(i j) =
1

i+ j−1
, 1 ≤ i ≤ n, 1 ≤ j ≤ n is

called the Hilbert matrix of order n.
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The ill-conditioning nature of the Hilbert matrices can be traced back to

the approximation problem. On the interval, the functions are very nearly line-

arly dependent. This means that the rows of the Hilbert matrix are very linearly

dependent which makes the matrix very nearly singular. In such cases, a small

perturbations in the data can result in large perturbations in the answers. In the

original problem, small errors in the function or rounding errors in its calcula-

tion can result in large changes in the coefficients. Furthermore, these matrices

become rapidly ill-conditioned as their size increases. However, this is hard

to demonstrate numerically. For example, a 12× 12 Hilbert matrix,
∥∥H−1

∥∥ is

about 1016. Hence, even with a small residual it is quite possible that the ap-

proximation is not very good. Table 1 demonstrate the relationship between the

condition number and the increase in the size of the Hilbert matrix Hn.

Table 1: Condition Number of n×n Hilbert Matrix

n Cond(Hn)

4 1.5514e+004

5 4.7661e+005

6 1.4951e+007

7 4.7537e+008

8 1.5258e+010

9 4.9315e+011

10 1.6025e+013

11 5.2232e+014

12 1.7408e+016

It is very difficult to compute the inverse of an n×n Hilbert matrix nume-

rically even with implementation of OCTAVE 3.8.2. For instance, when multi-

plying a Hilbert matrix and its inverse together, one should expect the identity
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matrix. However, the product generates a matrix with diagonal entries of ones,

but many other entries are 0(εm).

For want of space, we generate the first three columns of a 12×12 Hilbert

matrix, H12×3, as shown. It can be verified that each entry of the matrix follows

Definition 1. Since rounding of the elements could generate considerable diffe-

rences in the coefficients of the intended model, we will adopt throughout the

work the long format of the matrix in which elements are given to 16 decimal

places.

1.0000000000000000 0.5000000000000000 0.3333333333333333

0.5000000000000000 0.3333333333333333 0.2500000000000000

0.3333333333333333 0.2500000000000000 0.2000000000000000

0.2500000000000000 0.2000000000000000 0.1666666666666667

0.2000000000000000 0.1666666666666667 0.1428571428571428

0.1666666666666667 0.1428571428571428 0.1250000000000000

0.1428571428571428 0.1250000000000000 0.1111111111111111

0.1250000000000000 0.1111111111111111 0.1000000000000000

0.1111111111111111 0.1000000000000000 0.0909090909090909

0.1000000000000000 0.0909090909090909 0.0833333333333333

0.0909090909090909 0.0833333333333333 0.0769230769230769

0.0833333333333333 0.0769230769230769 0.0714285714285714



.

Notice that by Definition 1, the (4, 1) element, for example, is given for i = 4

and j = 1 which gives

h(4, 1) =
1

4+1−1
=

1
4
= 0.25 = h(1, 4).

Generally, h(i, j) = h( j,i) which makes the matrix essentially symmetric. In ad-

dition, all the diagonal elements h( j, j) are equal to h(i, j) for i+ j = j+ j. Thus,

there are nC2 + n− 2 repeating elements. The two elements that are not repea-

ted are the first and the last entries h(1,1) and h(n,n). Furthermore, the values are
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quiet close in magnitude. As a result of these, the columns of the matrix appear

singular especially when the size of the matrix gets large.

Example 6

We create an over-determined system by considering the first 7 columns of

a 12×12 Hilbert matrix. By considering the linear system of the form Xα = y,

y is chosen such that the exact solution is α = [1, 1, 1, 1, 1, 1, 1]T . Solving

the linear system by the least squares approach, the approximate solution is dis-

played in Table 2 with the exact solution.

Table 2: Least Squares Solution

αexact α̂

1.00000000000000 1.000088594853878

1.00000000000000 0.997624278068542

1.00000000000000 1.020212173461914

1.00000000000000 0.975856781005859

1.00000000000000 1.089424133300781

1.00000000000000 0.917808532714844

1.00000000000000 1.017202377319336

From Table 2, the error in the computed solution is 0.0894241333007812

and the condition number of the coefficient matrix is 2.31648078701200e+015

implying that the system is ill-conditioned thereby affecting the accuracy of the

solution. If d is the digits of accuracy of the data and k is the power of the

condition number expressed to base 10, then the number of digits expected to

be lost in the computed solution is d− k. Hence, with the data accurate to 16

digits, the accuracy of the computed solution is given by d− k = 16− 15 = 1

which implies that the least squares solution is accurate to only one digit. The
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solution therefore cannot be a good approximation to the least squares problem.

Since the system is ill-conditioned, an attempt is made to improve upon the

computed solution by using Tikhonov Regularization.

A better idea can be gained by looking at the singular values of a Hilbert

matrix. The computed singular values of a 12×12 Hilbert matrix are shown in

Table 3. Notice that there is not a clear distinction of the number of nonzero

singular values. If we use an estimate of rounding errors as a way to set a sin-

gular value to zero, then one might guess that the rank is either 10 or 11. When

computed using mathematical software such as Octave, rank(H) = 11.

Table 3: Singular Values of 12×12 Hilbert Matrix

i σi

1 1.79537205956200e+000

2 3.80275245955037e−001

3 4.47385487521811e−002

4 3.72231223789118e−003

5 2.33089089021776e−004

6 1.11633574832269e−005

7 4.08237611034721e−007

8 1.12286106661227e−008

9 2.25196455445750e−010

10 3.11134682183084e−012

11 2.64997367869193e−014

12 1.03133344361456e−016

The gradual decay of the singular values is an indication that we are not

dealing with a rank-deficient matrix, but with a situation that is inherently ill-

conditioned. However, it is possible to create some quite complicated schemes
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to try to decide between a very small number and a zero, but not all of them

always work. Thus, it is definitely possible to compute the rank of a matrix

theoretically, however computing the rank is impossible numerically without

the risk of an occasional failure. We can use a parameter along with the singular

value decomposition as a cut-off value to determine which singular values are

retained and others treated as zeros of the rounding error.

Ozone Concentration Data

The data covers the level of atmospheric ozone concentration from eight

daily meteorological measurements made in the Los Angeles basin in 1976. The

response, referred to as ozone, is actually the logarithm of the daily maximum

of the hourly-average ozone concentrations in Upland, California. It involves

330 complete cases of measurements that were made every day that year. Thus,

the data covers 330 observations on a total of ten variables which are described

as follows:

Ozone : Upland Maximum Ozone

VH : Vandenberg 500 mb Height

Wind : Wind Speed (mph)

Humidity : Humidity

Temp : Sandburg AFB Temperature

IBH : Inversion Base Height

DPG : Daggot Pressure Gradient

IBT : Inversion Base Temperature

Vis : Visibility (miles)

DOY : Day of the Year

For this data, we intend to determine how well the method studied provides a

good fit for the Ozone concentration in terms of the nine variables.
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Boston Housing Data

This dataset was taken from the StatLib library which is maintained at Car-

negie Mellon University. It is created by Harrison and Rubinfeld (1978) on

‘Hedonic prices and the demand for clean air’. The data consists of 506 ob-

servations on 14 variables. It seeks to explain the crime rate in Boston using

13 explanatory housing variables. The description of the variables are given as

follows:

CRIM: per capita crime rate by town

ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS: proportion of non-retail business acres per town

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX: nitric oxides concentration (parts per 10 million)

RM: average number of rooms per dwelling

AGE: proportion of owner-occupied units built prior to 1940

DIS: weighted distances to five Boston employment centres

RAD: index of accessibility to radial highways

TAX : full-value property-tax rate per 10,000

PTRATIO: pupil-teacher ratio by town

B: 1000(Bk−0.63)2 where Bk is the proportion of blacks by town

LSTAT: lower status of the population

MEDV: Median value of owner-occupied homes in 1000′s

The data has been studied in Belsley, Kuh and Welsch (1980) and in Quinlan

(1993).

Data for Polynomial Fitting

The layout of data for polynomial fitting is described in the methods in

Chapter Three. As will be demonstrated later, such datasets are inherently ill-
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conditioned, and are therefore suitable for illustrating the features of the techni-

ques studied in the Thesis. One of such datasets is on population growth. It

covers a period of 19 years from an initial period. Figures 3 and 4 show a plot

of the data with polynomial fits of various degrees. It is observed in Figure 4

that the 4th-order polynomial almost coincides with the 3rd-order polynomial.

Table 4 gives the corresponding coefficient estimates for up to degree 4 for the

data.

Figure 3: Graphs of Polynomial Fits up to Degree 3 of Population Data.
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Figure 4: Graphs of Polynomial Fits up to Degree 4 of Population Data.

Table 4: Polynomial Fits of Population Data

Coefficient Degree 1 Degree 2 Degree 3 Degree 4

α0 0.5807 0.0065 0.0001 −0.0000

α1 −12.5513 −0.5898 −0.0125 0.0001

α2 20.6132 0.7431 −0.0180

α3 3.3675 0.9497

α4 1.9602

Table 5: Residual Norms of Polynomial Fits in Table 4

Degree Residual Norms

1 86.324297014518891

2 41.415541335732172

3 13.846617984349306

4 13.402597620075092
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The residual norms of the respective models are given in Table 5. From the table,

it appears that the residuals are almost the same for degree 3 and higher-degree

polynomials, an indication that the best fit may not exceed degree 3. Using the

study methods we will determine the optimum degree for this data.

Since the population data contains few data points, it would be appropriate

to consider another data of similar characteristics but with much more points.

The other data covers annual global temperature anomalies. It is provided by

Jones, Parker, Osborn and Briffa (2016) and also studied in Parker (2016). The

data covers a period of 166 years from 1850 to 2015. Figure 5 shows a plot of

the data with polynomial fit of order 5, 10 and 20.

Figure 5: Graphs of Polynomial Fits of Various Degrees of

Global Temperature Anomaly Data.

In Figure 5, the fitted polynomials are obtained by least squares method.

The figure shows that higher degree polynomial would provide better fit of the
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data. In Table 6, we have the residual norms of the fitted polynomial degrees in

Figure 5.

Table 6: Residual Norms of Polynomial Fits of Global Temperature Anomaly

Data for Specified Degrees

Degree Residual Norms

5 1.479440012542864

10 1.351162363969778

20 1.329395095141014

The table shows that there are some differences in error explained by fits

of degree 10 and higher. This buttresses the fact that higher degree polynomial

would be required to minimize the residuals in the data. We provide a study of

this in Chapter Five.

Organisation of the Thesis

This section outlines the contents within each of the six chapters of the the-

sis, and gives a brief description of these contents.

The Introduction is the first chapter of the study. It looks at the background

to the study which brings out the history of stages of applications of least squares

Optimization with an L1-norm regularization functional and the need for more

innovative efforts in the field. This is followed by the objectives of the study. It

gives the Mathematical background and notations that are used in the study of

Unconstrained optimization.

Chapter Two is the review of relevant literature. It discusses research made

in the field of least squares optimization in relation to both L2-norm and L1-

norm regularization functional.
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In Chapter Three, we review methods used in related works being done

with respect to L1-norm. In this chapter, an ill-posed problem is used to demon-

strate how a solution can be retrieved.

Chapter Four deals with the results that have emerged from the study with

respect to smoothing approximations of the least squares minimization with an

L1-norm regularization functional. In this chapter, three smoothing approxima-

tions are considered which makes use of Tikhonov regularization approach.

Chapter Five also considers non-smoothing methods for solving the same

problem by the use of sub-gradient. The last part of this chapter deals with

applications in data fitting. We will then discuss some observations from the

applications.

In Chapter Six, we summarise the various findings that have emerged from

the study. Finally, we draw appropriate conclusions and make recommendations

based on the results of the study.

Chapter Summary

The chapter has brought out the main motivation for the study. It explains

the concept of L1-regularized least squares and the general non-differentiable

convex problem. Important concepts connected with the problem under study

have been briefly introduced. These include singular value decomposition, ill-

conditioning in linear systems, general regularization methods and unconstrai-

ned formulation of the L1-norm regularization. It then specifies the statement of

the problem and the objectives that will guide the study.

The chapter also describes in detail relevant datasets that will be used to il-

lustrate the concepts developed in the study. It finally provides the organisation

of the thesis which covers six chapters in all.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This chapter reviews related work on several aspects of least squares opti-

mization with L1-norm regularization. We consider L1-regularized optimization

problems, where the L1-norm is used to obtain sparsity of the solution. Many

such problems are versions of the LASSO (Least Absolute Shrinkage and Se-

lection Operator) introduced in Tibshirani (1996). We first review the various

formulations of the regularization functional. We then consider properties of the

L1-regularized solution obtained by various methods. The review will also cover

related applications of the L1-regularized optimization. Other related works are

also reviewed. It looks at methods that have been proposed in the case where

the design matrix X is orthogonal. We then turn attention to methods that have

been proposed for optimizing the LASSO that do not achieve the optimal so-

lution. We will subsequently review other loss functions to which L1-penalty

has been applied, and some of the notable optimization methods used in these

works. Also covered are methods that have been proposed for finding an appro-

priate value of the regularization parameter, and we find that this ties back to

our discussion of optimization methods.

The literature review here are in line with the focus of this thesis, which is

to find a smoothing approximation of the solution to the L1-norm functional by

the method of regularization instead of the Modified Newton’s method which is

usually used in the literature.
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Formulation of the Regularization Functional

Elastic Net regularization involves a penalty term on the Lq-norm of the

parameters, with q ≥ 0 (and not necessarily integral). L2-penalties correspond

to the case where q is 2, while L1-penalties correspond to the case where q is

1 (subset selection is defined as the case where q is 0). An interesting note is

that L1-penalties are the smallest Bridge penalties that yield a convex set for the

constraint region (Tibshirani, 1994). This view also leads to a geometric inter-

pretation of the sparseness properties of the LASSO (Hastie et al., 2001). Fu

(1998) gives a more general form of the corresponding statistical priors associ-

ated with Bridge penalties.

An interesting observation about the sparsity of the LASSO coefficients

was made in Efron, Hastie, Johnstone, and Tibshirani (2002). They state that

the number of non-zero coefficients is bounded by n− 1. Interestingly, they

state that the n− 1 coefficients for a given value of λ will not necessarily in-

clude those selected for the maximum value of λ. A related observation made

by Osborne, Presnell and Turlach (2000) is that the search for t can be restricted

to the range [0,
∣∣XT y

∣∣
∞
].

A final interesting and important property of L1 regularization is the recent

work in Ng (2004) on the effective sample complexity of using L1 regulariza-

tion compared to L2 regularization. This work shows that the sample complexity

grows at least linearly in the number of irrelevant features for many loss functi-

ons when using L2 regularization (this includes if L2-based preprocessing such

as Principal Component Analysis was used), while the sample complexity grows

only logarithmically when L1 regularization is used.

Tibshirani (2013) stated the LASSO fit and solution in a more explicit form

that satisfies the Karush-Kuhn Tucker (KKT) optimality conditions which is sta-
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ted as

XT
i (y−Xα̂) = λiγi, (2.1)

where

γi =


sign(αi), αi 6= 0

i = 1, 2, . . . , n

[−1, 1], αi = 0.

Tibshirani defines an Equicorrelation set ε as

ε = {i ∈ {1, 2, . . . , n} :
∣∣XT

i (y−Xα̂)
∣∣= λ} (2.2)

and Equicorrelation signs s = XT
i (y−Xα̂). Equation (2.2) may therefore be

written as

ε = {i ∈ {1, 2, . . . , n} : |γi|= 1}.

Thus, when y, X are standardised, ε contains the variables that have equal and

maximal absolute correlation with the residual e = y−Xα̂. By definition of

sub-gradient, αi = 0, i /∈ ε, writing the ε portion in Equation (5.14), we have

XT
ε (y−Xεα̂ε) = λs. (2.3)

Noting that λs ∈ row(Xε), λs = XT
ε (XT

ε )
+λs. Making substitutions into Equa-

tion (2.3) and simplifying, the unique LASSO fit was obtained as

Xεα̂ε = Xε(Xε)
+
[
y− (XT

ε )
+

λs
]
. (2.4)

Thus, any LASSO solution is of the form

α−ε = 0 and αε = (Xε)
+
[
y− (XT

ε )
+

λs
]
+y, (2.5)

where y ∈ null(Xε). Since any y ∈ null(Xε) produces a LASSO solution α in

Equation (2.5) provided α̂ has correct signs over non-zero coefficients, that is,
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si = sign(αi), Equation (2.5) is generally written as

y ∈ null(Xε) and si ·
{

αε = (Xε)
+
[
y− (XT

ε )
+

λs
]
+y
}
≥ 0, i ∈ ε. (2.6)

Following Equation (2.5), it is easy to identify a sufficient condition for unique-

ness of the LASSO solution. It is observed that if null(Xε) = {0}, then y = 0

and the LASSO solution in Equation (2.5) is unique.

A number of algorithms have been proposed for paths of L1-norm pro-

blems. It provides a tool for understanding the behaviour of LASSO solutions.

The algorithm by Tibshirani (2013), for example, which is very similar to that

of Efron, Johnstone and Tibshirani (2004), computes a LARS (Least Angle Re-

gression Shrinkage) path described as follows:

1. It begins at λ = ∞ where the solution is trivial.

2. Then as λ decreases, it computes a solution path α̂LARS(λ) which is piece-

wise linear and continuous as a function of λ.

3. Each knot in the path corresponds to an iteration of the algorithm in which

the path’s linear trajectory is altered in order to satisfy the KKT conditi-

ons.

4. If XT
ε Xε is singular, then the KKT conditions over all xi, i ∈ ε no longer

have a unique solution. The algorithm then uses the solution with the

minimum L2-norm (as in Rosset, Zhu and Hastie (2004)). It is claimed

that this provides the basis for the algorithm correctness in the general

case.

A basic assumption underlying most of these algorithms (Osborne et al.

(2000)) is that rank Xε = |ε| throughout the path. This assumption has been

identified by Tibshirani (2013) to be incorrect and can lead to errors in LASSO

solutions. His algorithm described above therefore makes provision for this
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error. Since many algorithms specify a search direction, it is important to make

explicit the nature of the direction used in the description of algorithm provided.

Equation (2.5) which computes the coefficients for xi, i ∈ ε may be written as

αε = (Xε)
+
[
y− (XT

ε )
+

λs
]
= c−λkd (2.7)

for the kth iterate where λ= λk. In Equation (2.7), c=(Xε)
+y and d=(Xε)

+(XT
ε )

+

s = (XT
ε Xε)

+s. Equation (2.7) shows that the solution is a linear function of the

regularization parameter.

Recent studies (James, Paulson, & Rusmevichientong, 2013) have sort

to enhance the performance of methods for L1-regularized least squares pro-

blems by imposing further constraints on the LASSO formulation. This has

lead to what is called the Constrained LASSO. This approach augment the stan-

dard LASSO with linear equality and inequality constraints. The Constrained

LASSO may be stated as

min
α

= ‖y−Xα‖2
2 +λ‖α‖1 (2.8)

subject to Aα = b and Cα≤ d.

where y ∈ ℜm, X ∈ ℜm×p and α ∈ ℜp. As indicated, L1-penalty enables the

imposition of prior knowledge in coefficient estimates in terms of sparsity. By

augmenting the LASSO, the constraints provide additional tool for prior kno-

wledge about the data to be incorporated into the solution. A typical problem

that need such tools involve data that have time series components. Such da-

tasets appear to have monotone trend and the knowledge of this could be and

has been incorporated into methods for estimating the trend. This is done by

using isotonic regression (Wu, Woodroofe, & Mentz, 2001). In the formation in

Equation (2.8), isotonic regression is a special case of the constrained LASSO

with λ = 0. In this case, there is an ordering principle among the parameters

as α1 ≤ α2 ≤ ·· · ≤ αp. It would be deduced therefore that methods for L1-

regularized least squares problem are not expected to perform well on datasets
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with monotone trend. It is thus possible for the least squares and L2-norm regu-

larization to perform better than L1-norm regularization.

Properties of Solution to L1-Norm Problem

It is well-known that optimizing parameters under an L2-penalty is equiva-

lent to finding the mean (and mode) of the posterior distribution of the parame-

ters subject to Gaussian prior probabilities on the parameters (Tibshirani, 1994).

It is shown (Tibshirani, 1994) that an L1-penalty is equivalent to finding the

mode (but not necessarily mean) of the posterior distribution of the parameters

under a double exponential prior (whose heavy tailed nature yields further insig-

hts into the sparsity of the solutions). Finally, Roth (2004) presented a method

to compute posterior predictive probabilities over the predictions made using a

model that was estimated subject to an L1-penalty, by using exponential hyper-

priors and analytically integrating them out. This leads to an efficient method

for estimating the variance of predictions made by the model. The solution in

terms of variables contained in ε in Equation (2.2) have been identified to have

important properties. It is found (Tibshirani & Taylor, 2011; Tibshirani, 2013)

that for any fixed data matrix X and λ > 0, and for every y ∈ ℜm, the LASSO

solution has what is called an Active Set A, equal to ε and therefore achieves

the largest active set of any LASSO solution. Similarly, it has been established

(Osborne et al., 2000; Rosset et al., 2004) that for any y, X and λ > 0, there

exists a LASSO solution whose set of active variables is linearly independent.

This means in particular that there exists a solution whose active set A has size

|A| ≤ min(m, p). This result has been highlighted by Tibshirani (2013). A key

point in the proof of this result is to note what is referred to as the support

A = supp(α̂), which is the active set, and assume that rank(A) < |A| . Then for
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some i ∈ A and the set of signs s = {−1, 1} ∈ℜ|ε| defined in Equation (2.2),

si xi = ∑
j∈A\{i}

a j s j x j,

where

∑
j∈A\{i}

a j = 1.

That is, si xi lies in the affine span of s j x j, j ∈ A \ {i}. By this result, it is

possible to obtain a smaller set of coefficients α̃ in A such that Xα̃ = Xα̂ and

‖α̃‖1 = ‖α̂‖1 , and thus, provides a LASSO solution with fewer coefficients. If

one proceeds this way, one could obtain a solution with active set that satis-

fies rank(A) = |A| . It is further pointed out that for the smallest active set, the

subspace col(XA) is invariant under all choices of active set A for almost every

y ∈ ℜm. That is, one cannot find a solution whose active set has size less than

|A| , as this would necessarily change the span of the active variables.

Tibshirani has described variables in a LASSO solution as either dispensa-

ble or indispensable for a given regularization parameter. A dispensable variable

has a non-zero coefficient at one solution but a zero coefficient at another. On the

other hand, an indispensable variable has a nonzero coefficient on all LASSO

solutions. Tibshirani illustrates further relationship between linear dependence

and indispensability.

Other Related Works

Under approximation methods, computing the optimal LASSO parameters

is a convex optimization problem, and thus any local minimum found is gua-

ranteed to be a global minimum. In addition, we have surveyed in this thesis

several highly efficient algorithms for computing the optimal LASSO parame-

ters. Nevertheless, several works (in prominent Machine Learning venues) have

presented highly efficient but sub-optimal algorithms. Grandvalet and Canu
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(1998) observed that the LASSO is equivalent to a technique called the ‘adap-

tive ridge’, that places a separate non-negative penalty on the absolute value of

each coefficient (similar to a Relevance Vector Machine). This equivalence sim-

ply requires an obvious constraint on the sum of the values of these penalties.

Using this equivalence, they propose to use a Fixed Point algorithm for compu-

ting the adaptive ridge, in order to compute LASSO parameters.

Beginning from an L2-penalised solution, the Fixed Point algorithm itera-

tes between estimating these values, and estimating the coefficient vector (si-

milar to the Expectation Maximization algorithm). However, the authors say

that the method is likely not to be globally convergent. This counter-intuitive

result appears to be due to the slightly different constraints that the adaptive

ridge uses, and that the constraint enforcing the equivalence with the LASSO is

not properly taken advantage of during the Fixed Point iterations. The authors

implementation of this approach was included in several experiments. Based on

these experiments, Schmidt (2005) confirmed that this method indeed does not

find the optimal solution, the models generated are too sparse for small value of

the regularization parameter λ (as in Relevance Vector Machines) and not sparse

enough for large values of λ, and also the method finds its sub-optimal solution

highly efficiently, but there is no significant saving over some of the optimal

methods.

Yongdai and Jinseog (2004) presented a highly efficient but sub-optimal

approach for the LASSO problem. This approach used a gradient descent-based

approach related to L1 boosting. The motivation in that work was to avoid Qua-

dratic Programming and approximately estimate the parameters for very large

problem sizes.

Although the LASSO formulation has become very popular, L1-norm regu-

larization has become an even more popular topic recently in the context of clas-

sification. Here, the target variable takes one of several classes, and least squares
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generally gives poor predictions compared to techniques such as Support Vector

Machines, Boosting, and Logistic Regression. Presented in Tibshirani (1994)

was a strategy for estimating L1-penalized parameters of loss functions that can

yield a quadratic approximation. This simply involves using a loop that uses

a (weighted) LASSO solver. Roth (2004) extended the Active Set method of

Osborne et al. (2000) to models (under the name ‘Generalised LASSO’), focu-

sing specifically on Logistic Regression. The ‘Grafting’ method of Perkins et al.

(2003) and the ‘Gauss-Seidel’ method of Shevade and Keerthi (2003) were also

presented for the case of Logistic Regression. Several techniques have also been

presented exclusively for the case of Logistic Regression with an L1-penalty, alt-

hough it is clear that many of these techniques would also apply in the LASSO

scenario. Zhang et al. (2002) used a strategy for Logistic Regression with an L1-

penalty called stochastic sub-gradient descent. The key idea behind this method

is to ‘jitter’ away from the point of non-differentiability by taking a small step

along a sub-gradient. The weights do not become exactly zero in this model,

and are thresholded when the algorithm terminates. Genkin, Lewis and Madi-

gan (2007) presented an approach based on cyclic coordinate descent (with a

minor modification to allow re-introduction of variables currently at 0). Three

different approaches based on iterative scaling for Logistic Regression with an

L1-norm loss were suggested in Goodman (2004).

Although least squares and Logistic Regression are applicable in a wide

variety of scenarios, L1-penalties have been extended to even wider array of

problems. This includes Multi-layer Perceptrons (Neural Networks trained by

back propagation) (Perkins et al., 2003), Support Vector Machines and Genera-

lized Additive Models (Grandvalet & Canu, 1998), Probit Regression (Krishna-

puram & Hartemink, 2005), the L1 and the Huber loss functions (Sardy, Tseng,

& Bruce, 2001). Finally, as discussed in Rosset et al. (2004), the Boosting

algorithm optimizes a criteria that is approximated by an L1-penalty on the ap-
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propriate loss function.

Under orthogonal design matrices, there have been several approaches pro-

posed for computing the LASSO estimate in the special case where XT X = I. In

the Basis Pursuit Denoising literature (where Orthogonal Design matrices can

be constructed), Sardy et al. (1998) introduced a method based on the Block

Coordinate Relaxation (BCR) strategy. Specifically, it minimizes the objective

function with respect to a block of variables, keeping the others fixed. Two met-

hods are proposed for selecting these blocks (systematic cycling and optimal

descent). Convergence of the algorithm is proved, and an empirical test with the

Interior Point method of Chen, Donoho and Saunders (1999) is performed. It is

shown that the BCR strategy is at least as fast as this Interior Point method, and

that the BCR strategy can yield approximate solutions much more efficiently.

Tibshirani also briefly discussed the orthogonal design case, defining the opti-

mal solution and showing that the LASSO gives the same estimate as the Garotte

function in this case (Tibshirani, 1994). Later, an efficient and trivial algorithm

that takes advantage of this definition was presented in Osborne et al. (2000).

Next on regularization parameter estimation, a parallel issue to optimizing

the LASSO parameters given a fixed value of λ is selecting a good value of the

regularization parameter λ. Tibshirani (1994) proposed three methods for com-

puting an appropriate value of λ. The first was the simple but computationally

expensive cross-validation procedure (since it involves solving a large number

of similar problems). The second was a computationally simple but less accu-

rate unbiased estimate of risk (here only one problem is solved). Finally, the

third method (and recommended by the author) is a generalised cross-validation

scheme that is less computationally expensive than cross-validation but provi-

des a better estimate than the unbiased estimate of risk. Zhang et al. (2002)

later proposed a randomized variant of Generalised Approximate Cross Valida-

tion for regularization parameter estimation. This work also proposed to use
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a strategy called ‘slice modeling’ to solve the similar optimization problems

more effectively. Another contribution of the influential work of Osborne et

al. (2000) was an extremely useful tool for hyper-parameter estimation, that

also vastly increases the interpretability of the models. They observed that the

coefficient values follow a piecewise-linear path as t changes. Combined with

their active set method that allows ‘warm-starts’ from lower t values, they pre-

sented a homotopy-based algorithm that computes the LASSO coefficients for

all values of t. Efron et al. (2002) later termed the phrase ‘regularization path’

for this idea, and showed that this method allows computation of all possible

values of t using the same asymptotic complexity of solving an ordinary least

squares problem. Although it is not explored in detail in this thesis, several of

the other LASSO optimization methods discussed would be used for efficient

computation of the regularization path.

Applications of L1-Norm Regularization

Many of the works related to the LASSO have focused exclusively on pu-

blicly available (small) benchmark datasets. Among the more ambitious and

diverse applications, Sardy et al. (1998) applied the method to detection of

incoming radar signatures, Zhang et al. (2002) applied Basis Pursuit to epide-

miological studies, and Zheng, Jordan, Liblit and Aiken (2004) applied Logistic

Regression with an L1-penalty for identifying features associated with program

crashes. Among the most recent works, two of the areas where the LASSO is

showing significant potential are the analysis of microarray and other forms of

genetic data (Roth, 2004; Shevade & Keerthi, 2003), and in Natural Language

Processing applications (Goodman, 2004). This data usually has an extremely

large number of features and relatively few observations. Thus, sparse interpre-

table models are highly desirable. Another area where the author of this work

sees a need for sparse regularization is Computer Vision, where computationally
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expensive and redundant filter banks are currently used. Increasing the sparsity

of these filter banks would be highly desirable, and could vastly increase the

speed at which data can be analysed.

An interesting application of L1 regularization is total variation denoising

(Rudin, Osher & Fatemi, 1992). This has served as inspiration for the L1 mean

and covariance filtering considered by Annergren (2012). Mean and covariance

filtering is an important problem in several fields of research, for example econo-

mics and biology. It is used for processing data and to discover trends. Through

knowledge of the trends one can, for instance, simplify the task of identifying

parametric models describing the data. In Kim and Kim (2004), they perform

L1 trend filtering. They assume that the mean is piecewise linear and they use

an interior-point method of Boyd and Vandenberghe (2004), to solve the opti-

mization problem.

In Banerjee, Ghaoui and Aspremont (2008), they do model selection based

on multivariate Gaussian data, that is, they find the sparsity pattern (elements

equal to zero) of the inverse covariance matrix of the data. To promote sparsity,

an L1-regularized maximum likelihood estimator is used and to obtain a convex

optimization problem, the decision variable is chosen as the inverse covariance

matrix. Annergren (2012) also used an L1-regularized maximum likelihood es-

timator and the inverse covariance matrix as the decision variable. However,

they seek to find a piecewise constant covariance matrix instead of its sparsity

pattern, and they used ADMM.

Many Model Predictive Control (MPC) implementations boil down to sol-

ving a quadratic programme (Boyd & Vandenberghe, 2004) at each sampling

instance of the system. This requires methods than can find and implement the

optimal solution at the same rate as the sampling time. The available methods

can be divided into two main groups: explicit MPC and on-line MPC. In explicit

MPC, the solutions to all possible quadratic programmes are calculated off-line

47

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



and then stored in a look-up table to be used on-line. Unfortunately, the size

of the table grows exponentially with respect to the time horizon, number of

states and input dimensions used in the MPC (Wang & Boyd, 2010). Therefore,

explicit MPC is not suitable for medium - to large scale problems. For an exam-

ple of explicit MPC, see Bemporad, Morari, Dua and Pistikopoulos (2002). In

on-line MPC, the quadratic programme is solved in real-time at each sampling

instance. Depending on the system to be controlled and the size of the over-all

quadratic programme, this may require a very fast and efficient algorithm. Three

commonly used algorithms are the interior-point method, active set method and

fast gradient method. For examples of an interior-point method used for MPC,

see Wang and Boyd (2010) and Rao, Wright and Rawlings (1998), an active set

method, see Ferreau, Bock and Diehl (2008), and a fast gradient method, see

Richter, Jones and Morari (2009).

Several tricks exist for improving the speed of on-line MPC when using an

interior point method. In Wang and Boyd (2010), they emphasise two already

known ideas, exploitation of problem structure and warm-start of algorithm, and

a new idea consisting of early termination of the algorithm. They show in a si-

mulation study that, even though the optimal solution obtained in each sample

is less accurate, the control performance remains acceptable. In addition, a Ric-

cati recursion is commonly used in both interior-point and active set methods to

efficiently solve the set of linear equations that occur when finding the optimal

solution.

The basic total least squares problem and its solution by the singular va-

lue decomposition was introduced by Golub and Van Loan (1980). Van Huffel

and Vandewalle (1989) considered multi-variable and non-generic cases, when

the problem has no solution and generalised the algorithm of Golub and Van

Loan (1980) to produce a solution in these cases. Statistical properties of the

total least squares method were studied by Gleser (1981), who proved that the
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method yields a consistent estimator for the true parameter value in the errors in

variables setting (Fuller, 1987; Carroll, Ruppert & Stefanski, 1995). The noise

assumptions that ensure consistency of the basic total least squares method im-

ply that all elements of the data matrix are measured with equal precision, an

assumption that may not be satisfied in practice.

A variation of the total least squares problem is the data least squares pro-

blem (Degroat & Dowling, 1991), where the matrix X is noisy and the vector

y is exact. When the errors are row-wise independent with equal row covari-

ance matrix (which is known up to a scaling factor), the generalised total least

squares problem formulation (Van Huffel & Vandewalle, 1989) extends the con-

sistency of the basic total least squares estimator. In addition to the work on least

squares temporal difference methods as well as L1 regularization methods, there

has been some recent work on regularization and feature selection in Reinforce-

ment Learning. For instance, Farahmand, Ghavamzadeh, Szepesvari and Man-

nor (2009) consider a regularized version of Temporal Difference (TD)-based

policy iteration algorithms, but only specifically considered L2 regularization.

However, they focused mainly on showing how such regularization can guaran-

tee theoretical convergence properties for policy iteration, which is mainly an

orthogonal issue to the L1 regularization.

The L1-norm is a matrix norm that penalises the sum of maximum abso-

lute values of each row. This regularizer encourages row sparsity, that is, it

encourages the entire rows of the matrix to have zero elements. In essence, this

type of regularization aims at extending the L1 framework for learning sparse

models to a setting where the goal is to learn a set of sparse models. Lear-

ning algorithms based on L1-regularized loss functions have had a relatively

long history in machine learning, covering a wide range of applications such

as sparse sensing, Donoho (2004), L1-logistic regression, Ng (2004) and struc-

ture learning of Markov networks Lee, Battle, Raina and Ng (2007). A well
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known property of L1-regularized models is their ability to recover sparse so-

lutions. Because of this, they are suitable for applications where discovering

significant features is of value and where computing features is expensive. In

addition, it has been shown that in some cases, L1 regularization can lead to

sample complexity bounds that are logarithmic in the number of input dimen-

sions, making it suitable for learning in high dimensional spaces (Ng, 2004).

Turlach, Venables and Wright (2005) developed an interior point algorithm for

optimizing a twice differentiable objective regularized with an L1-norm. One of

the limitations of this approach is that it requires the exact computation of the

Hessian of the objective function. This might be computationally expensive for

some applications both in terms of memory and time. An alternative approach

was proposed by Schmidt, Murphy, Fung and Rosale (2008), who combined a

gradient-descent method with independent L∞ projections. For the special case

of a linear objective function, the regularization problem can be expressed as

a linear programme (Quattoni, Carreras, Collins, & Darrell, 2009). While this

is feasible for small problems, it does not scale to problems with large number

of variables. Duchi, Shalev-Shwartz, Singer and Chandra (2008) also propo-

sed an L1 projection algorithm which is a special case of the algorithm where

m = 1. The derivation of the general case for L1 regularization is significantly

more involved as it requires reducing a set of L∞ regularization problems tied

together through a common L1-norm to a problem that can be solved efficiently.

Similar to the L1-norm, the L2-norm has also been proposed for sparse approxi-

mation. This norm penalises the sum of the L2-norms of each row (Yuan & Lin,

2006; Meier, Van de Geer & Buhlmann, 2006; Simila & Tikka, 2007; Park &

Hastie, 2006; Obozinski, Taskar & Jordan, 2006; Argyriou, Evgeniou & Pontil,

2007; Schmidt, Van den Berg, Friedlander & Murphy, 2009). The principle

of parsimony is central to many areas of science: the simplest explanation to

a given phenomenon should be preferred over more complicated ones. In the
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context of machine learning, it takes the form of variable or feature selection

and it is commonly used in two situations. First, to make the model or the pre-

diction more interpretable or computationally cheaper to use, that is, even if

the underlying problem is not sparse, one looks for the best sparse approxima-

tion. Second, sparsity can also be used given prior knowledge that the model

should be sparse. For variable selection in lineal models, parsimony may be

directly achieved by penalisation of the empirical risk or the log-likelihood by

the cardinality of the support of the weight vector. However, this leads to hard

combinatorial problems. In particular, when the sparse model is assumed to

be well-specified, regularization of the L1-norm is adapted to high-dimensional

problems, where the number of variables to learn from may be exponential in

the number of observations.

The LASSO (Tibshirani, 1996) is a popular method for regression that uses

an L1 penalty to achieve a sparse solution. In the signal processing literature,

the LASSO is also known as basis pursuit (Chen, Donoho & Saunders, 1998).

This idea has been broadly applied, for example, to generalised linear models

(Tibshirani, 1996) and Cox’s proportional hazard models for survival data (Tibs-

hirani, 1997). There has been an enormous amount of research activity devoted

to related regularization methods, that is, the grouped LASSO by Yuan and Lin

(2007); Meier, Van De Geer and Buhlmann (2008), where variables are inclu-

ded or excluded in groups; the Dantzig selector by Candes and Tao (2007), on

a slightly modified version of the LASSO; the Elastic Net by Zou and Hastie

(2005) for correlated variables, which uses a penalty that is part L1 and part L2;

L1 regularization paths for generalised linear models by Park and Hastie (2007);

regularization paths for the support-vector machine by Hastie, Rosset, Tibshi-

rani and Zhu (2004); the graphical LASSO by Friedman, Hastie, Hoefling and

Tibshirani (2008) for sparse covariance estimation and undirected graphs.

Efron et al. (2004) developed an efficient algorithm for computing the en-
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tire regularization path for the LASSO. Their algorithm exploits the fact that the

coefficient profiles are piecewise linear, which leads to an algorithm with the

same computational cost as the full least squares fit on the data (see also Os-

borne et al. (2000)). Rosset and Zhu (2007) characterise the class of problems

where piecewise-linearity exists - both the loss function and the penalty have

to be quadratic or piecewise linear. Van der Kooij (2007) independently used

coordinate descent for solving Elastic-Net penalised regression models. Recent

rediscoveries include Friedman, Hastie, Hoefling and Tibshirani (2007) and Wu

and Lange (2008a). The first paper recognised the value of solving the problem

along an entire path of values for the regularization parameters, using the current

estimates as warm starts. This strategy turns out to be remarkably efficient for

this problem. Several other researchers have also re-discovered coordinate des-

cent, many for solving the same problems notably Shevade and Keerthi (2003),

Krishnapuram and Hartemink (2005), Genkin et al. (2007) and Wu, Chen, Has-

tie, Sobel and Lange (2009).

Friedman, Hastie and Tibshirani (2010) extended the work of Friedman

et al. (2007) and developed fast algorithms for fitting generalised linear mo-

dels with Elastic-Net penalties. In particular, their models include regression,

two-class logistic regression, and multinomial regression problems. Their algo-

rithms can work on very large datasets, and can take advantage of sparsity in the

feature set.

Adding an L1-norm constraint or an L1-norm regularization term to an op-

timization problem, a sparse solution can be achieved in some applications. A

sparse solution usually benefits us in some aspects: good interpretation, Efron

et al. (2004) and memory savings. The LASSO, Efron et al. (2004), a repre-

sentative L1- regularized least squares problem, has attracted more and more

attentions from the field of artificial intelligence. It has a wide range of applica-

tions, such as image deblurring, Beck and Teboulle (2009), sparse coding, Lee
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et al. (2006), curve-fitting and classification, Bishop (2006).

In these applications, how to efficiently solve the L1-regularized least squa-

res problem becomes a critical issue. Most existing optimization methods for

the L1-regularized least squares problem can be broadly classified into three ca-

tegories. First, some algorithms are designed by transforming L1-regularized

least squares as a constrained quadratic programming problem. This is achie-

ved by either introducing an auxiliary variable, or splitting the variable into the

positive and negative parts. Representative algorithms include interior method

by Kim, Koh, Lustig, Boyd and Gorinevsky (2007) and Figueiredo, Nowak and

Wright (2007).

However, these methods double the variable size, making the optimiza-

tion more costly. Second, several algorithms are developed in the fixed-point-

type framework: A gradient descent operation is first done, and then a soft-

thresholding operation is performed. The most representative algorithms is the

Fast Iterative Shrinkage thresholding Algorithm (FISTA) by Beck and Teboulle

(2009).

One other fixed-point-type algorithms is the Forward-Backward Splitting

(FOBOS) by Duchi et al. (2008), etc. However, these algorithms are first-order

methods, not utilising the second-order information. It is a further development

based on Least Angle Regression (LARS) by Efron et al. (2004) and Feature-

Sign (FS) search algorithm by Lee et al. (2007).

Lagrangian relaxation and duality have been effective tools for solving

large-scale convex optimization problems and for systematically providing lo-

wer bounds on the optimal value of non-convex (continuous and discrete) op-

timization problems. Sub-gradient methods have played a key role in this fra-

mework providing computationally efficient means to obtain near-optimal dual

solutions and bounds on the optimal value of the original optimization pro-

blem. Most remarkably, in networking applications, over the last few years,
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sub-gradient methods have been used with great success in developing decen-

tralised cross-layer resource allocation mechanisms (see Low & Lapsley, 1999);

Srikant (2004) for more on this subject). The sub-gradient methods for solving

dual problems have been extensively studied starting with Despite widespread

use of the sub-gradient methods for solving dual (non-differentiable) problems,

there are some aspects of sub-gradient methods that have not been fully studied.

In particular, practical applications, the main interest is in solving the primal

problem. In this case, the question arises whether we can use the sub-gradient

method in dual space and exploit the sub-gradient information to produce pri-

mal near-feasible and near-optimal solutions.

Application of the LASSO to logistic regression was proposed in Tibshi-

rani (1996); coordinate descent methods for logistic, multinomial, and Poisson

regression were developed in Friedman et al. (2007), Friedman et al. (2010),

Wu and Lange (2008a), and Wu et al. (2009).

In the past two decades, regularization methods based on the L1-norm, have

become immensely popular. This led to the question whether L1-based techni-

ques should replace the simpler, faster and better known L2-based alternatives as

the default approach to regularization techniques. The tremendous advantages

of L1-based techniques are not in doubt. However, such techniques also have

their limitations. This thesis explores advantages and disadvantages compared

to L2-based techniques using several practical case studies. Taking into account

the considerable added hardship in calculating solutions of the resulting compu-

tational problems, L1-based techniques must offer substantial advantages to be

worthwhile.

Ill-posed problems typically require some regularization in order to com-

pute a credible approximate solution in a stable, well-defined manner. In this

thesis, we consider such problems where the objective function is convex. Con-

vex non-differentiable, also known as convex non-smooth optimization looks at
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problems where the functions involved are not continuously differentiable. The

gradient does not exist, implying that the function may have corner points and

thus cannot be approximated locally by a tangent hyperplane or by a quadra-

tic approximation. Directional derivatives still exist because of the convexity

property.

Chapter Summary

The view of the literature has focused on obtaining the right formulation

of the L1-norm regularization functional that produces an optimal solution. The

aim has been to obtain a sparse solution that is better than the Tikhonov regu-

larization in particular. A number of important techniques have been employed

in determining suitable methods. These include the sub-gradient methods and

truncated Newton’s interior point method. The methods also have their accom-

panying algorithms. The literature also shows widespread applications of the

L1-norm regularization. This thesis will also consider regularization methods

that ensure sparsity. It will make use of the Sub-gradient and Singular Value

Decomposition as some of the main techniques in the study of a LASSO solu-

tion. The focus of application will be data fitting.
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CHAPTER THREE

RESEARCH METHODS

Introduction

Regularization methods are often used to obtain a stable and smooth so-

lutions to ill-posed problems. To obtain a meaningful solution, it is necessary

to incorporate some additional qualitative information about the desired solu-

tion α. Such additional information is then used as a side constraint to control

the smoothness of the solution. The first part of this chapter reviews the least

squares minimization with an L2-norm regularization functional and the second

part is about a non-smoothing method known as the Sub-gradient method for

minimizing a least squares objective function.

Tikhonov Regularization (Ridge Regression)

When X is rank-deficient or very nearly singular, standard algorithms often

give solutions that vary rapidly, with large positive and negative values. To

stabilise the computation, we add a term that penalises the large components

and thereby reduces them as follows

φλ(α) = ‖Xα−y‖2
2 +λ‖Lα‖2

2 , (3.1)

where λ is the regularization parameter which controls the weight given to the

minimization of the square of the constraint ‖Lα‖2 , relative to the minimization

of the square of the residual norm ‖Xα−y‖2 . The matrix L is the (n− p)× n

discrete approximation of the pth derivative operator. A large λ favours a small

solution norm at the expense of a large residual norm, while a small λ favours a

large solution norm at the expense of a small residual norm.

The minimizing solution αλ is given by the non-singular linear system as

αλ = (XT X+λL)−1XT y. (3.2)
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For p = 0, L = I, is the n× n identity matrix which is known as Order Zero

Regularization. Thus, the regularized solution in this case is given as

αλ = (XT X+λI)−1XT y. (3.3)

Regularization by Equation (3.3) dampens components that are large in magni-

tude, but it may not inhibit components that oscillate with moderate amplitudes.

If those components are undesirable, then a stronger regularization is needed.

Thus, we introduce another penalty term that is large for rapid changes in the

solution. For this we consider p = 1, and L = (n−1)×n, discrete approxima-

tion of the first derivative operator is known as Order One Regularization.

Thus, the regularized solution is given as

αλ = (XT X+λDT
1 D1)

−1XT y, (3.4)

where D1 is the (n−1)×n matrix with elements defined as

(D1)i j =


1, if i = j

−1, if i = j−1 or j = i+1

0, otherwise.

That is,

D1 =



1 −1 0 · · · 0

0 1 −1 . . . ...
... . . . 1 . . . 0

0 · · · 0 1 −1


.

A stronger regularization is based on another minimization of the form where

p = 2, which implies L = (n−2)×n is the discrete approximation of the second

derivative operator which is known as Order Two Regularization.

Thus, the regularized solution is given as

αλ = (XT X+λDT
2 D2)

−1XT y, (3.5)

57

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



where D2 is the (n−2)×n matrix with elements defined as

(D2)i j =


−2, if i = j

1, if i = j+1 or j = i−1

0, otherwise.

That is,

D2 =



−2 1 0 · · · 0

1 −2 1 0
...

0 1 −2 . . . 0
... 0 . . . . . . 1

0 0 0 1 −2


.

Next, we consider the computation of the generalised solution to the linear sy-

stem of the form

Xα = y. (3.6)

Computing Generalised Solutions

To avoid the non-existence and non-uniqueness issues in solving Equation

(3.6), we need to compute the generalised solution α∗0 of the system. By the

well-known rules concerning solution of a linear system and the rank of a ma-

trix, every system has a generalised solution for all X and y.

Theorem 5

A unique generalised solution for the over-determined system exists for all

X and y from Equation (3.6) of the form

α
∗
0 =

p

∑
i=1

UT
i y

σi
Vi (3.7)

where σ1,σ2, . . . ,σp are all the nonzero singular values, with Ui and Vi the

corresponding right and left singular vectors of X.
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Proof

We consider singular value decomposition to solve linear systems, in the

exact or the least squares sense. Assume that the singular values are ordered

such that σ1,σ2, . . . ,σp. Furthermore, we will also take that m ≥ p and also

assume that σi > 0,∀i = 1,2, · · · , p; that is rank(X) = p. Then, we develop

the generalised solution by using a solution of the least squares approximation,

XT Xα0 = XT y. Suppose we write

y =
m

∑
i=1

yiUi

where Ui are the orthonormal eigenvectors of XT X. Then, because of the ort-

honormality of the Ui’s then by a simple substitution yi = UT
i y. Expanding the

result gives

α0 =
p

∑
i=1

aiVi.

Thus, from substitution,

XT Xα0 = XT X
p

∑
i=1

aiVi =
p

∑
i=1

aiσ
2
i Vi.

In addition,

XT y = XT
m

∑
i=1

yiUi =
p

∑
i=1

yiσiVi,

where the last step comes from XT Vi = 0, for i = p+1, p+2, . . . ,m. It follows

then from comparing the expansions for XT y and XT Xα0, that

ai =
UT

i y
σi

and therefore we have

α0 =
p

∑
i=1

UT
i y

σi
Vi.

This ends the proof.

In this case, we can change the problem to finding the least squares solution

of minimum norm. Thus, we have the following equality

‖α0‖2 =
p

∑
i=1

a2
i
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in which we obtain the smallest norm by setting the in-determinant coefficients

to zero. Therefore, the minimum norm least squares solution is given by Equa-

tion (3.7).

Definition 2

Singular value decomposition with damping is the method where a good

choice of λ can get a relatively smooth solution that is still a reasonably good

approximation to the true solution.

We show that the solution corresponding with the singular value decompo-

sition of Equation (3.3) can be expressed in component form as

αλ =
p

∑
i=1

σi

σ2
i +λ

UT
i yVi.

Proof

Using the singular value decomposition of the matrix X = USVT and then sub-

stituting into Equation (3.3) gives

αλ =
[
(USVT )T (USVT )+λI

]−1
(USVT )T y

=
(

VSUT USVT +λI
)−1

VSUT y

=
(

VS2VT +λVIVT
)−1

VSUT y

=
[
V(S2 +λI)VT

]−1
VSUT y

= V(S2 +λI)−1VT VSUT y

= V(S2 +λI)−1SUT y,

where (S2 +λI)−1 is the diagonal matrix given by

(S2 +λI)−1 =



1
σ2

1+λ
0 · · · 0

0 1
σ2

2+λ
0 · · · 0

... · · · . . . ...

0 0 · · · 1
σ2

n+λ


.
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Therefore, in component form, we have

αλ =
p

∑
i=1

σi

σ2
i +λ

UT
i yVi.

This ends the proof.

Singular Value Decomposition of X in component form can be written as

αreg =
p

∑
i=1

fi
UT

i y
σi

Vi, (3.8)

where fi is the filter factors and is given by

fi =
σ2

i

λ+σ2
i
.

The effect of the addition in Equation (3.3) is to dampen the contributions of

the terms involving smaller singular values, so that instead of cutting them off

altogether, they are modified so that they reduce their impact. Therefore, if

λ << σ
2
i ,

σ2
i

λ+σ2
i
≈ 1

which indicates that the filter factors has no effect on the solution. Thus, Equa-

tion (3.2) is without regularization.

On the other hand, if

λ >> σ
2
i ,

σ2
i

λ+σ2
i
≈ σ2

i
λ
.

We note that
σ2

i
λ
→ 0. This indicates that the filter factors has effect on the

solution. In this case, it reduces the effect of the smaller singular values. Thus,

Equation (3.2) gives the solution with regularization.

Analysis of Error Produced by Tikhonov Regularization Method

We examine how the behaviour of the right hand side vector in Equation

(3.6) affects the error in the regularized solutions. For this purpose, we examine
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the error in the solution due to the regularization process itself. We define

γi =
UT

i y
σi

,

as a measure of the energy of y in a singular subspace of X relative to the power

of that subspace. We show that the space of the function γ is the determining

factor in regularization error. We also define

γi = max
1<i<p

γi.

The error due to regularization is given in the following theorem.

Theorem 6

Let α and αλ be the exact and the Tikhonov regularized solutions given by

Equation (3.7) and Equation (3.8), respectively. The following can be shown to

hold:

‖α−αλ‖2 =

(
p

∑
i=1

(
σ2

i

λ+σ2
i

γi

)2
) 1

2

=


≤√p

σ2
p

λ+σ2
p

γp

≥
σ2

p

λ+σ2
p

γp

, (3.9)

where
σ2

p

λ+σ2
p

γp = max
1<i<p

σ2
i

λ+σ2
i

γi

and

‖α−αλ‖2
‖α‖2

=


≤ √p

σ2
p

λ+σ2
p

γp

γl

≥
σ2

p

λ+σ2
p

γp

γl

, (3.10)

where l ≤ p, γp ≤ γl.
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Proof

Rewriting Equation (3.7), the norm of the true solution α is

‖α‖2 =
∥∥Vp[γ1, · · · ,γp]

T∥∥
2 =


≤ √p (max1<i<p γi)

≥ max1<i<p γi

, (3.11)

where Vp is the section of V consisting of p columns. In the over-determined

case, Vp = V. Using Equation (3.8) and Equation (3.11),

‖α−αλ‖2 =

∥∥∥∥∥Vp

[
σ2

1

λ+σ2
1

γ1, · · · ,
σ2

p

λ+σ2
p

γp

]T
∥∥∥∥∥

2

=


≤ √p

σ2
p

λ+σ2
p

γp

≥
σ2

p

λ+σ2
p

γp

,

which give Equation (3.9). Combining Equation (3.9) and Equation (3.11) gives

the desired result in Equation (3.10). This ends the proof.

Thus regularization produces a disproportionately large error for a compo-

nent of the data y in the ill-conditioned subspaces, compared to an equal sized

component in the well-conditioned subspaces. The more energy of y that shifts

to the ill-conditioned subspaces, the larger the error due to regularization. This

is independent of how close to the optimum the regularization parameter may

be.

Convex Optimality Conditions

An important class of optimization problems involves convex cost functi-

ons and convex constraints. A set C ⊆ ℜp is convex if for all α,α′ ∈C and all

scalars, s ∈ [0, 1], all vectors of the form α(s) = sα+(1− s)α′ also belong to

C. A function f : ℜp→ℜ is convex means that for any two vectors α,α′ in the

domain of f and any scalar s ∈ (0, 1), we have

f (α(s)) = f (sα+(1− s)α′)≤ s f (α)+(1− s) f (α′). (3.12)
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In geometric terms, this inequality implies that the chord joining the f (α) and

f (α′) lies above the graph of f , as illustrated in Figure 6 (a). This inequality

guarantees that a convex function cannot have any local minima that are not also

globally minimal, as illustrated in Figure 6 (b).

Figure 6: Graphs Showing (a) Convex Function and (b) Non-Convex Function.

In Figure 6 (a) for a convex function, the line s f (α)+ (1− s) f (α) always

lies above the function value f (sα+ (1− s)α). Figure 6 (b) is a non-convex

function that violates the inequality in Equation (3.12). Without convexity, there

may be local minima that are not globally minima, as shown by the point α′.

Optimality for Differentiable Problems

Consider the constrained optimization problem

minimize
α∈ℜp

f (α) such that α ∈ C, (3.13)

where f : ℜp→ℜ is a convex objective function to be minimized, and C⊂ℜp

is a convex constraint set. When the cost function f is differentiable, then a

necessary and sufficient condition for a vector α∗ ∈C to be a global optimum is

that

〈∇ f (α∗),α−α
∗〉 ≥ 0 (3.14)
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for all α ∈C. The sufficiency of this condition is easy to see; for any

α ∈C, we have

f (α)≥ f (α∗)+ 〈∇ f (α∗),α−α
∗〉 ≥ f (α∗), (3.15)

where the first inequality follows from the convexity of f , and the second ine-

quality follows from the optimality condition in Equation (3.14). As a special

case, when C = ℜp so that the problem in Equation (3.13) is actually uncon-

strained, then the first-order condition in Equation (3.14) reduces to the classical

zero-gradient condition ∇ f (α∗) = 0. Frequently, it is the case that the constraint

set C can be described in terms of the sub-level sets of some convex constraint

functions. For any convex function g : ℜp→ ℜ, it follows from the definition

in Equation (3.12) that the sub-level set {α ∈ℜp|g(α)≤ 0} is a convex set. On

this basis, the convex optimization problem

minimize
α∈ℜp

f (α) such that g j(α)≤ 0 for j = 1, . . . , m, (3.16)

where g j, j = 1, . . . , m are convex functions that express constraints to be

satisfied, is an instance of the general programme in Equation (3.13). We let

f ∗ denote the optimal value of the optimization problem in Equation (3.16).

An important function associated with the problem in Equation (3.16) is the

Lagrangian L : ℜp×ℜm
+→ℜ, defined by

L(α;λ) = f (α)+
m

∑
j=1

λ jg j(α). (3.17)

The non-negative weights λ≥ 0 are known as Lagrange multipliers; the purpose

of the multiplier λ j is to impose a penalty whenever the constraint g j(α)≤ 0 is

violated. Indeed, if we allow the multipliers to be chosen optimally, then we

recover the original programme in Equation (3.16), since

sup
λ≥0

L(α;λ) =


f (α) if g j(α)≤ 0

+∞ otherwise.
(3.18)
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and thus f ∗ = infα∈ℜp supλ≥0 L(α;λ). For convex programmes, the Lagran-

gian allows for the constrained problem in Equation (3.16) to be solved by re-

duction to an equivalent unconstrained problem. More specifically, under some

technical conditions on f and {g j}, the theory of Lagrange duality guarantees

that there exists an optimal vector λ∗ ≥ 0 of Lagrange multipliers such that

f ∗ = minα∈ℜp L(α;λ∗). As a result, any optimum α∗ of the problem in Equa-

tion (3.16), in addition to satisfying the feasibility constraints g j(α
∗)≤ 0, must

also be a zero-gradient point of the Lagrangian, and hence satisfy the equation

∇αL(α∗;λ
∗) = ∇ f (α∗)+

m

∑
j=1

λ
∗
j∇g j(α

∗) = 0. (3.19)

When there is only a single constraint function g, this condition reduces to

∇ f (α∗) = −λ∗∇g(α∗), and has an intuitive geometric interpretation, as shown

in Figure 5. In particular, at the optimal solution α∗, the normal vector ∇ f (α∗)

to the contour line of f points in the opposite direction to the normal vector to

the constraint curve g(α) = 0. Equivalently, the normal vector to the contour

f lies at right angles to the tangent vector of the constraint. Consequently, if

we start at the optimum α∗ and travel along the tangent at g(α) = 0, we cannot

decrease the value of f (α) up to first order.

In general, the Karush-Kuhn-Tucker (KKT) conditions relate the optimal

Lagrange multiplier vector λ∗ ≥ 0, also known as the dual vector, to the optimal

primal vector α∗ ∈ℜp.

Lagrangian Condition

The pair (α∗, λ∗) satisfies the condition in Equation (3.19). These KKT

conditions are necessary and sufficient for α∗ to be a global optimum whene-

ver the optimization problem satisfies a regularity condition known as strong

duality. The complementary slackness condition asserts that the multiplier λ∗j

must be zero if the constraint g j(α) ≤ 0 is inactive at the optimum, that is, if
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g j(α
∗)< 0.

Consequently, under complementary slackness, the Lagrangian gradient

condition in Equation (3.19) guarantees that the normal vector ∇ f (α∗) lies in

the positive linear span of the gradient vectors {∇g j(α
∗)|λ∗j > 0}.

Non-differentiable Functions and Sub-gradients

In practice, many optimization problems arising in statistics involve

convex but non-differentiable cost functions. For instance, the L1-norm

g(α) = ∑
p
j=1

∣∣α j
∣∣ is a convex function, but it fails to be differentiable at any

point where at least one coordinate α j is equal to zero. For such problems, the

optimality conditions that have been discussed, in particular the first-order con-

dition in Equation (3.14) and the Lagrangian condition in Equation (3.19), are

not directly applicable, since they involve gradients of the cost and constraint

functions.

Nonetheless, for convex functions, there is a natural generalisation of the

notion of gradient that allows for a more general optimality theory. A basic pro-

perty of differentiable convex functions is that the first-order tangent approx-

imation always provides a lower bound. The notion of sub-gradient is based

on a natural generalisation of this idea. In particular, given a convex function

f : ℜp→ℜ, a vector z ∈ℜp is said to be a sub-gradient of f at α if

f (α′)≥ f (α)+ 〈z, α
′−α〉 for all α

′ ∈ℜ
p. (3.20)

In geometric terms, the sub-gradient vector z is the normal to a (non-

vertical) hyperplane that supports the epigraph of f . The set of all sub-gradients

of f at α is called the sub-differential, denoted by ∂ f (α). Whenever f is dif-

ferentiable at α, then the sub-differential reduces to a single vector namely,

∂ f (α) = {∇ f (α)}. At points of non-differentiability, the sub-differential is a

convex set containing all possible sub-gradients.
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For example, for the absolute value function f (α) = |α| , we have

∂ f (α) =


{+1} if α > 0

{−1} if α < 0

[−1, +1] if α = 0.

(3.21)

We sometimes write z ∈ sign(α) to mean that z belongs to sub-differential of

the absolute value function at α.

Figure 7 shows a function f : ℜ→ℜ and some examples of sub-gradients

at the two points x1 and x2.

Figure 7: Sub-gradient of f at x1 and x2.

At the point x1, the function is differentiable and hence there is only one

sub-gradient namely, f ′(x1). At the point x2, it is not differentiable, and there

are multiple sub-gradients; each one specifies a tangent plane that provides a

lower bound on f . From the convex optimization problem in Equation (3.16),

this is very useful. Assume that one or more of the functions { f , g j} are convex

but non-differentiable, then in this case, the zero-gradient Lagrangian condition

in Equation (3.19) no longer makes sense. Nonetheless, again under mild con-

ditions on the functions, the generalised KKT theory can still be applied using
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the modified condition

0 ∈ ∂ f (α∗)+
m

∑
j=1

λ
∗
j∂g j(α

∗), (3.22)

in which we replace the gradients in the KKT condition in Equation (3.19) with

sub-differentials. Since the sub-differential is a set, Equation (3.22) means that

the all-zeros vector belongs to the sum of the sub-differentials.

Example 7: LASSO and Sub-gradients

As an example, suppose that we want to solve a minimization problem of

the form as Equation (3.16) with a convex and differentiable cost function f , and

a single constraint specified by g(α) = ∑
p
j=1

∣∣α j
∣∣–R for some positive constant

R. Thus, the constraint g(α) ≤ 0 is equivalent to requiring that it belongs to an

L1-ball of radius R. Recalling the form of the sub-differential in Equation (3.21)

for the absolute value function, the condition in Equation (3.22) becomes

∇ f (α∗)+λ
∗z∗ = 0, (3.23)

where the sub-gradient vector satisfies z∗j ∈ sign(α∗j) for each j = 1, · · · , p.

When the cost function f is the squared error f (α) = ‖y−Xα‖2
2 .

Example 8

Consider f (x) = |x|. For x < 0, the sub-gradient is unique: ∂ f (x) = {−1}.

Similarly, for x > 0 we have ∂ f (x) = {1}. At x = 0, the sub-differential is

defined by the inequality |x| ≥ gx for all x, which is satisfied if and only if

g ∈ [−1,1]. Therefore we have ∂ f (0) = [−1,1]. This is illustrated in Figure 8.
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Figure 8: The Absolute Value Function (left), and its Sub-differential ∂ f (x)

(right).

Basic Properties of Sub-Gradient

The sub-differential ∂ f (x) is always a closed convex set, even if f is not

convex. This follows from the fact that it is the intersection of an infinite set of

halfspaces:

∂ f (x) =
⋂

z∈dom f

{g| f (z)≥ f (x)+gT (z− x)}.

Figure 9 shows an epigraph of a function f at a point.

Figure 9: Epigraph of f at a Point.

A vector g ∈ℜp is a sub-gradient of f at x if and only if (g,−1) defines a

supporting hyperplane to epi f at (x, f (x)).
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Gram-Schmidt Orthogonalisation

We have seen that it can be very convenient to have an orthonormal basis

for a given vector space, in order to compute expansions of arbitrary vectors

within that space. Therefore, given a non-orthonormal basis, it is desirable to

have a process for obtaining an orthonormal basis from it. Suppose we have

a set of functions {x1,x2, . . .} which are not linearly independent. To con-

struct an orthonormal set from this set, we proceed as follows. Given a basis

{x1,x2, . . . ,xp} for a subspace W of V, the method involves using orthogonal

projections to construct an orthogonal basis {v1,v2, . . . ,vp} for V. The vi’s are

constructed so that span{v1,v2, . . . ,vk}= span{x1,x2, . . . ,xk}, k = 1, . . . , p.

We define the Gram-Schmidt process as follows:

v1 = x1

v2 = x2−
〈x2,v1〉
〈v1,v1〉

v1

v3 = x3−
〈x3,v1〉
〈v1,v1〉

v1−
〈x3,v2〉
〈v2,v2〉

v2

...

vp = xp−
〈xp,v1〉
〈v1,v1〉

v1−
〈xp,v2〉
〈v2,v2〉

v2−·· ·−
〈xp,vp−1〉
〈vp−1,vp−1〉

vp−1.

Then, {v1,v2, . . . ,vp} is an orthogonal basis for W. Moreover, span{v1,v2, . . . ,vp}=

span{x1,x2, . . . ,xp}, for 1≤ k ≤ p.

Relationship Between L1 and L2-Norms Regularization

The connection between L1- and L2-norms may be expressed through what

is referred to as the Elastic Net (Zou & Hastie, 2005) for a β, 0 < β < 1, and a

non-negative λ. The Elastic Net problem may be expressed as

min
α0, α

[
1

2m

m

∑
i=1

(yi−α0− xT
i α)2 +λEβ(α)

]
,
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where

Eβ(α) =
(1−β)

2
‖α‖2

2 +β‖α‖1

=
p

∑
j=1

(
1−β

2
α

2
j +β

∣∣α j
∣∣).

We notice that when β= 1, Elastic Net is the same as the LASSO. However,

as β shrinks to 0, Elastic Net approaches the Ridge regression. For other values

of β, the penalty Eβ(α) is an interpolation between the L1-norm and L2-norm of

α.

Now since the L2 regularization least squares problem has the analytic solution

αL2 =
(

XT X+λI
)−1

XT y,

as λ→ 0, αL2 converges to the Moore-Penrose solution X+y where X+ is the

Moore-Penrose pseudo-inverse of X. In the expression, αL2 is a linear function

of y. Equation (5.11) in Chapter Five shows that L1 regularization gives a solu-

tion αL1 which is not linear in y.

There is a finite convergence to zero as λ get to ∞ for L1 regularization. For

L2 regularization, as λ get to ∞, the optimal solution tends to 0. However, for L1

regularized LSP, convergence occurs for finite value of λ :

λ≥ λmax =
∥∥2XT y

∥∥
∞
,

where ‖u‖
∞
= max |ui| and denotes the L∞-norm of vector u. This criterion is

clearly deduced from the optimality condition in Equation (5.14). In that equa-

tion, the condition that 0 is an optimal solution is that

(2XT y)i ∈ {−λ, λ} i = 1, 2, . . . ,n.

Thus,
∥∥2XT y

∥∥
∞
≤ λ. This condition remains crucial in most LASSO so-

lutions, as will be seen in our derived LASSO in Chapter Five. The behaviour

of the regularization paths of the two methods are quite different. The solution
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αL2 to the Tikhonov regularization problem varies smoothly as the regulariza-

tion parameter λ varies over [0, ∞). By contrast, (the regularization path of L1

regularized LSP) the family of solution as λ varies over (0, ∞) has the piece-

wise linear solution path property. Thus, there are values λ1,λ2, . . . ,λk with

0 = λk < · · ·< λ = λmax such that the regularized path is a piece-wise linear on

ℜp :

αL1 =
1

λi−λi+1

[
(λi−λ)α(i+1)+(λ−λi+1)α

(i)

]
, (3.24)

λi−1 < λ < λi, i = 1, 2, · · · ,k−1

where α(i) is a solution to Equation (3.24) with λ= λi. Thus, α1 = 0 and αL1 = 0

for λ ≥ λ1. What this means is that L1 regularized LS typically yields sparse

solution with few non-zero components. As λ decreases, αL1 tends to be sparse

but not necessarily (Hastie et al., 2001; Tibshirani, 1996). In contrast, solution

αLS to the Tikhonov regularization problem typically has all coefficients non-

zero. The knowledge of this would be crucial in determining optimal values of

λ particularly in the case where a sparse solution is rather not desired. This is

illustrated in a kind of data fitting which is more related to solution retrieved.

Optimality Conditions and Dual Problems

In this section, we review methods associated with optimality conditions and

dual problems in regularization.

Optimality Conditions

The Karush-Kuhn-Tucker (KKT) optimality conditions may be stated as

XT
i (y−Xα̂) = λγ, (3.25)
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where

γi =


sign(αi), αi 6= 0

i = 1, 2, . . . , p.

[−1, 1], αi = 0

Here, γi ∈ℜp is the sub-gradient of ‖α‖1 . An important property of a LASSO

solution is that it satisfies the KKT conditions. As it does, it will have some

basic features which is summarised in the following Lemma.

Lemma 1

For any y,X and λ≥ 0, the LASSO problem has the following properties:

(i) There is either a unique LASSO solution or an uncountably infinite solu-

tions.

(ii) Every LASSO solution α̂ gives the same fitted value Xα̂.

(iii) If λ > 0, then every LASSO solution α̂ has the same L1-norm.

A sketch of the proof of this Lemma can be seen in Tibshirani (2013).

Duality Problems and Sub-optimality Bound

The L1-regularized LSP may be presented as a Lagrangian dual. By in-

troducing a new variable z ∈ ℜm and new equality constraint z = Xα− y, we

construct an equivalent problem

min
α

zT z+λi ‖α‖1 (3.26)

subject to z = Xα−y.
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Let vi ∈ ℜ, i = 1, 2, . . . ,m be dual variables associated with the equality con-

straints zi = (Xα−y)i, the Lagrangian is

L(α,z,v) = zT z+λ‖α‖1 +vT (Xα−y− z).

The dual form is given as

inf
α,z

L(α,z,v) =


−(1

4)v
T v−vT y,

∣∣(XT v)i
∣∣≤ λi, i = 1,2, . . . ,m

−∞, otherwise

The Lagrangian dual of Equation (3.26) is

max G(v) (3.27)

subject to
∣∣(XT v)i

∣∣≤ λi, i = 1,2, . . . ,m,

where the dual objective G(v) is G(v) = −(1
4)v

T v− vT y. Equation (3.27) is a

convex optimization problem with v ∈ℜm and is dual feasible if it satisfies the

constraints of Equation (3.27). (as described in Boyd & Vandenberghe, 2004).

Now any dual feasible point v gives a lower bound on the optimal value

p∗ of the primal problem in Equation (3.27), that is, G(v) ≤ p∗, called weak

duality. Furthermore, the optimal values of the primal and dual are dual since

the primal problem in Equation (3.27) satisfies Slater’s condition, the strong

duality (Boyd & Vandenberghe, 2004). A property of the L1-regularized LSP

is that for an arbitrary α, we can derive a bound on the sub-optimality of α, by

constructing a dual feasible point v = 2w(Xα−y), where

w = min

{
λ

|2(XT Xα)i−2yi|

}
, i = 1,2, . . . ,m.

The point v is dual feasible and so G(v) is a lower bound on p∗, the optimal

value of Equation (3.27). The difference

η = ‖Xα−y‖2
2 +λ‖α‖1−G(v)

75

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



between the primal objective value of α and the associated lower bound G(v)

gives the duality gap. By weak duality η ≥ 0 and equality holds at an optimal

point (that is, strong duality).

Truncated Newton Interior-Point Method

The L1-regularized LSP in Equation (1.13) may be transformed to a convex

quadratic problem (QP) with linear inequality constraints

minα ‖Xα−y‖2
2 +λ

p

∑
i=1

ui

subject to −ui ≤ αi ≤ ui, i = 1, 2, · · · , p

where the variables are α∈ℜp and u∈ℜp. An interior-point method for solving

this QP is a custom interior point method. Define the logarithm barrier for the

bound constraints −ui ≤ αi ≤ ui in Equation (3.28) as

Φ(α,u) =−
p

∑
i=1

log(ui +αi)−
p

∑
i=1

log(ui−αi) (3.28)

defined over the domain

domΦ =
{
(α,u) ∈ℜ

p×ℜ
p | |αi|< ui, i = 1, 2, . . . , p

}
.

The central path (CP) consists of the unique minimizer (α∗(t),u∗(t)) of the

convex form

φt(α,u) = t ‖Xα−y‖2
2 + t

p

∑
i=1

λui +Φ(α,u)

as t varies over (0,∞). We associate with each (α∗(t),u∗(t)), v∗(t)= 2(Xα∗(t)−

y) which coincides with the dual feasible point v constructed from α∗(t). Hence,

v∗(t) is dual feasible. Thus the path tends to an optimal solution since (α∗(t),u∗

(t)) is no more than 2p
t -suboptimal. We compute a sequence of points on the LP

for increasing t. The method can be terminated when 2p
t ≤ ε, the target duality
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gap (see Boyd & Vandenberghe, 2004). In such barrier methods, Newton’s met-

hod is used to minimize φt . That is, the exact solution to the Newton’s system

H

∆α

∆u

=−g,

gives the search direction, where H = ∇2φt(α,u) ∈ ℜ2p×2p is the Hessian and

g = ∇φt(α,u) ∈ ℜ2p is the gradient at the current iterate. Kim et al. (2007)

specifies the algorithm for the Truncated Newton’s Interior Point Method for

L1-regularized least squares problems which we used to verify our solutions.

Generalised Linear Models

Linear models are suitable when the response variable is quantitative, and

ideally when the error distribution is Gaussian. However, other types of re-

sponse arise in practice. For instance, binary variables can be used to indi-

cate the presence or absence of some attribute (for example, “cancerous” versus

“normal” cells in a biological assay, or “clicked” versus “not clicked” in web

browsing analysis); here the binomial distribution is more appropriate. Someti-

mes the response occurs as counts (for example, number of arrivals in a queue,

or number of photons detected); here the Poisson distribution might be called

for.

In this chapter, we discuss generalisations of simple linear models and the

LASSO that are suitable for such applications. With a binary response coded

in the form y ∈ {0,1}, the linear logistic model is often used: it models the

log-likelihood ratio as the linear combination

log
Pr(y = 1|X = x)
Pr(y = 0|X = x)

= α0 +α
T x, (3.29)

where x = (x1, x2, . . . , xp) is a vector of predictors,
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α0 ∈ ℜ is an intercept term, and α ∈ ℜp is a vector of regression coefficients.

Inverting this transformation yields an expression for the conditional probability

Pr
(

y = 1|X = x
)
=

eα0+αT x

1+ eα0+αT x
. (3.30)

By inspection, without any restriction on the parameters (α0, α), the mo-

del specifies probabilities lying in (0, 1). We typically fit logistic models by

maximizing the binomial log-likelihood of the data. The logit transformation in

Equation (3.30) of the conditional probabilities is an example of a link function.

In general, a link function is a transformation of the conditional mean E[y|X =

x]in this case, the conditional probability that y = 1 to a more natural scale on

which the parameters can be fit without constraints. As another example, if the

response y represents counts, taking values in {0, 1, 2, . . .}, then we need to

ensure that the conditional mean is positive. A natural choice is the log-linear

model

logE
[
y|X = x

]
= α0 +α

T x, (3.31)

with its log link function. Here, we fit the parameters by maximizing the Poisson

log-likelihood of the data. The models in Equation (3.30) and Equation (3.31)

are both special cases of generalised linear models. These models describe the

response variable using a member of the exponential family, which includes the

Bernoulli, Poisson, and Gaussian as particular cases. A transformed version of

the response mean E[Y |X = x] is then approximated by a linear model. In detail,

if we use µ(x) = E[y|X = x] to denote the conditional mean of y given X = x,

then a GLM is based on a model of the form

g
[
µ(x)

]
= α0 +α

T x︸ ︷︷ ︸
η(x)

, (3.32)

where g : ℜ→ℜ is a strictly monotonic link function. For example, for a binary

response y ∈ {0, 1}, the logistic regression model is based on the choices

µ(x) = Pr[y = 1|X = x]

78

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



and

g(µ) = logit(µ) = log(µ/(1−µ)).

When the response variable is modeled as a Gaussian, the choices

µ(x) = α0 +α
T x

and g(µ) = µ recover the standard linear model. Generalised linear models can

also be used to model the multicategory responses that occur in many problems,

including handwritten digit classification, speech-recognition, document classi-

fication and cancer classification. The multinomial replaces the binomial dis-

tribution discussed under this section, and we use a symmetric log-linear repre-

sentation:

Pr
[
y = k|X = x

]
=

eα0k+αT
k x

∑
k
l=1 eα0l+αT

l x
. (3.33)

Here, there are K coefficients for each variable (one per class). In this

chapter, we discuss approaches to fitting generalised linear models that are ba-

sed on maximizing the likelihood, or equivalently minimizing the negative log-

likelihood along with an L1-penalty

minimize
α0, α

{
−L(α0, α;y, X)+λ‖α‖1

}
. (3.34)

Here y is the m-vector of outcomes and X is the m× p matrix of predictors,

and the specific form the log-likelihood ` varies according to the GLM. In the

special case of Gaussian responses and the standard linear model, we have

−L(α0, α;y, X) =
1

2σ2 ‖y−α01−Xα‖2
2 + c,

where c is a constant independent of (α0, α), so that the optimization problem

in Equation (3.34) corresponds to the ordinary linear least squares LASSO.

Least Squares Minimization for Logistic Regression

We consider the hypothesis

hα(x) = g(αT x) =
1

1+ e−αT x
,
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where

g(z) =
1

1+ e−z

is called the logistic function or the sigmoid function. Figure 10 shows a plot of

g(z).

Figure 10: Graph of Sigmoid Function.

We notice that g(z) tends towards 1 as z tends to infinity and g(z) tends

towards 0 as ztends to negative infinity hence, h(x) and also g(z) are always

bounded between 0 and 1. Let us assume that

Pr(y = 1|x;α) = hα(x), and so

Pr(y = 0|x;α) = 1−hα(x).

This can be written more compactly as

Pr(y|x;α) = (hα(x))y(1−hα(x))1−y.

Assuming that the m training examples {xi, yi}i where yi ∈ {0, 1} were

generated independently, we can then compute the likelihood of the parameters

as

L(α) = Pr(~y|X ;α)

=
m

∏
i=1

P(yi|xi;α)

=
m

∏
i=1

(hα(xi))
yi(1−hα(xi))

1−yi.
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Before we maximize the log likelihood of the parameters, we first find the

derivative of the sigmoid function g(z).

g′(z) =
d
dz

1
1+ e−z

=
1

(1+ e−z)2 (e−z)

=
1

(1+ e−z)
.

(
1− 1

(1+ e−z)

)
= g(z)(1−g(z)).

Now, maximizing the log likelihood of the parameters gives

`(α) = logL(α)

logL(α) = log

(
m

∏
i=1

P(yi|xi;α)

)
=

m

∑
i=1

logP(yi|xi;α)

=
m

∑
i=1

log
(
(hα(xi))

yi(1−hα(xi))
1−yi
)

=
m

∑
i=1

(
yi loghα(xi)+(1− yi) log(1−hα(xi))

)

Computing partial derivatives

∂ logL(α)
∂α j

= ∑
i

∂yi loghα(xi)

∂α j
+

(1− yi) log(1−hα(xi))

∂α j

= ∑
i

yi
∂ logg(xiα)

∂α j
+(1− yi)

log(1−g(xiα))

∂α j

= ∑
i

yi

g(xiα)
.
∂g(xiα)

∂α j
− 1− yi

1−g(xiα)

∂g(xiα)

∂α j

= ∑
i

(
yi

g(xiα)
− 1− yi

1−g(xiα)

)
∂g(xiα)

∂α j

= ∑
i

(
yi

g(xiα)
− 1− yi

1−g(xiα)

)
g(xiα)(1−g(xiα))

∂xiα)

∂α j

= ∑
i

(
yi

g(xiα)
− 1− yi

1−g(xiα)

)
g(xiα)(1−g(xiα))xi j

= (yi−g(xiα))xi j

= (yi−hα(xi))xi j.
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Logistic regression has been popular in biomedical research for half a cen-

tury, and has recently gained popularity for modeling a wider range of data. In

the high-dimensional setting, in which the number of features p is larger than

the sample size, it cannot be used without modification. When p > m, any linear

model is over-parametrised, and regularization is needed to achieve a stable fit.

Such high-dimensional models arise in various applications.

Linear Fitting

Given a set of data points (xi, yi), i = 1, 2, . . . , m, where xi ∈ ℜp and

yi ∈ ℜ. We assume that an approximate linear relation holds: yi ≈ XT
i α, i =

1, 2, . . . , m. The corresponding least squares problem is given as

min
α∈ℜp

m

∑
i=1

(XT
i α− yi)

2,

which has an equivalent formulation as

min
α∈ℜp

‖Xα−y‖2 ,

where

X =



−xT
1−

−xT
2−
...

−xT
m−


, y =



y1

y2

...

ym


.

Polynomial Fitting

Given a set of data points in ℜ2 : (ui, yi), i = 1, 2, . . . , m for which the

following approximate relation holds for some a0, . . . , ad :

d

∑
j=0

a ju
j
i ≈ yi, i = 1, . . . , m.
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The system is

1 u1 u2
1 · · · ud

1

1 u2 u2
2 · · · ud

2
...

...
...

...

1 um u2
m · · · ud

m





a0

a1

...

ad


=



y0

y1

...

yd


The least squares solution is well defined if the m× (d + 1) matrix is of full

column rank.

Cross-Validation

Cross-Validation is a statistical method of evaluating and comparing learning

algorithms by dividing data into two segments: one used to learn or train a mo-

del and the other used to validate the model. In typical cross-validation, the

training and validation sets must cross-over in successive rounds such that each

data point has a chance of being validated against. The basic form of cross-

validation is k-fold cross-validation. Other forms of cross-validation are spe-

cial cases of k-fold cross-validation or involve repeated rounds of k-fold cross-

validation. In k-fold cross-validation, the data is first partitioned into k equally

(or nearly equally) sized segments or folds. Subsequently k iterations of training

and validation are performed such that within each iteration a different fold of

the data is held-out for validation while the remaining k− 1 folds are used for

learning. In data mining and machine learning 10-fold cross-validation (k=10)

is the most common. Cross-validation is used to evaluate or compare learning

algorithms as follows: in each iteration, one or more learning algorithms use

k− 1 folds of data to learn one or more models, and subsequently the learned

models are asked to make predictions about the data in the validation fold. The

performance of each learning algorithm on each fold can be tracked using some

pre-determined performance metric like accuracy. Upon completion, k samples
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of the performance metric will be available for each algorithm. Different met-

hodologies such as averaging can be used to obtain an aggregate measure from

these sample, or these samples can be used in a statistical hypothesis test to

show that one algorithm is superior to another.

In statistics or data mining, a typical task is to learn a model from available

data. Such a model may be a regression model or a classifier. The problem with

evaluating such a model is that it may demonstrate adequate prediction capa-

bility on the training data, but might fail to predict future unseen data. cross-

validation is a procedure for estimating the generalisation performance in this

context.

Principal Component Analysis

In practice, there is the tendency to take measurements along dimensions

that are more in number that we actually need. In addition, datasets also come

with a lot of noise which contaminates the data. In Principal Component Ana-

lysis (PCA), the general aim is to re-construct the dataset along a new set of

dimensions (of the same number as the original dimensions) so that the most

meaningful dimensions can be determined. PCA is closely related to the techni-

que of singular value decomposition (SVD). PCA makes one assumption:

linearity. Thus, given data on Xm×p = (x1,x2, . . . ,xp) on p-dimensions, the ith

PCA yi is the linear combination of the x j given by

yi =
p

∑
j

ai jx j; i = 1,2, . . . , p

or

yi = aT
i x; i = 1,2, . . . , p. (3.35)
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Thus, the vector of principal components is given by

y1

y2

...

yi

...

yp


=



a11 a12 a13 · · ·a1 j · · ·a1p

a21 a22 a23 · · ·a2 j · · ·a2p

...

ai1 ai2 ai3 · · ·ai j · · ·aip

...

ap1 ap2 ap3 · · ·ap j · · ·app


This representation may be given as

y = Ax,

where A is p× p matrix whose ith row is the coefficients of the ith PC. Using

the matrix A, the data X may be reconstructed as

Y = AXT , (3.36)

where Y is p×m matrix of reconstructed data and X is as defined.

Three main conditions are imposed on the linear combinations in Equation

(3.35). The first is that the inner product of any two PCs is such that

aia j =


1, i = j

0, i 6= j.

This means that in Equation (3.36), AT A = I. This condition means that any

two PCs are independent and orthonormal.

The variance of yi is given by Var(yi) = aT
i ΣXai, where ΣX is the variance-

covariance matrix of the original variables x. A second condition is that Var(y1)>

Var(y2)> · · ·> Var(yp). Since Var(yi) represents the amount of variation in the

data accounted for by yi, this condition helps to identify those components that

may be considered as redundant. Var(yi) is given by the eigenvalue λi corre-

sponding to yi which is the ith eigenvector of the matrix ΣX.
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The goal of PC is to obtain an orthonormal transformation of the dataset

X given in Equation (3.36). In this case, the variance-covariance matrix of the

transformed data Y is given by

ΣY =
1

n−1
YYT .

Making a substitution for Y from Equation (3.36), we obtain

ΣY =
1

n−1
(AX)(AX)T

=
1

n−1
AXXT AT

=
1

n−1
A(XXT )AT

=
1

n−1
AΣXAT

By the first condition on a principal component, the matrix ΣY must neces-

sarily be diagonal. To see this, we recall that for a symmetric matrix, ΣX, there

exists a matrix P such that ΣX = PDPT , where D is a diagonal matrix and P

is a matrix whose columns are the eigenvectors of ΣX. That is, A = PT . Thus,

ΣX = AT DA, and noting that A−1 = AT we have

ΣY =
1

n−1
(AΣXAT )

=
1

n−1
A(AT DA)AT

=
1

n−1
(AAT )D(AAT )

=
1

n−1
D.

Therefore, Var(yi) =
1

n−1
Dii. That is, the variance of the ith principal compo-

nent is the ith diagonal elements of ΣY.

Singular Value Decomposition

Let X be an arbitrary m× p matrix and XT X be of rank r, square, symmetric

p× p matrix. We define the following quantities.
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1. The vectors v̂1, v̂2, . . . , v̂r is the set of r orthonormal p× 1 eigenvectors

with associated eigenvalues λ1,λ2, . . . ,λr of the symmetric matrix XT X.

(XT X)v̂i = λiv̂i.

2. The value σi ≡
√

λi are positive real and called the singular values.

3. The vectors û1, û2, . . . , ûr is the set of r orthonormal m×1 vectors defined

by the projection

ûi ≡
1
σi

Xv̂i.

4. The inner product ûi̇̂u j = δi j, since vis are orthonormal.

5. The norm of the product ‖Xv̂i‖= σi.

From the third definition,

Xv̂i = σiûi. (3.37)

Let Σ = diag[σ1, σ2, · · · , σr, 0, 0, · · · , 0] be a p× p diagonal matrix with

σ1 ≥ σ2 ≥ ·· · ≥ σr. The corresponding augmented orthogonal matrices V and

U are

V = [v̂1, v̂2, · · · , v̂r, v̂r+1, · · · , v̂p]

U = [û1, û2, · · · , ûr, ûr+1, · · · , ûm].

Equation (3.37) may be generalised for all p components as

XV = UΣ. (3.38)

Noting that V−1 = VT , the matrix X in Equation (3.38) may be decomposed as

X = UΣVT . (3.39)

Thus, in this decomposition, we can identify the principal components of the

matrix XT X as well as their corresponding singular values. The result in Equa-

tion (3.39) may best be interpreted using Equation (3.37) and by noting that

UT X = S,

87

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



where S = ΣVT . This represent a span of the columns of X by the basis UT .

Similarly, we can deduce from Equation (3.39) that

VT X = S,

where in this case S = UT Σ. This represent a span of the rows of X by the basis

vT .

SVD and PCA

With some computations, it can be shown that the two methods are intima-

tely related. We return to the original m× p data matrix X. We can define a new

matrix Y as a p×m matrix, where

Y≡ 1√
n−1

XT .

Each column of Y has zero mean. The definition of Y becomes clear by

analyzing YT Y.

YT Y =
( 1√

n−1
XT
)T( 1√

n−1
XT
)

=
1

n−1
XT T XT

=
1

n−1
XXT

YT Y = SX.

By construction YT Y equals the covariance matrix of X. The principal

components of X are the eigenvectors of SX. If we calculate the SVD of Y,

the columns of matrix V contain the eigenvectors of YT Y = SX. Therefore, the

columns of V are the principal components of X.

Chapter Summary

This chapter has outlined various concepts and techniques that would be

needed in the study. The techniques cover those that are designed for varia-

ble transformation, These include the Gram-Schmidt orthogonalisation process,
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principal component and singular value decomposition. Another class of techni-

ques that are covered are those concerned with data fitting procedures. These

include the least squares method, polynomial fitting and generalised linear mo-

delling. Techniques of regularization processes have also been reviewed. These

are the L1-norm and L2-norm regularization. A number of procedures used in

regularization have also been covered. Of interest are the sub-gradient calculus,

various optimality conditions and the Truncated Newton’s Interior Point met-

hod.
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CHAPTER FOUR

SMOOTHING APPROXIMATIONS FOR THE L1-NORM

REGULARIZATION FUNCTIONAL

Introduction

In this chapter, we consider smoothing approximations for the L1-norm

penalty in the regularized least squares problem given by

min
α

g(α) = ‖Xα−y‖2
2 +λ‖α‖1 , (4.1)

which is already introduced in previous chapters. Three main smoothing ap-

proximations will be explored. These include a Quadratic approximation of the

Lee et al. (2006) approximation, Sigmoid Function approximation (Chen &

Mangasarian, 1996) and Cubic Hermite approximation. In each case, we will

apply the Tikhonov regularization to the resulting smooth least squares minimi-

zation problem which we represent by

min
α

g(α) = ‖Xα−y‖2
2 +µ J(α), (4.2)

where µ is a function of λ in Equation (4.1) and a parameter of the approxima-

ting functional. It is possible to apply Tikhonov regularization to the resulting

problem in Equation (4.2) since J(α) is now differentiable. The regularized so-

lution to Equation (4.2) will be derived and then specified in terms of singular

value decomposition. The performance of the approximation will be assessed

by using the Hilbert sub-matrix of dimension 12× 7. Subsequently, we will

compare the solutions obtained from the regularization method with that of the

Modified Newton’s method, which is the usual practice in the literature.

Quadratic Approximation

Lee et al. (2006) proposed a method for transforming the non-differentiable

L1-norm function into a differentiable function by replacing it with a differen-
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tiable approximation. For a one-dimensional case, the approximation to the

absolute value function is given by

|x| ≈
√

x2 + ε.

To determine the best approximate solution, we first examine the nature of

the plot for various values of ε. Approximations of the absolute value function

for different values 1, 0.01 and 0.0001, of ε are given in Figure 11.

Figure 11: Quadratic Approximation of |x|
ε

for Various Values of Approxima-

ting Parameter, ε.

From Figure 11, |x|
ε
→ |x| as ε→ 0. That is,

lim
ε→0
|x|

ε
= |x| .

Thus, it would be suitable to choose ε = 0.0001 for the subsequent implemen-

tation. The gradient ∇(|x|
ε
) and the Hessian ∇2(|x|

ε
) of the smoothing approx-

imation of the absolute value function given in single variable form are derived

as follows:
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∇(|x|
ε
) =

x√
x2 + ε

and ∇
2(|x|

ε
) =

ε(√
x2 + ε

)3 .

For x ∈ℜp,

‖x‖1 =
p

∑
i=1
|xi| ≈

p

∑
i=1
|xi|ε .

The loss function given in Equation (4.2) therefore becomes

g(α)≈ ‖Xα−y‖2
2 +µ

p

∑
i

√
α2

i + ε. (4.3)

The regularized solution of Equation (4.3) is given as

αµ = (XT X+µI)−1XT y, (4.4)

where µ= 1
2λε
− 1

2 . The regularized solution αµ written in terms of singular value

decomposition (SVD) is given in component form as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi,

where σ are the singular values of the matrix X.

Proof

Let

X = USVT .

Now, from Equation (4.4),
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αµ =
[
(USVT )T USVT +µI

]−1
(USVT )T y

=
[
(VSUT )(USVT )+µI

]−1
(VSUT )y

=
[
VS2VT +µI

]−1
(VSUT )y

=
[
VS2VT +µVIVT

]−1
(VSUT )y

=
[
V
(

S2 +µI
)

VT
]−1

(VSUT )y

= V
(

S2 +µI
)−1

V−1(VSUT )y

=
(

S2 +µI
)−1

(VSUT )y

Therefore, the singular value decomposition solution in component form is gi-

ven as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi

which ends the proof.

Derivation of Analytic Solution using Lee-Quadratic Approximation

Let

k(x) =
p

∑
i

√
x2

i + ε = ‖x‖
ε
≈ ‖x‖1 .

Since k(x) is differentiable at x = 0, a Taylor’s expansion about x = 0 is given

as

k(x) ≈ k(x0)+∇k(x0)
T (x−x0)+

1
2
(x−x0)

T
∇

2k(x0)(x−x0)+ · · ·

≈ k(0)+∇k(0)T x+
1
2

xT
∇

2k(0)x+ · · · ,

where

k(0) = pε
1
2 , ∇k(0) = ∇k(x) =

xi√
x2

i + ε

∣∣∣∣∣
x=0

= 0,
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and

∇
2k(0) = ∇

2k(x) =
ε(√

x2
i + ε

)3

∣∣∣∣∣
x=0

=



ε
− 1

2 0 · · · 0

0 ε
− 1

2 · · · 0
... · · · . . . · · ·

0 0 · · · ε
− 1

2


= ε
− 1

2 Ip.

Therefore, the quadratic approximation is given as

k(x) = pε
1
2 +

1
2

xT
ε
− 1

2 xIp.

Thus, Equation (4.3) expressed in the form of Equation (4.1) gives g(α) as

g(α) = ‖Xα−y‖2
2 +λ

(
pε

1
2 +

1
2

α
T

ε
− 1

2 α

)
. (4.5)

Finding the gradient of g(α) and equating to zero gives

2XT Xα−2XT y+λαε
− 1

2 = 0

XT Xα+
1
2

λαε
− 1

2 = XT y(
XT X+

1
2

λε
− 1

2 I
)

α = XT y

αµ =
(

XT X+µI
)−1

XT y, (4.6)

where

µ =
1
2

λε
− 1

2 ,

and λ is the regularization parameter in the L1-norm regularized least squares in

Equation (4.1). Notice that the solution in Equation (4.6) is of the form

α = (XT X+λI)−1XT y,

which is the solution of the L2-norm regularization.
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Numerical Experiment

To illustrate our results, we make use of the 12× 7 Hilbert sub-matrix of

the 12×12 Hilbert matrix, which constitutes an overdetermined system. As in-

troduced in Chapter One, Hilbert matrices are known to be very ill-conditioned

because the coefficient matrix XT X is almost near zero. The problem is to find

α ∈ ℜp such that Xα = y. The vector y is chosen such that the true solution is

α = [1, 1, 1, 1, 1, 1, 1]T .

Several iterations are performed to obtain an optimal regularization para-

meter µ which will hopefully give a solution close to the true solution. Table 7

shows the solutions corresponding to µ = 10−35, 10−30,10−25, . . . ,100 compu-

ted for regularization of order zero using SVD. See Appendix A for the imple-

mentation of the algorithm for computing the regularized solution.
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Table 7: Quadratic-SVD Regularized Solution Using 12×7 Hilbert Matrix

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−35

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−25

0.999999999998873

1.000000000038517

0.999999999666034

1.000000001202753

0.999999997920250

1.000000001715537

0.999999999457705

2.07975037191943e−009

10−20

0.999999999985505

1.000000000513768

0.999999995471529

1.000000016419557

0.999999971548982

1.000000023462818

0.999999992593616

2.84510176529196e−008
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Table 7 Continued

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−15

1.000000005382488

1.000000311138334

0.999994094825253

1.000030102812234

0.999935968486692

1.000060745682307

0.999978746314639

6.40315133079161e−005

10−10

0.999921828945325

1.001005379765547

0.997630528523892

0.999928642059073

1.002328582218346

1.001747414368654

0.997383337346468

0.00261666265353178

10−5

0.977300836168243

1.039833840286250

1.052974774228701

1.030493186016140

0.993147747772983

0.950701679037129

0.907598316425139

0.0924016835748606

10−1

0.608292793467497

0.383729725831142

0.291266270999275

0.237993058004172

0.202532009830954

0.176916847526424

0.157405776526399

0.842594223473601

100

0.0921918039495352

0.0575537783146415

0.0434500839595747

0.0353811004241751

0.0300364447633618

0.0261899735487342

0.0232685527604642

0.976731447239536
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From Table 7, as the values of µ increase, the regularized solution deterio-

rates. Therefore, smaller values of µ yields a good solution. The regularized so-

lution converges at µ = 10−30 with the smallest error of 2.07948647190648e−

009.

A method usually considered in the literature after obtaining a smoothing

approximation to replace the L1-norm functional is an unconstrained optimiza-

tion method known as the Modified Newton’s method. To compare our results

using regularization with the Modified Newton’s method, we now implement

this method.

The algorithm based on the implementation of Modified Newton’s Method

is formulated as

xk+1 = xk−βkH(xk)
−1

∇g(xk),

where xk is the current iterate, xk+1 is the next iterate, ∇g(xk) is the gradient

at the current iterate xk, βk > 0 is the step size and H(xk) is the Hessian at the

current iterate.

From Equation (4.3), the gradient of g(α) is given as

∇g(α) = 2XT (Xα−y)+λG(α),

where

G(α) =
[
α1(α

2
1 + ε)−

1
2 , α2(α

2
2 + ε)−

1
2 , · · · , αp(α

2
p + ε)−

1
2

]T

and the Hessian is also given as

H(α) = 2XT X+ ελh(α),

where

h(α) = diag
[
(α2

1 + ε)−
3
2 , (α2

2 + ε)−
3
2 , · · · ,(α2

p + ε)−
3
2

]
.

Script-files are created in OCTAVE 3.8.2 to compute the solutions at various va-

lues of the regularization parameter. The following algorithm shows the general

structure of the implementation of the Modified Newton’s method.
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Algorithm for Modified Newton’s Method

Set initial guess

Set the function parameter

Initialize α := ones(7,1)

Define the approximating function: g = f (α)+µ∗ j(α)

Define the number of iterations, i = 1 : 100

Define Modified Newtons method, α(:, i+1) = α(:, i)−β∗H/Grd (:, i)

end

See Appendix B for the implementation of the Modified Newton’s method

based on Lee et al. approximation. In the algorithm based on the Lee et al.

approximation, the initial guess is 0.25∗ones(7, 1), the function parameter ε =

0.0001, and the stepsize β = 2.

A number of iterations are performed and the best approximate solution is

obtained at the 81st iterate. Table 8 shows various approximate solutions (α̂)

using various values of the parameter µ.
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Table 8: Solution of Modified Newton’s Method based on Lee et al. Approxi-

mation at 81st Iterate

µ α̂ ‖αexact− α̂‖

10−16

1.000000680934881

0.999975996291894

1.000210550708668

0.999239773222684

1.001312540621827

0.998920937855809

1.000339707272387

0.00131254062182729

10−15

0.999978098438806

1.000772246382488

0.993224729563827

1.024467575479284

0.957750022379654

1.034738943150938

0.989062357494188

0.0422499776203459

10−14

0.999737295807271

1.009255257320510

0.918846675479713

1.292941242914096

0.494330233039847

1.415658427743051

0.869158951998543

0.505669766960153

From Table 8, by increasing the value of µ from 10−16, the solution seems

to be deteriorating. The iterations show that as we move away from the 81st

iterate, there is not much difference between the solutions from the 82nd to the

100th iteration. The error in the computed solution corresponding to µ = 10−16

is

‖αexact− α̂‖2 = 0.00131254062182729,

which is about 2 digits accurate. The loss in the accuracy of the solution is due

to the fact that the coefficient matrix XT X in the regularized solution (Equation

(4.6)), is ill-conditioned, with a condition number κ ≈ 2.31648078701200e+
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015. Thus, the accuracy of the computed solution is reduced by about 14 digits,

which is d− (k−1), where d = 16 and k = 15.

Table 9 shows the solutions corresponding to the optimal regularization para-

meter of Modified Newton’s method (MNM) and regularization method (RM).

Table 9: Modified Newton’s Method versus Regularization Method

with Quadratic Approximation

Method µ α̂ ‖αexact− α̂‖

MNM 10−16

1.000000680934881

0.999975996291894

1.000210550708668

0.999239773222684

1.001312540621827

0.998920937855809

1.000339707272387

1.31254062182729e−003

RM 10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

From Table 9, it is clear that the best approximate solution for the Modified

Newton’s method occurred at µ= 10−16, with the step size β= 2, and at the 81st

iteration. For the Regularization method, the best approximate solution occurred

at µ = 10−30 with 9 digit accuracy.

101

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Sigmoid Function Approximation

In this section, we consider the Sigmoid Function approximation to the

L1-norm functional. The approximation takes advantage of the non-negative

projection operators

(x)+ = max(x,0) and (−x)+ = max(−x,0).

This projection function can be smoothly approximated by the integral of a sig-

moid function (Chen & Mangasarian, 1996) given as

(x)+ ≈ p(x,κ) = x+
1
κ

log(1+ e−κx) and

(−x)+ ≈ p(−x,κ) =−x+
1
κ

log(1+ eκx).

The functions p(x,κ) and p(−x,κ) are members of a class of smoothing functi-

ons presented by Chen and Mangasarian (1996). These smoothing approxi-

mations of the projections have been used to transform the standard L1-norm

formulation into an efficiently-solved unconstrained problem.

By combining p(x,κ) and p(−x,κ), we obtain the identity

|x|= (x)++(−x)+.

We arrive at a smoothing approximation for the absolute value function that

consists of the sum of the integral of two sigmoid functions given by

|x| ≈ (x)++(−x)+ = p(x,κ)+ p(−x,κ)

=
1
κ
[log(1+ e−κx)+ log(1+ eκx)]

de f
= |x|

κ
.
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The graphs of the projection operators are given in Figure 12.

Figure 12: Projection Operators of the Absolute Value Function.

A graph of various values of the parameter κ in approximating the absolute

value function is given in the Figure 13. Approximations are given for different

values 10, 100, 1000 and 10000, of κ.

Figure 13: Sigmoid Approximation of |x|
κ

for Various Values of Approximating

Parameter, κ.

From Figure 13, |x|
κ
→ |x| as κ→ ∞. That is,

lim
κ→∞
|x|

κ
= |x| .
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Thus, it would be suitable to choose κ = 1000 for the subsequent implementa-

tion.

Given the smoothing approximation, the gradient ∇(|x|
κ
) and the Hessian

∇2(|x|
κ
)

in single variable form is derived as follows:

|x|
κ

=
1
κ

[
log(1+ e−κx)+ log(1+ eκx)

]
∇(|x|

κ
) =

1
κ

[−κe−κx

1+ e−κx +
κeκx

1+ eκx

]
=

−e−κx

1+ e−κx +
eκx

1+ eκx

=
1+ eκx−1− e−κx

(1+ e−κx)(1+ eκx)

=
(1+ eκx)− (1+ e−κx)

(1+ e−κx)(1+ eκx)

=
(1+ eκx)

(1+ e−κx)(1+ eκx)
− (1+ e−κx)

(1+ e−κx)(1+ eκx)

=
1

1+ e−κx −
1

1+ eκx .

Therefore,

∇(|x|
κ
) = (1+ e−κx)−1− (1+ eκx)−1,

and

∇
2(|x|

κ
) = (1+ e−κx)−2

κe−κx +(1+ eκx)−2
κeκx

= κ

[
(1+ e−κx)−2e−κx +(1+ eκx)−2eκx

]
=

κeκx

(1+ eκx)2

[ (1+ eκ)2

(1+ e−κx)2 (e
−κx)2 +1

]
=

κeκx

(1+ eκx)2

[(e−κx(1+ eκx)2

(1+ e−κx)2 +1
]

=
κeκx

(1+ eκx)2

[(e−κx +1)2

(1+ e−κx)2 +1
]

=
2κeκx

(1+ eκx)2 .

104

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Therefore,

∇
2(|x|

κ
) =

2κeκx

(1+ eκx)2 .

For x ∈ℜp,

‖x‖1 =
p

∑
i=1
|xi| ≈

p

∑
i=1
|xi|κ .

The loss function in Equation (4.3) therefore becomes

g(α) = ‖Xα−y‖2
2 +λ

p

∑
i

1
κ

[
log(1+ e−καi)+ log(1+ eκαi)

]
. (4.7)

The regularized solution is given as

αµ = (XT X+µI)−1XT y, (4.8)

where µ = 1
4λκ.

The regularized solution αµ written in terms of singular value decomposition

(SVD) is given in component form as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi.

Proof

Let

X = USVT .

Now, from Equation (4.8),

αµ =
[
(USVT )T USVT +µI

]−1
(USVT )T y

=
[
(VSUT )(USVT )+µI

]−1
(VSUT )y

=
[
VS2VT +µI

]−1
(VSUT )y

=
[
VS2VT +µVIVT

]−1
(VSUT )y

=
[
V(S2 +µI)VT

]−1
(VSUT )y

= V
(

S2 +µI
)−1

V−1(VSUT )y

=
(

S2 +µI
)−1

(VSUT )y
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Therefore, the singular value decomposition solution in component form is gi-

ven as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi,

which ends the proof.

Derivation of Analytic Solution using Sigmoid Approximation

Minimizing Equation (4.7) gives,

∇g(α,κ) = 2XT (Xα−y)+λ

p

∑
i=1

(1+ e−καi)−1− (1+ eκαi)−1 = 0.

A linear approximation to

(1+ e−κα)−1− (1+ eκα)−1

is obtained as

k(α) =
[
1+1+(−κα)+

(−κα)2

2
+

(−κα)3

3!
+ · · ·

]−1

−
[
1+1+(κα)+

(κα)2

2
+

(κα)3

3!
+ · · ·

]−1

=
1
2

[
1+

(−κα)

2
+

(−κα)2

2×2
+

(−κα)3

2×3!
+ · · ·

]−1

−1
2

[
1+

(κα)

2
+

(κα)2

2×2!
+

(κα)3

2×3!
+ · · ·

]−1

=
1
2

[(
1− (−κα)

2
− (−κα)2

2×2
− (−κα)3

2×3!
+ · · ·

)
−
(

1− (κα)

2
− (κα)2

2×2!
− (κα)3

2×3!
+ · · ·

)]

after some expansion and simplification. By ignoring terms of higher order, we

obtain the linear approximation

k(α) =
1
2

κα.

Now,

g(α)⇒ XT Xα+
1
2

λk(α) = XT y.
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Using the linear approximation for k(α), we obtain the minimization of g(α) as

XT Xα+
1
4

λκα = XT y.

Thus,

αµ =
(

XT X+µI
)−1

XT y, (4.9)

where

µ =
1
4

λκ.

Table 10 shows the solutions corresponding to µ= 10−35, 10−30,10−25, . . . ,100

computed for regularization of order zero using SVD. See Appendix C for the

implementation of the regularized solution based on the Sigmoid function ap-

proximation.

From Table 10, as the value of µ increases, the regularized solution deteri-

orates. Therefore, smaller µ values yields a good solution. The regularized so-

lution converges at µ = 10−30 with the smallest error of 2.07948647190648e−

009.
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Table 10: Sigmoid-SVD Regularized Solution Using 12×7 Hilbert Matrix

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−35

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−25

0.999999999998872

1.000000000038536

0.999999999665866

1.000000001203362

0.999999997919194

1.000000001716408

0.999999999457431

2.08080563890434e−009

10−20

0.999999999932141

1.000000002410994

0.999999978726610

1.000000077167407

0.999999866269820

1.000000110282785

0.999999965190480

1.33730180484903e−007

10−15

1.000000154999835

0.999996947058063

1.000011476931069

1.000000897189852

0.999940285071780

1.000088199159491

0.999961952592952

8.81991594909870e−005
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Table 10 Continued

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−10

0.999878803391175

1.001735967604173

0.995460247265296

1.000607052908816

1.004208253857990

1.002515755068508

0.995476486511775

0.00453975273470353

10−5

0.957069895104291

1.114406029985795

1.085210819207213

1.024193719073540

0.959629838376702

0.898713366587744

0.843197096416448

0.156802903583552

10−1

0.1744572114330376

0.1090387435111180

0.0823690250242499

0.0670987879006640

0.0569786259823465

0.0496922582789419

0.0441564066393135

0.955843593360686

100

0.01931625248486419

0.01204744148330808

0.00909070489003618

0.00740016644625126

0.00628090172088117

0.00547565239439158

0.00486422042842840

0.995135779571572
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To implement the Modified Newton’s method for sigmoid approximation.

The problem is to find α ∈ ℜp such that Xα = y. From Equation (4.3), the

gradient of g(α) is given by

∇g(α) = 2XT (Xα−y)+λG(α)

where G(α)=
[
(1+e−κα1)−1−(1+eκα1)−1, · · · , (1+e−καp)−1−(1+eκαp)−1

]T

and the Hessian is given by

∇
2(g(α)) = 2XT X+2κλ h(α),

where h(α) = diag

[
eκα1

(1+ eκα1)2 ,
eκα2

(1+ eκα2)2 , · · · ,
eκαp

(1+ eκαp)2

]
.

A script-file is created in OCTAVE 3.8.2 to compute the solutions at various

iterations given the regularization parameter µ = 10−16, with stepsize β = 3,

and the parameter κ = 300 in the approximation of the sigmoid function. The

result of the implementation of the algorithm for the Modified Newton’s method

based on sigmoid approximation is given in Table 11. See Appendix D for

the implementation of the Modified Newton’s method based on the Sigmoid

function approximation.
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Table 11: Solution of Modified Newton’s Method of the Sigmoid Function Ap-

proximation at 84th Iterate

µ α̂ ‖αexact− α̂‖

10−16

1.000005092022318

0.999820688361910

1.001571753611182

0.994327784550849

1.009789408764376

0.991954381867874

1.002532280742229

0.00978940876437595

10−15

1.000152474616397

0.994647378535933

1.046814834231628

0.831334575553153

1.290708563243729

0.761330714507619

1.075052243753027

0.825415447248076

10−14

0.999841879133815

1.005575703218988

0.951079243534985

1.176675179695010

0.694911508033166

1.250858148937579

0.921014800285320

0.866261600864291

From Table 11, a number of iterations are performed and the best approximate
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solution is obtained at the 84th iterate. Increasing the value of the parameter

from µ = 10−16, the solution seems to be deteriorating. The error in the compu-

ted solution corresponding to µ = 10−16 is

‖αexact− α̂‖2 = 0.00978940876437595,

which is about two digits accurate. As we move away from that iterate, there is

not much difference between the solutions from the 85th to the 100th iterate.

Table 12 gives the best approximate solution for the Modified Newton’s Method

and the Regularization Method.

Table 12: Modified Newton’s Method versus Regularization Method with Sig-

moid Approximation

Method µ α̂ ‖αexact− α̂‖

MNM 10−16

1.000005092022318

0.999820688361910

1.001571753611182

0.994327784550849

1.009789408764376

0.991954381867874

1.002532280742229

9.78940876437595e−003

RM 10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

From Table 12, the accuracy in the computed solution of MNM correspon-

ding to µ = 10−16 is just about 3 digits. The accuracy in that of the RM is up to

about 9 digits.
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Cubic Hermite Approximation

The Cubic Hermite approximation is a spline where each piece is a third-

degree polynomial specified in Hermite form: that is, by its values and first

derivatives at the end points of the corresponding domain interval. The Her-

mite form of a cubic polynomial defines the polynomial p(x) by specifying two

distinct points [−γ, γ], and providing values for the following four equations

gives



0 1 2γ 3γ2

0 1 −2γ 3γ2

1 γ γ2 γ3

1 −γ γ2 −γ3





a0

a1

a2

a3


=



1

−1

γ

γ


(4.10)

Solving for the unknown parameters in Equation (4.10), gives

a0 =
γ

2
, a1 = 0, a2 =

1
2γ

, a3 = 0.

Therefore,

P(x) =
γ

2
+

1
2γ

x2.

To determine the best approximate solution, we first examine the nature of the

plot of the absolute value function for various values of γ. The graph of the

abs(x) is given in Figure 14 for various values of the parameter γ.
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Figure 14: Cubic Hermite Approximation of |x|
γ

for Various Values of

Approximating Parameter, γ.

From Figure 14, |x|
γ
→ |x| as γ→ 0. That is,

lim
γ→0
|x|

γ
= |x| .

Thus, it would be suitable to choose γ = 0.05.

It will be shown that a scalar Cubic Hermite approximation to the absolute value

function is given as

|x|
γ
≈ γ

2
+

1
2γ

x2.

The gradient ∇(|x|
γ
) and the Hessian ∇2(|x|

γ
) are derived as follows:

∇(|x|
γ
) =

x
γ

and ∇
2(|x|

γ
) =

1
γ
.

For x ∈ℜp,

‖x‖1 =
p

∑
i=1
|xi| ≈

p

∑
i=1
|xi|γ .
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The loss function in Equation (4.3) therefore becomes,

g(α) = ‖Xα−y‖2
2 +λ

p

∑
i

(
γ

2
+

1
2γ

α
2
i

)
. (4.11)

The regularized solution is given as

αµ = (XT X+µI)−1XT y, (4.12)

where µ = 1
2γ

λ.

The regularized solution αµ written in terms of singular value decomposition

(SVD) is given in component form as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi.

Proof

Let

X = USVT .

Now, from Equation (4.1), we have

αµ =
[
(USVT )T USVT +µI

]−1
(USVT )T y

=
[
(VSUT )(USVT )+µI

]−1
(VSUT )y

=
[
VS2VT +µI

]−1
(VSUT )y

=
[
VS2VT +µVIVT

]−1
(VSUT )y

=
[
V
(

S2 +µI
)

VT
]−1

(VSUT )y

= V
(

S2 +µI
)−1

V−1(VSUT )y

=
(

S2 +µI
)−1

(VSUT )y.

Therefore, the singular value decomposition solution in component form is gi-

ven as

αµ =
p

∑
i=1

σi

σ2
i +µ

(UT
i y)Vi
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which ends the proof.

Table 13 shows the solutions corresponding to each µi for µ= 10−35, 10−30,

10−25, . . . ,100 for regularization of order zero using SVD.
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Table 13: Cubic Hermite-SVD Regularized Solution Using 12×7 Hilbert Ma-

trix

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−35

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

10−25

0.999999999998873

1.000000000038513

0.999999999666067

1.000000001202631

0.999999997920461

1.000000001715363

0.999999999457760

2.07953931852245e−009

10−20

0.999999999996198

1.000000000133594

0.999999998826900

1.000000004246953

0.999999992644548

1.000000006066182

0.999999998084514

7.35545158114803e−009
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Table 13 Continued

Parameter Approximate Solution Error

µ α̂ ‖αexact− α̂‖

10−15

0.999999976883887

1.000000914030655

0.999991353305120

1.000032960674909

0.999940702249965

1.000050356850425

0.999983724337111

5.92977500348812e−005

10−10

0.999977802872302

1.000254859290361

0.999575004547348

0.999462342623030

1.000769728470951

1.001050955585264

0.998892184490866

0.00110781550913430

10−5

0.997083859443683

0.988757350223393

1.027233238770432

1.030059635253386

1.011348445727649

0.981955740065443

0.947888075611324

0.0521119243886761

10−1

1.182764491144766

0.778733472069915

0.603822066884575

0.499971946128715

0.429416918328446

0.377683032353304

0.337821193887241

0.662178806112759

100

0.3753186032580785

0.2354033817425414

0.1781502630022617

0.1452917881795200

0.1234792009450131

0.1077549779624429

0.0957968325361443

0.904203167463856
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From Table 13, as the values of µ increase, the regularized solution deteri-

orates. Therefore, smaller µ values yields a good solution. The regularized so-

lution converges at µ = 10−30 with the smallest error of 2.07948647190648e−

009. It can be observed that as we reduce the value of µ further, the error remains

the same. Thus, the solution converges at µ = 10−30. See Appendix E for the

implementation of the regularized solution of the Cubic Hermite approximation.

To implement the Modified Newton’s method for Cubic Hermite approx-

imation, we want to find α ∈ ℜp such that Xα = y. From Equation (4.11), the

gradient of g(α) is given by

∇g(α) = 2XT (Xα−y)+λG(α),

where

G(α) = (α1
γ
, α2

γ
, . . . ,

αp
γ
)T

and the Hessian is also given as

∇
2(g(α)) = 2XT X+

1
γ

λIp.

The result of the implementation of the algorithm of the Modified Newton’s

method based on Cubic Hermite approximation is given in Table 14.

A script-file is created in OCTAVE 3.8.2 to compute the solutions at various

iterations given the regularization parameter µ= 10−16, with the step size β= 3,

and the parameter γ = 0.05 in the cubic Hermite approximation. A number of

iterations are performed and the best approximate solution is obtained at the

86th iterate. Table 14 shows the various solutions using various values of the

parameter µ. See Appendix F for the implementation of the Modified Newton’s

method based on the Cubic Hermite approximation.
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Table 14: Solution of Modified Newton’s Method of the Cubic Hermite Ap-

proximation at 86th Iterate

µ α̂

10−16

0.999983772069521

1.000576215743305

0.994919717190969

1.018414062557087

0.968111442843396

1.026280481466755

0.991709642462265

10−15

0.999655665671350

1.012136463880960

0.893550223924022

1.384344473224146

0.336429480638737

1.545533573625836

0.828255590349513

10−14

0.998566256577911

1.050515505579027

0.557039423069666

2.599028960108513

−1.760299621017860

3.269011614438952

0.285745185125661

From Table 14, there is not much difference between the solutions from
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the 87th to the 100th iterate. Increasing the value of the parameter from µ =

10−16, the solution deteriorate from the true solution. The error in the computed

solution corresponding to µ = 10−16 is

‖αexact− α̂‖2 = 0.0318885571566037,

which is about one digit accurate.

Table 15 gives the best approximate solution for the Modified Newton’s

method and the Regularization Method.

Table 15: Modified Newton’s Method versus Regularization Method with Cubic

Hermite Approximation

Method µ α̂ ‖αexact− α̂‖

MNM 10−16

0.999983772069521

1.000576215743305

0.994919717190969

1.018414062557087

0.968111442843396

1.026280481466755

0.991709642462265

3.18885571566037e−002

RM 10−30

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

From the numerical simulations, the Modified Newton’s method solutions vary

for the three smoothing approximations considered. However, the regularized

solutions are the same at µ = 10−30.

The relation among the parameters of the Tikhonov regularization and the

smoothing approximations considered are summarized in Table 16.
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Table 16 : Relation among Parameters of Tikhonov Regularization

and Smoothing Approximations

Method Parameter of Regularization Parameter

Smoothing Method Parameter in terms of λ

Tikhonov - λ λ

Quadratic ε µ µ = 1
2λε
− 1

2

Sigmoid κ µ µ = 1
4λκ

Cubic γ µ µ = 1
2γ

λ

In Table 16, λ is the regularization parameter in Equation (4.1). Column 4

of the table gives the relation for the regularization parameter µ in the minimiza-

tion problem in terms of the smoothing approximation of the L1-norm penalty.

We now compare the three smoothing approximations using regularization with

a non-smooth method which makes use of Truncated Newton Interior-Point met-

hod described by Kim et al., (2007). In that paper, they developed a MATLAB

Solver for large-scale L1-regularized least squares problems called l1 ls.

Using our value of the parameter µ= 10−30 in the l1 ls, we display in Table

17 the result of all three regularization methods (RM) and that of the l1 ls.
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Table 17: Summary of Methods and their Solutions at µ = 10−30

Method
Solution corresponding to

µ = 10−30
‖αexact− α̂‖

RM

0.999999999998873

1.000000000038512

0.999999999666076

1.000000001202600

0.999999997920514

1.000000001715320

0.999999999457774

2.07948647190648e−009

l1 ls

1.000000000000292

0.999999999990242

1.000000000081881

0.999999999715937

1.000000000472646

0.999999999624568

1.000000000114463

4.72645700355656e−010

From Table 17, it is seen that the solutions from the three smoothing ap-

proximations by regularization method is as good as the non-smooth method,

which is accurate to about ten digits.

Chapter Summary

In this chapter, we have considered three smoothing methods for approxi-

mating the L1-norm penalty in the L1-norm regularized least squares problem.

It is an attempt to obtain an approximate differentiable function for the non-

differentiable L1-norm penalty term. The three methods considered are Quadra-

tic approximation of the Lee et al. approximation, the Sigmoid function approx-

imation, and the Cubic Hermite. For each approximation, we have obtained the

regularized solution and the corresponding solution in terms of the singular va-

lue decomposition. In each case, the result of the approximation has be assessed

using the Hilbert sub-matrix of dimension 12× 7. The regularized smoothing
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approximation solution produced almost the same results that are accurate to

nine digits at the same parameter value of µ = 10−30. Subsequently, for each of

the three methods, we have obtained optimal approximate solutions by means

of the Newton’s method. It is observed that the results of the Newton’s method

under all three methods show visible differences and produced solutions that are

accurate only to at most three digits.

Therefore, our results from the smoothing approximation to the L1-norm

regularization functional are as good as the non-smooth methods used in deve-

loped solvers.
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CHAPTER FIVE

NON-SMOOTHING OPTIMIZATION WITH SPARSITY INDUCED

SYSTEMS

Introduction

Least squares optimization with L1-norm regularization can be cast as an

unconstrained problem by finding a good smoothing approximation to the L1-

norm which have been discussed in Chapter Four.

In this chapter, we consider another way of addressing the same problem,

this time by considering a non-smoothing approximation of the non-differentiable

L1-norm penalty term. Least squares minimization subject to an L1-norm was

presented and popularised independently under the names “Least Absolute

Shrinkage and Selection Operator” (LASSO) by Tibshirani, (1994). This acro-

nym has become a dominant expression describing the L1-norm function. Tibs-

hirani, (1994) presented several different methods for optimizing the LASSO.

The ‘LASSO’ minimizes the residual sum of squares (RSS) subject to the sum

of the absolute value of the coefficients being less than a constant. Because of

the nature of this constraint it tends to produce some coefficients that are exactly

zero and hence gives interpretable models.

While L2-norm regularization is an effective means of achieving numerical

stability and increasing predictive performance, it does not address a problem

with least squares estimates, which does not ensure parsimony of the model

and interpretability of the coefficients. While the size of the coefficient values is

bounded, minimizing the RSS with a penalty on the L2-norm does not encourage

sparsity, and the resulting models typically have non-zero values associated with

all coefficients. It has been proposed that, rather than simply achieving the goal

of ‘shrinking’ the coefficients, higher values for the L2-norm penalty force the

coefficients to be more similar to each other in order to minimize their joint
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L2-norm. An alternative approach has been to replace the L2-norm penalty with

an L1-norm. This L1-norm regularization has many of the beneficial properties

of L2-norm regularization, but yields sparse models that are more easily inter-

preted. An additional advantage of L1-norm penalties is that the models often

outperform those produced with an L2-norm penalty, when irrelevant features

are present in the solution α. This property provides an alternate motivation

for the use of an L1-norm penalty. It provides a regularized feature selection

method, and thus can give low variance feature selection, compared to the high

variance performance of typical subset selection techniques.

The LASSO for Linear Models

In this section, we introduce the LASSO estimator for linear regression.

We describe the basic LASSO method, and outline a simple approach for its

implementation. We relate the LASSO to ridge regression, and also view it as a

Bayesian estimator.

In the linear regression setting, we are given m samples (xi,yi)
m
i=1, where

each xi = (xi1, . . . , xip) is a p-dimensional vector of features or predictors, and

each yi ∈ℜ is the associated response variable. Our goal is to approximate the

response variable yi using a linear combination of the predictors

η(xi) = α0 +
p

∑
j=1

xi jα j. (5.1)

The model is parametrised by the vector of regression weights α=(α1, . . . , αp)∈

ℜp and an intercept (or “bias”) term α0 ∈ℜ. The usual “least squares” estimator

for the pair (α0,α) is based on minimizing squared-error loss given by

minimize
α0,α

{ m

∑
i=1

(yi−α0−
p

∑
j=1

xi jα j)
2
}
. (5.2)

There are two reasons why we might consider an alternative to the least-squares
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estimate. The first reason is prediction accuracy: the least squares estimate of-

ten has low bias but large variance, and prediction accuracy can sometimes be

improved by shrinking the values of the regression coefficients, or setting some

coefficients to zero. By doing so, we introduce some bias but reduce the va-

riance of the predicted values, and hence may improve the overall prediction

accuracy (as measured in terms of the mean-squared error). The second reason

is for the purposes of interpretation. With a large number of predictors, we often

would like to identify a smaller subset of these predictors that exhibit the stron-

gest effects.

This chapter is devoted to discussion of the LASSO, a method that combi-

nes the least squares loss in Equation (5.2) with an L1-constraint, or bound on

the sum of the absolute values of the coefficients. Relative to the least squares

solution, this constraint has the effect of shrinking the coefficients, and even set-

ting some to zero. In this way, it provides an automatic way for doing feature

selection in linear regression. Moreover, unlike some other criteria for feature

selection, the resulting optimization problem is convex, and can be solved effi-

ciently for large problems.

The LASSO Estimator

Given a collection of m predictor-response pairs (xi,yi)
m
i=1, the LASSO

finds the solution (α̂0, α̂) to the optimization problem

min
α0,α

{
m

∑
i=1

(yi−α0−
p

∑
j=1

xi jα j)
2

}
(5.3)

subject to
p

∑
j=1

∣∣α j
∣∣≤ t.

The constraint ∑
p
j=1

∣∣α j
∣∣≤ t can be written more compactly as the L1-norm con-

straint
∥∥α j
∥∥≤ t. Furthermore, Equation (5.3) is often represented using matrix-

vector notation. Let y = (y1, . . . , ym) denote the m-vector of responses, and X
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be an m× p matrix with xi ∈ℜp in its ith row, then the optimization problem in

Equation (5.3) can be rewritten as a minimization problem of the form

min
α0,α

{
‖y−α01−Xα‖2

2

}
(5.4)

subject to
∥∥α j
∥∥≤ t,

where 1 = {1,1, . . . ,1} ∈ℜm is the vector of m ones, and ‖.‖2 denotes the usual

Euclidean norm on vectors. The bound t is a kind of “budget”: it limits the sum

of the absolute values of the parameter estimates. Since a shrunken parameter

estimate corresponds to a more heavily-constrained model, this budget limits

how well we can fit the data. It must be specified by an external procedure such

as cross-validation, which we discuss later in the chapter. Typically, we first

standardize the data matrix X so that each column is centered with mean zero

and variance one. These centering conditions are convenient, since they mean

that we can omit the intercept term α0 in the LASSO optimization. Given an

optimal LASSO solution α̂ on the centered data, we can recover the optimal

solutions for the un-centered data: α̂ is the same, and the intercept α̂0 is given

by

α̂0 = ȳ−
p

∑
j=1

x̄ j, α̂ j,

where ȳ and x̄ j
p
1 are the original means. For this reason, we omit the intercept

α0 from the LASSO for the rest of this chapter. It is often convenient to rewrite

the LASSO problem in the Lagrangian form as

minimize
α∈ℜp

{
‖y−Xα‖2

2 +λ‖α‖1

}
, (5.5)

for some λ ≥ 0. By Lagrangian duality, there is a one-to-one correspondence

between the constrained problem in Equation (5.3) and the Lagrangian form in

Equation (5.5): for each value of t in the range where the constraint ‖α‖1 ≤ t is

active, there is a corresponding value of λ that yields the same solution from the

Lagrangian form in Equation (5.5). Conversely, the solution α̂λ to the problem
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in Equation (5.5) solves the bound problem with t = ‖α̂λ‖1 . There are many

descriptions for the LASSO, the factor 1 appearing in Equation (5.3) and Equa-

tion (5.5) can be replaced by
1

2m
or

1
2
. Although this makes no difference in

Equation (5.3), it corresponds to a simple re-parametrisation of λ in Equation

(5.5), this kind of standardisation makes λ values comparable for different sam-

ple sizes (useful for cross-validation). The theory of convex analysis tells us that

necessary and sufficient conditions for a solution to problem in Equation (5.5)

take the form

−〈x j, y−Xα〉+λs j = 0, j = 1, . . . , n. (5.6)

Here, each s j is an unknown quantity equal to sign(α j), if α j 6= 0 and some va-

lue lying in [−1, 1] otherwise, it is a sub-gradient for the absolute value function

(as described in Chapter Three). In other words, the solutions α̂ to problem in

Equation (5.5) are the same as solutions (α̂, ŝ) to Equation (5.6). This system is

a form of the Karush Kuhn Tucker (KKT) conditions for problem in Equation

(5.5). Expressing a problem in sub-gradient form can be useful for designing

algorithms for finding its solutions.

As an example of the LASSO, let us consider the data given in Table 18,

taken from Thomas (1990) on reported violent crime rate data.
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Table 18: Violent Crime Rate and Predictors for 50 U.S.A Cities

city funding hs not-hs college college4 violent crime rate

1 40 74 11 31 20 184

2 32 72 18 43 18 213

3 57 70 11 16 16 347

4 31 71 11 25 19 565

5 67 72 9 29 24 327
...

...
...

...
...

...
...

50 66 67 26 18 16 1244

Source: Thomas (1990)

The outcome is the reported violent crime rate per 100,000 residents in

50 U.S.A cities. There are five predictors: annual police funding in dollars per

resident, percent of people 25 years and older with four years of high school,

percent of 16- to 19-year olds not in high school and not high school graduates,

percent of 18- to 24-year olds in college, and percent of people 25 years and

older with at least four years of college. This small example is for illustration

only, but helps to demonstrate the nature of the LASSO solutions. Typically,

the LASSO is most useful for much larger problems, including “wide” data for

which p� m.

The subplot (a) of Figure 15 shows the result of applying the LASSO with

the bound t varying from zero on the left, all the way to a large value on the right,

where it has no effect. The horizontal axis has been scaled so that the maximal

bound, corresponding to the least squares estimates α̃, is one. We see that for

much of the range of the bound, many of the estimates are exactly zero, and

hence, the corresponding predictor(s) would be excluded from the model. The

LASSO has this feature selection property due to the geometry that underlies
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the L1 constraint ‖α‖1 ≤ t. To understand this better, the subplot (b) shows the

estimates from ridge regression also known as L2-norm regularization discussed

in Chapter Three. This technique predates the LASSO. It solves a criterion very

similar to Equation (5.3). This is given as

min
α0, α

{
m

∑
i=1

(
yi−α0−

p

∑
j=1

xi jα j

)2
}

(5.7)

subject to
p

∑
j=1

α
2
j ≤ t2

Figure 15: Coefficient Path for LASSO and Ridge Regression.

The ridge profiles in subplot (b) have roughly the same shape as the LASSO

profiles in (a), but are not equal to zero except at the left end. Figure 16 con-

trasts the two constraints used in the LASSO and ridge regression by Hastie,

Tibshirani and Friedman (2009).
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Figure 16: Graphs showing (a) L1 Constraint and (b) L2 Constraint.

The residual sum of squares has elliptical contours, centered at the full least

squares estimates. The constraint region for ridge regression is the disk

β2
1 +β2

2 ≤ t2, in (b) while that for LASSO is the diamond |β|1 + |β|2 ≤ t, in (a).

Both methods find the first point where the elliptical contours hit the constraint

region. Unlike the disk, the diamond has corners; if the solution occurs at a

corner, then it has one parameter j equal to zero. When p > 2, the diamond

becomes a rhomboid, and has many corners, flat edges, and faces; there are

many more opportunities for the estimated parameters to be zero. We use the

term sparse for a model with few non-zero coefficients. Hence, a key property of

the L1 constraint is its ability to yield sparse solutions. This idea can be applied

in many different statistical models, and is the central part of this thesis.

LASSO Solution

Obtaining a regression model for a dataset X (m× p) usually encounters

challenges when p > m. In this case, rank(X) < p. This condition produces a

non-unique solution such that there is a variable xi, ∈ {1, 2, . . . , p} whose coef-
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ficient is positive on one solution and negative on another. Adding an element

of null space of X to a least squares solution produces another solution. This

phenomena makes the interpretation of the regression parameters generally pro-

blematic. The main problem here is that there are inconsistencies in signs of the

variables on different solutions.

Unconstrained Formulation of LASSO

Formulation of the LASSO can be cast as either constrained or unconstrai-

ned. The two formulations are equivalent. The proof is given as follows.

Proof

The unconstrained formulation of the LASSO is given as

min
α

g (α, λ1) = ‖Xα−y‖2
2 +λ1 ‖α‖1 (5.8)

whiles the constrained formulation is given as

min
α
‖Xα−y‖2

2 (5.9)

subject to‖α‖1 ≤ t.

The Lagrangian for Equation (5.9) is given by

g(α, λ2) = ‖Xα−y‖2
2 +λ2(‖α‖1− t). (5.10)

Now, Equation (5.10) is equivalent to Equation (5.8) except for the constant

term−λ2t. The necessary conditions for optimality for the problem in Equation

(5.8) is given by

∇α gλ1(α
∗) = 0 = ∇α gλ2(α

∗),

where α∗(λ1) is the optimal solution for a given λ1, (see Equation (5.11)). The-

refore, the gradient of Equation (5.10) is given as
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∇αg(α∗,λ∗2)⇒ 2XT (Xα−y)+λ2sign(α) = 0

whereas that for Equation (5.8) is given as

∇αg(α∗,λ∗1)⇒ 2XT (Xα−y)+λ1sign(α) = 0.

The sign(α) is the sub-gradient of the L1-norm penalty. The KKT conditions

imply that we have:

∇αgλ2(α
∗) = ∇αgλ1(α

∗) = 0

λ
∗
2(‖α‖1− t) = 0.

What this means is that the gradient of the Lagrangian with respect to α should

be null and the other is the complementary condition. We observe that the gra-

dient of the Lagrangian is equal to the gradient of gλ2, that is, the objective

function in Equation (5.8) but with λ2 instead of λ1. Now let suppose we solve

the problem in Equation (5.8) for a given λ1 and obtain its solution as α∗(λ1)

and also let t = ‖α∗(λ1)‖1 , the L1-norm of the solution to the problem in Equa-

tion (5.8), then λ∗2 = λ1 and α∗ = α∗(λ1) satisfy the KKT conditions for the

problem in Equation (5.9), showing that both the problems have the same solu-

tion.

Conversely, by setting λ1 = λ∗2 in Equation (5.10), we can retrieve the same

solution by solving the problem in Equation (5.8). Therefore, both problems are

equivalent when t = ‖α∗(λ1)‖1 .

Linear Regression Using LASSO

We consider an L1-norm regularization functional in Equation (5.8) which

we refer to as Method 1.
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The gradient of g(α) is given by

∇gi(α) = 2XT (Xα−y)+λ

p

∑
i=1
|αi|

= (2XT Xα)i− (2XT y)i +λisign(αi),

where

sign(αi) =


+1 if αi > 0

−1 if αi < 0

[−1, +1] if αi = 0.

Then,

∇gi(α) =


(2XT Xα)i− (2XT y)i +λi if αi > 0

(2XT Xα)i− (2XT y)i−λi if αi < 0[
− (2XT y)i−λi, −(2XT y)i +λi

]
if αi = 0.

We consider each of the three cases of ∇gi(α). In the following, Ii is the ith

column of the p× p identity matrix.

Case 1: When αi > 0.

By first equating the gradient to zero,

(2XT Xα)i− (2XT y)i +λi = 0.

This implies that

αi =
1
2
(XT X)−1(2XT y−λIi).

Then applying the condition αi > 0, we obtain

(XT X)−1(XT y)− 1
2
(XT X)−1

λIi > 0

(XT X)−1(XT y)>
1
2
(XT X)−1

λIi

(XT y)>
1
2

λIi

2(XT y)i > λi.
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Case 2: When αi < 0.

By equating the corresponding gradient to zero,

(2XT Xα)i− (2XT y)i−λi = 0,

which implies that

αi =
1
2
(XT X)−1(2XT y+λIi).

Then applying the condition αi < 0, we obtain

(XT X)−1(XT y)+
1
2
(XT X)−1

λIi < 0

(XT X)−1(XT y)<−1
2
(XT X)−1

λIi

(XT y)<−1
2

λIi

2(XT y)i <−λi.

Case 3: When αi = 0.

By equating the corresponding gradient to zero,[
− (2XT y)i−λi, −(2XT y)i +λi

]
= 0

This implies that

−λi < 2(XT y)i < λi.

Combining the solutions in the three cases, we obtain the composite solution as

follows

αi =



1
2
(XT X)−1(2XT y−λIi), λi < 2(XT y)i

1
2
(XT X)−1(2XT y+λIi), −λi > 2(XT y)i

0, −λi < 2(XT y)i < λi.

(5.11)

We will subsequently refer to Equation (5.11) as Method 1.

In Equation (5.11), a condition for the value of αi depends on the value

2(XT y)i. We relate this value to the KKT condition which is given by

XT
j (y−Xα̂) = λ jγ j,
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Notice that the inner product of XT
j (which is the jth column of the data matrix

X) and the residual r j = (y−Xα̂) j is the left hand side of the KKT condition.

Thus, we can express

2(XT y) j = 2XT
j (y−Xα̂|α j=0) j,

which may be simplified as

2(XT y) j = 2(XT y) j−2(XT X) jα+2(XT X)( j, j)α j. (5.12)

In Equation (5.12), (XT X)( j, j) is the jth diagonal element of XT X and (XT X) j

is the jth row. Using this relation, we develop an algorithm for finding the solu-

tion to Equation (5.11).

Algorithm for Method 1

Initialize regularization parameter lambda;

alpha=zeros(n,1);

xy = x′*y*2;

xx = x′*x*2;

alphaold=alpha;

for j=1:n

cj=xy(j)-sum(xx(j, :)* alpha)+xx(j, j)*alpha(j);

aj=xx(j, j);

if cj >lambda

alpha(j,1)=(cj-lambda)/aj;

elseif cj <-lambda

alpha (j, 1)= (cj + lambda)/aj;

else

alpha (j, 1)= 0;

end

end
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In the algorithm, to ensure that α j = 0, we set an initial solution to be α = 0.

Applications

Using an L1-norm regularization has been found to be particularly effective

in many other applications like feature selection by Tibshirani (1996), compres-

sed sensing by Chen et al. (1998), sparse coding by Gregor and LeCun (2010),

and discovery of graph connectivity by Hsieh, Sustik, Dhillon and Ravikumar

(2011). In this section, we will focus on demonstrating the application of least

squares with regularization to data fitting. Many problems in machine learning

and data fitting can be cast as a least squares problem with a regularization term

in order to limit over-fitting. The model is stated as the LASSO problem in

Equation (1.13). Apart from limiting over-fitting, the L1 regularizer tends to

produce a sparse solution while reducing the computational cost.

Data Fitting

In Chapter One, we illustrated the need for regularization in order to obtain

a good fit to a given datasets. The illustrations made use of data involving few

dimensions. In this section, we use datasets of high dimensions. These data-

sets are those that have been introduced in Chapter One. As described in that

chapter, the datasets involve both real and hypothetical ones. We will make use

of a hypothetical data given by the Hilbert matrix of dimension 20× 12. The

real datasets are the level of atmospheric ozone concentration with dimensions

330× 10 and the Housing datasets with dimensions 506× 14. For the purpose

of these illustrations, the selected datasets involve only continuous variables.

In each of the illustrations, we provide the solution of the least squares

method, the L2-norm regularization, the solution which is based on our deriva-

tion in Chapter Five, the l1 ls solver and finally the LASSO solution from an
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inbuilt MATLAB command. In order to arrive at these solutions, we first obtain

solutions based on Method 1 for various values of the regularization parameter.

We provide a description of each of the datasets used in the thesis at the point

of application.

Application to Ozone Concentration Data

The data covers the level of atmospheric ozone concentration from eight

daily meteorological measurements made in the Los Angeles basin in 1976. The

response, referred to as ozone, is actually the logarithm of the daily maximum

of the hourly-average ozone concentrations in Upland, California. It involves

330 complete cases of measurements that were made every day that year. Thus,

the data covers 330 observations on a total of ten variables which are described

as follows:

Ozone : Upland Maximum Ozone

VH : Vandenberg 500 mb Height

Wind : Wind Speed (mph)

Humidity : Humidity

Temp : Sandburg AFB Temperature

IBH : Inversion Base Height

DPG : Daggot Pressure Gradient

IBT : Inversion Base Temperature

Vis : Visibility (miles)

DOY : Day of the Year

For this data, we intend to determine how well the method studied provides a

good fit for the Ozone concentration in terms of the nine variables.

Table 19 gives the fit to the Ozone data for various regularization parame-

ters and corresponding norm of the solution. We notice in Table 19 that ‖α‖ is

much lower for λ = 10−0.5 or higher values of λ. However, for these values the
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standard method, l1 ls gives extremely low ‖α‖ . The value of λ = 10−1 is thus

chosen so that our result and that of the standard method are quite close. By this

selection, we are sure to avoid being prone to over-penalising the variables and

hence obtain a more optimal solution. In addition, it can be observed that the

solution begins to converge for values of λ lower than λ = 10−1 with slightly

higher solution norm.
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Table 19: Method 1 Solution for various λ Values with Corresponding

Norms for Ozone Data

Parameter Method 1 Solution Norm

λ α ‖α‖2

101

1.17606060606061e+001

1.81349156058298e−005

−2.28159860683744e−002

1.92919896734494e−002

5.05882313003997e−003

−1.20306826495284e−003

5.36771906998305e−002

1.41708185337842e−002

−1.53044942009277e−002

2.42354956735694e−003

11.7607864046703

100

1.17742424242424e+001

1.57647849094480e−005

−2.32895205570284e−002

1.93324806257359e−002

5.06114647018805e−003

−1.20306208889537e−003

5.36790705621900e−002

1.41696660017421e−002

−1.53040603588725e−002

2.42297925201176e−003

11.7744235604703

10−0.5

1.17752784427788e+001

1.55847149582150e−005

−2.33254971942704e−002

1.93355569133917e−002

5.06132298524176e−003

−1.20306161967131e−003

5.36792133841550e−002

1.41695784384744e−002

−1.53040273978557e−002

2.42293592247868e−003

11.7754596399001

10−1

1.17756060606061e+001

1.55277718398098e−005

−2.33368740058939e−002

1.93365297209646e−002

5.06137880420284e−003

−1.20306147128963e−003

5.36792585484259e−002

1.41695507485378e−002

−1.53040169746670e−002

2.42292222047723e−003

11.7757872770045
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Table 19 Continued

Parameter Method 1 Norm

λ α ‖α‖2

10−5

1.17757575606061e+001

1.55014396877731e−005

−2.33421349740630e−002

1.93369795754445e−002

5.06140461651187e−003

−1.20306140267363e−003

5.36792794336968e−002

1.41695379439069e−002

−1.53040121546818e−002

2.42291588427374e−003

11.7759387859221

10−10

1.17757575757574e+001

1.55014370543208e−005

−2.33421355002071e−002

1.93369796204340e−002

5.06140461909337e−003

−1.20306140266677e−003

5.36792794357855e−002

1.41695379426263e−002

−1.53040121541997e−002

2.42291588364006e−003

11.7759388010743

10−15

1.17757575757576e+001

1.55014370542946e−005

−2.33421355002127e−002

1.93369796204345e−002

5.06140461909341e−003

−1.20306140266677e−003

5.36792794357855e−002

1.41695379426263e−002

−1.53040121541997e−002

2.42291588364006e−003

11.7759388010745

10−20

1.17757575757576e+001

1.55014370542946e−005

−2.33421355002127e−002

1.93369796204345e−002

5.06140461909341e−003

−1.20306140266677e−003

5.36792794357855e−002

1.41695379426263e−002

−1.53040121541997e−002

2.42291588364006e−003

11.7759388010745
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Figure 17 displays the sequence of cross-validated mean square errors (MSE)

of LASSO fit associated with each of 100 λ values. It also shows the line seg-

ments for each point that represent intervals of estimate for each MSE value.

The right vertical line identifies the value of λ of about 10−1 as the value that

minimizes the MSE. However, the left vertical line identifies the value of λ of

about 100 as the highest value that gives an MSE which is within one standard

error of the minimium MSE. These results buttress our choice of λ = 10−1 in

Table 19.

Figure 17: Cross-Validation of LASSO Fit of Ozone Data.

Table 20 gives the solution for the various methods described in the intro-

ductory part of this section for our optimal value of λ = 10−1 selected in Table

19. In Table 20, it can be observed that for the selected λ, our method provides

an improved solution over the least squares and also compares favourably with

the standard method. The solution with the L2-norm regularization is also given

by the Ridge method. It is noted that the Ridge solution gives a smaller ‖α‖ .
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Under this circumstance, we will proceed to obtain a LASSO solution. It is

observed that the LASSO solution sets three variables to zero and gives a smal-

ler norm than the Ridge solution. Thus, for this data, the VH (Vandenberg 500

mb Height), Wind (Wind Speed (mph)) and DPG (Daggot Pressure Gradient)

are found to be insignificant for determining level of ozone concentration.

Table 20: Solutions for Various Methods at Optimal Value of λ = 10−1 of

Ozone Data

Least Squares l1 ls Method 1

1.83792938185221e+001

−5.13398580625873e−003

−1.98303689571137e−002

8.04923402085268e−002

2.74334915209124e−001

−2.49718504760582e−004

−3.69681669971093e−003

2.92640252680749e−002

−8.07416281628950e−003

−8.84903284042084e−003

1.62141319837849e+001

−4.73897994067565e−003

−1.79736059630038e−002

8.07102530637668e−002

2.73662965466202e−001

−2.55747006463849e−004

−3.66948744553552e−003

2.88210078126767e−002

−8.04730021982255e−003

−8.86899200795415e−003

1.17756060606061e+001

1.55277718398098e−005

−2.33368740058939e−002

1.93365297209646e−002

5.06137880420284e−003

−1.20306147128963e−003

5.36792585484259e−002

1.41695507485378e−002

−1.53040169746670e−002

2.42292222047723e−003

Norm 18.3815563307604 16.2166832200284 11.7757872770045
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Table 20 Continued

Term Least Squares Ridge LASSO

Intercept 1.83792938185221e+001 3.39481358442390e+000 −9.252495130026199

VH −5.13398580625873e−003 −2.40030901411901e−003 0

Wind −1.98303689571137e−002 −6.99091193173656e−003 0

Humidity 8.04923402085268e−002 8.20014487872422e−002 0.076869400178832

Temperature 2.74334915209124e−001 2.69699018781978e−001 0.257003761800373

IBH −2.49718504760582e−004 −2.91474679042056e−004 −0.000341674416691

DPG −3.69681669971093e−003 −3.50952133997424e−003 0

IBT 2.92640252680749e−002 2.61949691581035e−002 0.023655735407189

Viscosity −8.07416281628950e−003 −7.88818285680392e−003 −0.006931522401284

DOY −8.84903284042084e−003 −8.98725605196803e−003 −0.007601613843453

Norm 18.3815563307604 3.40662843262426 0.269490963407463

It is important to determine how the size of the solution norm reflect in the

error in prediction, that is, the residual norm. Thus, in Table 21, we present the

solution norm with corresponding residual norm for each of the five methods

presented in Table 20.

Table 21: Solution and Residual Norms of Ozone Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 18.3815563307604 79.4431199160718

l1 ls 16.2166832200284 79.4437883803807

Method 1 11.7757872770045 102.574788852876

Ridge 3.40662843262426 79.4751306014532

LASSO 0.269490963407463 185.9927445319219

It can be seen from Table 21 that a small solution norm does not necessarily

translate into a small residual norm. For example, the LASSO solution which
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has the smallest solution norm rather has the largest residual norm. This me-

ans that even though the method eliminates variables that may be considered as

closely related to other variables, it rather yields a very large error in prediction

compared to even the un-regularized least squares solution. Incidentally, Met-

hod 1 solution also yields a high residual norm even though its solution norm is

much better than the standard method l1 ls.

Figure 18 also shows a plot of all coefficients values in the LASSO solution

against the L1-norm of the solution.

Figure 18: Trace Plot of Coefficients Fit by LASSO of Ozone Data.

Application to Boston Housing Data

This dataset was taken from the StatLib library which is maintained at Car-

negie Mellon University. It is created by Harrison and Rubinfeld (1978) on

‘Hedonic prices and the demand for clean air’. The data consists of 506 ob-

servations on 14 variables. It seeks to explain the crime rate in Boston using
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13 explanatory housing variables. The description of the variables are given as

follows:

CRIM: per capita crime rate by town

ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS: proportion of non-retail business acres per town

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX: nitric oxides concentration (parts per 10 million)

RM: average number of rooms per dwelling

AGE: proportion of owner-occupied units built prior to 1940

DIS: weighted distances to five Boston employment centres

RAD: index of accessibility to radial highways

TAX : full-value property-tax rate per 10,000

PTRATIO: pupil-teacher ratio by town

B: 1000(Bk−0.63)2, where Bk is the proportion of blacks by town

LSTAT: lower status of the population

MEDV: Median value of owner-occupied homes in 1000′s

The data has been studied in Belsley, Kuh and Welsch (1980) and in Quinlan

(1993).

Table 22 gives the fit for the Housing data for various regularization para-

meters and corresponding norm of the LASSO solution. We notice in Table 22

that ‖α‖ keeps increasing for lower values of λ. The value of λ = 100 is cho-

sen so that our result and that of the standard method are quite close. By this

selection, we are sure to avoid being prone to over-penalising the variables and

hence obtain a more optimal solution. In addition, it can be observed that the

solution will begin to converge only for values of λ which are much smaller and

with higher solution norm.
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Table 22: Method 1 Solution for various λ Values with Corresponding

Norms of Housing Data

Parameter Method 1 Norm

λ α ‖α‖2

100

3.61253541501976327

−0.05970924825930624

0.15451268362766490

−3.25123411046304645

−0.62660281742045709

−0.09088620673210188

0.00980137478059614

−0.28314944728974384

0.23300269371763446

−0.00230218557618490

−0.03884210801860746

−0.00131264428488578

0.07181356966404394

−0.03384433504859750

4.91850022007651

10−0.5

3.61321107928259266

−0.05972167942143729

0.15447563363223096

−3.26111080777584306

−0.62763891957459339

−0.09072133627756522

0.00980444068624631

−0.28323967955077950

0.23302037974320400

−0.00230220209480044

−0.03884278967034339

−0.00131231899481522

0.07180908376725045

−0.03383850365218625

4.92566392404247

10−1

3.61342474308300421

−0.05972561050006699

0.15446391739494397

−3.26423409370269368

−0.62796656384415839

−0.09066919966204523

0.00980541021074090

−0.28326821349710946

0.23302597255555960

−0.00230220731844534

−0.03884300522754888

−0.00131221612906290

0.07180766520212875

−0.03383665960272630

4.92793130471480
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Table 22 Continued

Parameter Method 1 Norm

λ α ‖α‖2

10−1.5

3.61349230950928746

−0.05972685361628009

0.15446021239540053

−3.26522176343397241

−0.62807017405957422

−0.09065271261659140

0.00980571680130591

−0.28327723672321298

0.23302774115811656

−0.00230220897030689

−0.03884307339272246

−0.00131218360005584

0.07180721661244946

−0.03383607646308518

4.92864851488084

10−2

3.61351367588932826

−0.05972724672414305

0.15445904077167188

−3.26553409202665845

−0.62810293848652898

−0.09064749895503950

0.00980581375375535

−0.28328009011784577

0.23302830043935210

−0.00230220949267139

−0.03884309494844294

−0.00131217331348061

0.07180707475593723

−0.03383589205813920

4.92887533678041

10−2.5

3.61352043253195676

−0.05972737103576437

0.15445867027171753

−3.26563285899978606

−0.62811329950807115

−0.09064585025049395

0.00980584441281185

−0.28328099244045624

0.23302847729960782

−0.00230220965785754

−0.03884310176496043

−0.00131217006057991

0.07180702989696935

−0.03383583374417502

4.92894706617569
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Figure 19 displays the sequence of cross-validated mean square errors (MSE)

of LASSO fit associated with each of 100 λ values. It also shows line segments

for each point that represent intervals of estimate for each MSE value. We notice

that the MSE values are associated with large standard errors since the vertical

segments of each MSE point is quite long. This indicates wide variation in me-

asurement errors associated with the various models.

The right vertical line identifies the value of λ of about 10−1 as the value

that minimizes the MSE. However, it can be noticed that this value does not

appear to be any different from the MSE produced by the model with regula-

rization parameter of about 100. The left vertical line identifies the value of λ

which is more than 100 as the highest value that gives an MSE which is within

one standard error of the minimium MSE. Since a λ value greater than 100 is

prone to set several important variables to zero (that is, over-penalise), it is ex-

pedient to choose λ = 100. These results buttress our choice of λ = 100 in Table

22.

Figure 19: Cross-Validation of LASSO Fit of Housing Data.
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Table 23 gives the solution for the five methods under consideration for our

optimal value of λ = 100 selected in Table 22. In Table 23, it can be observed

that for the selected λ, our method provides the lowest solution norm, much less

than those of the least squares and the standard method. The solution norm for

Method 1 is only smaller than that of the LASSO. It is observed that the LASSO

solution sets as many as nine variables to zero leading to a very small solution

norm. Thus, for this data RAD (index of accessibility to radial highways), B

(proportion of blacks by town), LSTAT (lower status of the population), MEDV

(Median value of owner-occupied homes ) are found to be significant for deter-

mining level of crime.

Table 23: Solutions for Various Methods at Optimal Value of λ = 100 of

Housing Data

Least Squares l1 ls Method 1

1.70332275226348e+001

4.48552146700335e−002

−6.38548235876919e−002

−7.49133610510609e−001

−1.03135349120668e+001

4.30130505864050e−001

1.45164343617989e−003

−9.87175725502892e−001

5.88208591473500e−001

−3.78001638485947e−003

−2.71080558472259e−001

−7.53750488849195e−003

1.26211376459500e−001

−1.98886821265622e−001

1.61496476456627e+001

4.48446259457245e−002

−6.58075922285515e−002

−7.39975772889635e−001

−9.71263589007439e+000

4.53691081700494e−001

1.05641781079593e−003

−9.70533397198260e−001

5.84765416530147e−001

−3.72008670386168e−003

−2.55884447661753e−001

−7.46760238287949e−003

1.28858240764139e−001

−1.96404876788857e−001

3.61253541501976327

−0.05970924825930624

0.15451268362766490

−3.25123411046304645

−0.62660281742045709

−0.09088620673210188

0.00980137478059614

−0.28314944728974384

0.23300269371763446

−0.00230218557618490

−0.03884210801860746

−0.00131264428488578

0.07181356966404394

−0.03384433504859750

Norm 19.9675159568184 18.9026656584187 4.91850022007651
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Table 23 Continued

Term Least Squares Ridge LASSO

Intercept 1.70332275226348e+001 6.59146430570290587 −0.501184631019582

ZN 4.48552146700335e−002 0.04468522799826077 0

INDUS −6.38548235876919e−002 −0.08159214601203457 0

CHAS −7.49133610510609e−001 −0.78994249530158500 0

NOX −1.03135349120668e+001 −4.10877314705836483 0

RM 4.30130505864050e−001 0.78899261230167572 0

AGE 1.45164343617989e−003 −0.00261627248458661 0

DIS −9.87175725502892e−001 −0.80635873813479919 0

RAD 5.88208591473500e−001 0.54906051680831913 0.434511936263102

TAX −3.78001638485947e−003 −0.00302518086347479 0

PTRATIO −2.71080558472259e−001 −0.09864873954302035 0

B −7.53750488849195e−003 −0.00655927780131929 −0.002856346847977

LSTAT 1.26211376459500e−001 0.16204706777770939 0.115979583629562

MEDV −1.98886821265622e−001 −0.17191561900917043 −0.021450299648581

Norm 19.9675159568184 7.91213483807271 0.450244556487168

In order to determine how the size of the solution norm reflect in the resi-

dual norm, we present the solution norm with corresponding residual norm for

each of the five methods presented in Table 24.

Table 24: Solution and Residual Norms of Housing Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 19.9675159568184 142.828327058284

l1 ls 18.9026656584187 142.830954528280

Method 1 4.91850022007651 161.450864746004

Ridge 7.91213483807271 143.157667620119

LASSO 0.450244556487168 149.1301149250945

It can be seen from Table 24 that a small solution norm does not necessarily
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translate into a small residual norm. For example, even though the two LASSO

solutions have the smallest solution norms, they are rather associated with the

largest residual norms. For the LASSO solution in particular, even though the

method produces a very sparse solution, it rather yields a very large error in

prediction compared to even the un-regularized least squares solution. It is inte-

resting to note that generally, the residual norms are high for all five methods.

This is an indication that the predictor variables considered for determining

the crime data possibly do not include several other suitable predictors. In this

case, therefore, the problem is due to the suitability of the explanatory variables

rather than the method considered.

Application to the Hilbert Matrix

Table 25 gives the fit for the Hilbert matrix of dimension 20×12 for various

regularization parameters and corresponding norm of Method 1 solution. We

notice in Table 25 that ‖α‖ keeps increasing for lower values of λ. The value of

λ = 10−1 is chosen so that our result and that of the standard method are quite

close. By this selection, we are sure to avoid being prone to over-penalising

the variables and hence obtain a more optimal solution. In addition, it can be

observed that the solution will begin to converge only for values of λ which are

much smaller and with higher solution norm.
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Table 25: Method 1 Solution for various λ Values with Corresponding

Norms of Hilbert Matrix

Parameter Method 1 Error

λ α ‖α− α̂‖2

100

2.008926248628344

1.461103287721909

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

3.497220098466669

10−0.5

2.026020554477923

1.636765304745830

0.000000000000000

−0.035321385610693

−0.136510010874235

−0.102419294346652

−0.073300303702161

−0.047874166304634

−0.025255105360424

−0.004817647252793

0.000000000000000

0.000000000000000

0.000000000000000

3.653475366557333

10−1

2.031426248628344

1.692314511963317

−0.185049404419455

−0.249075629580111

−0.215154247980896

−0.187310074750930

−0.164081830404797

−0.144347422898135

−0.127299781105246

−0.112356985666977

−0.099092364112063

−0.087186978823423

−0.076397947988117

4.014392738082734
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Table 25 Continued

Parameter Method 1 Error

λ α ‖α− α̂‖2

10−2

2.033676248628344

1.715435634387458

−0.306988601955555

−0.279795672087906

−0.248577184122090

−0.223207946408644

−0.202344411211156

−0.184914754848291

−0.170136707941386

−0.157441842387843

−0.146411358032089

−0.136731158716903

−0.128161462827724

4.173646508171998

10−3

2.033901248628344

1.717747746629872

−0.319182521709167

−0.282867676338682

−0.251919477736208

−0.226797733574420

−0.206170669291795

−0.188971488043309

−0.174420400624996

−0.161950328059938

−0.151143257424078

−0.141685576706246

−0.133337814311699

4.189673586303237

10−4

2.033923748628344

1.717978957854113

−0.320401913684528

−0.283174876763763

−0.252253707097618

−0.227156712290996

−0.206553295099855

−0.189377161362807

−0.174848769893365

−0.162401176627145

−0.151616447363273

−0.142181018505201

−0.133855449460077

4.191277268083369
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Figure 20 displays the sequence of cross-validated mean square errors (MSE)

of LASSO fit associated with each of 100 values of λ. It also shows line seg-

ments for each point that represent intervals of estimate for each MSE value.

The right vertical line identifies the value of λ of about 10−4 as the value that

minimizes the MSE. However, the left vertical line identifies the value of λ of

about 10−3 as the highest value that gives an MSE which is within one standard

error of the minimium MSE.

Figure 20: Cross-Validation of LASSO Fit of Hilbert Matrix.

Generally, a value of λ is chosen to lie between the two vertical lines. In

this case, the MSE corresponding to λ = 10−3 and λ = 10−4 appear the same.

We see however that the MSE corresponding to the value of λ = 10−1 is also

quite close to those of the recommended interval. We will therefore examine the

models for both λ = 10−1 and λ = 10−3.

Table 26 gives the solution for the five methods for value of λ = 10−1 se-

lected in Table 25. It should be noted that for this data which is hypothetical, the
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solution is already known as a vector of ones, that is, α = {1, 1, . . . ,1} ∈ℜ12.

Thus, a good solution is one that is closest to this vector. In Table 26, it can be

observed that Method 1 solution has the second smallest solution norm after the

Ridge, and the actual components of the solutions appear closest to the known

solution only for the Ridge. Thus, we expect the Ridge solution to produce the

smallest error (see Table 27). It should be noted however that Method 1 solution

is a much improvement over the least squares. In this hypothetical case, a spa-

res solution is not desired. The solution for the LASSO, which is highly sparse,

therefore shows that the value of λ = 10−1 cannot yield the desired result. We

will therefore proceed to examine the solutions for λ = 10−3.

For the selected λ, Method 1 provides an improved solution over the least

squares and the standard l1 ls method. It is noted that the Ridge solution gives

a smaller ‖α‖ and a good approximation. The best approximation however is

given by the LASSO with the smallest error (see Table 26).
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Table 26: Solutions for Various Methods at Optimal Value of λ = 10−1 of

Hilbert Matrix

Least Squares l1 ls Method 1

0.999909011935704

0.998621060241791

1.047481743425080

0.636891017236956

1.989495715932235

−0.450015116481764

4.342018810935787

−5.146877164376640

4.391665284020061

−7.008171290483862

33.220261306821953

−37.634478931267573

15.622654339213533

1.31730637952852e+000

4.27007234176251e−001

4.81828163201003e+000

1.06991021373304e−005

5.13053329528883e−006

3.43808758534863e−006

2.58952559879464e−006

2.07614816571882e−006

1.73498557236404e−006

1.48693578693960e−006

1.29866328441194e−006

1.15012954781024e−006

1.03135259747115e−006

2.031426248628344

1.692314511963317

−0.185049404419455

−0.249075629580111

−0.215154247980896

−0.187310074750930

−0.164081830404797

−0.144347422898135

−0.127299781105246

−0.112356985666977

−0.099092364112063

−0.087186978823423

−0.076397947988117

Norm 53.716033659057175 5.01332914948974 2.695946075368425
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Table 26 Continued

Variable Least Squares Ridge LASSO

Intercept 0.999909011935704 1.268744397624831 0.297982191449106

1 0.998621060241791 1.456703500480356 0

2 1.047481743425080 1.064366903647787 2.312245859146897

3 0.636891017236956 0.829879679532324 3.926469511577865

4 1.989495715932235 0.674638640083075 0

5 −0.450015116481764 0.564429366515625 0

6 4.342018810935787 0.482319066126151 0

7 −5.146877164376640 0.418941424464201 0

8 4.391665284020061 0.368677563330069 0

9 −7.008171290483862 0.327945521126813 0

10 33.220261306821953 0.294351731848317 0

11 −37.634478931267573 0.266235478533724 0

12 15.622654339213533 0.242408544447667 0

Norm 53.716033659057175 2.682329884835270 4.556714138333947

Table 27: Solution Norm and Error of Hilbert Matrix

Method Solution Norm Error

‖α‖2 ‖α− α̂‖2

Least Squares 53.716033659057175 53.594713922985505

l1 ls 5.01332914948974 5.00082167236213

Method 1 2.695946075368425 4.014392738082734

Ridge 2.682329884835270 1.917188038654140

LASSO 4.556714138333947 4.504021869068018
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Table 28: Solutions for Various Methods at Optimal Value of λ = 10−3 of

Hilbert Matrix

Least Squares l1 ls Method 1

0.999909011935704

0.998621060241791

1.047481743425080

0.636891017236956

1.989495715932235

−0.450015116481764

4.342018810935787

−5.146877164376640

4.391665284020061

−7.008171290483862

33.220261306821953

−37.634478931267573

15.622654339213533

1.07522669623127e+000

1.10791834114244e+000

1.14981040716622e−005

4.18743902276477e−005

4.85188824026312e+000

3.52346217355443e+000

8.00358211768244e−005

3.15501280427493e−005

1.83103378824663e−005

1.25533459352247e−005

9.43696318303170e−006

7.51549960806700e−006

6.22370760421098e−006

2.033901248628344

1.717747746629872

−0.319182521709167

−0.282867676338682

−0.251919477736208

−0.226797733574420

−0.206170669291795

−0.188971488043309

−0.174420400624996

−0.161950328059938

−0.151143257424078

−0.141685576706246

−0.133337814311699

Norm 53.716033659057175 6.19186568760697 2.753138002832837
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Table 28 Continued

Variable Least Squares Ridge LASSO

Intercept 0.999909011935704 1.041071426118285 0.015931619370373

1 0.998621060241791 0.881097886290349 0.911046406883395

2 1.047481743425080 1.241546431683054 1.184740432775627

3 0.636891017236956 1.245271429936149 1.107473379077761

4 1.989495715932235 1.164997821283271 1.051374210706618

5 −0.450015116481764 1.066849765400640 1.007005953033415

6 4.342018810935787 0.970688701052709 0.970650539353211

7 −5.146877164376640 0.882551469931652 0.940184082059951

8 4.391665284020061 0.803773704658071 0.914219461317036

9 −7.008171290483862 0.734029985583656 0.891790971964557

10 33.220261306821953 0.672449334002610 0.872198972746363

11 −37.634478931267573 0.618043206610607 0.854921588264491

12 15.622654339213533 0.569867956366867 0.839560410125281

Norm 53.716033659057175 3.393020904809317 3.351602906897268

Table 29: Solution Norm and Error of Hilbert Matrix

Method Solution Norm Error

‖α‖2 ‖α− α̂‖2

Least Squares 53.716033659057175 53.594713922985505

l1 ls 6.19186568760697 5.49743320053883

Method 1 2.753138002832837 4.189673586303237

Ridge 3.393020904809317 0.853295155639124

LASSO 3.351602906897268 0.378033370096928

It should be noted in the case of the Hilbert matrix that a small solution

norm necessarily translate into a small error and vice versa. A slight exception

is in the case of Method 1 which has the smallest solution norm but does not

translate into the smallest error. This is because the components of the solution
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are mostly negative.

Further Assessment of Properties of Method 1

By its very construction, Method 1 just like any other LASSO method must

have a feature selection property. In order to investigate this property, we will

augment the 20× 12 Hilbert matrix to include two additional columns that are

linearly dependent on others. A 13th column is obtained as the average of the

first three columns. The 14th column is created so that it is orthogonal to the

first two columns using Gram-Schmidt Orthogonalisation process.

Using the cross-validated MSE of LASSO fit for this augmented matrix,

it can be seen in Figure 21 that λ = 10−3 provides a suitable regularization

parameter. As can be seen in Table 30, Method 1 sets the two created columns

to zero as expected. However, the LASSO method sets only one of the two new

columns to zero. Thus, Method 1 identifies all linearly dependent variables as

dispensable, which is a desirable statistical property. The LASSO however may

consider a linearly dependent variable as indispensable. It is further observed

that in the presence of linearly dependent variables, the least squares solution

produces a very poor fit.

Figure 21: Cross-Validation of LASSO Fit of Augmented Hilbert Matrix.
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Table 30: Solutions for Various Methods at Optimal Value of λ = 10−3 of

Augmented Matrix

Least Squares(×1.0e+002) l1 ls Method 1

0.009987377897659

0.209549801354391

0.503466147654840

−0.064500499229864

0.527347821565438

−1.139481533340739

1.514573671821963

−0.767372082362858

−1.081843421521241

1.078851144441624

2.562158557008309

−4.227301633868075

1.735646062752233

−0.738648259281753

0.210681219592631

1.07224342897854e+000

1.59730101721228e+000

1.55714147799468e−005

5.70215532530348e−005

4.61591586991824e+000

4.46195982301911e+000

1.09787121527510e−004

4.33749093106751e−005

2.52071302584233e−005

1.72841156333174e−005

1.29969413355205e−005

1.03532954156533e−005

8.57819811984210e−006

3.86049067478017e−005

1.91176000057233e−006

2.175961038746634

2.076676150836919

−0.401369581926816

−0.349116525315617

−0.307981051675371

−0.275612062889607

−0.249502059377293

−0.227982164013520

−0.209924848124022

−0.194545298836001

−0.181280973264948

−0.169717964211714

−0.159544718012593

0

0

Norm 592.7263465629269 6.70200278358500 3.128010463559020
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Table 30 Continued

Variable Least Squares(×1.0e+002) Ridge LASSO

Intercept 0.009987377897659 1.045506279278075 0.009073476731169

1 0.209549801354391 0.909709978504240 1.381920892531583

2 0.503466147654840 1.129897396747912 1.178218364190754

3 −0.064500499229864 1.174811169708568 1.166793543524774

4 0.527347821565438 1.131026545245665 1.133606784522456

5 −1.139481533340739 1.056855517151317 1.097139230075671

6 1.514573671821963 0.975753376593894 1.062560215380405

7 −0.767372082362858 0.896949556778248 1.031171116041779

8 −1.081843421521241 0.823867721746281 1.003073001472601

9 1.078851144441624 0.757489743392347 0.977998657299729

10 2.562158557008309 0.697765688571583 0.955592119908517

11 −4.227301633868075 0.644230252329005 0.935504241697110

12 1.735646062752233 0.596278820157640 0.917422736294870

13 −0.738648259281753 1.071472848317259 0.041121466380678

14 0.210681219592631 0.096577171767843 0

Norm 592.7263465629269 3.521032629893173 3.732928436495016

Table 31: Solution Norm and Error of Augmented Hilbert Matrix

Method Solution Norm Error

‖α‖2 ‖α− α̂‖2

Least Squares 592.7263465629269 592.6827979914198

l1 ls 6.70200278358500 6.03500784177055

Method 1 3.128010463559020 4.661794673327281

Ridge 3.521032629893173 1.175281518697833

LASSO 3.732928436495016 1.473265072331274

Population Data

Finally in this section, we examine the features of Method 1 using data

generated for polynomial fit of the population data presented in Example 1 in
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Chapter One. The full polynomial fit (of order n− 1) is first considered for

Method 1 in relation to the other four methods. Figure 22 shows the least squares

polynomial fit of the highest order of eighteen. The curve is seen to pass through

all the points. The first column of Table 32 which gives the solution for the least

squares method shows that this curve over-fits the data as coefficients of terms

in powers higher than 9 are all almost zero. This means that we do not need to

fit a polynomial with several higher order terms.

Figure 22: Least Squares Polynomial Fit of Order Eighteen.

We further examine a regularization of the least squares solution. Figure

23 is the Cross-Validated MSE for the highest degree polynomial for the data.

The value of λ = 10−1.5 is seen to be the optimal regularization parameter. It is

interesting to note that for this data, a very low value of λ rather distort the fit.

165

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Figure 23: Cross-Validation of LASSO Fit of Population Data.

Using the chosen value of λ = 10−1.5, we obtain the L2 regularized least

squares fit in Figure 24. The curve looks just like the least squares fit.

Figure 24: Polynomial Fit of Order Eighteen to the Population Data for

the Ridge Method.
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The closeness of the two solutions is seen in Table 32 and Table 33 which

give almost the same value of the solution norm and residual norm for the two

solutions. The ridge solution also buttresses a case of over-fitting. Method 1

(Table 32) also sets to almost zero coefficients of higher powers of the model.

However, the corresponding fit (in Figure 25) does not fit the data at all. The fi-

gure thus shows clearly that an over-fitted model does not actually fit the model.

Figure 25: Method 1 Polynomial Fit of Order Eighteen.
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Figure 26: Polynomial Fit of Order Eighteen for l1 ls Method.

Figure 27: LASSO Polynomial Fit of Order Eighteen of Population Data.
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The fit provided by the l1 ls method is presented in Figure 26. The figure

shows a bad fit. The corresponding model, in Table 32, sets all terms of the

model to almost zero as though a polynomial model is inappropriate.

The LASSO identifies only the first, second and the fifth terms of the model

as influential and sets all others to zero. The graph of the LASSO in Figure 27

also shows a poor fit even though it generally shows the pattern of growth of

the population. Thus, the three LASSO methods show that an over-fitted model

does not actually fit the data. Method 1 emphasises this point. Based on the

results and the results in Table 4 (Chapter One), we present polynomial fit of

order three for all five methods. See Appendix G for polynomial fit of order five

for all the five methods.
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Table 32: Solutions for Various Methods at Optimal Value of λ = 10−1.5 of

Population Data

Least Squares l1 ls Method 1

4.017426257483916

0.956581154954685

−0.068506221310917

0.003629427345186

−0.000130394119539

0.000003870279427

−0.000000090411075

0.000000001423191

−0.000000000013663

0.000000000000073

−0.000000000000000

0.000000000000000

−0.000000000000000

0.000000000000000

−0.000000000000000

0.000000000000000

0.000000000000000

−0.000000000000000

0.000000000000000

4.97154835416185e−052

3.00915141828701e−050

2.22540503085932e−048

1.79757359349947e−046

1.52055406746665e−044

1.31494479239696e−042

1.14313165287354e−040

9.84995593220107e−039

8.29537776919442e−037

6.71910674236393e−035

5.12574670185295e−033

3.57172899059658e−031

2.16130129595661e−029

1.02903393224228e−027

2.96979351169587e−026

−7.00395213146629e−028

6.21301256760081e−030

−2.45521643213018e−032

3.64443587767096e−035

39.714009926931539

0.156962054118344

0.000520640452908

0.000002059419805

0.000000008404908

0.000000000034978

0.000000000000148

0.000000000000001

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

Norm 4.130310827583612 2.97240192496144e−026 39.714320110432723
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Table 32 Continued

Variable Least Squares Ridge LASSO

Intercept 4.017426257483916 3.901703281297118 7.034107646863767

1 0.956581154954685 0.920694620960775 0.328973580483269

2 −0.068506221310917 −0.057341535511464 −0.002723215512980

3 0.003629427345186 0.002602814351453 0

4 −0.000130394119539 −0.000083082858203 0

5 0.000003870279427 0.000002596082674 0.000000001057759

6 −0.000000090411075 −0.000000069012874 0

7 0.000000001423191 0.000000001193944 0

8 −0.000000000013663 −0.000000000012103 0

9 0.000000000000073 0.000000000000066 0

10 −0.000000000000000 −0.000000000000000 0

11 0.000000000000000 0.000000000000000 0

12 −0.000000000000000 −0.000000000000000 0

13 0.000000000000000 0.000000000000000 0

14 −0.000000000000000 −0.000000000000000 0

15 0.000000000000000 0.000000000000000 0

16 0.000000000000000 0.000000000000000 0

17 −0.000000000000000 −0.000000000000000 0

18 0.000000000000000 0.000000000000000 0

Norm 4.130310827583612 4.009271992968009 0.328984851564189

Table 33: Solution and Residual Norms of Polynomial Fit of Population Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 4.130310827583612 2.486823367148147

l1 ls 2.97240192496144e−026 54.1362406879371

Method 1 39.714320110432723 139.4715629026298

Ridge 4.009271992968009 2.489847268745522

LASSO 0.328984851564189 33.673526126802990

Table 34 shows the least squares solution for the degree three with the

corresponding fit given in Figure 28. To determine the right regularization para-
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meter, we obtain Figure 28. The figure shows that a value of λ equal to 10−2 is

appropriate. Using this value, solutions for the four regularization methods are

given in Tables 34 and 35. The graphs for the respective fits are given in Figures

29 to 33. The results show that the fits provided by the l1 ls, Ridge have almost

the same estimates with the least squares. However, the LASSO and Method 1

(see Figures 31 and 33) continue to show that they are unsuitable for the kind of

data.

Figure 28: Cross-Validation LASSO Fit of Polynomial of Degree Three.
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Table 34: Solutions for Various Methods at Optimal Value of λ = 10−2 of

Population Data

Least Squares l1 ls Method 1

3.367464798361461

0.743102737235111

−0.012518154242556

0.000070448111142

3.364718229881230

0.743211174169917

−0.012519312441434

0.000070451740089

39.714578947368423

0.156957491702229

0.000520643555525

0.000002059429493

Norm 3.448503669048140 3.445845085614494 39.714889108394026

Table 34 Continued

Variable Least Squares Ridge LASSO

Intercept 3.367464798361461 3.348163500142492 4.724037897351302

1 0.743102737235111 0.743876748268971 0.648449597305884

2 −0.012518154242556 −0.012526488226801 −0.011234809077931

3 0.000070448111142 0.000070474352428 0.000065845822752

Norm 3.448503669048140 3.429826286880369 0.648546918516196

Table 35: Solution and Residual Norms of Polynomial Fit of Population

Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 3.448503669048140 13.846617984349315

l1 ls 3.445845085614494 13.846618453015891

Method 1 39.714889108394026 140.9277126962934

Ridge 3.429826286880369 13.846641112009655

LASSO 0.648546918516196 24.949421186858480
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Figure 29: Least Squares Polynomial Fit of Order Three of Population Data.

Figure 30: Ridge Polynomial Fit of Order Three of Population Data.
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Figure 31: Method 1 Polynomial Fit of Order Three of Population Data.

Figure 32: The l1 ls Polynomial Fit of Order Three of Population Data.
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Figure 33: LASSO Polynomial Fit of Order Three of Population Data.

Appendix G shows the results for polynomial fit of order five for all five

methods. The results do not show much difference from that of order three. The

polynomial regression fitting has shown that L1-regularization is not appropriate

in this case. The lack of suitability of the methods is highlighted by Method 1.

This buttresses why L2-regularization is mostly used in polynomial data fitting.

We further examine the effect of trend component in the data on the per-

formance of LASSO solutions by using data with more data points. We make

use of the Global Temperature Anomaly introduced in Chapter One and plotted

in Figure 4. In Table 36, we have the parameter estimates for order 20 polyno-

mial model fit of the data for all five methods for optimal parameter value of

λ = 10−3. The least squares fit, which does not depend on regularization para-

meter, sets higher terms beyond the fifth power to almost zero. Thus, the least

squares finds the first five terms of the polynomial as significant. The correspon-

ding graph (in Figure 34) shows that this fit reflect rather a reverse of the actual
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trend. The solution provided by the Ridge regularization (see Figure 34) looks

similar to that of the least squares.

Table 36: Solutions for Various Methods at Optimal Value of λ = 10−3 of

Global Temperature Anomaly Data

Least Squares (1.0e+005∗) l1 ls(1.0e−053∗) Method 1

2.200703621889671

0.014519230762429

−0.000010777971979

−0.000000006932975

0.000000000002283

0.000000000000002

0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

0.000000000000000

−0.000000000000000

−0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000000

−0.000000000000001

−0.000000000001344

−0.000000001536672

−0.000001536542160

−0.001228204200790

−0.613154917337675

0.000940681916668

−0.000000485213500

0.000000000084114

−0.105081325301205

0.000003001369790

0.000000001562665

0.000000000000811

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

Norm 2.200751516999684e+005 6.131568690196614e−054 0.105081325344068
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Table 36 Continued

Variable Least Squares (1.0e+005∗) Ridge LASSO

Intercept 2.200703621889671 −0.000339238607326 8.224183331673803

1 0.014519230762429 −0.661589116627188 −0.004822159593487

2 −0.000010777971979 −0.088146940252592 0

3 −0.000000006932975 0.000070793740067 0

4 0.000000000002283 0.000000012666109 0

5 0.000000000000002 0.000000000007774 0

6 0.000000000000000 −0.000000000000018 0

7 −0.000000000000000 0 0

8 −0.000000000000000 0 0

9 −0.000000000000000 0 0

10 0.000000000000000 0 0

11 −0.000000000000000 0 0

12 −0.000000000000000 0 0

13 0.000000000000000 0 0

14 0.000000000000000 0 0

15 0.000000000000000 0 0

16 0.000000000000000 0 0

17 −0.000000000000000 0 0

18 −0.000000000000000 0 0

19 −0.000000000000000 0 0

20 −0.000000000000000 0 0

21 0.000000000000000 0 0

Norm 2.200751516999684e+005 0.667435511798723 0.004822159593487
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Table 37: Solution and Residual Norms of Polynomial Fit of

Global Temperature Anomaly Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 2.200751516999684e+005 2.222518451821552

l1 ls 6.131568690196614e−054 1.547064734768672

Method 1 0.105081325344068 3.645445031865414

Ridge 0.667435511798723 1.463419999310810

LASSO 0.004822159593487 105.9726143089173

Figure 34: Least Squares Polynomial Fit of Order 20 of Global Temperature

Anomaly Data.
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Figure 35: Ridge Polynomial Fit of Order 20 of Global Temperature

Anomaly Data.

Figure 36: Method 1 Polynomial Fit of Order 20 of Global Temperature

Anomaly Data.
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Figure 37: LASSO Polynomial Fit of Order 20 of Global Temperature

Anomaly Data.

Figure 38: The l1 ls Polynomial Fit of Order 20 of Global Temperature

Anomaly Data.
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The fit given by the l1 ls sets almost all terms to zero. However, the graph

in Figure 38 shows that this solution provides the best parameter estimates for

the data among all methods considered. The residual norms in Table 37 but-

tresses this point. It however does not reflect the true trend of the data. This

table and the graphs in Figures 36 and 37 for Method 1 and the LASSO show

that these methods are simply unsuitable for the data. The results for the Global

Temperature Anomaly shows that in general, L1-norm regularized least squares

methods are unsuitable for fitting data with monotone trends.

Singular Value Decomposition Form of Method 1

The solution for Method 1 has been obtained in Equation (5.11) as

αi =



1
2
(XT X)−1(2XT y−λIi), λi < 2(XT y)i

1
2
(XT X)−1(2XT y+λIi), −λi > 2(XT y)i

0, −λi < 2(XT y)i < λi.

(5.13)

In this section, we derive the SVD representation of this solution. The SVD of

X is given as

X = USVT .

Making substitution for X in Equation (5.13), we derive the SVD version of

Method 1.

For Case 1,

αi =
1
2

[
(USVT )T USVT

]−1[
2(USVT )T y−λIi

]
=

1
2

[
(VSUT )USVT

]−1[
2(VST UT )y−λIi

]
=

1
2

[
VS2VT

]−1[
2(VST UT )y−λ(VIVT )i

]
=

1
2

V
(

S2
)−1

V−1
[
V(2ST UT y−λ(VT )i)

]
=

1
2

V
(

S2
)−1(

2ST UT y−λ(VT )i

)
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=
1
2

(
S2
)−1(

2VST UT y−λIi

)
αi =

1
2σ2

i

[
2σi(UT

i y)Vi−λi

]
Similarly, for Cases 2 and 3, the SVD in component forms are given as

αi =
1
2

(
S2
)−1(

2VST UT y+λIi

)
=

1
2σ2

i

[
2σi(UT

i y)Vi +λi

]
and 0, respectively. Combining the solutions in the three cases, the composite

solution for Method 1 in terms of singular value decomposition is obtained as

αi =



1
2σ2

i

[
2σi(UT

i y)Vi−λi

]
, λi < 2(VST UT y)i

1
2σ2

i

[
2σi(UT

i y)Vi +λi

]
, −λi > 2(VST UT y)i

0, −λi < 2(VST UT y)i < λi.

(5.14)
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Algorithm for Method 1 Using SVD

Initialize regularization parameter lambda;

alpha=zeros(n,1);

[USV ] = svd(x);

sigma=diag(S);

SS=S′*S;

Uty=U′*y;

xy=2*(V*S′*Uty);

xx=2*(V*SS*V′);

alphaold=alpha;

for j=1:n

cj=xy(j)-sum(xx(j, :)* alpha)+xx(j, j)*alpha(j);

aj=xx(j, j);

if cj >lambda

alpha(j,1)=(cj-lambda)/aj;

elseif cj <-lambda

alpha (j, 1)= (cj + lambda)/aj;

else

alpha (j, 1)= 0;

end

end

We will refer to Method 1 using SVD as Truncated Singular Value Decomposi-

tion (TSVD) or Method 2.

Application to Crime Data

We refer to Table 18 on crime data by Thomas (1990) and provide an TSVD

solution to that data. The complete data (see Appendix H) has five predictor
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variables are two response variables. Descriptions of the variables are given as

(Y1, Y2, X1, X2, X3, X4, X5) for each city.

Y1 is the total overall reported crime rate per 1 million residents

Y2 is the reported violent crime rate per 100,000 residents

X1 is annual police funding in dollars per resident

X2 is the percentage of people 25 years and older with 4 years of high school

X3 is the percentage of 16 to 19 year-olds not in high school and not high school

graduates

X4 is the percentage of 18 to 24 year-olds in college

X5 is the percentage of people 25 years and older with at least 4 years of college.

Figure 39: LASSO Shrinkage of Coefficients of Crime Data.

In Figure 39, the horizontal axis represents the absolute value of each coef-

ficient which tends to 0 as the bound on the constraint increases. The vertical

axis represents the coefficients of the variables. It can be seen that for much of

the range of the bound most of the estimates tend to zero and hence correspon-

ding predictor variables would be excluded from the model.
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Figure 40: Cross-Validation of Crime Data.

Figure 40 displays the sequence of cross-validated mean square errors (MSE)

of LASSO fit. It can be seen that both dotted vertical line appear to coincide on

the same λ value of about 10−0.3. Therefore we choose λ = 10−0.3 in determi-

ning the exact models in Table 39.

The principal components (PC) and the corresponding singular values obtai-

ned from a decomposition of the crime data is given in Table 38.

186

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Table 38: Principal Component of Crime Data

Original Variables 1 2 3 4 5

x1 −0.1106 0.7763 −0.4105 0.4627 0.0498

x2 0.4496 0.4148 0.5730 −0.1369 0.5279

x3 −0.5294 0.2056 −0.2259 −0.7096 0.3505

x4 0.4745 −0.3107 −0.6307 0.0182 0.5293

x5 0.5293 0.2940 −0.2331 −0.5131 −0.5620

Singular Value 11.2807 7.9964 5.6342 4.0677 2.3476

In this data, the first two PCs explains (78%) a little more than 3
4 of the

total variation (11.28072+ · · ·+2.34762 = 244.9982), which is quite high. The

first PC alone accounts for about 52 % (11.28072/244.9982) of variation. The

results show that a solution in terms of the PCs would adequately represent in-

formation in the data. We therefore proceed to obtain a solution using TSVD.

The solution that gives the smallest residual norm (5.9174) is given in Table 39.

Thus, beyond the second PC, the third to the last singular values are found to

contaminate this solution. The last three singular values are therefore truncated.

Table 39: TSVD Results for Crime Data

PC TSVD Solution

1 0.388308154010534

2 −0.346418051073539

3 0.000000000000000

4 0.000000000000000

5 0.000000000000000

Residual Norm 5.91937624964826
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Application to Prostate Cancer Data

The prostate cancer data comes from a study by Stamey et al. (1989) that

examines the correlation between the level of prostate specific antigen and a

number of clinical measures, in men who were about to receive a radical prosta-

tectomy. The variables are described as follows:

log (cancer volume) (lcavol)

log (prostate weight) (lweight)

age

log (benign prostatic hyperplasia amount) (lbph)

seminal vesicle invasion (svi)

log (capsular penetration) (lcp)

Gleason score (gleason)

percentage Gleason scores 4 or 5 (pgg45)

We fit a linear model to log (prostate specific antigen) (lpsa) after first stan-

dardising the predictors. (See Appendix I for the dataset).
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Figure 41: LASSO Shrinkage of Coefficients of Prostate Cancer Data.

Each curve represents a coefficient as a function of the (scaled) LASSO

parameter; the broken line represents the model selected by generalised cross-

validation. We notice that the absolute value of each coefficient tends to 0 as the

bound on the constraint increases. The graph shows that we expect most of the

predictors to be excluded from the model as for much of the range of the bound,

many of the coefficients approach zero.

Figure 42 displays the sequence of cross-validated mean square errors (MSE)

of LASSO fit associated with each of 100 λ values. It also shows the line

segments for each point that represent intervals of estimate for each MSE va-

lue. The right vertical line and the left vertical line identifies the value of λ of

about 10−1 which is the optimal value for all the λ values, therefore we choose

λ = 10−1 in determining the exact models in Tables 41 and 42.
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Figure 42: Cross-Validation of Prostate Cancer Data.

The principal components (PC) and the corresponding singular values obtained

from a decomposition of the prostate cancer data are given in Table 40.

Table 40: Principal Component of Prostate Cancer Data

Original Variables 1 2 3 4 5 6 7 8

x1 0.4222 −0.0537 0.3316 −0.1006 0.4059 −0.6250 −0.1735 0.3365

x2 0.1871 0.5388 0.4225 0.1318 0.4379 0.5324 0.0105 −0.0598

x3 0.2232 0.4686 −0.2424 −0.7928 −0.1421 −0.0586 0.1136 −0.0823

x4 0.0856 0.6289 −0.0834 0.5105 −0.4358 −0.3626 −0.0828 0.0373

x5 0.3902 −0.2074 0.3952 −0.1204 −0.5834 0.2827 −0.4604 0.0431

x6 0.4642 −0.1901 0.1869 0.1360 −0.1205 −0.1240 0.6321 −0.5153

x7 0.4057 0.0720 −0.5382 0.1581 0.2786 0.0492 −0.4911 −0.4409

x8 0.4441 −0.0860 −0.4063 0.1593 −0.0310 0.3056 0.3119 0.6429

Singular Value 17.9619 12.5792 9.6780 7.7893 6.8115 6.5156 5.0211 4.3283
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In this data, the first two PCs explains (0.63) close to 2
3 of the total variation

(17.96192 + · · ·+ 4.32832 = 768), which is quite high. The first PC alone ac-

counts for about 42 % (17.96192/768) of variation. The results show that a

solution in terms of the PCs would adequately represent information in the data.

We therefore proceed to obtain a solution using TSVD. The solution that gi-

ves the smallest residual norm (6.6233) is given in Table 41. Thus, beyond the

second PC, the third to the last singular values are found to contaminate this

solution. The last six singular values are therefore truncated.

Table 41: TSVD Results for Prostate Cancer Data

PC TSVD Solution

1 0.436468124579854

2 0.375961055886647

3 0.000000000000000

4 0.000000000000000

5 0.000000000000000

6 0.000000000000000

7 0.000000000000000

8 0.000000000000000

Residual Norm 6.62327527246044

The result in Table 41 is compared with the results of the least squares met-

hod and the l1 ls solver for solving the non-smooth optimization problem given

in Table 42. The table also shows a standard LASSO solution in MATLAB. The

results show that a solution achieved under the TSVD could be preferred to the

other methods as it achieves greater sparsity with equally small residual norm.
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Table 42: Results for Prostate Cancer Data

Predictor Least Squares l1 ls LASSO

lcavol 0.5762192831970794 0.5733143281345199 0.450526333979467

lweight 0.2308529420732906 0.2299117748855551 0.090767080155974

age −0.1370451705556009 −0.1340392070333956 0

lbph 0.1215521381794642 0.1200507318437699 0

svi 0.2731706998275261 0.2702493221294212 0.110321946710557

lcp −0.1284604953474022 −0.1215433677232128 0

gleason 0.0307963915113301 0.0297207123337756 0

pgg45 0.1089115924370662 0.1063076354285202 0

Residual Norm 5.68459336383028 5.68478361439537 6.481631353699084

In the next section, we consider another method for deriving a solution to the

optimization problem under two specified conditions on the covariates.

Method 3

Orthonormal Covariates

We consider some basic properties of the LASSO estimator. Assuming first

that the covariates are orthonormal so that (xi|x j) = δi j, where (.|.) is the inner

product and δi j is the Kronecker delta, or, equivalently, XT X = I, then using

sub-gradient methods it can be shown that

α̂ j = Smλ(α̂ j
OLS) = α̂ j

OLSmax

(
0, 1− mλ∣∣∣α̂ j

OLS
∣∣∣
)
,

where α̂ j
OLS = (XT X)−1XT y. The expression

Sα = max

(
0, 1− mλ∣∣∣α̂ j

OLS
∣∣∣
)

is referred to as the soft thresholding operator since it translates values towards
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zero (making them exactly zero if they are small enough) instead of setting

smaller values to zero and leaving larger ones untouched, which is the hard

thresholding operator.

Proof

Given

g(α)α0,α =
1

2m
‖Xα−y‖2

2 +λ‖α‖1

and minimizing with respect to α, we obtain

∇g(α) =
1
m
(XT Xα−XT y) =−λS j,

where

S j =


1, α0

j > 0

−1, α0
j < 0

0, α0
j = 0

is the sub-gradient of the L1-norm regularization functional. Solving for α gives

XT Xα = XT y−mλS j

α̂ j = (XT X)−1XT y− (XT X)−1mλS j.

Now,

α̂ j = α̂ j
OLS− (XT X)−1mλS j. (5.15)

In a special case where XT X = Ip, we consider three possibilities for α̂ j. These

are:

1. If α̂ j =
∣∣∣α̂ j

OLS
∣∣∣> 0, set Si = 1

2. If α̂ j =−
∣∣∣α̂ j

OLS
∣∣∣< 0, set Si =−1
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3. If α̂ j = 0, set Si = 0,

If a coefficient from the least squares solution is already zero, that is, α̂ j
OLS = 0,

then we set α̂ j = 0 as well.

Then, Equation (5.15) now becomes

α̂ j = α̂ j
OLS−mλS j

= α̂ j
OLS

(
1−

mλS j∣∣∣α̂ j
OLS
∣∣∣
)
.

For Si = 1,

α̂ j = α̂ j
OLS

(
1− mλ∣∣∣α̂ j

OLS
∣∣∣
)
. (5.16)

For Si =−1,

α̂ j = −
∣∣∣α̂ j

OLS
∣∣∣−λm(−1)

= −
∣∣∣α̂ j

OLS
∣∣∣+λm

Therefore,

α̂ j =−
∣∣∣α̂ j

OLS
∣∣∣(1− mλ∣∣∣α̂ j

OLS
∣∣∣
)
. (5.17)

Now, Equations (5.16) and (5.17) are the same, depending on the sign of S j.

Therefore, combining Equation (5.16) and α̂ j = α̂ j
OLS gives

α̂ j = α̂ j
OLSmax

(
0, 1− mλ∣∣∣α̂ j

OLS
∣∣∣
)
.

Thus, for the coefficients of the LASSO solution to go to zero, the expression of

the threshold

1− mλ∣∣∣α̂ j
OLS
∣∣∣ < 0, or λ >

∣∣∣α̂ j
OLS
∣∣∣

m
,

and we achieve sparsity.
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Similarly, if the threshold,

1− mλ∣∣∣α̂ j
OLS
∣∣∣ ≥ 0, or λ≤

∣∣∣α̂ j
OLS
∣∣∣

m
,

we achieve shrinkage by that factor.

Correlated Covariates

We consider the case where XT X 6= Ip. From Equation (5.15),

α̂ j = α̂ j
OLS− (XT X)−1mλS j.

Now, let X = USVT be the SVD of X.

XT X = (USVT )T (USVT )

= V(ST S)VT

(XT X)−1 = (V(ST S)VT )−1

= V(ST S)−1VT

= V



1
σ2

1
0 0 · · · 0

0 1
σ2

2
0 · · · 0
...

0 0 0 · · · 1
σ2

p


VT

Therefore, considering the jth component of the coefficient, we have

α̂ j = α̂ j
OLS− (V j

1
σ2

j
VT

j )mλS j.

Application of Method 3

We will consider both the crime and prostate cancer datasets in our illus-

trations. Table 43 gives a sparse solution of the crime data using the method. It

identifies the first, second and the last variables as significant in the model. In

addition, its associated residual norm is as small as the full model provided by
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the least squares.

Table 43 : Results of Method 3 of Crime Data

Least Squares Method 3

0.5061015532377721 0.306101553237772

−0.4153060012346106 −0.215306001234611

−0.0745112062624355 0.000000000000000

−0.1693559131562814 0.000000000000000

0.2361785503313412 0.036178550331341

Norm 5.70556065636911 5.97962522410037

Table 44 gives a sparse solution of the prostate data using Method 3. It

identifies only three out of the eight variables as significant in the model. In

addition, its associated norm is also as small as the full model provided by the

least squares.

Table 44 : Results of Method 3 of Prostate Cancer Data

Least Squares Method 3

0.5762192831970794 0.382219283197079

0.2308529420732906 0.036852942073291

−0.1370451705556009 0.000000000000000

0.1215521381794642 0.000000000000000

0.2731706998275261 0.079170699827526

−0.1284604953474022 0.000000000000000

0.0307963915113301 0.000000000000000

0.1089115924370662 0.000000000000000

Norm 5.68459336383028 7.01149897737364
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Chapter Summary

In this chapter, the focus has been on non-smoothing approximation of the

L1-norm problem. The first attempt is to cast the constrained formulation of

the L1-regularized least squares problem as an unconstrained formulation. This

approach yields a clear L1-norm regularization functional. By applying the sub-

gradient method, an analytic optimal solution is obtained using two approaches.

The derived methods specifies solutions for various scenarios of the component

αi of the solution vector. The solution has equivalently been presented under

cases that depend on the optimal regularization parameter λ.

To assess the performance of the methods in determining the parameters

for minimizing L1-regularized least squares, a number of datasets have been

used. These datasets are among those that are mostly known in the literature to

have important inherent problems.

The problem of these datasets mainly regards the ill-conditioning which

makes it difficult to obtain desirable solution for any method, and are therefore

used as test data. A typical ill-conditioned data is the Hilbert matrix. Vari-

ous dimensions of the Hilbert matrix, which is hypothetical in nature have been

used with pre-assigned solution to the regularization problem, to determine how

close the methods studied come close to retrieving the exact solution. It is ob-

served that a regularization parameter of 10−3 yields the best result for Method

1. For this value of the parameter, Method 1 particularly has the smallest so-

lution norm. However, the solution is not necessarily the best approximation

but provides the best minimization of the residual norm. Under a non-optimal

regularization parameter value of 10−1, the L2 regularization produces the best

approximation. For this value, the LASSO that is based on the Elastic Net pro-

duces a feature selection solution which is not desired. Other datasets which

are real are also selected to have similar properties as the Hilbert matrix. These
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are datasets that appear to have monotonic trends with time series components.

The datasets used for such study involve population growth for 18 years and

global temperature anomalies for 166 years. They reveal that Method 1 is not

suitable for determining trends in datasets with monotone trends. This property

is found to be consistent with other LASSO methods, particularly the Elastic-

Net-based LASSO. This result is not unexpected because there are no embedded

techniques in the construction of those LASSO methods to detect monotonicity

in datasets. It is however noticed that the L2-norm regularization performs quite

well in minimizing errors in such datasets.

The techniques are applied to another set of real datasets that involve crime

data, prostate cancer data, level of ozone concentration and Boston housing

crime dataset. The ozone concentration data yields different solutions with dif-

ferent techniques and produces the highest residual norm for the Elastic Net

LASSO and Method 1. The two however are associated with small solutions

norms. The Housing Crime data is observed to have a high residual even for the

full model, and irrespective of the minimization method. It thus requires a every

high regularization parameter (λ = 100) to achieve a desirable minimization of

the least squares. Even under this condition, Method 1 produces a very small

solution norm. The Elastic Net LASSO produces a highly sparse solution for

this dataset.

An important observation made under the applications is that Method 1

does not appear to exhibit clear feature selection property for all the datasets

used. A special data is therefore designed to determine the suitability of Met-

hod 1 for feature selection. For such dataset, the Hilbert matrix of order 20×12

is augmented by including two additional columns that are linear combinati-

ons of other columns. The 13th column is created to be the average of the first

three columns, and the 14th is designed by the Gram Schmidt Orthogonalisa-

tion process such that it is orthogonal to the first two columns and are also linear
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combinations of the first two. It is found that only Method 1 is able to set to zero

the two additional columns. The Elastic Net based LASSO sets only one of the

two columns to zero. This result indicates that Method 1 is very sensitive to

variable dependence and treats them as dispensable, which is an important sta-

tistical property. However, the other LASSO methods may consider a dependent

variable as indispensable. The result further indicates that the derived LASSO

Method 1 is actually robust to over-regularization that has the tendency to set

even relevant predictors to zero.

On the other hand, Method 3 is found to exhibit clear feature selection

properties just like the standard LASSO method in MATLAB. Unlike the Met-

hod 1, Method 3 however is not robust to over-regularization. As a result, the

choice of regularization parameter for this method does not follow from results

of cross-validation used in Method 1.
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CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this chapter, we consider a summary of the entire thesis and then provide the

conclusions and recommendations based on the findings.

Summary

The thesis has been motivated by the non-differentiability of the L1-norm

penalty in the L1-regularized least squares problem. It focuses on optimiza-

tion of the least squares function with the L1-norm regularization of the pa-

rameters. The study has relied on a wide range of preliminary concepts and

techniques. The concept involve orthogonalisation process, singular value de-

composition, sub-gradient of a function and application to non-differentiable

functions, polynomial fitting, optimality conditions and duality. The techniques

include basically the L1-norm regularization (LASSO) and Tikhonov regulari-

zation (Ridge). These preliminary tools have been reviewed within the context

of over-determined systems.

The study has examined various smoothing approximations of the L1-norm

regularization functional, which include the Quadratic, Sigmoid and Cubic Her-

mite functional. Tikhonov regularization is applied to each of the resulting

smooth least squares minimization problem using the Hilbert 12× 12 matrix.

The solution is compared with that of the Modified Newton’s method which is

mostly used in the literature. The approximations basically is a modification of

the Lee’s approximation to the L1-norm term ‖α‖1 given by
√

x2 + ε for a small

ε. The regularized solution using this approximation has been presented and also

specified and proved in terms of the singular value decomposition. A quadratic

approximation to the Lee’s (2006) approximation is derived. The L1-norm regu-

larized least squares problem is then formulated in terms of this approximation
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and the corresponding solution is derived. The solution so obtained appears si-

milar to the L2-norm regularized solution with a slight difference which is the

constant multiple µI in the order zero Tikhonov regularization. The performance

of the approximation has been assessed by using the Hilbert sub-matrix of order

12×7 and a chosen solution of α = {1, 1, . . . ,1} ∈ℜ7. The assessment provi-

des a quadratic singular value decomposition regularized solution of order zero

for various values of the parameter µ in the set 10−35,10−30, . . . ,100. It is found

that smaller values of µ yields a good approximation to the exact solution and

converges at µ = 10−30. The solution has a very small error ‖αexact− α̂‖ which

shows an accuracy to about nine digits. The results of the smoothing approx-

imation are compared with the Modified Newton’s method based on the Lee’s

approximation. A suitable initial guess of α0 = 0.25×ones(7,1) is selected. It

is also demonstrated that for ε = 0.0001,

lim
ε→0
|α|

ε
= ‖α‖1 .

These values are used to perform a number of iterations which yields the best

approximate solution at the 81st iterate at a parameter value of µ = 10−16 and a

step size β = 2. The solution produces a small error which shows an accuracy

of about 2 digits. Another smoothing approximation considered is the Sigmoid

function approximation to the L1-norm functional. The absolute value function

is first expressed as the sum of the integral of two sigmoid functions. The gra-

dient and the Hessian for the approximation are derived. It is demonstrated that

for the parameter value of κ = 1000,

lim
κ→∞
|α|

κ
= ‖α‖1 .

A formulation is given for the L1-norm regularization in terms of the sigmoid

approximation and corresponding regularized solution is derived and written

in terms of the singular value decomposition. Analysis of the results gives the
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sigmoid-SVD regularized solution for various values of the parameter µ. The so-

lution converges at µ = 10−30 with error that shows an accuracy to nine digits.

The Modified Newton’s method based on the sigmoid approximation formula-

tion yields the best approximate result at the 84th iterate with µ = 10−16 and

step size β = 3 and function parameter value κ = 300. The error in the Modified

Newton’s method shows an accuracy to two digits.

The Cubic Hermite is the last smoothing approximation studied. We have

derived an expression for Hermite form of the Cubic polynomial in terms of the

parameter γ. It is demonstrated that for γ = 0.05,

lim
γ→0
|α|

γ
= ‖α‖1 .

A formulation of the L1-norm problem in terms of the Cubic Hermite is derived

with corresponding regularized solution and its SVD version. An approximation

of the Cubic Hermite-SVD regularized solution converges for parameter value

µ = 10−30 with a small error that shows an accuracy to nine digits. The Modi-

fied Newton’s method based on the Cubic Hermite approximation formulation

yields the best solution at the 86th iterate with µ = 10−16, a step size β = 3 and

function parameter γ = 0.05. The Modified Newton’s method shows an accu-

racy to just one digit.

It is observed that the loss in accuracy in the results of the Modified New-

ton’s method is as a result of the ill-conditioning of the matrix XT X in the solu-

tion. All three smoothing methods give results with the same level of accuracy

(to nine digits) at the same parameter value of µ = 10−30. The solutions of the

three smoothing methods are compared with the l1 ls method, a non-smooth

method which is based on the Truncated Newton Interior Point method. For the

same value of µ = 10−30, the accuracy in the solution of the l1 ls method is up

to ten digits, almost the same as the smoothing approximations.

In order to specify a specific direction for our study on non-smoothing
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approximation of the L1-norm problem, we first attempt to cast the constrained

formulation of the L1-regularized least squares problem as an unconstrained for-

mulation. Thus, unconstrained formulation gives a clear L1-norm regularization

functional. By applying the sub-gradient method, an analytic optimal solution

is obtained. Method 1 specifies solution for three scenarios of the component

αi of the solution vector. The three cases are solution for αi > 0, αi < 0 and

αi = 0. Equivalently, the solution has been presented under cases that depend

on the optimal regularization parameter λ. In this case, the solution is provided

so that it specifies the condition for which components of the coefficient para-

meter are not affected by large values of the regularization parameter leading to

over-regularization. The derivation set a component (that is, a variable) to zero

if the regularization parameter exceeds
∥∥2(XT y)i

∥∥
∞
.

To assess the performance of Method 1 in determining the parameters for

minimizing L1-regularized least squares, a number of datasets have been used.

These datasets are among those that are mostly known in the literature to have

important inherent problems.

The problem of these datasets mainly regards the ill-conditioning which

makes it difficult to obtain desirable solution for any method, and are therefore

used as test data. A typical ill-conditioned data is the Hilbert matrix. Various

dimensions of the Hilbert matrix, which is hypothetical in nature have been used

with pre-assigned solution to the regularization problem, to determine how close

the methods studied come close to retrieving the exact solution. It is observed

that a regularization parameter of 10−3 yields the best result. For this value

of the parameter, Method 1 particularly has the smallest solution norm but not

necessarily the best approximation. The LASSO however, provides the best mi-

nimization of the residual norm. Under a non-optimal regularization parameter

value of 10−1, the L2-norm regularization produces the best approximation. For

this value, the Elastic Net based LASSO produces a feature selection solution
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which is not desired in the case which involves the retrieval of an exact solu-

tion. Other datasets which are real are also selected to have similar properties

as the Hilbert matrix. These are datasets that appear to have monotonic trends.

They are mainly those that have time series components and appears suitable for

polynomial fitting. The datasets used for this study, which involve population

growth for 18 years and global temperature anomalies for 166 years, reveal that

Method 1 is just not suitable for determining trends in datasets with such com-

ponents. This property is found to be consistent with other LASSO methods,

particularly the Elastic Net based LASSO. This result is not unexpected as by

the construction of the LASSO methods, there are no embedded techniques to

detect monotonicity in datasets. This result shows that for predicting trends,

L1-regularized least squares methods fused with additional constraints for trend

detection and prediction should be used. It is however noticed that the L2-norm

regularization performs quite well in minimizing errors in such datasets.

The techniques are applied to another set of real datasets that involve level

of Ozone Concentration and Boston Housing Crime dataset. The ozone concen-

tration data which appears to yield different solutions with different techniques

produces the highest residual norm for the Elastic Net LASSO and Method 1.

The two however are associated with small solutions norms. The Housing crime

data is noted to have a high residual even for the full model, and irrespective

of the minimization method. It requires a every high regularization parameter

(λ = 100) for a desirable minimization of the least squares. Even under this

condition, Method 1 produces a very small solution norm, only higher than the

Elastic Net LASSO which even retains only 4 out of 13 predictor variables.

Throughout the applications to various datasets, it is observed that Met-

hod 1 does not appear to exhibit clear feature selection property. In most of

the illustrations, using polynomial fit data, the Hilbert matrix with high (non-

optimal) regularization parameter of 10−1, the Ozone Concentration data, and
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particularly the Housing Crime data, the Elastic Net LASSO sets some varia-

bles to zero. However, Method 1 does not set any variable completely to zero.

A special data is therefore designed to determine the suitability of Method 1 for

feature selection. To design such a data, the Hilbert matrix of order 20× 12

is augmented by including two additional columns that are linear combinati-

ons of other columns. The 13th column is created to be the average of the first

three columns, and the 14th is designed by the Gram-Schmidt Orthogonalisa-

tion process such that it is orthogonal to the first two columns and are also linear

combinations of the first two. The two additional columns are thus linearly de-

pendent on the other columns of the matrix. It is found that only Method 1 is

able to set to zero the two additional columns. The Elastic Net based LASSO

sets only one of the two columns to zero. This result indicates that Method 1 is

very sensitive to variable dependence and treats them as dispensable, which is

an important statistical property. However, the Elastic Net based LASSO may

consider a dependent variable as indispensable. The result further indicates that

Method 1 is actually robust to over-regularization that has the tendency to set

even relevant predictors to zero. Method 1 sets to zero only when the variable is

obviously redundant.

Conclusions

The thesis focused on optimization of the least squares function with the

L1-norm regularization of the parameters. Studies on the subject has gained

overwhelming interest as a result of the need to improve upon the accuracy of

models for various types of datasets. However, the non-differentiability of the

L1-norm penalty poses a major challenge to obtaining an analytic solution to the

L1-norm regularized least squares problem. Particular attention of the study is

therefore directed at exploring smoothing and non-smoothing approximations

that yields differentiable loss functional and ensures a close-form solution.
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The study has relied on a wide range of preliminary concepts and techni-

ques which involve orthogonalisation process, singular value decomposition,

sub-gradient of a function, data fitting, optimality conditions, the L1-norm regu-

larization (LASSO) and Tikhonov regularization (Ridge).

Three main smoothing approximations of the L1-norm regularization functi-

onal have been examined which include the Quadratic, Sigmoid and Cubic Her-

mite functional. Tikhonov regularization is then applied to each of the resulting

smooth least squares minimization problem. Using the Hilbert 12×12 matrix,

the solution of each approach is compared with that of the Modified Newton’s

method. The approximations basically are a modification of the Lee’s approxi-

mation to the L1-norm term ‖α‖1 given by
√

x2 + ε for a small ε. The regulari-

zed solution using this approximation has been presented and also specified and

proved in terms of the singular value decomposition. Each smoothing approxi-

mation to the L1-norm regularization functional is derived. The L1-norm regu-

larized least squares problem is then formulated in terms of the approximation

and the corresponding regularized solution is derived and written in terms of the

singular value decomposition. The performance of the approximation has been

assessed by using the Hilbert sub-matrix of order 12×7 and a chosen solution of

α = {1, 1, . . . ,1} ∈ℜ7. It is found that for all three methods, smaller values of

the regularization parameter µ yields a good approximation to the exact solution

and converges at µ = 10−30. The solutions have a very small error ‖αexact− α̂‖

which shows an accuracy to about nine digits. In each approximation, a suitable

value of the approximation parameter is obtained as ε = 0.0001, κ = 1000, and

γ = 0.05, respectively, for the Quadratic, Sigmoid and Cubic Hermite. For each

of these values, it demonstrated that

lim
τ→φ
|α|

τ
= ‖α‖1 ,

where τ represents the smoothing approximation parameter and φ is the corre-
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sponding limiting value. The results of the smoothing approximations are com-

pared with the Modified Newton’s method based on the L1-norm regularization

functional. With a suitable initial guess, the Modified Newton’s method yields

approximate solution at various iterates for each smoothing method at the same

parameter value of µ = 10−16 and various step sizes. The solution produces an

error which shows an accuracy of not more than two digits. It is observed that

the loss in accuracy in the results of the Modified Newton’s method is as a result

of the ill-conditioning of the matrix XT X in the solution.

The solutions of the three smoothing methods are compared with the l1 ls

method, a non-smooth method which is based on the Truncated Newton Interior

Point method. For the same value of µ = 10−30, the accuracy in the solution of

the l1 ls method is almost the same as the smoothing approximations.

The study on non-smoothing approximation of the L1-norm problem, fo-

cuses on casting the constrained formulation of the L1-regularized least squares

problem as an unconstrained formulation. By applying the sub-gradient met-

hod, an analytic optimal solution is obtained.

The performance of Method 1, in determining the parameters for minimi-

zing L1-regularized least squares, is assessed using a number of datasets. These

datasets, which includes various dimensions of the Hilbert matrix, are among

those that are mostly known in the literature to have important inherent pro-

blems and can therefore be used as test datasets for derived methods. In order

to expose the inherent problems of the datasets used, which number six in all,

four other known methods have been assessed in addition to Method 1. The use

of these other methods also provides a basis for assessing the performance of

Method 1.

In almost all the datasets, Method 1 particularly is associated with the smal-

lest solution norm but not necessarily the best approximation. Another impor-

tant feature of Method 1 is that it is not suitable for determining trends in data-
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sets with monotonic trends. This property is found to be consistent with other

LASSO methods, particularly the Elastic Net based LASSO. This result is not

unexpected as by the construction of the LASSO methods, there are no embed-

ded techniques to detect monotonicity in datasets. This result shows that for

predicting trends, L1-regularized least squares methods fused with additional

constraints such as isotonic regression for trend detection and prediction should

be used. It is however noticed that the L2-norm regularization performs quite

well in minimizing errors in such datasets.

Attempts at achieving sparsity of the analytic solution has been made in

two ways. The initial solution is expressed in terms of the singular value de-

composition so that by truncating smaller singular values, the desired sparsity is

achieved using suitable regularization parameter obtained by the K-fold cross-

validation of the fit. In another way, the solution itself has been induced to

ensure sparsity by designing the algorithm to enforce sparsity with a suitable

choice of the regularization parameter.

The results show that the LASSO formulation and solution must be appro-

priately designed for certain type of datasets, particularly those that are severely

ill-conditioned and those with monotone trends.

Recommendations

The results of the study show that the LASSO method may not be appro-

priate for all datasets. For example, for datasets that are severely ill-conditioned

and those with monotone trends, the LASSO formulation and its solution should

be designed appropriately. In this case, the choice of the regularization parame-

ter must be carefully selected.

Using a specially designed data matrix with dependent columns, the appli-

cations show that Method 1 exhibits clear feature selection property only when

predictor variables are linearly dependent. It is found that under this condition,
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Method 1 is able to set to zero all linearly dependent columns of the data matrix.

The Elastic Net-based LASSO, which is observed to produce sparse solution in

most cases, surprisingly does not set all dependent columns to zero. This result

indicates that Method 1 is very sensitive to variable dependence and treats them

as dispensable, which is an important statistical property. It is therefore recom-

mended in datasets that are prone to have dependent predictors. However, the

Elastic Net based LASSO may consider a dependent variable as indispensable.

The result further indicates that a method for solving the LASSO problem could

be robust to over-regularization which may not easily set relevant predictors to

zero. However, other methods may not be robust to over-regularization. Such

methods may require a very careful choice of the regularization parameter.

This study is carried out in the context of over-determined systems. Furt-

her studies on the subject could focus on approximation methods in under-

determined systems.
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APPENDICES

APPENDIX A

REGULARIZED SOLUTION OF HILBERT MATRIX USING

QUADRATIC APPROXIMATION

Function File

H = hilb (12)

X = H(:,1 : 7)

α = ones (7,1)

y = X∗α

[USV] = svd (X)

σ = diag (S)

Utb = U′ ∗y

k =−30

λ = 10k

ε = 0.0001

for j=1:7

q(:, j) = (σ( j)/((σ( j))2 +λ∗0.5∗ ε−0.5))∗ (Utb( j)∗V(:, j))

end

qt = sum (q′)′

errorqt = norm ((x−qt), inf)
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APPENDIX B

CODE FOR IMPLEMENTING MODIFIED NEWTON’S METHOD FOR

QUADRATIC APPROXIMATION

Function File

α = [α(1) α(2) α(3) α(4) α(5) α(6) α(7)]′

H = hilb (12)

X = H(:,1 : 7)

α0 = ones (7,1)

y = X∗α0

b = X∗α−y

L = b′ ∗b

Define Lee’s Approximation function

ε = 0.0001

for i = 1 : 7

q =
√

α(i)2 + ε

end

Q = sum (q′)

λ = 10−16

g = L+λ∗Q
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APPENDIX B CONTINUED

Modified Newton’s Method File

Initial guess, α0 = 0.25∗ones (7,1)

Pre-allocation for the iterations

α = zeros (length (α0),101)

α(:,1) = α0

Pre-allocation for computing the gradients

Grd = zeros (length(α0),100)

100 Iterations

for i = 1 : 100

Gradient of the Objective function

Grd (:, i) = fdjac (@Function File)

Hessian of the Objective function

H = fdhess (@Function File)

Newton’s method

α(:, i+1) = α(:, i)−2∗H Grd(:, i)

end

Solution vector X

α100 = α(:,81 : 100) Gradient at the end of the 100th iteration

Grad = Grd (:,81 : 100)

Hessian at the end of the 100th iteration

H

Test for Positive Definiteness

Lt = chol (H)
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APPENDIX C

REGULARIZED SOLUTION OF HILBERT MATRIX USING SIGMOID

FUNCTION APPROXIMATION

Function File

H = hilb (12)

X = H(:,1 : 7)

α = ones (7,1)

y = X∗α

[USV] = svd (X)

σ = diag (S)

Utb = U′ ∗y

κ = 1000

k =−30

λ = 10.k

for j = 1 : 7

αsol7(:, j) = (σ( j)/((σ( j))2 +1/4∗λ∗α))∗ (Utb( j)∗V(:, j))

end

αtSV D7 = sum (αsol7′)′

errorαtSV D7 = norm ((α−αtSV D7), inf)
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APPENDIX D

CODE FOR IMPLEMENTING MODIFIED NEWTON’S METHOD FOR

SIGMOID FUNCTION APPROXIMATION

Function File

α = [α(1) α(2) α(3) α(4) α(5) α(6) α(7)]′

H = hilb (12)

X = H(:,1 : 7)

α0 = ones (7,1)

y = X∗α0

b = X∗α−y

L = b′ ∗b

Define the Sigmoid function

κ = 300

for i = 1 : 7

s = 1/κ∗ (log (1+ exp (−κ∗ x(i)))+ log (1+ exp (κ∗ x(i))))

end

S = sum (s′)

λ = 10−16

g = L+λ∗S
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APPENDIX D CONTINUED

Modified Newton’s Method File

Initial guess α0 = 0.25∗ones (7,1)

Pre-allocation for the iterations

α = zeros (length (α0),101)

α(:,1) = α0

Pre-allocation for computing the gradients

Grd = zeros (length (α0),100)

100 Iterations

for i = 1 : 100

Gradient of the Objective function

Grd (:, i) = fdjac (@Function File)

Hessian of the Objective function

H = fdhess (@Function File)

Newton’s method

α(:, i+1) = α(:, i)−3∗H Grd (:, i)

end

Solution vector X

α100 = α(:,81 : 100)

Gradient at the end of the 100th iteration

Grad = Grd (:,81 : 100)

Hessian at the end of the 100th iteration

H

Test for Positive Definiteness

Lt = chol (H)
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APPENDIX E

REGULARIZED SOLUTION OF HILBERT MATRIX USING CUBIC

HERMITE APPROXIMATION

Function File

H = hilb (12)

A = H(:,1 : 7)

α = ones (7,1)

y = X∗α

[USV] = svd (X)

σ = diag(S)

Utb = U′ ∗y

γ = 0.05

n = 1/(2∗ γ)

k =−30

λ = 10.k

for j = 1 : 7

c(:, j) = (σ( j)/(((σ( j))2 +λ∗n)))∗ (Utb( j)∗V(:, j))

end

ct = sum(c′)′

errorct = norm ((α− ct), inf)
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APPENDIX F

CODE FOR IMPLEMENTING MODIFIED NEWTON’S METHOD FOR

CUBIC HERMITE APPROXIMATION

Function File

α = [α(1) α(2) α(3) α(4) α(5) α(6) α(7)]′

H = hilb (12)

X = H(:,1 : 7)

α0 = ones (7,1)

y = X∗α0

b = X∗α−y

L = b′ ∗b

Define the Cubic Hermite Approximation

γ = 0.05

for i = 1 : 7

c = γ/2+(1/(2∗ γ))∗α(i)2

end

C = sum (c′)

λ = 10−16

g = L+λ∗C
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APPENDIX F CONTINUED

Modified Newton’s Method

Initial guess α0 = 0.25∗ones (7,1)

Pre-allocation for the iterations

α = zeros (length (α0),101)

α(:,1) = α0

Pre-allocation for computing the gradients

Grd = zeros (length (α0),100)

100 Iterations

fori = 1 : 100

Gradient of the Objective function

Grd(:, i) = fdjac (@Function File)

Hessian of the Objective function

H = fdhess (@Function File)

Newton’s method

α(:, i+1) = α(:, i)−3∗H Grd(:, i)

end

Solution vector X

α100 = α(:,81 : 100) Gradient at the end of the 100th iteration

Grad = Grd (:,81 : 100)

Hessian at the end of the 100th iteration

H

Test for Positive Definiteness

Lt = chol(H)
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APPENDIX G

POLYNOMIAL FIT OF DEGREE 5 OF POPULATION DATA

Figure G1: Cross-Validation LASSO Fit of Polynomial of Degree Five.

Table G1: Solutions for Various Methods at Optimal Value of λ = 10−2 of

Population Data

Least Squares l1 ls Method 1

4.532808404662905

0.270778590462724

0.011213985497136

−0.000330004731447

0.000002703345127

−0.000000006305520

4.529397922858414

0.271084245838057

0.011205384831343

−0.000329901365519

0.000002702789559

−0.000000006304421

39.714578947368423

0.156957491702229

0.000520643555525

0.000002059429493

0.000000008404938

0.000000000034978

Norm 4.540902877271965 4.537516708666442 39.714889108394026
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APPENDIX G CONTINUED

Table G1 Continued

Variable Least Squares Ridge LASSO

Intercept 4.532808404662905 4.494278702234064 5.216745350108717

1 0.270778590462724 0.274260197310556 0.535161413592931

2 0.011213985497136 0.011115578759935 −0.007426407969439

3 −0.000330004731447 −0.000328818710862 0.000022636191828

4 0.000002703345127 0.000002696958227 0.000000189301638

5 −0.000000006305520 −0.000000006292871 −0.000000000261031

Norm 4.540902877271965 4.502652926154060 0.535212939535794

Table G2: Solution and Residual Norms of Polynomial Fit of Population

Data

Method Solution Norm Residual Norm

‖α‖2 ‖y−Xα‖2

Least Squares 4.540902877271965 11.086831207477713

l1 ls 4.537516708666442 11.086831816079259

Method 1 39.714889108394026 139.8848942555254

Ridge 4.502652926154060 11.086908871167171

LASSO 0.535212939535794 26.911746501461966
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APPENDIX G CONTINUED

Figure G2 : Least Squares Polynomial Fit of Order Five.

Figure G3: Ridge Polynomial Fit of Order Five.
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APPENDIX G CONTINUED

Figure G4 :Method 1 Polynomial Fit of Order Five.

Figure G5: The l1 ls Polynomial Fit of Order Five.
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APPENDIX G CONTINUED

Figure G6 : LASSO Polynomial Fit of Order Five.
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APPENDIX H

CRIME DATASET

Table H1: Crime Dataset

Y1 Y2 X1 X2 X3 X4 X5

478 184 40 74 11 31 20

494 213 32 72 11 43 18

643 347 57 70 18 16 16

341 565 31 71 11 25 19

773 327 67 72 9 29 24

603 260 25 68 8 32 15

484 325 34 68 12 24 14

546 102 33 62 13 28 11

424 38 36 69 7 25 12

548 226 31 66 9 58 15

506 137 35 60 13 21 9

819 369 30 81 4 77 36

541 109 44 66 9 37 12

491 809 32 67 11 37 16

514 29 30 65 12 35 11

371 245 16 64 10 42 14

457 118 29 64 12 21 10

437 148 36 62 7 81 27

570 387 30 59 15 31 16

432 98 23 56 15 50 15

619 608 33 46 22 24 8

357 218 35 54 14 27 13
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APPENDIX H CONTINUED

Table H1: Crime Dataset Continued

Y1 Y2 X1 X2 X3 X4 X5

623 254 38 54 20 22 11

547 697 44 45 26 18 8

792 827 28 57 12 23 11

799 693 35 57 9 60 18

439 448 31 61 19 14 12

867 942 39 52 17 31 10

912 1017 27 44 21 24 9

462 216 36 43 18 23 8

859 673 38 48 19 22 10

805 989 46 57 14 25 12

652 630 29 47 19 25 9

776 404 32 50 19 21 9

919 692 39 48 16 32 11

732 1517 44 49 13 31 14

657 879 33 72 13 13 22

1419 631 43 59 14 21 13

989 1375 22 49 9 46 13

821 1139 30 54 13 27 12

1740 3545 86 62 22 18 15

815 706 30 47 17 39 11

760 451 32 45 34 15 10

936 433 43 48 26 23 12
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APPENDIX H CONTINUED

Table H1: Crime Dataset Continued

Y1 Y2 X1 X2 X3 X4 X5

863 601 20 69 23 7 12

783 1024 55 42 23 23 11

715 457 44 49 18 30 12

1504 1441 37 57 15 35 13

1324 1022 82 72 22 15 16

940 1244 66 67 26 18 16
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APPENDIX I

PROSTATE CANCER DATASET

Table I1: Prostate Cancer Dataset

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

-0.579818495 2.769459 50 -1.38629436 0 -1.38629436 6 0 -0.4307829

-0.994252273 3.319626 58 -1.38629436 0 -1.38629436 6 0 -0.1625189

-0.510825624 2.691243 74 -1.38629436 0 -1.38629436 7 20 -0.1625189

-1.203972804 3.282789 58 -1.38629436 0 -1.38629436 6 0 -0.1625189

0.751416089 3.432373 62 -1.38629436 0 -1.38629436 6 0 0.3715636

-1.049822124 3.228826 50 -1.38629436 0 -1.38629436 6 0 0.7654678

0.737164066 3.473518 64 0.61518564 0 -1.38629436 6 0 0.7654678

0.693147181 3.539509 58 1.53686722 0 -1.38629436 6 0 0.8544153

-0.776528789 3.539509 47 -1.38629436 0 -1.38629436 6 0 1.0473190

0.223143551 3.244544 63 -1.38629436 0 -1.38629436 6 0 1.0473190

0.254642218 3.604138 65 -1.38629436 0 -1.38629436 6 0 1.2669476

-1.347073648 3.598681 63 1.26694760 0 -1.38629436 6 0 1.2669476

1.613429934 3.022861 63 -1.38629436 0 -0.59783700 7 30 1.2669476

1.477048724 2.998229 67 -1.38629436 0 -1.38629436 7 5 1.3480731

1.205970807 3.442019 57 -1.38629436 0 -0.43078292 7 5 1.3987169

1.541159072 3.061052 66 -1.38629436 0 -1.38629436 6 0 1.4469190

-0.415515444 3.516013 70 1.24415459 0 -0.59783700 7 30 1.4701758

2.288486169 3.649359 66 -1.38629436 0 0.37156356 6 0 1.4929041

-0.562118918 3.267666 41 -1.38629436 0 -1.38629436 6 0 1.5581446

236

© University of Cape Coast   https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



APPENDIX I CONTINUED

Table I1: Prostate Cancer Dataset Continued

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

0.182321557 3.825375 70 1.65822808 0 -1.38629436 6 0 1.5993876

1.147402453 3.419365 59 -1.38629436 0 -1.38629436 6 0 1.6389967

2.059238834 3.501043 60 1.47476301 0 1.34807315 7 20 1.6582281

-0.544727175 3.375880 59 -0.79850770 0 -1.38629436 6 0 1.6956156

1.781709133 3.451574 63 0.43825493 0 1.17865500 7 60 1.7137979

0.385262401 3.667400 69 1.59938758 0 -1.38629436 6 0 1.7316555

1.446918983 3.124565 68 0.30010459 0 -1.38629436 6 0 1.7664417

0.512823626 3.719651 65 -1.38629436 0 -0.79850770 7 70 1.8000583

-0.400477567 3.865979 67 1.81645208 0 -1.38629436 7 20 1.8164521

1.040276712 3.128951 67 0.22314355 0 0.04879016 7 80 1.8484548

2.409644165 3.375880 65 -1.38629436 0 1.61938824 6 0 1.8946169

0.285178942 4.090169 65 1.96290773 0 -0.79850770 6 0 1.9242487

0.182321557 3.804438 65 1.70474809 0 -1.38629436 6 0 2.0082140

1.275362800 3.037354 71 1.26694760 0 -1.38629436 6 0 2.0082140

0.009950331 3.267666 54 -1.38629436 0 -1.38629436 6 0 2.0215476

-0.010050336 3.216874 63 -1.38629436 0 -0.79850770 6 0 2.0476928

1.308332820 4.119850 64 2.17133681 0 -1.38629436 7 5 2.0856721

1.423108334 3.657131 73 -0.57981850 0 1.65822808 8 15 2.1575593

0.457424847 2.374906 64 -1.38629436 0 -1.38629436 7 15 2.1916535
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APPENDIX I CONTINUED

Table I1: Prostate Cancer Dataset Continued

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

2.660958594 4.085136 68 1.37371558 1 1.83258146 7 35 2.2137539

0.797507196 3.013081 56 0.93609336 0 -0.16251893 7 5 2.2772673

0.620576488 3.141995 60 -1.38629436 0 -1.38629436 9 80 2.2975726

1.442201993 3.682610 68 -1.38629436 0 -1.38629436 7 10 2.3075726

0.582215620 3.865979 62 1.71379793 0 -0.43078292 6 0 2.3272777

1.771556762 3.896909 61 -1.38629436 0 0.81093022 7 6 2.3749058

1.486139696 3.409496 66 1.74919985 0 -0.43078292 7 20 2.5217206

1.663926098 3.392829 61 0.61518564 0 -1.38629436 7 15 2.5533438

2.727852828 3.995445 79 1.87946505 1 2.65675691 9 100 2.5687881

1.163150810 4.035125 68 1.71379793 0 -0.43078292 7 40 2.5687881

1.745715531 3.498022 43 -1.38629436 0 -1.38629436 6 0 2.5915164

1.220829921 3.568123 70 1.37371558 0 -0.79850770 6 0 2.5915164

1.091923301 3.993603 68 -1.38629436 0 -1.38629436 7 50 2.6567569

1.660131027 4.234831 64 2.07317193 0 -1.38629436 6 0 2.6775910

0.512823626 3.633631 64 1.49290410 0 0.04879016 7 70 2.6844403

2.127040520 4.121473 68 1.76644166 0 1.44691898 7 40 2.6912431

3.153590358 3.516013 59 -1.38629436 0 -1.38629436 7 5 2.7047113
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APPENDIX I CONTINUED

Table I1: Prostate Cancer Dataset Continued

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

1.266947603 4.280132 66 2.12226154 0 -1.38629436 7 15 2.7180005

0.974559640 2.865054 47 -1.38629436 0 0.50077529 7 4 2.7880929

0.463734016 3.764682 49 1.42310833 0 -1.38629436 6 0 2.7942279

0.542324291 4.178226 70 0.43825493 0 -1.38629436 7 20 2.8063861

1.061256502 3.851211 61 1.29472717 0 -1.38629436 7 40 2.8124102

0.457424847 4.524502 73 2.32630162 0 -1.38629436 6 0 2.8419982

1.997417706 3.719651 63 1.61938824 1 1.90954250 7 40 2.8535925

2.775708850 3.524889 72 -1.38629436 0 1.55814462 9 95 2.8535925

2.034705648 3.917011 66 2.00821403 1 2.11021320 7 60 2.8820035

2.073171929 3.623007 64 -1.38629436 0 -1.38629436 6 0 2.8820035

1.458615023 3.836221 61 1.32175584 0 -0.43078292 7 20 2.8875901

2.022871190 3.878466 68 1.78339122 0 1.32175584 7 70 2.9204698

2.198335072 4.050915 72 2.30757263 0 -0.43078292 7 10 2.9626924

-0.446287103 4.408547 69 -1.38629436 0 -1.38629436 6 0 2.9626924

1.193922468 4.780383 72 2.32630162 0 -0.79850770 7 5 2.9729753

1.864080131 3.593194 60 -1.38629436 1 1.32175584 7 60 3.0130809

1.160020917 3.341093 77 1.74919985 0 -1.38629436 7 25 3.0373539

1.214912744 3.825375 69 -1.38629436 1 0.22314355 7 20 3.0563569

1.838961071 3.236716 60 0.43825493 1 1.17865500 9 90 3.0750055

2.999226163 3.849083 69 -1.38629436 1 1.90954250 7 20 3.2752562

3.141130476 3.263849 68 -0.05129329 1 2.42036813 7 50 3.3375474

2.010894999 4.433789 72 2.12226154 0 0.50077529 7 60 3.3928291

2.537657215 4.354784 78 2.32630162 0 -1.38629436 7 10 3.4355988

2.648300197 3.582129 69 -1.38629436 1 2.58399755 7 70 3.4578927

2.779440197 3.823192 63 -1.38629436 0 0.37156356 7 50 3.5130369

1.467874348 3.070376 66 0.55961579 0 0.22314355 7 40 3.5160131

2.513656063 3.473518 57 0.43825493 0 2.32727771 7 60 3.5307626

2.613006652 3.888754 77 -0.52763274 1 0.55961579 7 30 3.5652984

2.677590994 3.838376 65 1.11514159 0 1.74919985 9 70 3.5709402

1.562346305 3.709907 60 1.69561561 0 0.81093022 7 30 3.5876769

3.302849259 3.518980 64 -1.38629436 1 2.32727771 7 60 3.6309855
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APPENDIX I CONTINUED

Table I1: Prostate Cancer Dataset Continued

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

2.024193067 3.731699 58 1.63899671 0 -1.38629436 6 0 3.6800909

1.731655545 3.369018 62 -1.38629436 1 0.30010459 7 30 3.7123518

2.807593831 4.718052 65 -1.38629436 1 2.46385324 7 60 3.9843437

1.562346305 3.695110 76 0.93609336 1 0.81093022 7 75 3.9936030

3.246490992 4.101817 68 -1.38629436 0 -1.38629436 6 0 4.0298060

2.532902848 3.677566 61 1.34807315 1 -1.38629436 7 15 4.1295508

2.830267834 3.876396 68 -1.38629436 1 1.32175584 7 60 4.3851468

3.821003607 3.896909 44 -1.38629436 1 2.16905370 7 40 4.6844434

2.907447359 3.396185 52 -1.38629436 1 2.46385324 7 10 5.1431245

2.882563575 3.773910 68 1.55814462 1 1.55814462 7 80 5.4775090

3.471966453 3.974998 68 0.43825493 1 2.90416508 7 20 5.5829322
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