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ABSTRACT

T-cell diversity has a great influence on the ability of the immune system

to recognise and fight the wide variety of potential pathogens in our en-

vironment. The current state of art approach to profiling T-cell diversity

involves high-throughput sequencing and analysis of T-cell receptors (TCR).

Although this approach produces huge amounts of data, the data has noise

which might obscure the underlying biological picture. To correct these

errors, two computational methods have been developed; a method of mo-

ments and a method based on Bayesian inference. Using simulated data, it

is shown that Bayesian Inference is superior to the method of moments in

terms of accuracy but the latter is preferable when time is a limiting factor

as it is faster and adequately accurate. Furthermore, using high-throughput

sequencing data, it is shown that significant differences exist between the

raw and the denoised relative abundances of TCR V segments. For TCR J

segments, however, the difference between raw and denoised data is mini-

mal. This observation agrees with the fact that primers, which are used to

enrich T-cell receptors before they are sequenced, and which are the main

source of errors, are specific for TCR V segments.
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CHAPTER ONE

INTRODUCTION

The immune system is our primary defence against pathogenic organ-

isms and cells that have become malignantly transformed. One of the ways

by which the immune system is able to perform this task, is by means of

specialised blood cells called T-cells (a special type of white blood cells).

The interaction between T-cells and pathogens is highly specific, that is,

particular T-cells are able to recognise particular antigens. Therefore, the

more diverse the T-cell repertoire, the higher the chance that any foreign

body will be identified by the immune system. It is of great interest to

computationally profile T-cell diversity in both sick and healthy individuals

in order to better understand immunity, and its role in protecting against

disease. The current state of art approach to profiling T-cell diversity in-

volves high-throughput sequencing (HTS) and analysis of T-cell receptors

(TCRs), that is, parts of the T-cell that perform actual antigen recognition.

This approach produces huge amounts of data which inherently contains

noise (extraneous or irrelevant data that gives inaccurate information). A

key source of the noise is the enrichment of DNA that precedes sequencing.

This noise might obscure the underlying biological picture.

Computational and mathematical methods are needed to denoise the

data. The goal of the thesis is to develop new methods for performing such

denoising of HTS data. In addition to study of TCR-diversity, which is the
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primary motivation for developing these methods, they can also be applied

to the analysis of gene expression dynamics more generally (i.e. using RNA-

seq data).

The accuracy of the methods developed will be assessed by using sim-

ulated data. The methods will then be applied to real data.

1.1 Background of the Study

1.1.1 Immunology

Immunology is a branch of biomedical science that covers all aspects

of the immune system in all multicellular organisms (nature, 2015). The

immune system consists of a large network of cells and molecules distributed

through out the body that detect and fight pathogenic agents. The human

body provides an ideal environment for the growth and multiplication of

most pathogens, the reason they try to break into it. It is the role of the

immune system to deter them from succeeding and to seek and destroy

them if they happen to enter the body. It is able to recognise and hold

onto the memory of the antigens that it has encountered (Perelson & Weis-

buch, 1997). Any substance that can elicit an immune response is called

an antigen. This could be a microbe or part of a microbe. Operations of

the immune system are realised by the action of tens to hundreds of differ-

ent types of regulatory and effector molecules which communicate via cell

to cell contact, and via the secretion of molecules (Perelson & Weisbuch,

1997). All the molecules that are important in the immune response have

not yet been identified, but they include various cell surface receptors and

molecules such as interleukins that can transmit signals between cells.

The immune system consists of various types of cells. The most im-

portant type is a group of small white blood cells known as lymphocytes.

As a result, organs of the immune system are called lymphoid organs. They

2
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are positioned around the body (NIAID, 2015). All blood cells, including

lymphocytes, are created in the bone marrow and are transported through-

out the body via the blood stream. Through the blood capillaries, white

blood cells can navigate the tissues in search for antigens after which they

return to the blood through the lymph (i.e a fluid bathing the cells of the

body). During circulation, lymphocytes spend considerable time resident

in lymphoid organs such as the bone marrow, the spleen, the lymph nodes

and the thymus. Other clumps of lymphoid tissue are scattered else where

in the body, especially in territories that act as gateways to the body, for

example air passageways.

B cells and T-cells are the main two classes of lymphocytes. B lympho-

cytes make and secrete anti bodies; one of the major protective molecules of

our bodies. Each B cell is programmed to make only one specific antibody.

When stimulated, B cells give rise to many large plasma cells which man-

ufacture millions of antibodies and secrete them into the blood. However

these vast amounts of antibodies are powerless and cannot penetrate cells.

They work by grabbing and sticking onto microbes, which makes it easier

for the immune system to get rid of the microbes. An antigen matches an

antibody much as a key matches a lock. In some cases, the matches are ex-

act while in others, loose fits are sufficient to trigger a response. Whenever

an antibody and an antigen interlock, the antibody marks the antigen for

destruction.
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Figure 1: Structure of an antibody (Wikipedia, 2015a).

T-cells mainly function by interacting with other cells. They can be

further subdivided into helper, regulatory and cytotoxic T-cells.

1.1.2 T-cells

T-cells do not recognize free floating antigens but rather, using their

receptors, they can recognise fragments of antigens bound to cell surfaces.

They contribute to immune defence in two ways; by regulating and direct-

ing immune responses, and by directly attacking infected or cancerous cells.

Helper T-cells, which generally express a cell surface marker called CD4,

coordinate immune responses by communicating with other cells. Some

stimulate B cells in the vicinity to produce antibodies, others invite phago-

cytes to areas of infection, while others activate other T-cells. On the other

hand, cytotoxic (killer) T-cells or CTLs (and a related type of cell called the

natural killer cell), which generally express a cell surface marker called CD8,

directly attack cells carrying certain foreign or abnormal molecules on their

surface. In particular, they are useful for attacking viruses since viruses of-

ten hide from other parts of the immune system while they multiply inside

an infected cell.

It is common for T-cells to only recognize an antigen if it is carried

on the surface of a cell by one of the body’s major histocompatibility com-
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plex (MHC) molecules (Zinkernagel & Doherty, 1997). MHC molecules are

proteins utilised by T-cells to discern between the self and non self i.e the

body’s own cells and the foreign cells.

The most important feature of T-cells are receptor molecules on their

surfaces that can recognise antigens. For the case of B cells, the receptor is

an immunoglobulin molecule (similar to an antibody molecule) while in the

case of T-cells, the receptor is called the T-cell receptor or simply TCR. In

the immune system recognition occurs at molecular level and depends on

the complementarity in shape between the binding region of the receptor

and the recognizable region of the antigen called the epitope. The binding

between TCR and antigen is of relatively low affinity and is degenerate (i.e

many TCR recognize the same antigen and many antigens are recognized

by the same TCR).

1.1.3 T-cell Diversity

Each lymphocyte is estimated to have between 104 and 105 receptor

molecules that can detect antigens, all of which are of the same shape.

Given that each T-cell has receptors with one specificity, and that there

are an enormous variety of organisms that can infect us, the immune sys-

tem needs to generate vast numbers of T-cells, each possessing a different

TCR. The TCR is composed of two different protein chains, that is, it is a

heterodimer. In 95% of T-cells, this consists of an alpha (α) and beta (β)

chain, whereas in 5% of T-cells this consists of gamma (γ) and delta (δ)

chains (Wikipedia, 2015g). This ratio may change during diseased states.

An intricate genetic machine lies behind the construction of the receptors

and to good approximation ensures that the receptors expressed on dif-

ferent lymphocytes have different randomly chosen shapes. Generation of

TCR diversity is based mainly on somatic recombination of the DNA en-

coded segments in individual T-cells which occurs in the thymus. TCRs
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Figure 2: The two types of T-ell receptors (lookfordiagnosis, 2015)

have unique antigen specificity. This is determined by the structure of the

antigen-binding site formed by the α and β chains (Janeway et al., 2001).

The TCR alpha chain is generated by VJ recombination, whereas the beta

chain is generated by VDJ recombination. In this sense, V is the variable

gene segment, J is the joining gene segment and D is the diversity segment

of the TCR. In the same way, the TCR gamma chain is generated by VJ

recombination, whereas the TCR delta chain is generated by VDJ recombi-

nation (Wikipedia, 2015g). The intersection of the V and J (or VDJ)regions

corresponds to the CDR3 (the complementarity determining region) region

which is important for peptide recognition. The unique combination of the

segments at this region, together with random and palindromic nucleotide

additions, account for the great diversity observed.

1.1.4 High-throughput Sequencing

DNA sequencing is the process of determining the precise order of

nucleotides within a DNA molecule (Wikipedia, 2015c). It includes any

technology that is used to determine the order of the four bases i.e guanine

(G), adenine (A), thymine (T), and cytosine (C), in a DNA strand. The
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nucleotide sequence is the blueprint that contains the instructions for build-

ing an organism, and deciphering the information encoded in it is essential

for almost all branches of biological research. The first DNA sequences

were obtained by academic researchers in the early 1970s using laborious

methods based on two-dimensional chromatography. Following the intro-

duction of capillary electrophoresis (CE)-based Sanger sequencing (Sanger

et al., 1978), researchers were able to elucidate any given genetic informa-

tion from a biological system. The implementation of this cutting edge

technology was however limited in terms of speed, throughput (a measure

of how many units of data a system can process in a given amount of time.)

and scalability (illumina, 2015). To over come these limitations a new tech-

nology called Next-Generation Sequencing (NGS) was developed.

In CE-based sequencing, bases of small fragments of DNA are succes-

sively identified from light signals emitted as each fragment is re-synthesized

from a template DNA strand. NGS extends this process across millions of

reactions rather than being restricted to one or a few DNA fragments. Such

sequencing is often referred to as massive parallel sequencing and typically

involves amplification of the DNA templates by the polymerase chain re-

action (PCR). Amplification is necessary because significant amounts of a

sample of DNA are necessary for molecular and genetic analyses. With cur-

rent machines, a single run is capable of producing hundreds of gigabases

of data, thus the term “high-throughput.”

The output from next generation sequencing has increased at rate

faster than even Moore’s law of processing power; more than doubling every

year (Institute, 2015). The last decade has witnessed rapid development of

high-throughput sequencing methods, that is, fast, cheap ways to sequence

and analyse large genomes (A genome is the complete set of an organism’s

DNA, including all of its genes. Each genome contains all of the information

needed to build and maintain that organism. In humans, a copy of the entire
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genome , which is more than 3 billion DNA base pairs, is contained in all

cells that have a nucleus (Genomics, 2015)). A single run that could produce

upto 1 gigabase of data in in 2007 had increased output to almost a terabase

in 2011; nearly a ×1000 increase in 4 years (illumina, 2015). In addition,

high throughput methods are capable of multiplexing in which multiple

distinct samples are simultaneously sequenced in a single experiment. The

ability to quickly generate such large volumes in a short time has enabled

researchers advance from an idea, to data collection and then results in

just a matter of days. Complete genomes can be sequenced in a hours or

days for a couple of thousands of dollars, a great leap from the first human

genome which in comparison, was sequenced for 13 years from 1990, with a

staggering cost of 3 billion dollars (Collins et al., 2003).

However, while the cost and time have been greatly reduced, the new

sequencing methods are significantly more prone to errors and other lim-

itations. The errors are mainly as a result of amplification done prior to

sequencing (Ndifon et al., 2012). Therefore, DNA sequencer output data

has to be denoised in order to obtain the accurate biological picture (Rosen

et al., 2012).

1.2 Problem Statement

During DNA sequencing, amplification of genetic material is necessary

because significant amounts of a sample of DNA are necessary for molec-

ular and genetic analyses. For accurate analysis, the relative abundances

of particular clonotypes after amplification should be the same as before.

Typically, different groups of DNA molecules are amplified at different rates

such that their final abundances differ substantially from their initial abun-

dances. This observation accrues from the use of a set of primers which

introduce biases in the efficiencies of cDNA amplification. This makes dif-

ficult the accurate inference of the initial abundances which is generally of
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the greatest biological interest. e.g “What is the relative frequency of each

pathogen in the case of a co infection?”.

1.3 Research Objectives

1.3.1 General Objective

The main objective of this study is to denoise sequence data (which

has been amplified) by reconstructing the initial DNA copy numbers found

in a biological sample before PCR amplification.

1.3.2 Specific Objectives

The following specific objectives are to be followed. These objectives

are:

1. to develop computational methods for denoising sequence data.

2. to compare the methods developed.

3. to test the developed methods on simulated data.

4. to apply the developed methods on real data; including biased and

unbiased data.

1.4 Significance of the Study

Of late, DNA sequencing is an essential tool for many basic and ap-

plied research applications. These range from basic applications such as

parental testing and forensic identification, to more applied applications

involving T-cell diversity and gene expression studies. More importantly,

DNA sequencing is at the heart of personalised medicine, where patients

are matched to their most appropriate drugs and the risk in terms of ad-

verse effects is evaluated. The data generated by this technology however is
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inherent with errors and denoising of such bias is necessary if information

from the data is to be interpreted correctly. The methods developed in this

thesis will address the problem of bias introduced during PCR amplifica-

tion of the sequencing process, resulting in more accurate inferences from

the data.

1.5 Delimitations

This work is limited to DNA sequencing using PCR technique for

amplification as opposed to other alternative methods such as loop mediated

isothermal amplification, nucleic acid sequence based amplification, strand

displacement amplification and multiple displacement amplification.

1.6 Limitations

Some of the limitations that may affect the accuracy of the results are

that:

1. the method of moments requires a large size of data to produce accu-

rate results which are not available in reality.

2. The method based on moments requires choice of an optimal step size

in the implemented Metropolis algorithm. This is difficult to choose

manually and can affect the accuracy of the samples drawn.

1.7 Definition of Terms

Definition 1.7.1

Denoising is the extraction of a signal from a mixture of signal and noise.

Definition 1.7.2

Throughput is a measure of how many units of data a system can process

10
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in a given amount of time.

Definition 1.7.3

DNA sequencing is the process of determining the precise order of nu-

cleotides within a DNA molecule. It includes any technology that is used

to determine the order of the four bases, that is, A,G,C and T in a strand

of DNA.

1.8 Outline of the Thesis

The thesis is organised into six chapters. In addition to this chap-

ter, Chapter Two reviews several work on T-cell diversity, applications of

mathematics to immunology and denoising of HTS data. A critique of the

previous methods of denosing is given and the mathematical theory of the

thesis is introduced.

Chapter Three begins with introducing and explaining a mechanistic

model developed by Ndifon et al. (2012), for correcting PCR induced bias.

A method of moments approach for estimating the experimental parameters

is then developed and applied on simulated data.

In Chapter Four, the Bayesian realm of inference is introduced and

examples on estimation of parameters presented. A Bayesian model for

estimating the experimental parameters is then developed and also applied

on simulated data. The results are compared with those obtained with the

method of moments.

In, Chapter Five synthetic datasets are generated in R and the two

methods developed are applied. We then apply the methods to real data

on V and J segments usage.

Chapter Six, concludes the findings, discusses at length results ob-

tained in the analysis chapters and makes recommendations where neces-

sary. Further work in the area of this thesis would also be explored briefly
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with all other conclusions clearly shown.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

High-throughput sequencing, as a tool for exploring biological diver-

sity has immense potential, but equally important are that challenges that

arise from the analysis of the data. These technologies have made possible

the characterization of the finest-scale diversity in heterogeneous popula-

tions of DNA, at low cost. However, each of these methods introduces

random errors that are difficult to distinguish from genuine biological diver-

sity. These errors are introduced during amplification and sequencing. In

this thesis, we develop novel methods for denoising data generated by high

throughput sequencing. One of the methods is based on moments, while

the other is based on Bayesian inference. We intend to use the developed

methods to denoise T-cell diversity data.

This chapter reviews past work on T cell diversity, the applications of

mathematics in immunology, previous attempts to denoise high-throughput

data, and lastly, introduces the mathematical theory of this thesis, based

on the work of Ndifon et al. (2012).
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2.2 Estimates of the Potential Repertoire

The potential repertoire is the number of possible distinct receptors

that can be constructed given the genetic mechanisms involved. Bereck and

Milstein estimated the potential repertoire of B cells to be of order 1011 in

Berek & Milstein (1988) while Davis and Bjorkman estimated that for T-

cells to be of order 1016 in Davis & Bjorkman (1988). A mouse contains of

the order 108 B cells and 108 T-cells (Perelson & Weisbuch, 1997) and thus

cannot contain all possible receptors. The number of different antibodies

that can be expressed at any single time, called the expressed repertoire, is

approximately 107. Such an immune system is capable of making of order

107 different receptors at any one time.

Since the most basic task of the immune system is to recognise foreign

or abnormal particles and molecules, the diversity of the receptor types used

by the immune system is fundamental. MacFarlene (Burnet, 1959) was the

first to elucidate the algorithm that the immune system uses, called clonal

selection. Clonal selection is the idea that only those cells that recognize

the antigen proliferate, hence being selected at the expense of those that

don’t. Clonal selection applies to both T-cells and B cells. However, for

this algorithm to work, the receptor population or repertoire should be

diverse enough to recognize any foreign shape. Such a repertoire is said to

be complete. The repertoire size, however, is continuously changing. The

change is caused by the dynamic nature of the repertoire, ageing (Qi et al.,

2014) and by the antigenic experience of the animal.

The immune system learns by raising the population size of lympho-

cytes that have successfully recognised antigens. The ability to learn the

shapes of antigenic determinants from experience helps the immune system

to maintain more lymphocytes bearing receptors of the appropriate shape

so as to be prepared for future attacks by the same antigen.
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Initial works on estimating the diversity of the human TCR repertoire

involved sequencing just a few hundred sequences and then extending to

the scale of the entire repertoire. The results were, a lower limit estimate of

less than one million different TCR Beta genes (Arstila et al., 1999). With

the advance of high-throughput sequencing, studies were able to estimate

the diversity based on deeper sequencing depth. In Warren et al. (2011) an

estimate of one million different TCR Beta sequences is obtained. By using

a Poisson process model to infer unseen TCR beta sequences from deep

sequencing data, Robins et al. (2009) estimated a diversity of 3-4 million

TCR Beta sequences in the total T-cell populations of two healthy donors.

In Qi et al. (2014), the lower bound for the total number of different TCR

beta sequences in naive CD4 and CD8 T-cell repertoires of young adults,

was estimated at 100 million.

2.2.1 Applications of Mathematics and Computing in

Immunology

In the early years of its development, Immunology developed as a

branch of medicine initially aimed at disease prevention through vaccination

(Riedel, 2005). With such beginnings, one is not surprised that immunology

was dominated by physicians and taught only in medical school. In the

beginnings of the 20th century, these were slowly joined by chemists and

later molecular biologists. The latest group of scientists to gain keen interest

in immunology are those trained in physics and mathematics.

Mathematics provides a universal and quantitative framework for de-

scribing physical phenomena. Traced back to Bernoulli in 1760 Bernoulli

(1760), mathematical modelling has been fundamental in predicting and

rationalising disease spread and control Hamer (1906); Ross (1911); Ker-

mack & McKendrick (1927); Anderson et al. (1992). Present literature is

abundant with epidemiological models which have been very instrumental
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to our understanding of outbreaks of epidemics and pandemics of a vari-

ety of pathogens. Notably, the principles articulated by Hamer (1906) and

later extended by Ronald Ross (1911) and Kermack & McKendrick (1927)

in 1927 form the genuine foundations of mathematical modelling. In those

days, immunological knowledge of protection against infectious diseases was

minimal. Diseases were differentiated from each other only through the re-

production number (Ro) values and estimates of the incubation period.

Immunology is one of the branches of biology in which mathematical mod-

elling has played a pivotal role since the 1960s (Marchalonis & Gledhill,

1968; Groves et al., 1969).

As insights into immune responses to infection emerged, models de-

scribing the interaction between pathogens and various parts of the immune

system began to incorporate more specific aspects of the interaction in an

attempt to improve on their predictability. Initially, these efforts were un-

successful due to a shallow understanding of the immune system. Fortu-

nately, beginning with the 1980s, simple but insightful models, describing

the dynamic behaviour of pathogens and specific cells, were developed by

several researchers (notably Alan Perelson, Robert May and Roy Ander-

son), particularly about HIV and influenza infection (Levin et al., 2004;

May et al., 1988). Collectively, these contributions laid a foundation for

mathematical immunology.

Mathematical models have been utilized in various domains of im-

munology such as antigen-receptor interactions (Stenberg & Nygren, 1988),

hormone-receptor interactions (Rodbard, 1973), lymphocyte population dy-

namics (Thomas-Vaslin et al., 2008) and immune receptor signaling (Gold-

stein et al., 2004). Among others, Percus et al. (1993) used a mathematical

model to predict the size of epitopes, while models for affinity maturation

and for receptor cross linking are covered in Kauffman et al. (1988); Kepler

& Perelson (1993) and Perelson & DeLisi (1980) respectively. One aspect of
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immunology in which many investigators have had great interest, is the in-

teraction between HIV and T-cells. These include Nelson & Perelson (1992),

Hraba & Doležal (1990),Merrill Merrill (1989), Perelson et al. (1993) and

many others.

Over the last two decades, the models used in immunology have changed

significantly. Most of the classical models listed above were based on or-

dinary differential equations, difference equations and cellular automata.

These models focused on “basic” dynamics derived from a modest number of

reagent types, for example, one type of antigen with two T-cell populations.

However, with the introduction of high throughput methods, availability of

genomic data and faster computing power, immunological modelling has

moved towards informatics (The science of computer information systems

which studies the structure, algorithms, behaviour, and interactions of nat-

ural and artificial systems that store, process, access, and communicate

information.). The nature of models has moved from being mainly ODEs

of simple systems to voluminous use of Monte Carlo simulations.

Immuno-informatics is a field of science that encampuses high through-

put genomic and bioinformatics (An interdisciplinary field of science,that

combines computer science, statistics, mathematics, and engineering to

study and process biological data.) approaches to immunology (Wikipedia,

2015b). Recent findings in genomic and proteomic (Proteomics is the large-

scale study of proteins, particularly their structures and functions.) tech-

nologies have drastically transformed immunological research. Sequencing

of human and other model organism genomes has produced large volumes

of data relevant to immunology. Simultaneously, huge amounts of func-

tional and clinical data are being reported in scientific papers and clinical

records. Bioinformatics tools are used to manage and analyse such data in

order to make high confidence predictions. In De Groot, Sbai, Saint Aubin,

et al. (2002), work of several groups that are engaged in development of
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immuno-informatics tools is reviewed and applications of these tools to vac-

cine discovery are illustrated.

The tools used in immunoinformatics can be classified into two groups;

sequence based and structure-based. Sequence based approaches include

all Motif based approaches (Meister et al., 1995), Quantitative matrices

(Jesdale et al., 1997), Machine learning techniques which include neural

networks Brusic et al. (1998), Hidden Markov model and Support vector

machine. On the other hand structure-based approaches include molecular

dynamics, threading algorithms (Altuvia et al., 1995), docking of peptides

(Rosenfeld et al., 1995) and screening of peptide libraries (Hammer et al.,

1994). Immuno-informatics has been useful in identification of antigens

relevant to immune response, prediction of T-cell epitopes (Davenport et

al., 1995), designing vaccines based on antigen and epitope identification

(De Groot et al., 2001; De Groot, Sbai, Martin, & Berzofsky, 2002), reverse

vaccinology(Sette & Rappuoli, 2010) and many others.

Still there exists challenging immunological questions to provide an-

swers to and challenges in mathematical modelling as well, with the re-

quirement of learning new mathematics and statistics. With the explosion

in the amount data produced by high-throughput sequencing, uncovering

the remaining genes and molecules that influence the behaviour of single

lymphocytes is imminent. What will then remain will be to determine

quantitatively, how the various cells of the immune system interact with

each other to produce the coordinated response usually observed. One of

the goals of modelling in immunology has been to deduce the macroscopic

properties of the system from the properties and interactions among the

elementary components.
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2.3 Model Fitting of Sequence Data

Assuming that the read counts were sampled independently from a

population with fixed proportions, the total counts for each gene (the term

gene is used synonymously to an axon or transcript or clonotype) in a given

sample (library) can be modelled using a Poisson distribution. As a result,

the Poisson distribution has, in previous studies, been used to model count

data (Marioni et al., 2008; Wang et al., 2010). The Possion distribution is

parametrised by its mean which is equal to its variance. However, Robin-

son & Smyth (2007) and Nagalakshmi et al. (2008) report greater variation

than the mean in real data. This is a condition of overdispersion, and it

often fails to control type 1 errors (false positives) in statistical testing as

noted in Anders & Huber (2010). Overdispersion is mainly as a result of

amplification done prior to sequencing (Ndifon et al., 2012). Due to such

extra-Poisson variation, better distributions such as the quasi-Poisson dis-

tribution (Venables & Ripley, 2002) and the Negative binomial distribution

(Robinson & Smyth, 2007) have been proposed to model count data. Partic-

ularly, these two distributions have an extra parameter that estimates extra

dispersion (under or lower) relative to a Poisson model. Previous modelling

of count data by the Negative Binomial (NB) distribution has been phe-

nomenologically justified by the fact that a NB distribution arises when

each outcome is drawn from a Poisson distribution, whose rate parameter

is is a gamma-distributed random variable. However, clear biological in-

terpretations of the parameters of the Negative Binomial distribution were

not always given. In contrast, the model by Ndifon et al. (2012) provides

a less arbitrary rationale for applying the negative binomial distribution to

RNA-seq data, and also allows us to interpret the distribution’s parameters

in terms of parameters of the PCR reaction used in any TCR-seq method.

In the next chapter, we introduce the mathematical theory onto which

19

Digitized by Sam Jonah Library

© University of Cape Coast



this work is based.

2.4 Mathematical Theory

In Ndifon et al. (2012), a mechanistically motivated, bottom-up method

is developed for correcting sequencing bias introduced by PCR amplification

during library construction. These biases accrue from the use of different

primers for each clonotype’s Vβ gene, which introduce biases in the effi-

ciencies of the cDNA amplification. Firstly, using stochastic dynamics and

techniques from combinatorics, an equation for the probability distribution

of a clonotype’s copy number is derived, conditioned on the parameters of

the PCR amplification model. This turns out to be a negative binomial

distribution given by:

P(xi, t) =

(
xi − 1

xi −Ni

)
e−Nirit(1− e−rit)xi−Ni

=

(
xi − 1

xi −Ni

)
pNi(1− p)xi−Ni , (2.1)

a negative binomial distribution with probability of success, p = e−rit and

predefined number of failures, r = xi − Ni. The model parameters are

Ni; the initial clonotype copy number, and p = e−rit; the amplification

efficiency.

Secondly, the effect of amplicon sub-sampling, which is implemented

before the sequencing process, is incorporated into the negative binomial in

Eq. (2.1). The result is a superposition of the negative binomial and the

binomial distribution given by:

P(xi, t) =

min(Ni,xi)∑
j=0

(
Ni + xi − j

Ni − j, j, xi − j

)
((1− p)f)xi−j f j (1− f)Ni−j

(p+ (1− p)f)Ni+xi−j ×

Nip
N
i

Ni + xi − j
,(2.2)
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which simplifies to;

P(xi, t) =

min(N,xi)∑
j=0

(
N + xi − j

N − j, j, xi − j

)
(1− p)xi−j fxi (1− f)N−j

(p+ (1− p)f)N+xi−j
NpN

N + xi − j
.(2.3)

In addition to parameters p and Ni in Eq. (2.1), we have parameter f , for

the downward sampling.

In this thesis, we base on the probability distribution in 2.3 to derive

computational methods for de-noising sequenced data.

The next chapter introduces and explains the mechanistic model for

correcting sequencing bias introduced by PCR amplification during library

construction developed by Ndifon et al. (2012). The method based on mo-

ments is then developed and applied to simulated data.
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CHAPTER THREE

ESTIMATION OF PARAMETERS BY

METHOD OF MOMENTS AND

BAYESIAN INFERENCE

3.1 Introduction

This chapter has two main parts. In the first part, we will introduce

and describe a mechanistic model for correcting PCR induced sequencing

bias, developed by Ndifon et al. (2012). This is done in two steps. First, we

attempt to derive an equation for the probability distribution of a clono-

type’s copy number, conditioned on parameters of the PCR reaction. The

result is a negative binomial. Secondly, we incorporate the effect of amplicon

sub-sampling into the derived distribution which results into a superposi-

tion of the negative binomial with a binomial distribution. We then develop

a method of moments for estimating the parameters of the PCR reaction i.e

p, f and N . We apply this method to simulated datasets of different sizes

and compare the outputs of different datasets. We conclude by discussing

the strengths and weaknesses of this method of moments.

In the second part of this chapter, the reader is introduced to the

Bayesian realm of inference and examples are given. We describe a Bayesian

model for estimating amplification parameters N, p and f , which entails
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a Gibbs sampling algorithm and full conditionals. Lastly, we apply our

Bayesian method to data samples with different sizes, discuss about the di-

agnostics used (i.e. autocorrelation), and the advantages of this new method

over the one described in the first part of the chapter.

3.2 Mechanistic Model

3.2.1 Polymerase chain reaction amplification

Polymerase Chain Reaction (PCR) is a technology in molecular biol-

ogy used to amplify a single copy or a few copies of a piece of DNA across

several orders of magnitude, generating thousands to millions of copies of

that DNA sequence. Because significant amounts of a sample of DNA are

necessary for molecular and genetic analyses, it is easier to amplify isolated

pieces of DNA than to extract the same region from a large amount of ge-

netic material. PCR technology is commendable in a number of laboratory

and clinical techniques, including DNA fingerprinting, detection of bacte-

ria or viruses (particularly AIDS), and diagnosis of genetic disorders. The

entire reaction involves using short DNA sequences (primers) to select the

portion of the genome to be amplified. The temperature of the sample is

repeatedly raised and lowered to help a DNA replication enzyme, to copy

the target DNA sequence. The technique can produce a billion copies of

the target sequence in just a few hours.

For accurate analysis, the relative abundances of particular clonotypes

in the library after amplification should be the same as before amplifica-

tion. However, this is not always the case. Typically, different groups of

DNA molecules are amplified at different rates such that their final abun-

dances differ substantially from their initial (or pre-amplification) abun-

dances. These errors accrue from the use of a set of primers that are specific

for each clonotype’s Vβ gene, which introduce biases in the efficiencies of
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DNA amplification. This makes difficult the accurate inference of the ini-

tial abundances, which is generally of the greatest biological interest. For

example, answers to questions like, “What is the relative frequency of each

pathogen in the case of a co-infection?” are sometimes of greater interest.

In this thesis, methods for correcting the biases introduced by PCR

amplification are developed and examined. To begin with, a mechanistic

method for correcting sequencing bias introduced by PCR amplification

during library construction, developed in Ndifon et al. (2012).

Consider the fate of a particular clonotype say clonotype i, whose

complementary DNA (cDNA) are found in the library that is amplified by

PCR and then sequenced. cDNA is DNA synthesized by reverse transcrip-

tase using RNA as a template. Let Ni represent the initial copy number

of clonotype i (initial number of clones with phenotype i in the pre am-

plification library). Also, let Xi,t be a random variable representing the

copy number of clonotype i after t cycles of PCR. At each PCR cycle, each

of the Xi,t clonotypes is replicated with a probability corresponding to the

PCR amplification efficiency. The difference in the efficiency of replication

of distinct clonotypes, arises from the primers used for each clonotype’s Vβ

gene and other factors such as cDNA length. For convenience, we can re-

place Xi,t with just Xi. The amplification process is modelled as a Markov

jump process (Gardiner, 1985) to capture the small discrete increments in

Xi during the small intervals of PCR amplification, where by the magnitude

of each increment at a particular time interval depends only on the state

of Xi in the preceding time interval. The model yielded an equation for

the probability distribution of Xi conditioned on the initial copy number

of clonotype i, Ni, its PCR amplification efficiency, ri and the number of

cycles, t. The model mimics very well the average dynamics of Xi, as well as

fluctuations associated with both the discreteness and smallness of the copy

number increments. Because of high fidelity of modern PCR machines, the
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mutation rate is very small (especially if compared to sequencing error) and

thus considered negligible.

Let

P(Xi = xi, t|Xi = xi′ , t
′) (3.1)

denote the conditional probability that clonotype i has xi copies at time t

given that it had x′i copies at time t′. From the discussion above, about the

fate of a particular clonotype, this probability is increased by having xi− 1

copies at the preceding state and is decreased by having xi in the preceding

state. This model is similar to the stochastic pure birth process in popu-

lation dynamics, thus the master equation for the dynamics of probability

distribution of Xi is obtained as;

∂tP(Xi = xi, t|Xi = xi′ , t
′) = ri(xi − 1)P(Xi = xi − 1, t|Xi = x′i, t

′)−

rixiP(Xi = xi, t|Xi = xi′ , t
′). (3.2)

For convenience, we will write P(Xi = xi, t|Xi = xi′ , t
′) as p(xi, t). Then

Eq. (3.2) can be written as:

∂tp(xi, t) = ri(xi − 1)p(xi − 1, t)− rixip(xi, t). (3.3)

Here, ri is the rate of increase ofXi, which is probabilistic and corresponds to

the PCR amplification efficiency for clonotype i. In this case, it was assumed

that ri was constant due to relatively short duration of the PCR reactions

considered. However ri is bound to decrease if the PCR reaction is long

enough for dynamics of cDNA copies to reach a plateau phase. Nevertheless,

the analysis that was performed can be adapted to model PCR reactions in

which ri is assumed time dependent.

The mathematical concept of generating functions was employed to

derive p(xi,t) as follows; Consider a random variable X whose probability
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mass function is p(xi,t). Then the probability generating function of X is

given by:

G(s, t) =
∞∑
xi=0

sxip(xi, t). (3.4)

Substituting with s = 1 in the definition yields;

G(1, t) =
∞∑
xi=0

p(xi, t) = 1. (3.5)

Differentiating Eq. (3.4) with respect to s generates;

∂sG(s, t)|s=1 =
∞∑
xi=0

xis
xi−1p(xi, t)|s=1 = 〈xi〉 (3.6)

∂2sG(s, t)|s=1 =
∞∑
xi=0

xi(x1 − 1)sxi−2p(xi, t)|s=1 = 〈xi(xi − 1)〉 (3.7)

Multiplying Eq. (3.2) by sxi and summing over all possible values of xi gives;

∞∑
xi=0

sxi∂tp(xi, t) = ri

∞∑
xi=0

sxi(xi − 1)p(xi − 1, t)−

ri

∞∑
xi=0

sxixip(xi, t), (3.8)

∂t

∞∑
xi=0

sxip(xi, t) = ris
2

∞∑
xi=0

sxi−2(xi − 1)p(xi − 1, t)−

ris

∞∑
xi=0

sxi−1xip(xi, t) (3.9)

Using Eq. (3.4) and Eq. (3.6), Eq. (3.8) simplifies as follows;

∂tG(s, t) = ris
2∂sG(s, t)− ris∂sG(s, t),

∂tG(s, t) = ris(s− 1)∂sG(s, t).
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s was eliminated from the coefficient of ∂sG(s, t) by making the substitution;

1− 1

s
= ey and Φ(y, t) = G(s, t), (3.10)

such that;

∂tΦ(y, t) = ris(s− 1)∂sΦ(y, t) = ris(s− 1)
∂

∂y
Φ(y, t)

∂y

∂s
. (3.11)

From Eq. (3.10),

∂y

∂s
=

1

s(s− 1)
. (3.12)

Substituting into Eq. (3.11), we obtain:

∂tΦ(y, t) = ri∂yΦ(y, t) (3.13)

The solution of Eq. (3.13) is of the form Ψ[exp(y+rit)]. G(s, t) can therefore

be expressed as

G(s, t) = Ψ[s−1(s− 1)erit]. (3.14)

If at t = 0, clonotype i has Ni copies, then p(x, 0) = 0 if x 6= Ni and

p(x, 0) = 1 otherwise. In light of this observation;

G(s, 0) = Ψ[s−1(s− 1)] =
∞∑
xi=0

sxip(xi, 0) = sNi . (3.15)

Let

θ =
s

s− 1
,⇒ s =

θ

θ − 1
.
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Then

Ψ(θ) =

(
θ

θ − 1

)Ni

⇒ Ψ

(
s

s− 1

)
=


s

s− 1

s

s− 1
− 1


Ni

⇒ Ψ

(
se−rt

s− 1

)
=


se−rt

s− 1

se−rt

s− 1
− 1


Ni

.

Therefore

G(s, t) =

(
se−rit

1− s(1− erit)

)Ni

,

and

G(s, t) = e−NiritsNi(1− (1− e−rit)s)−Ni . (3.16)

The probability distribution of interest, p(x, t), is given by the coefficients

of sxi in G(s, t). These can be obtained by expanding G(s, t) in power series

in s, that is;

sNi(1− (1− e−rit)s)−Ni = sNi +Ni(1− e−rit)sNi+1 +

Ni(Ni + 1)

2!
(1− e−rit)2sNi+2 +

Ni(Ni + 1)(Ni + 2)

3!
(1− e−rit)3sNi+3 + ...

which after some algebra, yields;

P(xi, t) =

(
xi − 1

xi −Ni

)
e−Nirit(1− e−rit)xi−Ni (3.17)

= A(xi −Ni, Ni, e
−rit), (3.18)
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where A denotes a negative binomial distribution with probability of suc-

cess, p = e−rit and predefined number of failures, r = xi −N .

3.2.2 Subsampling of cDNAs amplified by the Poly-

merase Chain Reaction

Not all amplified cDNAs are always sequenced. Only a portion is

randomly selected and eventually sequenced. Sub-sampling of amplicons

can be done to save a portion for later use, to scale down a particular sample

of clonotype to the capacity of the sequencer or in order to assure efficiency

and accuracy of the machine. This has the advantage of ensuring that

different cDNA clusters occupy different spatial locations in the sequencer

so that the risk for between cluster interference in a florescence signal is

minimal. However, because sub-sampling is random in nature, there is a

chance of losing clonotypes with small initial copy numbers or those with

low amplification efficiency. As the PCR reaction proceeds, the relative

frequency of clonotypes with below average amplification rate decreases and

as a result, such clonotypes stand a high chance of being missed during fixed

rate sub-sampling. This can have a significant effect on the statistics of the

clonotype repertoire and it is therefore rational to include the effect of sub

sampling on the final sequencing output before analysing such data. Any

amplification bias that could arise from inside the sequencer was ignored

because universal primers are applied to all cDNAs, and also because each

newly created cDNA cluster typically contributes a single sequence read to

the final output.

A probability generating function was used to incorporate sub-sampling

into the expression for the probability distribution of a clonotype’s copy

number derived in the previous section. The same could be achieved in

a direct way but would complicate the subsequent task of calculating the

moments of Xi. The master equation for the dynamics of the probability
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distribution of Xi is given by:

∂τp(xi, τ) = −cxip(xi, τ) + c(xi + 1)p(xi + 1, τ), (3.19)

that is, having xi copies at time τ is increased from losing copies from xi+1

and decreased by losing copies from xi. c is the probabilistic rate at which

copies of clonotype i are lost during the process of sub sampling and p(xi, 0)

is given by Eq. (3.17). In principle, τ equals 1 time unit.

Multiplying through by sx1 in Eq. (3.19) and summing over all xi, we

obtain;

∂τ

∞∑
xi=0

sx1p(xi, τ) = −c
∞∑
xi=0

xis
x1p(xi, τ) + c

∞∑
xi=0

(xi + 1)sx1p(xi + 1, τ)

= −cs
∞∑
xi=0

xis
x1−1p(xi, τ) + c

∞∑
xi=0

(xi + 1)sx1p(xi + 1, τ).

Following from Eq. (3.4) and Eq. (3.6), the dynamics of the probability

generating function corresponding to Eq. (3.19) can be expressed as:

∂τ G̃(s, τ) = c(1− s)∂sG̃.

By making the substitutions ey = 1− s and Φ(y, τ) = G̃(s, τ), we obtain;

∂τΦ(y, τ) = −c∂y(y, τ), (3.20)

the solution of which is function Ψ[exp(ln(s− 1)− cτ)]. For convenience we

substitute f = exp(−cτ), we obtain;

G̃(s, τ) = Ψ[(s− 1)f ].
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Since G̃(s, 0) is given by Eq. (3.16), then;

G̃,(s, 0) = Ψ[(s− 1)] = e−NiritsNi(1− (1− e−rit)s)−Ni .

Let

θ = s− 1,⇒ s = θ + 1.

Then

Ψ[θ] = e−Nirit(θ + 1)Ni(1− (1− e−rit)(θ + 1))−Ni .

⇒ Ψ[(s− 1)f ] = e−Nirit(1 + (s− 1)f)Ni(1− (1− e−rit)(1 + (s− 1)f))−Ni .

The generating function with subsampling is thus given by:

G̃(s, τ) = e−Nirit(1 + (s− 1)f)Ni(1− (1− e−rit)(1 + (s− 1)f))−Ni ,

(3.21)

where f represents the fraction of sequenced amplicons. p(xi, t) was ob-

tained from Eq. (3.21) using the formula for individual terms arising from

the composition of two generating functions, that is;

[sxi ] g(h) =
∞∑
k=0

([
sxi
]
g

)[
sxi
]
hk,

where the function g is given by Eq. (3.16) and function h = 1 + (s− 1)f .

This resulted into a superposition of the negative binomial with the binomial

distribution, that is;

P(xi, t) =
∞∑
j=0

(
j − 1

j −Ni

)
e−Nirit(1− e−rit)j−Ni

(
j

xi

)
fxi(1− f)j−xi

=
∞∑
j=0

A(j −Ni, Ni, e
−rit)C(xi, j, f), (3.22)
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where A and C denote the negative binomial and binomial distributions

respectively.

Alternatively, an expression for p(xi, t) can be obtained by first ex-

panding (1 + (s− 1)f)Ni in a Maclaurin series for s and then obtaining the

coefficient of sxi in the resulting expression, that is;

P(xi, t) =

[
sxi
] ∞∑
j=0

(
j − 1

j −Ni

)
e−Nirit(1− e−rit)j−Ni ×

e−Nritsj

(1− (1− e−rit) (1 + (s− 1) f))Ni

=

min(Ni,xi)∑
j=0

(
j − 1

j −Ni

)
e−Nirit(1− e−rit)j−Ni

(
Ni + xi − j − 1

xi − j

)
×

e−Nirit ((1− e−rit) f)
xj−j

(e−rit + (1− e−rit) f)Ni+xi−j

=

min(Ni,x)∑
j=0

(
Ni + x− j

Ni − j, j, x− j

)
((1− p)f)x−j f j (1− f)Ni−j

(p+ (1− p)f)Ni+x−j
Nip

N
i

Ni + x− j
.

(3.23)

Computationally, Eq. (3.23) is better than Eq. (3.22) because it requires

evaluation of fewer terms; typically much less than xi.

3.3 Method of Moments Approach for Esti-

mating N, p and f

In this section we develop a novel method for estimating parameters

N, p and f of the PCR reaction. From the generating function in Eq. (3.21),

we obtain the first, second and third moments which in turn we use to obtain

expressions for estimates of N, p and f .
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In Eq. (3.21), substitute;

pi = e−rit,

the PCR amplification efficiency for clonotype i. For convenience we drop

the subscript i such that Eq. (3.21) becomes;

G̃(s, τ) = pN(1 + (s− 1)f)N(1− (1− p)(1 + (s− 1)f))−N .

In the following subsections, we will use the notation 〈X〉 for expectation

of X.

3.3.1 Expression for 〈X〉

〈X〉 is obtained, from the generating function using the relation;

〈X〉 =
∂G̃

∂s

∣∣∣∣
s=1

.

But;

∂G̃

∂s
= pN(1 + (s− 1)f)NNf(1− p)

(
1− (1− p)(1 + (s− 1)f)

)−(N+1)

+(
1− (1− p)(1 + (s− 1)f)

)−N
NfpN(1 + (s− 1)f)N−1,

= NfpN(1 + (s− 1)f)N−1
(

1− (1− p)(1 + (s− 1)f)

)−(N+1)

(
(1 + (s− 1)f)(1− p) +

(
1− (1− p)(1 + (s− 1)f)

))

= NfpN(1 + (s− 1)f)N−1
(

1− (1− p)(1 + (s− 1)f)

)−(N+1)

. (3.24)
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Therefore;

∂G̃

∂s

∣∣∣∣
s=1

= NfpN (1− (1− p))−(N+1) ,

=
Nf

p
.

And so;

〈X〉 =
Nf

p
,

which implies that;

p =
Nf

〈X〉
. (3.25)

3.3.2 Expression for 〈X2〉

〈X2〉 is obtained from the generating function using the relation;

〈X2〉 =
∂2G̃

∂s2

∣∣∣∣
s=1

+
∂G̃

∂s

∣∣∣∣
s=1

.

From Eq. (3.24);

∂2G̃

∂s2
= Nfp−N

[
(1 + (s− 1)f)N−1(N + 1)(1− p)f ×(
1− (1− p)(1 + (s− 1)f)

)−(N+2)

+(
1− (1− p)(1 + (s− 1)f)

)−(N+2)

(N − 1)f(1 + (s− 1)f)N−2
]

= Nf 2pN(1 + (s− 1)f)N−2
(

1− (1− p)(1 + (s− 1)f)

)−(N+2)

(
(1 + (s− 1)f)(1− p)(N + 1) + (N − 1)

(
1− (1− p)(1 + (s− 1)f)

))
.
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= Nf 2pN(1 + (s− 1)f)N−2
(

1− (1− p)(1 + (s− 1)f)

)−(N+2)

(
(N − 1) + 2(1 + (s− 1)f)(1− p)

)
. (3.26)

Thus;

∂2G̃

∂s2

∣∣∣∣
s=1

= Nf 2pNp−(N+2)

(
(N − 1) + 2(1− p)

)
=

Nf 2

p2

(
N + 1− 2p

)
. (3.27)

Therefore;

〈X2〉 =
Nf 2

p2

(
N + 1− 2p

)
+ 〈X〉. (3.28)

3.3.3 Expression for 〈X3〉

From the generating function 〈X3〉 can be obtained as follows;

〈X3〉 =
∂3G̃

∂s3

∣∣∣∣
s=1

+ 3
∂2G̃

∂s2

∣∣∣∣
s=1

− 2
∂G̃

∂s

∣∣∣∣
s=1

=
∂3G̃

∂s3

∣∣∣∣
s=1

+ 3

(
∂2G̃

∂s2

∣∣∣∣
s=1

+
∂G̃

∂s

∣∣∣∣
s=1

)
− 2

∂G̃

∂s

∣∣∣∣
s=1

=
∂3G̃

∂s3

∣∣∣∣
s=1

+ 3〈X2〉 − 5〈X〉. (3.29)

From Eq. (3.26);

∂3G̃

∂s3
= Nf 2pN

[(
(N − 2)f(1 + (s− 1)f)N−3(1− (1− p)(1 +

(s− 1)f))−(N+2) + (1 + (s− 1)f)N−2(N + 2)(1− p)f

(1− (1− p)(1 + (s− 1)f))−(N+3)

)(
(N − 1) + 2(1 + (s− 1)f)(1− p)

)
+

(
(1 + (s− 1)f)N−2(1− (1− p)(1 + (s− 1)f))−(N+2)

)
2f(1− p)

]
.
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It follows that;

∂3G̃

∂s3

∣∣∣∣
s=1

= Nf 2pN

[(
(N − 2)fp−(N+2) + (N + 2)(1− p)fp−(N+3)

)
(
N − 1 + 2(1− p)

)
+ p−(N+2)2f(1− p)

]

= Nf 2pNfp−(N+3)

[(
(N − 2)p+ (N + 2)(1− p)

)(
N − 1 + 2(1− p)

)
+

2p(1− p)

]

= Nf 3p−3

[(
(N + 2)− 4p

)(
N − 1 + 2(1− p)

)

+2p− 2p2

]

=
Nf 3

p3

[
(N + 2)(N + 1)− 6Np− 6p+ 6p2

]
.

Therefore;

〈X3〉 =
Nf 3

p3

[
(N + 2)(N + 1)− 6Np− 6p+ 6p2

]
+ (3.30)

3〈X2〉 − 5〈X〉.
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3.3.4 Expressions for N and f in terms of 〈X3〉, 〈X2〉

and 〈X〉

Substituting for p in Eq. (3.28) gives;

〈X2〉 =
Nf 2〈X〉2

N2f 2

(
N + 1− 2Nf

〈X〉

)
+ 〈X〉

〈X2〉 =
〈X〉2

N

(
(N + 1)〈X〉 − 2Nf

〈X〉

)
+ 〈X〉

X〈X2〉 = (N + 1)〈X〉2 − 2Nf〈X〉+N〈X〉

f =
(N + 1)〈X〉2 +N〈X〉 −N〈X2〉

2N〈X〉

f =
N(〈X〉2 + 〈X〉 − 〈X2〉) + 〈X〉2

2N〈X〉
. (3.31)

Substituting p into Eq. (3.30) gives;

〈X3〉 =
Nf 3〈X〉3

N3f 3

[
(N + 2)(N + 1)− 6N2f

〈X〉
− 6Nf

〈X〉
+

6N2f 2

〈X〉2

]
+3〈X2〉 − 5〈X〉

=
〈X〉
N2

[
(N2 + 3N + 2)〈X〉2 − 6N2f〈X〉 − 6N〈X〉+ 6N2〈X〉2

]
+3〈X2〉 − 5〈X〉

N2〈X3〉 = 〈X〉
[
(N2 + 3N + 2)〈X〉2 − 6N2f〈X〉 − 6N〈X〉+ 6N2〈X〉2

]
+N2(3〈X2〉 − 5〈X〉).

We rearrange to obtain a quadratic function in N , that is;

N2

[
6f 2〈X〉 − 6f〈X〉2 + 〈X〉3 + 〈X2〉 − 5〈X〉 − 〈X3〉

]
+

N

[
3〈X〉3 − 6f〈X〉2

]
+ 〈X〉3 = 0.
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On substituting for f , we obtain;

N2

[
−1

2
〈X〉3 − 7

2
〈X〉+

3

2

〈X2〉2

〈X〉
− 〈X3〉

]
+

1

2
〈X〉3 = 0. (3.32)

Eq. (3.25), Eq. (3.31) and Eq. (3.32) are used to estimate parameters p, f

and N respectively. From these equations, we notice that estimation of

N entirely depends on means of the sequenced output, the estimation f

depends on N and the estimation p depends on both N and p.

The developed method of moments was applied on data samples simu-

lated using the probability distribution in Eq. (3.23) and the results obtained

are presented in the next section.

3.4 Application of the Method Based on Mo-

ments on Data Samples with Different

Sizes

Samples of different sizes were generated from the probability distri-

bution derived in Eq. (3.23) using the distr package in R (see Appendix A

5.2). Parameter values of N = 10, f = 0.3 and p = 0.001 were used. The

results are presented in Table 1 As the sample size increases, the estimate

Table 1: Results of parameter estimation using the method of moments for
different sample sizes.

Sample size N f p p (with f = 0.3)
102 14.38639 -56.10474 -0.240795 0.001287565
103 9.832573 8.059372 0.02398896 0.0008929589
104 10.24743 0.005214 0.00001599 0.0009200699
105 9.629958 6.559691 0.01897116 0.0008676243
106 9.992452 0.488579 0.00146728 0.0009009514
107 9.989312 0.556357 0.00167117 0.0009011318

for N becomes closer to 10 and that for p with f fixed, closer to 0.001.
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The estimates for f (in the third column) however, are turbulent but begin

to stabilise for a sample size of 106 and above. Even with a large sample

size, the estimate for f is not accurate. The estimates of p in the fourth

column of Table 1, improve as the sample size increases but are not quite

accurate due to the inaccuracies of the estimated f on which they depend.

For small sample sizes (100), the precision of N is very poor and this has

drastic effects on the precision of f and p that are calculated subsequently.

The results show that the precision of the estimates increases as the

sample size increases. Even though estimates for f improve as sample size

increases, at large samples sizes, the estimates are still not satisfactory and

cannot be relied upon.

3.4.1 Strengths and Weaknesses of the Method of Mo-

ments

Some of the strengths are that; the method of moments is easy to

derive and implement, and for a fixed value of f , the method is capable

of producing accurate estimates of N and p. This is feasible because in

practice, the person conducting the experiment should have an idea about

what f may be, since it is the dilution applied before sequencing. For a

small data sample, this method is fast.

The downside of the method of moments is that it is not able to

generate accurate estimates for f . Also, any small errors in the estimation

of N can cause big errors in the estimates for f and p. Additionally, the

method of moments requires a sufficiently large number of data points to

produce accurate results. Practically this is not feasible due to the costs

involved in generating sequence reads.
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3.5 BAYESIAN INFERENCE FOR ESTI-

MATING PARAMETERS N, f AND p

The shortcomings of the method of moments discussed in the first part

of this chapter call for alternative methods for estimating the parameters

of PCR amplification. In the second part of this chapter, the reader is

introduced to the Bayesian realm of inference and examples are given. We

describe a Bayesian model for estimating amplification parameters N, p and

f , which entails a Gibbs sampling algorithm and full conditionals. Lastly,

we apply our Bayesian method to data samples with different sizes, discuss

about the diagnostics used (i.e. autocorrelation), and the advantages of this

new method over the one described in Chapter Three.

3.6 Introduction to Bayesian Inference

Bayesian inference is one of the two dominant methods of statisti-

cal inference, that is, together with frequentist inference. The two ap-

proaches differ in that Bayesians use the term probability to describe all

unknown quantities whereas frequentists limit the application of the same

term to summaries of hypothetical replicate data sets. The result is that

the Bayesian usage of the term “probability” appears to be more consonant

with the informal use of the concept than the restrictive sense required by

the frequentists. This virtue makes Bayesian inference more intelligible than

corresponding frequentist statistics.

3.6.1 Bayes Theorem

Bayesian inference is based on Bayes’ theorem; a simple relation be-

tween two conditional probabilities that are the reverse of each other. Bayes’

thereom is named after Reverend Thomas Bayes (1702-1761) who proposed
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it even though Stigler (1983) reports about an earlier incidence of the the-

orem before Thomas Bayes. It expresses the conditional probability of an

event A after B is observed (denoted B|A), in terms of the probability of

event A, probability of event B, and the conditional probability of B given

A. That is;

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
. (3.33)

Instead of a single event A, suppose we have a set Aj, j = 1, 2, ..., k of

mutually exclusive and exhaustive events (only one of them can occur at

one particular time, and one or the other is bound to happen). Since events

Aj are mutually exclusive, it follows from the laws of probability that;

Pr(B) =
k∑
j=1

Pr(B,Aj) =
k∑
j=1

Pr(B|Aj)Pr(Aj). (3.34)

Thus for a specific event Ai, Bayes’ theorem becomes:

Pr(Ai|B) =
Pr(B|Ai)Pr(Ai)
k∑
j=1

Pr(B|Aj)Pr(Aj)
. (3.35)

For clarity in modelling, we will use the bracket notation, that is, [A,B]

for the joint distribution of A and B, [A|B] for the conditional distribution

for A given B and [B] for marginal distribution of B. Using this notation,

Eq. (3.33) can be written as;

[A|B] =
[B|A][A]

[B]
. (3.36)

3.6.2 Likelihood function

The likelihood function is a function of parameters of a statistical

model (Wikipedia, 2015d). It is very useful in methods of estimating a pa-
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rameter from a set of statistics, such as in the Bayesian approach presented

in this chapter. The term Likelihood is usually used informally in reference

to probability but a distinction is made in statistical usage. Probability

is used when describing a function of the outcome given a fixed parame-

ter value. For example when a fair coin is tossed 10 times, what is the

probability of obtaining heads all the time? The likelihood on the other

hand is used when describing a function of a parameter given an outcome.

For example, if in the aforementioned experiment of 10 trials, 2 heads were

obtained, what is the likelihood that the coin is fair?

The likelihood of a set of parameter values, θ = (θ1, θ2, ..., θm), given

outcomes X = (x1, x2, ..., xn), is equal to the probability of those observed

outcomes given those parameter values, that is;

L(θ|X) = Pr(X|θ) (3.37)

For Discrete probability distributions, which we will predominantly use in

this work, the likelihood is defined as a function of θ given by:

L(θ|X) = Prθ(X = x), (3.38)

where X is a discrete random variable. We note that the value on the right

hand side of Eq. (3.37) is not a conditional probability since θ is not a

random variable. As such, we choose to write it instead as Prθ(X = x).

Often, the natural logarithm of the likelihood function, called the

log-likelihood, is more convenient to work with. Since the logarithm is a

monotonically increasing function, the logarithm of a function acquires its

maximum value at the same points as the function itself. As a result, the

log-likelihood can be used in place of the likelihood in maximum likelihood

estimation and in the case of other related estimations. Also, finding the

maximum of a function often involves taking the derivative of a function
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and solving for the parameter being maximized which is always easier for

the log-transformed function than for the original function itself. Consider

observations from Binomial distribution, X ∼ B(n, p). The likelihood func-

tion is given by;

L(p|X) ∝ px(1− p)n−x. (3.39)

The log-likelihood is given by;

l(p) = log(L(p|X)) ∝ x log(p) + (n− x) log(1− p). (3.40)

By setting

l′(p) =
x

p
− n− x

1− p
= 0, (3.41)

we obtain the maximum likelihood estimator as;

p̂ = x/n,

which is the same as the one obtained with the original likelihood function.

3.6.3 Basics of Bayesian Inference

For model-based Bayesian inference, B in Eq. (3.36) is replaced with

observations X and A, with parameter set θ = (θ1, θ2, ..., θn). Bayes’ theo-

rem obtained thus becomes:

[θ|X] =
[X|θ][θ]

[X]
, (3.42)

where

[X] =

∫
[X|θ][θ]dθ (3.43)
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is the marginal distribution of the data, [θ|X] is the joint posterior distribu-

tion, [X|θ] is the likelihood and [θ], the joint prior distribution. The prior

distribution can be thought of as a summary of all that is known about the

parameter of interest, before observing the data. The posterior distribution

summarises all that is known about the parameter, combining prior knowl-

edge and information provided by the data. If one chooses a prior which

expresses dead certainty about the value of the parameter, then the data

will be ignored (subjective inference). However, if the prior expresses un-

certainty about the parameter, then as the sample size increases, the data

will prevail in guiding inference (objective inference). All Bayesian inference

is based on the posterior distribution. For example, if a point estimate is

desired, one usually uses the posterior mean and when an interval estimate

is desired, one employs the percentiles of the posterior distribution.

The two distributions, that is, the prior and the posterior, together

with the likelihood, are the primary features of Bayesian analysis. The

marginal distribution in Eq. (3.43) is sometimes used for model checking

but need not be computed in characterising the posterior distribution of θ.

As such, we may write Eq. (3.42) as;

[θ|X] ∝ [X|θ][θ]. (3.44)

Since [θ|X] is a probability distribution, it integrates to 1 with respect to θ

and the constant of proportionality is 1/[X].

In defining the posterior distribution, the right hand side of Eq. (3.44)

treats [X|θ] as a function of θ with X fixed, that is, a likelihood function.

According to Eq. (3.44), the posterior distribution is proportional to the

product of the likelihood and the prior. Thus, the basis of inference is the

product of information provided by the data, and by the prior, that is, the

posterior [θ|X] expresses uncertainty about θ after taking the prior and data

into account.
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3.7 Calculating Posterior Distributions

When defining the posterior distribution, the normalizing constant is

irrelevant. However if we wish to report the mean, its variance, its per-

centiles and maybe to know specific probabilities, such as Pr(θ > 0|X), it

maybe necessary to evaluate the normalising constant in Eq. (3.36). Unfor-

tunately, evaluating this integral is almost always difficult and frequently

impossible. It is not exaggerating by saying that this computation has been

the primary drawback to implementation of Bayesian methods. A couple

of methods for overcoming this difficulty, in order to evaluate the posterior

distribution, are discussed in this section.

3.7.1 Conjugacy

One of the simplest ways of going around evaluation of Eq. (3.36) is to

identify a family of distributions, that includes both the prior and posterior

distributions. In these special cases, the prior combines with the likelihood

to produce a posterior distribution of similar form to the prior: the prior

is said to be conjugate to the likelihood. Distributions in this “conjugate

family” are identified by a hyperparameter ψ. We can summarize what

was known before data collection by a particular value ψ0, and what is

known afterwards, by a new value ψ1. The process of updating knowledge

by data zeros down to updating ψ, and the transition from ψ0 to ψ1 involves

simple summaries of the data. The existence of a conjugate family depends

on the form of the likelihood function. Conjugacy completely solves the

computational problem, but there are relatively few cases where it applies.

Example 3.7.1

Consider the choice of a beta distribution as a prior for the binomial success
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parameter p. In this case, the likelihood is of a binomial form, given by:

[X|p] =

(
n

x

)
px(1− p)10−x. (3.45)

The beta prior for p on the other hand is given by:

Be(p, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, 0 < p < 1 and a, b > 0. (3.46)

From Eq. (3.44), the resulting posterior distribution is:

[p|X] ∝ Be(x, n, p)Be(p, a, b)

=
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1

(
n

x

)
px(1− p)10−x

∝ px+a−1(1− p)n−x+b−1

∝ pA−1(1− p)B−1, (3.47)

where A = x+ a and B = n− x+ b. All that is required now is a suitable

proportionality constant to put Eq. (3.47) into the beta form described in

Eq. (3.46). For this reason, the beta family of distributions is said to be

conjugate for the binomial success parameter since both the prior and the

posterior are in the same family of beta distributions. Also of great interest

is the fact that the posterior from one study can be used as the prior for the

next study. In this example, we can think of a and b as running totals of

previous numbers of success and failure. Hence a Be(10, 14) can be thought

of as roughly equivalent to knowledge acquired from a previous experience

of 10 success and 14 failures in 24 previous trials.

Next, we consider an example involving a normal likelihood to illus-

trate the additional complexities of posterior analysis associated with multi-

variate parameters. When inference of more than one parameter is required

from the same data, a joint posterior distribution is used. Sometimes the

multivariate characteristics of this joint distribution are of interest but most
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often inference focuses on one parameter at a time. This is the case espe-

cially when nuisance parameters are involved. These are parameters which

are of no direct interest but which are necessary in order to correctly de-

scribe the sampling model.

For a vector-valued parameter θ = (θ1, θ2, ..., θn)′, Eq. (3.44) can be

written as;

[θ1, θ2, ..., θn|X] ∝ [X|θ1, θ2, ..., θn][θ1, θ2, ..., θn]. (3.48)

Mostly but not always, the priors for each parameter are independent. To

make inference about a particular parameter, we integrate the rest of the

parameters from the joint posterior distribution as shown below for one case

of parameter θ1;

[θ1|X] =

∫
...

∫
[θ1, θ2, ..., θn|X]dθ2...dθn. (3.49)

This integral is usually intractable. As such, inference of a single param-

eter in a multi-parameter setting involves two potential obstacles: first, of

obtaining the joint posterior, and second, of obtaining the marginal distri-

bution from the posterior. For the cases where conjugacy is possible, the

first task of obtaining the posterior distribution is made easier.

Example 3.7.2

Consider n observations X = (X1, X2, ..., Xn) that are normally distributed

with Xi ∼ N(µ, σ2), and that we wish to infer µ, with σ unknown. The

parameter set is θ = (µ, τ) where τ = 1/σ2 (precision) is the nuisance

parameter. Inference for µ will be based on the marginal distribution of µ;

[µ|X] =

∫
[(µ, τ |X)]dτ. (3.50)

The conjugate family in this problem is defined in terms of a gamma dis-

47

Digitized by Sam Jonah Library

© University of Cape Coast



tribution for τ and a normal distribution for µ given τ , that is, the prior;

[θ] = [µ|τ ][τ ], (3.51)

where [µ|τ ] = N(η, 1/(κτ)) and [τ ] = Ga(α, β). The set of hyperparameters

in this case will be ψ = (α, β, η, κ). Let the prior be described by the set

of hyperparameters ψ0 = (α0, β0, η0, κ0). The joint posterior distribution in

this case will be:

[µ, τ |X] = τ
n
2 exp

[
−τ

2

n∑
i=1

(Xi − µ)2

]
× (κ0τ)

1
2 ×

exp

[
−κ0τ

2
(µ− η0)2

]
τα0−1 exp (−β0τ)

= (κ1τ)
1
2 exp

[
−k1τ

2
(µ− η1)2

]
× τα1−1 exp(−β1τ),

where α1 = α0 + n/2, κ1 = κ0 + n,

η1 =
n

n+ κ0
x̄+

κ0
n+ κ0

η0 and (3.52)

β1 = β0 +
(n− 1)S2

2
+
nκ0(x̄− η0)2

2(n+ κ0)
. (3.53)

Therefore the posterior is of the same family (normal-Gamma) as the prior

and hence the normal-gamma family of distributions is conjugate for the

normal likelihood. Consequently, the required marginal distribution can be

obtained by integrating (in this case) or by sampling. First we sample τ from

the Ga(α1, β1) and then use the sampled τ to draw µ from N(η1, 1/(κ1τ)).

When simple solutions based on conjugacy are not an option, most

Bayesian applications examine posterior distributions by random sampling.

By sampling θ from [θ|X], most features of the sample such as sample mean,

sample proportion of values θ > 0, can be used to estimate corresponding

summaries of the posterior distribution; in this case, the posterior mean

value of θ and Pr(θ > 0|X) respectively. The estimates obtained usually
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can be made as accurate as possible by drawing a large size of samples. Sim-

ulation methods for studying probability distributions are generally termed

Monte Carlo methods.

3.7.2 Monte Carlo methods

Monte Carlo methods typically involve draws of independent samples

from distributions being studied. The basic idea is that we can study fea-

tures of a probability distribution G by examining corresponding features

of a sample X1, X2, ..., Xn from G. For example, suppose we wish to learn

about the ratio of the largest lifespan to the average lifespan in samples of

size 40. Assuming exponential lifespans, we would attempt to do so analyt-

ically based on the form of the exponential distribution but the calculations

would be very difficult. An alternative would be to randomly generate sam-

ples of size 40 and obtain the ratio in each case. Doing this 10 million times

and summarizing the results takes less than 8 seconds on a 3.2 GHz laptop.

It also guarantees two decimal place accuracy in the mean (3.82) and the

standard deviation (0.99) (Link & Barker, 2009). Due to independence of

the samples, evaluation of the precision of summaries obtained using ordi-

nary Monte Carlo methods is made simple.

A more straight forward Monte Carlo approach is through inversion

of cumulative distribution functions, though for posterior distributions, this

requires evaluation of the integral in Eq. (3.43). The other approach, which

avoids this requirement, is rejection sampling.

Drawing independent samples from the posterior distribution is usu-

ally not straight forward even when using rejection sampling or related

techniques. However, Bayesian statistics has been revolutionised by the de-

velopment of techniques for drawing dependent samples from the posterior

distribution, which can be used in a similar manner as the independent

samples. These methods are collectively known as Markov Chain Monte
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Carlo and are described in the next section.

3.7.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a simulation technique for ex-

amining probability distributions. Although the basic techniques of MCMC

were first developed in the early 1950’s, they were paid scant attention

among statisticians until the late 1980’s, with the publication of important

applications to image processing by Geman & Geman (1984) and Besag

(1986). Ever since then, MCMC has taken the world by the storm due

to its usefulness and relatively easy implementation. It has revolutionized

data analysis, breaking down the largest barrier to Bayesian analysis, that

of computation.

Markov chain and stationary distributions

The k−th order Markov chain is a sequence X1, X2, X3, ..., with the

property that, given all of the previous values, the probability distribution

of the next value depends only on the last k values. That is;

[Xt|Xt−1, Xt−2, ..., X1] = [Xt|Xt−1, Xt−2, ..., Xt−k]. (3.54)

Many Markov chains describe natural processes evolving through time,

hence the index t is often referred to as “time,” and the values of Xt are

referred to as “states” (of nature). From the definition in Eq. (3.54) above,

the first order Markov chain is the one in which the probability of an out-

come in any trial depends at most upon the outcome of the immediately

preceding trial, that is;

[Xt|Xt−1, Xt−2, ..., X1] = [Xt|Xt−1]. (3.55)
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The probability on the right had side of 3.55 above represents the transi-

tional probability from state Xt−1 to Xt.

Example 3.7.3

Consider an example extracted from Link & Barker (2009): A gambler

enters a casino with a stake of X1 dollars in his pocket and makes a se-

ries of pound bets on the roulette. Typically, the roulette wheel has 38

equally likely independent outcomes. Lets consider the case when 18 of the

outcomes win the gambler a pound and 20 outcomes loose a pound. The

gambler’s stake after t gambles is Xt. Since the gambles on a roulette are

independent, then Xt, t = 1, 2, ... is a first−order Markov chain. Xt is either

Xt−1 + 1 (with probability p = 18/38) or Xt−1− 1 (with probability 1− p =

20/38) regardless of the preceding history, that is, X1, X2, X3, ..., Xt−2.

Suppose the gambler’s initial stake was 20 pounds and he is willing to

gamble until he either doubles this amount or losses it all. In this particular

case, his stake will always be in the set S = {0, 1, 2, ..., 40}, also called

the state space. States 0 and 40 are called absorbing states because it is

impossible to leave these states, that is, if Xt = 0, then Xt+k = 0 for

k = 1, 2, 3, ... and also when Xt = 40, then Xt+k = 40 for k = 1, 2, 3, ....

If after t − 1 bets, the gambler’s stake is at Xt−1 = $5, then Xt =

$4 with probability 20/38 or Xt = $6 with probability 18/28. Previous

knowledge of say, 20 successive losses from $25 to $ 5 at t− 1 will provide

no insights as to whether he will win or loose in the next bet. His stake

at time t depends on (X1, X2, X3, ..., Xt−1) only through Xt−1 hence the

sequence Xt is a first order Markov chain.

Definition 3.7.1 (Stationary distribution)

A stationary distribution is a probability distribution that satisfies

π(A) = Pr(Xt ∈ A), (3.56)
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for each subset A of the sample space. In this case, the probability that Xt

is in a particular state or set of states does not depend on t.

Stationary distributions of Markov chains are the basis of MCMC.

However, not all Markov Chains are stationary, the example of the gambler

being a case in point. Considering Pr(Xt = 19), at t = 2, the only possible

states are X2 = X1 − 1 = 19 or X2 = X1 + 1 = 21 , depending on whether

he won his first gamble, thus Pr(X2 = 19) = 20/38. With time, his chain

will either reach 0 or 40, and remain there, so that Pr(Xt = 19) approaches

zero as t gets large. The existence of a stationary distribution would require

that Pr(Xt = 19) not change through time.

In cases where Cdf inversion and rejection sampling are not feasible,

we can sample the posterior distribution by constructing a Markov chain

Xt with a stationary distribution. The sampled values would not be in-

dependent, but atleast would be samples from the distribution we wish to

investigate. Before we use MCMC, we need to be mindful of the ergodicity

theorem.

Theorem 3.7.1 (Ergodicity)

A positive recurrent and aperiodic Markov chain has a stationary distribu-

tion π(A) that satisfies

π(A) = lim
n→∞

Pr(Xn ∈ A|X1), (3.57)

for subsets A of the sample space.

Firstly, we define the terms aperiodic and recurrent.

Definition 3.7.2 (Aperiodic state)

A state i is aperiodic if returns to state i can occur at irregular times. In

other words, there exists n such that for all n′ > n,

Pr(Xn′ = i|X0 = i) > 0. (3.58)
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A Markov chain is said to be aperiodic if each of its states is aperiodic.

Definition 3.7.3 (Recurrent state)

A state i is recurrent if it is guaranteed (with probability =1) to have a

finite hitting time (the first return time to state i). Let the random variable

Ti be the hitting time, then:

Ti = inf {n > 1 : Xn = i|Xo = i} . (3.59)

The number

f
(n)
ii = Pr(Ti = n) (3.60)

is the probability that we return to state i for the first time after n steps.

State i is therefore recurrent if

Pr(Ti <∞) =
∞∑
n=1

f
(n)
ii = 1. (3.61)

Otherwise, state i is said to be transient. The mean recurrence time at state

i is the expected return time Mi, that is:

Mi = E(Ti) =
∞∑
n=1

nf
(n)
ii . (3.62)

State i is positive recurrent if Mi is finite. A Markov chain is positive

recurrent if each of its states is positive recurrent.

The consequence of the ergodicity theorem is that it guarantees the

existence of a stationary distribution and also states that the starting value

X1 does not affect the asymptotic behaviour of the chain. That is, regard-

less of the starting value of the chain, it eventually settles into a pattern of

visiting A with specified probability, π(A). This is a useful observation for

implementation of MCMC; in practice, we must specify starting values. To
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compensate for arbitrariness of the starting value, in practice, we usually

discard some of the early values, which are not representative of the sta-

tionary distribution. These are referred to as “burn-in values” in Link &

Barker (2009) .

As we stated above, the Markov chain of the example about the gam-

bler is not stationary. First of all, this chain is not aperiodic because we

can only return to a state in a number of steps that are multiples of 2. The

chain is therefore periodic with period 2. Secondly the same chain is not

recurrent because of the existence of absorbing states 0 and 40. From any

state 0 < i < 40, there is always a chance of reaching the absorbing state

before returning to state i. So Pr(Ti <∞) < 1 rather than Pr(Ti <∞) = 1

as in Eq. (3.61). The ergodicity theorem therefore does not apply.

Next we present the two most popular MCMC methods i.e Metropolis

Hastings algorithm and Gibbs sampling.

Metropolis Hastings Algorithm

The metropolis Hasting (MH) algorithm is one of the most popular

MCMC methods for obtaining a sequence of random samples from a prob-

ability distribution for which direct sampling is difficult. Suppose that we

wish to draw samples from target distribution f(x). Let j(x|y) be candi-

date generating distributions, describing probabilities for candidate values

x, given current value y. We fix a value X0 and then for t = 1, 2, ..., generate

Xt according to the following rules:

1. Generate a candidate value, Xcand by sampling from j(x|Xt−1).

2. Calculate

r =
f(Xcand)j(Xt−1|Xcand)

f(Xt−1)j(Xcand|Xt−1)
. (3.63)

3. Generate U ∼ U(0, 1).
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4. If U < r, set Xt = Xcand, otherwise set Xt = Xt−1.

One important observation is that the target distribution is only involved

in calculating r in Eq. (3.63), and this occurs in both the denominator and

numerator. This means that the normalising constant which was a major

stumbling block has been overcome.

From above, we notice that the MH algorithm has a wide allowance

in selection of the candidate generating function. The main limitations on

j(x|y) is the requirement that Markov chains be positive recurrent in order

to have stationary distributions: every state must be reachable from every

other state. In addition to this minimal requirement, practically the chain is

also required to move freely enough, to have reasonably low autocorrelation.

When the candidate generating function is symmetric such that j(x|y) =

j(y|x), r in step 2 becomes

r =
f(Xcand)

f(Xt−1)
, (3.64)

which simplifies calculations and saves computation time. This special case

is known as the symmetrical Metropolis Hastings. Consider an example in

which the MH algorithm is used to generate samples of a uniform distribu-

tion.

Example 3.7.4

In this example, we will be generating samples of the standard normal

distribution using Markov Chain Monte Carlo. In order to obtain a Markov

chain, we define a tuning parameter, A > 0 which can be of any value

although some values are better than others.

We let X0 = 0 and then generate Xt according to the Metropolis

Hastings steps afore mentioned, that is;

1. Generate two independent U(0, 1) random variables, say u1 and u2.

2. Calculate a candidate value, Xc = Xt−1 + 2A(u1 − 1/2).
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3. Obtain

r =
exp

(
−1

2
X2
cand

)
exp

(
−1

2
X2
t−1
) . (3.65)

4. If u2 < r, set Xt = Xcand, otherwise set Xt = Xt−1.

During a single run of the algorithm, the chain either remains at its cur-

rent value or moves incrementally to a randomly generated candidate value

found in the neighbourhood of the current value. The change in the second

step has a U(−A,A) distribution, so the candidate value is sampled uni-

formly over an interval centred at the current value, that is, Xcand|Xt−1 ∼

U(Xt−1−A,Xt−1 +A). We note that step 4 involves a Bernoulli trial, with

success probability = min(r, 1). This success parameter is referred to as

the acceptance or movement probability.

Effect of the tuning parameter and starting value

Using different values of A (step sizes), the Metropolis algorithm ex-

plained in the example above was used to produce different samples of the

standard normal distribution and the results for each step size are pre-

sented below. The history plot for Markov chain Xt is obtained by plotting

Xt against t in Figure 3.
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(a) (b)

(c) (d)

Figure 3: Plot of Xt against t for Markov chains with a standard normal
distribution. The chains in a, b c and d were obtained using step sizes of
3.7, 0.2, 13 and 1 respectively. See Appendix B for the code.

Each of the four chains has a standard normal stationary distribution,

but it is clear that their plots are different. The chains with A = 0.2 and 1.0

(Figure 3b and 3d) take many small steps and move slowly over the range

of the standard normal distribution. The chain with A = 1 and X0 = 15

(3d) moves slowly but expectedly into the region of acceptable values of the

standard normal distribution. Its first 100 values are not representative of

the standard normal distribution and as a result, can be discarded as “burn

in” values. Chains with A = 3.7 (Figure 3a) and the other with A = 13

(Figure 3c), take reasonably large steps over the range of values but the

latter occasionally stalls.
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Diagnostics of Markov Chain Monte Carlo

MCMC methods, like any other numerical method, are liable to fail-

ure. Unfortunately, it is highly probable that some of these failures go

unnoticed which definitely affects the precision of the obtained estimate.

The most basic way of noticing failures in MCMC implementations is by

observing the history plot and ensuring that it is “grassy” like the one in

Figure 3a. This however does not guarantee the absence of failures in the

output. On the other hand, if the plot is not grassy as in Figure 3b, then

something is wrong. It may be that the Markov chain was not properly

tuned or that poor starting values of the parameter were used. A solution

is to check as to whether the model has been correctly specified and there

are no redundant parameters. It is also always a good idea to produce long

chains if possible since features of the chains approximate more closely the

features of the posterior distribution as the length of the chain increases.

A more reliable means of determining the precision of the MCMC

method in generating samples of the posterior is by observing the auto-

correlation function. For more precise estimates, we want the generated

samples to be as independent from each other as possible. The autocorre-

lation function is a measure of the strength of association among values of

Xt. For h = 1, 2, ..., the correlation ρ(Xt, Xt+h) between Xt and Xt+h is

called the autocorrelation at lag h, and R(h) = ρ(Xt, Xt+h) is called the

autocorrelation function (ACF). If the ACF tails off quickly enough that

observations at lag k can be confidently regarded as independent, then we

can thin the chain of N samples {Xt} by picking only the N/k th samples.

In light of these diagnostic methods, the autocorrelation functions for

each of the four chains in Figure 3 were obtained and are shown in Figure

4 below.
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(a) step size = 3.7 (b) step size = 0.2

(c) step size = 13 (d) step size = 1

Figure 4: Corresponding autocorrelation functions for Markov chains with
standard normal stationary distribution shown in Figure 3. From (a) to (b),
the figures were obtained using step sizes of 3.7, 0.2, 13 and 1 respectively.

For each of the step sizes, the autocorrelation plot agrees with the

corresponding Markov chain history plot shown in Figure 3. Figure 4a has

the least autocorrelation with dependence between samples persisting upto

every other fourth value, that is any two sample values, with atleast four

samples in between them can be considered as independent from each other.

This agrees with the most grassy history plot in Figure 3a. The samples

in Figure 3b were the most unstable with their history plot meandering far

away from the expected value of zero. The corresponding autocorrelation

plot in Figure 4b has the highest autocorrelation of the four plots in Figure

4, with a very high dependence between any two samples, even upto the

50th sample.

Generally in Figure 4, we observe that autocorrelation is high when-

ever the step size is much bigger or much smaller than 3.7. This is because
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when the step size is small as in 4b, there are small increments in the can-

didate values and so r in 3.63 is close to 1 since nearby values have nearly

identical probability. The acceptance rate is thus high and the result is

a highly correlated chain that moves very slowly. Similarly, when the step

size is large, candidate values will be far different from each other and hence

r << 1. The result is lower acceptance probability which means that candi-

date values are maintained on the same value for many iterations and hence

high autocorrelation.

Even though 4c does not have the least autocorrelation, independent

samples can still be obtained form the Markov chain generated. In this

case, k ≈ 20. Better samples would be obtained by generating a chain of

say 20,000 samples so as to thin it to 1000 by picking every other 20th value.

We can then use the mean of this new sample to approximate the mean of

the standard normal distribution. The variance of this sample mean is given

by σ2/(N/k) = kσ2/N with σ2 = V ar(Xi), which provides a conservative

measure of precision for the mean of the entire chain.

The Metropolis Hastings algorithm is only applicable in a single pa-

rameter setting. For multiple parameters, we introduce the Gibbs sampling

technique in the next section.

3.7.4 Gibbs Sampling

For multivariate posterior distributions, a more suitable sampling tech-

nique is the Gibbs sampler. Let θ = (θ1, θ2, ..., θn) be the parameter set,

and X, the observation. The goal is to draw a sample from [θ|X].

Let θ−j represent the set of parameters of length n− 1, made up of all

elements of θ, but excluding θj. The full conditional for θj is given by:

[θj|θ−j, X], (3.66)
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a distribution of the jth component of θ, having fixed the values of all the

other components, and having been informed by the data. It is proportional

to [X|θ][θ] just like the posterior [θ|X], the only difference being that the

normalising constant now is [θ−j, X] rather than [X]. As it turns out, full

conditionals [θj|θ−j, X] are usually easily identified from [X|θ][θ] by inspec-

tion when marginal distributions or joint posterior distributions are not.

Next, we outline the steps of the Gibbs sampling algorithm.

Suppose that we wish to extract samples from a joint posterior distri-

bution [θ|X]. We fix a value θ(0) = (θ
(0)
1 , θ

(0)
2 , ..., θ

(0)
n ) and for t = 1, 2, 3, ..,

we generate θ(t) according to the following rules:

• Step 1: Sample θ
(t)
1 from the full conditional [θ1|θ(t−1)−1 , X].

• Step 2: Sample θ
(t)
2 from the full conditional [θ2|θ(t−1)−2 , X].

...

• Step n: Sample θ
(t)
n from the full conditional [θn|θ(t−1)−n , X].

• Step n+1: Set θ(t) = (θ
(t)
1 , θ

(t)
2 , ..., θ

(t)
n ) .

We note that one can also sequentially update θ(t) after each step in the pre-

ceding algorithm, and use the partially updated θ(t) in sampling subsequent

full conditionals. For example, θ
(t)
4 can be sampled from the full conditional

distribution;

[θ4|θ(t)1 , θ
(t)
2 , θ

(t)
3 , θ

(t−1)
5 , ..., θ(t−1)n , X] (3.67)

instead of;

[θ4|θ(t−1)1 , θ
(t−1)
2 , θ

(t−1)
3 , θ

(t−1)
5 , ..., θ(t−1)n , X]. (3.68)

To illustrate Bayesian inference using MCMC, the parameters of a negative
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binomial were estimated using pseudo random samples that were generated

in R. This is presented in the next section.

Example 3.7.5

In an attempt to develop a Gibbs sampling algorithm, parameters N and p

for the negative binomial distribution A(x−N,N, p) given by:

p(x, t) =

(
x− 1

x−N

)
pN(1− p)x−N . (3.69)

were estimated. One thousand values were randomly generated in R (See

the code in Appendix C) from the negative distribution, A(x− 10, 10, 0.01)

and used for estimation. Since p ∈ [0, 1], an appropriate prior for it is the

Beta distribution Be(α, β) and since N has count values, an appropriate

prior for it is the Poisson distribution, Po(λ). The posterior distribution

was derived from the likelihood and priors as follows;

[p,N |X] =

(
x− 1

x−N

)
pN(1− p)x−N × βpα−1(1− p)β−1

×λ
N exp(−λ)

N !

∝
(
x− 1

x−N

)
pN+α−1(1− p)x−N+β−1 × λN

N !
. (3.70)

For n data values x1, x2, ....xn,

[p,N |X] ∝

(
n∏
i=1

(
xi − 1

xi −N

)
pN(1− p)xi−N

)
× pα−1(1− p)β−1 × λN

N !
.(3.71)

This joint posterior distribution or of any of the marginal posterior distri-

butions are intractable because [p,N |X] is a mess. Gibbs sampling, on the

other hand, is fairly straightforward. However, before we can implement it,

we need to identify full conditional distributions for p and N .

The full conditional for p is proportional to all of the terms in Eq. (3.71)
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involving p and is therefore given by:

[p|N,X] ∝ pNn+α−1(1− p)β−1−nN+
∑
xi .

Similarly, the full conditional for N is given by:

[N |p,X] ∝ 1

(N − 1)!n
∏

(xi −N)!
× pNn(1− p)−nN × λN

N !
.

The prior and full conditional distribution for p are both in the Beta family

of distributions while those for N are not. In this case, conjugacy worked for

p but failed for N but our knowledge of conjugate forms has led to a choice of

prior for which the full conditional distributions are easily identified. Also,

due to the nature of the full conditionals of the two parameters, we will

need a Metropolis Hastings algorithm to sample N unlike p.

Using the distr package in R, 1000 samples from the negative distri-

bution with N = 10 and p = 0.01 were generated. A code (see Appendix

C ) was developed in R to implement Gibbs sampling in estimating back

N and p. Using an optimal tuning parameter, A = 0.036 for the uniform

proposal for N and initial values, 0.8 and 0.05 for N and p, the algorithm

developed was run for 10000 iterations and produced the plots in Figure 5

for N and p.
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(a)

(b)

Figure 5: History plot of N against t (Number of iterations) (a) and of p
against t (b).
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The optimal step size of 0.036 was obtained by calculating the lag 1

autocorrelation over a range of candidate values. The lag 1 autocorrelation

as a function of A, that was obtained for N , is shown in Figure 6 below.

Figure 6: lag 1 autocorrelation as a function of the stepsize, A. The lowest
autocorrelation for N was at A = 0.036

Practically, in order to rely on sample values for estimation, we have

to be sure there is no dependence between them. As such, the samples ob-

tained for each of the two parameters were investigated for independence by

obtaining the autocorrelation between sample values. The autocorrelation

functions obtained for N and p are shown in Figure 7.
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(a) Autocorrelation plot for N

(b) Autocorrelation plot for p

Figure 7: Full lag autocorrelation function for N and p.

From 7, it means that dependency between the samples is significant until

when there is a difference of about 100 sample values between any two

values. To obtain more accurate results, we will need to thin the samples

drawn by picking every 100th value.

After thinning, the chains were more grassy as shown in Figure 8.
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(a)

(b)

Figure 8: Thinned samples for N (a) and p (b).

The corresponding autocorrelation plots drop off zero immediately as

shown in Figure 9 below. This shows that the samples left after thinning

are independent from each other.
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(a) Autocorrelation plot for N after thinning

(b) Autocorrelation plot for p after thinning

Figure 9: Autocorrelation function of thinned samples for N and p.

The samples from the N and p distributions obtained with A = 0.036,

were both thinned by picking each 100th value and the new samples obtained

were used to calculate the 95% credible interval and the mean. For different

sample sizes, the plots in Figure 10 were obtained for N and p.
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(a)

(b)

Figure 10: Variation of mean and 95 % credible interval with increase in
sample size for N (a) and p (b).

The mean and 95% credible interval of both parameters follow a similar

trend. As the sample size increases, the length of 95% credible interval

decreases which signifies a decrease in uncertainty. After a small decline,

the sample mean increases as sample size increases up to a sample size of

700 samples, and it tapers slowly as we approach a sample size of 1000.

Having introduced the basics of Bayesian inference, we now describe

a Bayesian model for estimating the parameters N, p, and f of PCR ampli-

fication from the probability distribution explained in the first part of this

Chapter.
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3.8 Bayesian Model for Estimating Parame-

ters N, f and p of PCR Amplification

The probability distribution of the copy number of a particular clono-

type after t cycles that was introduced in Eq. (3.23) as;

=

min(N,x)∑
j=0

(
N + x− j

N − j, j, x− j

)
(1− p)x−j fx (1− f)N−j

(p+ (1− p)f)N+x−j ×

NpN

N + x− j
(3.72)

Pulling terms independent of j out of the summation sign, we obtain;

p(x, t) =
(1− p)xfx(1− f)NNpN

(p+ (1− p)f)N+x

min(N,x)∑
j=0

(
N + x− j

N − j, j, x− j

)
×

(
p+ (1− p)f

(1− p)(1− f)

)j
1

N + x− j
.

Let;

Aj =

(
N + x− j

N − j, j, x− j

)
1

N + x− j
and B =

p+ (1− p)f
(1− p)(1− f)

.

Then p(x, t) becomes;

p(x, t) =
(1− p)xfx(1− f)NNpN

(p+ (1− p)f)N+x

min(N,x)∑
j=0

AjB
j.

For n values of x i.e x1, x2, ...xn, the likelihood of the parameters is given

by:

L(N, f, p|X) =
n∏
i=1

(1− p)xifxi(1− f)NNpN

(p+ (1− p)f)N+xi

min(N,xi)∑
j=0

AijB
j.

Due to the nature of the parameters, Beta priors are chosen for p and f and

a Poisson prior is chosen for N . The joint posterior distribution for f,N
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and p is given by:

[N, f, p|X] ∝ pα−1(1− p)β−1f θ−1(1− f)γ−1
λN

N !
×

n∏
i=1

(1− p)xifxi(1− f)NNpN

(p+ (1− p)f)N+xi

min(N,xi)∑
j=0

AijB
j

Having obtained the posterior distribution function, we derive full condi-

tionals for N, p and f .

The full conditional for N is a function proportional to all of the terms

in the posterior involving N ’s and is therefore given by:

[N |f, p,X] ∝ λN

N !

n∏
i=1

(1− f)NNpN

(p+ (1− p)f)N

min(N,xi)∑
j=0

AijB
j.

Similarly the full conditional for p is a function proportional to all of the

terms in the posterior involving p’s and is therefore given by:

[p|N, f,X] ∝ pα−1(1− p)β−1
n∏
i=1

(1− p)xipN

(p+ (1− p)f)N+xi

min(N,xi)∑
j=0

AijB
j.

Lastly, the full conditional for f is proportional to all of the terms in the

posterior involving f and is therefore given by:

[f |N, p,X] ∝ f θ−1(1− f)γ−1
n∏
i=1

fxi(1− f)N

(p+ (1− p)f)N+xi

min(N,xi)∑
j=0

AijB
j.

Metropolis Hastings algorithms were implemented in R to sample from each

of the above full conditionals. A log-normal proposal distribution was cho-

sen for N while beta proposal functions were chosen for f and p. The devel-

oped Metropolis Hastings algorithms were combined into a Gibbs sampling

algorithm by following the steps as shown in the second part of Section 3.7.4.

That is, we use the partially updated parameters in sampling subsequent

full conditionals.

We begun by specifying the probability distribution described by Eq. (3.72)
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in R using the distr package from which we sampled random values for the

final copy number xi. For objective inference, non informative priors were

chosen, that is, we set parameters α = β = θ = γ = 1 and replace the prior

function for N with 1.

Using 1000 data points (sampled from the distribution in Eq. (3.72)

with parameter values N = 10, f = 0.3 and p = 0.001), the developed Gibbs

algorithm was run for 5000 iterations using tuning parameters AN= 0.09,

Af= 0.02 and Ap= 5×105 for N, fand p respectively. Using N = 1, f = 0.25

and p = 0.0017, the code ran for 6.4minutes and the following results were

obtained for N, fand p.

Figure 11: History plot for N
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Figure 12: History plot for p

Figure 13: History plot for f
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After some time, the sample chains for each of the parameters end

up in their expected region, that is, near the actual values that were used

to generate the data, although some parameters are closer than others.

Samples of N climb up from the initial value of 1 into the expected region

of 10, by the 20th sample. They are the closest to their expected value of

the three parameters and a mean of 9.300927 was obtained. The sample

chain for p drops from the initial value of 0.0017 way below the expected

value of 0.001 to 0.0004 before rising back to the region around 0.0008 where

it is maintained. This is far from the expected value of 0.001 but still a fair

estimate. Lastly, the sample chain of f shoots up from the initial value of

0.25 to 0.9 before falling back to the region of interest by the 10th sample.

Due to the nature of movement of their chains, the sample means of p and f

are not very accurate compared to the actual values. Means of 0.0008257983

and 0.2602748 were obtained for p and f respectively.

The corresponding autocorrelation plots are shown below.

Figure 14: The autocorrelation function for N . .
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Figure 15: The autocorrelation function for p.

Figure 16: The autocorrelation function for f .

All the three parameters have a high autocorrelation, with dependence

between the 1st sample and any other sample persisting upto the 100th

sample. The autocorrelation for samples of N is significantly higher upto

the 200th sample but tapers down to zero by the 300th sample. Those for p

and f drop down to low values by the 150th value but the autocorrelation

for p is significantly above zero by the 300th value. For this run of the

Gibbs sampler, samples of f have the least autocorrelation, tapering down

to zero by the 250th value. We note that this is one instance of the Gibbs

implementation and these results may not be reproducible for different runs.
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To obtain more accurate results, we would have to thin by picking roughly

each 200th value of f and each 300th value for N but this would leave few

data values for estimation, considering our total of 5000 sample values.

The most plausible reason for such behaviour (high autocorrelation)is

estimating p and f concurrently. From the model, in Eq. (3.25), p and

f are proportional to each other. Another possible cause for such high

correlation could be the choice of the step size. As the number of parameters

that need tuning increases, it becomes more difficult to obtain the optimal

combination of step sizes.

Gibbs sampling for different sample sizes

Our developed Gibbs algorithm was used to obtain 95% credible in-

tervals for different sizes of final copy number xi, ranging from 100 to 1000.

For each sample size, the Gibbs sampler was run for 5000 iterations with

fixed initial values of N = 10, p = 0.001, f = 0.3 and fixed step sizes of

AN = 0.09, Ap = 5 × 105, Af = 0.05. We note that no thinning was done

because of the running time of the code. The plots in Figure 17 below show

the trend of the mean and credible interval, as we move from 100 to 1000

sample values, xi.

For parameter N in Figure 17a, as the sample size increases, the mean

of sampled values increases far beyond 10 to almost 12 at the sample size

of 200 and then decreases gradually to slightly less than 10. It is notable

is that the length of the credible interval is shorter for larger sample sizes

than for small sample sizes.
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(a)

(b)

(c)

Figure 17: Variation of the mean and 95% credible interval with increase in
sample size for N(a) , p (b) and f (c).
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For p and f , the means oscillate around their expected values as the

sample size increases, with the length of the 95% credible intervals increas-

ing and decreasing haphazardly. However the lengths of the final three

sample sizes are shorter than those obtained for small sample sizes. The

discrepancies observed, as explained above, are as a result of estimating p

and f concurrently.

Inference of parameters N and p when f is constant.

Due to the high correlation obtained when estimating all the three

parameters simultaneously, as done for the method of moments in the first

part, we also estimated N and p for fixed f in the case when the value of

f is available. The estimates for both N and p improved and so did the

autocorrelation as shown in the Figures 18,19,20,21 below.

Figure 18: Chains of N when f is constant.

Using similar initial values and step sizes as with the case of changing f

above, the Gibbs sampler was run for 5000 runs and means equal 9.728982

and 0.0009638469, were obtained for N and p respectively. Sampled values

for N (Figure 18) rise from 1 to 10 by the 50th value and stay around

10. Those for p (Figure 19) drop from 0.0017 to the region around 0.0001
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Figure 19: Chains of p when f is constant.

before rising back to 0.001, where they are maintained. The autocorrelation

functions obtained with this special case are shown below.

Figure 20: Autocorrelation function of p when f is constant.
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Figure 21: Autocorrelation function of p when f is constant.

The autocorrelation for N doesn’t deviate much from the case with changing

f but that of p reduces significantly, dropping 0 by the 125 value. More

precise samples can be obtained by generation very long chains and then

picking every 125th and 200th value for p and N respectively.

Gibbs sampling for different sample sizes when f is

constant

With the above results, we went ahead to examine the effect of sample

size on the mean and credible interval of the estimates for N and p when

f is constant. The Gibbs sampler was run 5000 times for each sample

size with fixed initial values of N = 10, p = 0.001 and fixed step sizes of

AN = 0.06, Ap = 3 × 106. No thinning was done. The plots in Figure 22

below were obtained.
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(a)

(b)

Figure 22: Variation of the mean and 95% credible interval with increase in
sample size for N and p when f is constant.

Both means of N and p follow the same trend as sample size increases. They

increase initially and then systematically decrease to near their expected

values. Most importantly, the lengths of the credible intervals decrease sys-

tematically with 95% credible intervals of larger sample sizes being shorter
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than those for small sample sizes.

3.8.1 Strengths and Weaknesses of Bayesian Inference

over the Method of Moments

Bayesian inference of the parameters of PCR amplification has an

edge over the method of moments discussed in the first part of this chapter

because it yields consistent results. Small errors in some parameters like

N do not affect significantly the accuracy of other parameter estimates.

Also initial values used are not so much of an issue if the right step sizes

are used. It also allows incorporation and updating of prior knowledge in

order to inform the current model. With Bayesian inference, it is possible

to obtain fairly accurate estimates with a small evidence size for N .

One of the main weaknesses of Bayesian inference is that for accurate

results, the step sizes require substantial tweaking which gets worse as the

number of parameters increases. This however can be resolved by updat-

ing the step sizes on the fly whilst the chains are being generated. Also,

the accuracy of estimates by Bayesian inference is compromised by linear

dependencies between parameters.

Having developed these two estimation methods, we go on to validate

them by applying them to both real and synthetic data sets in Chapter

Four. For quicker convergence of the Markov chain, parameter estimates

produced by the method of moments in the first part can in principle be

used to initialize the Gibbs sampler.

3.9 Summary

This chapter was developed in two parts. In the first part, we intro-

duced and explained the a mechanistic model for correcting PCR induced

bias that was developed in Ndifon et al. (2012). Upon employing mathe-
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matical concepts of generating functions and techniques in combinatorics,

this resulted in a probability distribution for the clonotype copy number xi

after t cycles of the PCR amplification. We then derived the first, second

and third moments from the generating functions which we used to obtain

expressions for each of the three parameters. Sample values were drawn

from the probability distribution using the distr package in R and the de-

rived method of moments was applied onto them to try and estimate back

the parameters. We observed the accuracy of the results to depend much

on the size of the samples and also that better results were obtainable if

parameter f was assumed known. We concluded by discussing the strengths

and weaknesses of the method of moments for estimating the parameters of

our model for PCR amplification.

In the second part of this chapter, an introduction to Bayesian in-

ference was given and examples were explained. The concept of likelihood

function was introduced and the basics of Bayesian inference, that is, prior,

likelihood function and posterior, were explained. A detailed introduction

to Markov chains was given where the idea of stationary distributions and

the Ergodicity theorem were covered. We then explored some of the ways of

calculating the posterior probability which included conjugacy and Monte

Carlo methods. Next came the two main methods for MCMC, that is,

Metropolis Hastings and Gibbs sampling algorithm. Examples involving

instances of these were given and the diagnostic methods to be used were

also described. Starting with an example on the negative binomial distri-

bution, a feel of the operations of MCMC was given, and the complexity

involved with multivariate posterior distribution were portrayed in an ex-

ample involving the normal distribution.

The most important part of the second part involved using the tech-

niques of Bayesian inference to estimate the parameters N, p and f of PCR

amplification. The posterior distribution of the parameters was derived us-
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ing appropriate priors and full conditionals were extracted for each of the

three parameters. A Gibbs sampling algorithm was implemented in R and

the results obtained were presented. A high autocorrelation was obtained

for all the three parameters which indicated poor mixing. However, lower

auto correlation was obtained when the value of f was assumed known

and fixed. For Bayesian inference too, precision of estimates increased with

increase in sample size. Lastly the strengths and weaknesses of Bayesian

inference versus method of moments were explored.
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CHAPTER FOUR

DENOISING OF HIGH-THROUGHPUT

DATA

4.1 Introduction

In this chapter, the two methods of parameter estimation developed

in Chapter Three are applied; first to synthetic datasets, and later to real

datasets. Using the probability distribution in Eq. (3.23), prototypes of real

datasets are simulated and explained. The methods are then applied to

datasets which were used to obtain the results published in Qi et al. (2014).

The results of de-noising both datasets using our methods are presented. For

both methods, I considered the case when f was known and was constant

since this scenario produced better results in the previous chapter. In the

case when it was unknown, an arbitrary f was chosen, whose effect cancelled

out when I considered relative abundances of N rather than N itself.

4.2 Simulated Datasets

The costs involved in sequencing, limit the number of possible repli-

cates of the same investigation. As such, the size of the evidence for a par-

ticular sequence with initial copy Ni is always limited as this is equal to the

number of replicate experiments. In our data format, values in each column
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are from individual replicates while values along each row are from individ-

ual sequences. In real experiments, more than 10 replicates are impractical

as they are expensive to generate and thus the need for the maximum num-

ber of columns (number of evidence for N) to be 10. Each replicate has

its own down sampling rate and therefore the values in each column are

generated by the same value of f . If f was to be estimated, the values in

each column would be its evidence. Secondly, more than 25 sequences are

typically amplified with the same efficiency, which means that they have

the same value for p. This implies that the evidence for p is has a wider

allowance, while that for N is limited.

In an attempt to examine the effect of increasing evidence for p on the

accuracy of estimates of N , four datasets were generated (tables of the form

25× 5, 25× 10, 50× 5 and 50× 10) using combinations of parameters p, N

and f . For the m × 5 datasets, f = (0.1, 0.2, 0.3, 0.4, 0.5)T was used while

for the m× 10 datasets, f = (0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5)T was

used. Similarly, for the 25 × n dataset, values of N = 1, · · · , 25 were used

while for the 50 × n datasets values of N = 1, · · · , 50 were used. Every

value in each of the tables depends on p = 0.0017.

The values in each column depend on one element of the vector f and

values in each row depend on one of the values for N . In this set up, each

of the m× 5 datasets has 5 data points as evidence for N , and m× 5 data

points as evidence for p. Also each of the m×10 datasets has 10 data points

as evidence for N , and m× 10 data points as evidence for p.

Ten data sets were generated for each of the four formats described

above. First the method of moments, and then Bayesian inference were

applied to estimate N and p. The mean estimates and standard deviations

for the 10 datasets of each kind were calculated and are presented below.

Also as a measure of the closeness of estimates to the actual values, linear

regression was performed on estimates from each of the 10 datasets and the
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slope is presented in the proceeding sections.

4.2.1 Method of moments

From the generating function discussed in Chapter Three, we can de-

fine for each sequence i with counts in j samples, the following expected

values:

〈
Xj

fj

〉
=
Ni

p
= ai, (4.1)

and from Eq. (3.27)

〈
Xj(Xj − 1)

f 2
j

〉
=

(
Ni

p

)2

+
Ni

p2
− 2Ni

p
= bi. (4.2)

ai is the expected value of Xi after normalising by the corresponding di-

lution constant, f . Similarly, bi is the expected value of Xi(Xi − 1) after

normalising by f 2.

From Eq. (4.1) and Eq. (4.2), we get:

bi = a2i +
ai
p
− 2ai. (4.3)

ai and bi can be calculated from the data and used to estimate p. However,

to make use of data from m different sequences, we can instead minimize

the sum of the squared differences between the left and right hand sides of

Eq. (4.3). That is, minimize

SSD =
m∑
i=0

(bi − a2i −
ai
p

+ 2ai)
2 for i = 1, 2, ...,m. (4.4)

Figure 23 shows the estimates of p obtained using data points in the

entire dataset as evidence for p. All the four estimates were obtained using

the optim function in R as described above. We notice that as evidence
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for p increases, the estimates get closer to the actual value of 0.0017 and

the standard deviations decrease. However, datasets 25 × 10 and 50 × 5,

which have the same size of evidence for p, seem to have different standard

deviations.

Figure 23: Estimates for p using method of moments. Each of the four
estimates uses the entire dataset as evidence for p.

The observed difference is because the 25 × 10 dataset has more evidence

for N than the 50 × 5 dataset, even though both datasets have the same

evidence size for p.

The plots in Figure 24 below are obtained by calculating ai and bi

from the respective dataset and then using this to obtain an optimized p,

with the help of the optim function in R. The optimized value for p was

then used to estimate Ni using the relation in Eq. (4.1). This was done for

each of the 10 datasets for both the 25× 5 and the 25× 10 data formats.
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(a) Estimates of N using the method of moments for the 25 by 5 datasets

(b) Estimates of N using the method of moments for the 25 by 10 datasets

Figure 24: Estimates of N = 1, 2, · · · 25, using the method of moments.
a) Each Ni has 5 datapoints as evidence. b)Each Ni has 10 datapoints as
evidence. A value of p, optimised over all (ai, bi) pairs is used to obtain each
of the estimates.
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The mean and standard deviations for each of the Ni’s and p from the 10

datasets, were obtained and are presented in Figure 24 and in the Figure

23 above for p. One important observation is that when evidence for N

increases from 5 to 10 (which implies that evidence for p increases from 125

to 250), the trend of the estimates of N increase systematically and the

standard deviation decreases. The Pearson correlation coefficient between

the actual and estimated values of N increases from 0.9953524 in Figure

24a to 0.9984065 in Figure 24b and the gradient of the fit of the estimates

for Nis decreases from 1.354 to 1.302. However the estimates for Ni still

remain far from the actual value. For example N = 25 is estimated as

approximately 33.

In Figure 25, after obtaining ai and bi from the respective datasets,

they are used to calculate p using the relation in Eq. (4.3). The result is a

pi value for each row in the dataset. This pi is then used to estimate Ni,

still using Eq. (4.1).

Figure 25: Estimates for N = 1, · · · , 25 for the 25 × 10 dataset using
the method of moments, each obtained using its own pi calculated from
Eq. (4.3).

.

In this setting, each pi has the same evidence as N , that is 5 data points
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for the 25 × 5 datasets and 10 data points for the 25 × 10 datasets. The

decrease in evidence for p is manifested by very poor estimates for Ni and

large standard deviations as shown in Figure 25 above. The Pearson rank

correlation dropped from 0.9953524 to 0.9377997 and for the same, 25 × 5

dataset the slope increased from 1.354 to 1.616 far from the expected slope

of 1.

Figure 26 shows the effect of increasing the number rows (distinct

Ni’s) from 25 to 50. This doubles the evidence for p while maintaining

the evidence of Ni for the two data formats shown in Figure 24. Since the

50 × 5 datasets have the same evidence for p as the 25 × 10, the plot in

Figure 26a, upto N = 25, has almost similar features to that in Figure 24b.

A correlation coefficient equal to 0.9976778 was obtained, slightly lower than

that obtained for the 25× 10 dataset. As explained above for p, the reason

for this observation could be that for the same size of evidence for p, the

25 × 10 dataset has more evidence for N than for the 10 × 5 dataset. A

slope of 1.297 was obtained for the fit of Nis estimated from each dataset.
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(a)

(b)

Figure 26: Estimates of N = 1, 2, · · · 50, using the method of moments. A
value of p, optimised over all (ai, bi) pairs, is used to obtain each of the
estimates. a) Each Ni has 5 datapoints as evidence. b)Each Ni has 10
datapoints as evidence.
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The 50×10 dataset in Figure 26b , has twice the evidence of p as compared

to the 50 × 5 and this explains the better estimates for Ni and smaller

standard deviations. For this dataset, a correlation equal to 0.9995978 and

a slope of 1.109 were obtained. Particularly a difference in precision of

estimation between the two datasets is observed around N = 40 in Figure

26.

For each data format, the trends of the estimates for N from each of

the 10 datasets are presented below.

Figure 27: Estimates of N for each of the ten 25×5 datasets, whereby each
row has its own pi value
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Figure 28: Estimates of N for each of the ten 25× 5 datasets, with a single
optimised p.

Figure 29: Estimates of N for each of the ten 25×10 datasets, with a single
optimised p.
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Figure 30: Estimates of N for each of the ten 50× 5 datasets, with a single
optimised p.

Figure 31: Estimates of N for each of the ten 50×10 datasets, with a single
optimised p.

As the evidence for p decreases the area of diversion increases and we have

more samples intersecting the line of expected values (black).

4.2.2 Bayesian Inference

The estimates for the parameters N and p obtained using the method

of moments were then used as initial values for the Bayesian method de-
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scribed in the second part of Chapter Three. Still, the evidence for each

Ni is along the corresponding row in each dataset, while that for p is the

entire dataset. The code used in Chapter Four was also adapted from a

single sequence to suit multiple sequences. Still, a log-normal proposal dis-

tribution was employed in the Metropolis Hastings algorithm for N and a

beta proposal was used in the Metropolis Hastings for p. We chose to use

the case when f is known as this produced better results in Chapter Three.

The Gibbs sampler was ran for 3000 runs for each of the 10 datasets of each

of the 4 formats. The means and standard deviation for the 10 datasets

were again calculated and the results are presented below.

In Figure 32, each of the estimates for p were obtained by using each of

the data points in the dataset as evidence for p. The corresponding estimate

obtained using the method of moments was used as the initial value and a

step size of 5× 105 was used for the beta proposal distribution function.

Figure 32: Estimates of p using Bayesian inference. Each of the four esti-
mates uses the entire dataset as evidence for p, rather than only the entries
in each row.

As the number of distinct Ni with the same value of p increases (which

translates into more evidence for p), the estimate for p gets closer to the
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real value of 0.0017 and the standard deviation decreases.

Figure 33 shows estimates for N obtained by applying Bayesian Infer-

ence to the 25 × 5 and 25 × 10 datasets. A step size of 5 × 105 was used

to sample p while step sizes of 0.3 and 0.1 and were used to sample N from

the log-normal proposal for the m× 5 and m× 10 datasets respectively.
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(a)

(b)

Figure 33: Estimates of N = 1, 2, · · · 25, using Bayesian Inference. A value
of p optimised over all (ai, bi) pairs is used to obtain each of the estimates.
a) Each Ni has 5 datapoints as evidence. b)Each Ni has 10 datapoints as
evidence.
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As the evidence for N increases from 5 to 10, the standard deviations de-

crease as observed in Figure 33 above. The correlation coefficient increased

from 0.9966768 to 0.9986322 and the slope of the fit of Nis decreased from

1.16 to 1.142. We notice that the estimate for N , though not very accu-

rate, is better than that obtained using the method of moments, for the

same data size. This is even more apparent from the comparison of the two

Pearson correlation coefficients and the slopes (Table 2 and Table 3).

Figure 34 shows estimates for N obtained by applying Bayesian In-

ference to the 50× 5 and 50× 10 datasets. When we increase the evidence

for p by increasing the number of distinct Ni’s with the same p from 25 to

50, we still have the same size of evidence for p as in the case of 25 × 10

dataset. A correlation equal to 0.9978789 is obtained, slightly lower than

that obtained with the 25×10 dataset. The slope though was lower (1.109).

Further increment of evidence for p and N , that is from 50× 5 to 50× 10,

produces the best estimates for N and p with the least standard deviations

and smallest slope (1.016), as seen in Figure 34b and in Figure 32 respec-

tively. A correlation of 0.9996292 was obtained between actual values of N

and its estimates.

99

Digitized by Sam Jonah Library

© University of Cape Coast



(a)

(b)

Figure 34: Estimates of N = 1, 2, · · · 50, using Bayesian Inference. a) Each
Ni has 5 datapoints as evidence. b)Each Ni has 10 datapoints as evidence.
A value of p optimised over all (ai, bi) pairs is used to obtain each of the
estimates.
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Similarly, the trends of the estimates forN from each of the 10 datasets

were obtained and are presented below.

Figure 35: Estimates of N for each of the ten 25× 5 datasets.

Figure 36: Estimates of N for each of the ten 25× 10 datasets.
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Figure 37: Estimates of N for each of the ten 50× 5 datasets.

Figure 38: Estimates of N for each of the ten 50× 10 datasets.

As the evidence for p increases the area of diversion decreases and we have

more samples intersecting the line of expected values (black). This effect

is greater than observed for corresponding datasets using the method of

moments.

For the 50 × 10 dataset, which produced the best estimates, history

plots and autocorrelation plots for a selected few parameters were extracted
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to give a fair idea of how the Gibbs sampling was performing. Below we

present history and autocorrelations plots for N = 1, N = 25, N = 50 and

p. Each of the plots were obtained from a single iteration of the Gibbs

algorithm and so the results are bound to slightly change for a different run

with the same parameters.
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(a) History plot of samples generated from N = 1 as part of a 50 × 10
dataset.

(b) Autocorrelation plot of samples generated from N = 1 as part of a
50 × 10 dataset.

Figure 39: Bayesian inference for N = 1.

104

Digitized by Sam Jonah Library

© University of Cape Coast



(a) History plot of samples generated from N = 25 as part of a
50 × 10 dataset.

(b) Autocorrelation plot of samples generated from N = 25 as
part of a 50 × 10 dataset.

Figure 40: Bayesian inference for N = 25.
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(a) History plot of samples generated from N = 50 as part of a
50 × 10 dataset.

(b) Autocorrelation plot of samples generated from N = 50 as
part of a 50 × 10 dataset.

Figure 41: Bayesian inference for N = 50
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(a) History plot for p for the 50 ×10 dataset.

(b) Autocorrelation plot for p for the 50 ×10 dataset.

Figure 42: Bayesian inference for p.
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As the size of N increases, the autocorrelation too increases. This

mainly stems from the use of a uniform step size for the log-normal proposal

across long range of values of N instead of each N having its own optimal

step size. We also observe that p has the highest autocorrelation which also

is a result of failure to obtain an optimal step size.

4.2.3 Summary of results from simulated data

From the results presented above, we observe that the greater the ev-

idence for p, the better the estimate for p and hence the better the estimate

for N . Also, more precise estimates for N are obtainable with a larger evi-

dence size for N . Unfortunately, the possible evidence size for N is limited.

We notice that Bayesian inference for p is very close to the actual value and

that Bayesian inference is generally improvement of the method of moments.

This can be observed in the Table 2 where the Pearson correlation coeffi-

cients of the Bayesian inference dominate their counterparts obtained using

the method of moments. The dominance is even more apparent when we

consider the difference in slopes between the two methods shown in Table 3.

Nevertheless, estimates from both methods are acceptable for a larger evi-

Table 2: Pearson correlation coefficients between the estimated values and
the actual values across all the datasets, using the two methods

Dataset Method of moments Bayesian Inference
25× 5 0.9953524 0.9966768
25× 10 0.9984065 0.9986322
50×5 0.9976778 0.9978789

50× 10 0.9995978 0.9996292

dence of parameter p, with the method of moments being preferable when

computational time is a limiting factor.
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Table 3: Slopes of lines of fit for the estimated means using the two methods

Dataset Method of moments Bayesian Inference
25× 5 1.354 1.16
25× 10 1.302 1.142
50×5 1.297 1.109

50× 10 1.109 1.016

4.3 Denoising Real Datasets

Following satisfactory results from application of the denoising meth-

ods to synthetic data, we proceeded to apply them to real data. This data,

generated using next generation sequencing, was used in Qi et al. (2014) to

estimate a lower bound of the total number of different TCR beta (TCRB)

sequences found in human T-cell repertoires and to evaluate the effect of

age on TCRB diversity. As explained in Chapter One, this data contains

errors and needs to be denoised if we are to obtain the correct biological

information.

(Qi et al., 2014) obtained platelet donor apheresis lymphocytes from

four young (aged 20-35 y) and five elderly (aged 70-85 y) adults from

the Stanford Blood Centre. All individuals were healthy, regular platelet

donors. The cells were purified and separated into Naive CD4 and CD8 and

memory CD4 and CD8 T cells. For each individual and for each cell type, 5

replicates were obtained. This is why preference is made for the m× 5 data

format described earlier. During initial evaluation of TCRB repertoires in

the young and elderly subjects, they compared the composition of TCRB

gene rearrangements at the level of TCRBV and TCRBJ gene segment use

and features of the CDR3-encoding junctional nucleotides.

The value of f used whilst preparing these datasets was unavailable

and thus we opt to present the relative abundances of the clonotypes rather

than their copy numbers, Ni. In this way, the scaling caused by using an
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arbitrary f was done away with. Presented below are the relative frequency

of TCRBV and TCRBJ segments that make up the naive CD4 lymphocytes

for Donor 2 in Qi et al. (2014), before and after denoising using the method

of moments.

Figure 43: Relative abundancies of V gene segments before and after de-
noising.

Forty five distinct TCRBV segments were sequenced and their relative

abundances are shown in 43. Clearly, there is a difference between the

denoised and the noise containing relative abundances. Importantly, most

of the V segments with almost zero relative abundance had their values

increase significantly after denoising.
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Figure 44: Relative abundancies of J gene segments before and after de-
noising.

Thirteen distinct TCRBJ segments were sequenced. From 44 the rel-

ative abundances of these TCRBJ segments before and after de-noising are

different but the difference is not as drastic as in the case of TCRBV seg-

ments.

Figures 44 and 43 seem to agree with the fact that the primers used

in PCR amplification, which are are the main source of noise, are specific

for the V segments.

4.4 Summary

In this chapter, the two methods of parameter estimation developed

in Chapter Three were applied. In all the analyses, it was assumed that f

was known since this had produced better results in Chapter Three. Firstly,

synthetic datasets were generated and both methods were applied on them.

Since the evidence for N is limited, the effect of increasing evidence for p,
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on the precision of estimates for N , was investigated. It turns out that

more evidence for p increases the accuracy of estimates for N and since

evidence for p has a high upper bound, this can be utilised to generate

better estimates for N . Also, from the Pearson correlation coefficient, we

noticed that increase in evidence for N leads to better estimates for N.

Measures of slope and Pearson correlation coefficients were used to

compare the two methods of inference and Bayesian inference emerged as

superior to the method of moments. Surprisingly, adequately satisfactory

results were obtained for the method of moments especially when evidence

for p is high. This illuminated the idea of the method of moments being a

preferable method, when working with large datasets that would actually

take long to analyse using Bayesian inference.

Secondly, the method of moments was applied to real data that was

used to publish the results in (Qi et al., 2014). Because there was no knowl-

edge of the f used, the relative abundances of initial copy numbers N rather

than N itself were estimated. Data obtained from sequencing 5 aliquots of

CD4 Naive T-cells of Donor 2 were used to calculate the relative abun-

dances of TCRBV and TCRBJ gene segments in the five aliquots and the

resultant plots were presented. There existed significant differences between

the denoised and raw data relative abundances for V segments but not for

J segments. This observation is plausible since differences in amplification

efficiencies are caused by different primers used during PCR amplification

yet these primers are specific for the V segment.

All the analysis in this chapter was implemented in R.
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CHAPTER FIVE

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions

T-cell diversity has a great influence on the ability of the immune sys-

tem to recognise and fight the wide variety of potential pathogens in our

environment. The current state of art approach to profiling T-cell diver-

sity involves high-throughput sequencing and analysis of T-cell receptors.

Although this approach produces huge amounts of data, the data has in-

herent errors which might obscure the underlying biological picture. To

correct these errors, two methods were developed; a method of moments

and a method based on Bayesian inference.

Data was simulated, and both methods were applied on it. The results

showed that the larger the evidence for p, the better the estimate obtained

and thus the better the estimate for N . Using the Pearson correlation

coefficient and the slope, the analysis of the simulated data showed that

Bayesian inference generated more precise and accurate results than the

method of moments. The method of moments however is preferable when

time is a limiting factor due to large datasets as it is faster and adequately

accurate.
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Once applied to real data, the method of moments produces relative

abundances that are significantly different from those plotted with raw data

for the V segments. However the comparison of relative frequencies between

raw and denoised data is not drastic for the J segments. This seems to be

in line with the fact variation in PCR amplification of various sequences

is caused by the primers used during the amplification process which are

specific for the V segments.

The result of this work implies that a prior knowledge of f will yield

better estimates for p and most importantly N and so a way should be fol-

lowed during library preparation to record the value of f used. I recommend

that for large datasets, the method of moments be used. However, for small

datasets, the method based on Bayesian Inference is more appropriate.

5.2 Recommendations

One of the major drawbacks of Bayesian Inference is that choice of

the optimal combination of step sizes for respective proposal distributions,

is difficult. In the future, the step sizes can be updated on the fly until an

optimum value is attained. Alternatively, the Gibbs sampling can be im-

plemented in already existing high end packages in R or any other software.

In addition, an additional experiment needs to be conducted with

known initial copy numbers so as to further examine the accuracy of the

methods.
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APPENDICES

Appendix A

R code for generation of samples of different sizes using

the distr package

#Loadiing the distr package

require(distr)

#initialize the distribution’s parameters and its desired support

N <- 10; p <- 0.001; f <- 0.3; s <- seq(0,1e6,1)

#probabiity of the clonotype’s copy number conditioned on parameters N,f and p.

prb <- function(s,N,f,p){

j <- 0:min(c(s,N))

return (sum(exp(lgamma(N+s-j+1)- lgamma(N-j+1)-lgamma(s-j+1)-lgamma(j+1)+(s-j)*log(1-p)+(s-j)*log(f)+

j*log(f)+(N-j)*log(1-f)-(N+s-j)*log(p+(1-p)*f)+log(N)+N*log(p)-log(N+s-j))))

}

#define the distribution

mydist <- r(DiscreteDistribution (supp=s,prob= sapply(s,prb,N,f,p)))

#generate n=100 random numbers.

set.seed(77)

x <- r(mydist)(100)

#Obtaining the sample means for x,x^2 and x^3.

meanx <- mean(x)

125

Digitized by Sam Jonah Library

© University of Cape Coast



meanx2 <- mean(x^2)

meanx3 <- mean(x^3)

#Estimating N from the samples

#quadratic is of the form aN^2+c=0

a <- -.5*meanx^3-7/2*meanx+3/2*meanx2^2/meanx-meanx3

c <- .5*meanx^3

w <- -c/a

estimate_N <- sqrt(w)

#Estimating f from the samples

estimate_f <- (estimate_N*(meanx^2+meanx-meanx2)+meanx^2)/(a*e*meanx)

#Estimating p from the samples

estimate_p <- estimate_N*estimate_f/meanx

#Estimating p with f constant at f=0.3

estimate_p_f <- estimate_N*.3/meanx

estimate_N;estimate_f; estimate_p; estimate_p_f

Appendix B

Metropolis Hastings algorithm implemented in R

#Metrapolis Hastings algrothim

#Initialising the chain

x_0 <- 15

x_b <- x_0
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#vector containing the generated chains

f <- c(x_b)

#loop for generating 1000 states x_t

for(i in 2:1000){

#generating two independent U(0,1) random numbers in step 1

h <- runif(2,0,1)

u1 <- h[1]

u2 <- h[2]

#generating the candidate value x_c in step 2

x_c <- x_b+1*2*(u1-1/2)

#calculating the ratio r in step 3

r <- exp(-.5*x_c^2)/exp(-.5*x_b^2)

#step 4

if(u2<r){x_a <- x_c}else{x_a <- x_b}

#appending the generated value x_a to the vector of vaues

f[i] <- x_a

x_b <- x_a

}

#plotting

plot(f,type="l",xlab="",ylab = "")

#determining the auto correation

z <- acf(f, lag.max = 1, type = c("correlation"),plot = F)
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Appendix C

R code for estimating parameters N and p of the neg-

ative binomial

#loading the coda package for calcuating credible intervals

library(coda)

#loading the distr package for defining probability distributions

require(distr)

#initialize the distribution’s parameters and its desired support

N <- 10; p <- 0.01; s <- seq(N,1e6,1)

#define the distribution

mydist <- DiscreteDistribution (supp=s,prob =

exp(lchoose(s-1,s-N) + N*log(p) + (s-N)*log(1-p) ))

#generate 1000 random numbers.

set.seed(45)

y <- r(mydist)(1000)

#Generation of p

getp <- function(N,p){

alpha_0 <- 1

beta_0 <- 1

alpha <- length(y)*N+alpha_0

bet <- beta_0-N*length(y)+sum(y)

w <- rbeta(1,alpha,bet)
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return(w)

}

####################

#target distribution for N

fullcond.N <- function(N,p,lambda){

n <- length(y)

#log-scale transformation

w <- -n*lgamma(exp(N))-sum(lgamma(y-

exp(N)+1))+n*exp(N)*(log(p)-log(1-p))-

exp(N)*log(lambda)-lgamma(exp(N)+1)

return(w)

}

###################################

#metrapolis hastings for N

MH <- function(N_b,p,A){

lambda <- 1

k <- runif(2,0,1)

u1 <- k[1]

u2 <- k[2]

N_c <- N_b+A*2*(u1-1/2)

r <- exp(fullcond.N(N_c,p,lambda) - fullcond.N(N_b,p,lambda))

if(u2<r){N_a <- N_c}else{N_a <- N_b}

return(N_a)

}

#single step for the gibbs sampler

#theta=[p,N]

gibbstep1 <- function(theta,A){

#updating p
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theta[’p’] <- getp(theta[’N’],theta[’p’])

#updating N

d <- MH(log(theta[’N’]),theta[’p’],A)

theta[’N’] <- exp(d)

return(theta)

}

#gibbs sampler

gibbstepn <- function(init.va,n,A){

h <- list()

theta <- c(p=init.va[1],N=init.va[2])

for(i in 1:n){

theta <- gibbstep1(theta,A)

h[[i]] <- theta

}

return(h)

}

########################################################

########################################################

#running the gibbs sampler for 110000 iterations with

tuning parameter A=0.035

d <- gibbstepn(c(0.05,8),110000,0.035)

g <- unlist(d)

#Obtaining MCMC for N

N <- g[seq(0,220000,2)]

#thinning N
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N <- N[seq(100,110000,100)]

plot(N,type="l")

z <- acf(N, lag.max = 200,type = c("correlation"),plot = TRUE)

mean(N)

#Obtaining MCMC for p

p <- g[seq(1,220000,2)]

#thinning p

p <- p[seq(101,110000,100)]

plot(p,type="l")

z <- acf(p, lag.max = 200,type = c("correlation"),plot = TRUE)

mean(p)

##############################################################

#

#

##########################################################################

#getting lag 1 autocorrelation and mean

A <- seq(0.01,.06,by=0.001)

#lag_1p <- c()

lag_1N <- c()

meanp <- c()

meanN <- c()

for(j in 1:length(A)){

d <- gibbstepn(c(0.001,10),5000,A[j])

g <- unlist(d)

#####################

#obtaining samples for N

#####################

N <- g[seq(0,10000,2)]
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#1000 burn in

N <- N[1001:5000]

#obtaining mean of N

meanN[j] <- mean(N)

#Obtaining 1 lag for N

z1 <- acf(N, lag.max = 200,type = c("correlation"),plot = FALSE)

lag_1N[j] <- z1[1]$acf[1]

########################

#obtaining samples for p

#######################

p <- g[seq(1,10000,2)]

#1000 burn in

p <- p[1001:5000]

#obtaining mean for p

meanp[j] <- mean(p)

}

#obtaining A with the least 1 lag autocorrelatiion

A[which.min(lag_1N)]

#obtaining 1 lag plots for N and p

plot (c(0.01,0.06),c(0.92,1.05),type="n", # sets the x

and y axes scales

xlab="A",ylab="1 lag autocorrelation",

main = "lag 1 as a function of the stepsize for N") # adds titles to the axes

lines(A,lag_1N,col="black",lwd=2) # adds a curve for N
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legend("topright", # places a legend at the appropriate place

c("N"), # puts text in the legend

lty=c(1,1), # gives the legend appropriate

symbols (lines)

lwd=c(2,2),col=c("black")) # gives the legend lines the correct color and width

#################################################

#############################################

#obtaining mean and 95% credible interval for different sample sizes.

MEANN <- c()

MEANp <- c()

CIN <- list()

CIp <- list()

for(i in 1:10){

set.seed(45)

y <- r(mydist)(i*100)

d <- gibbstepn(c(0.05,8),1000,0.035)

g <- unlist(d)

#Obtaining mcmc for N

N <- g[seq(0,2000,2)]

#thinning N

#N <- N[seq(100,110000,100)]

MEANN[i] <- mean(N)

CIN[[i]] <- HPDinterval(mcmc(N), 0.95)[seq(1,2,1)]
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#Obtaining mcmc for p

p <- g[seq(1,2000,2)]

#thinning p

#p <- p[seq(101,110000,100)]

MEANp[i] <- mean(p)

CIp[[i]] <- HPDinterval(mcmc(p), 0.95)[seq(1,2,1)]

}

######################################################

df <- data.frame(sampe_size =seq(100,1000,100),

F =MEANp,

L =unlist(CIp)[seq(1,20,2)],

U =unlist(CIp)[seq(0,20,2)])

ggplot(df, aes(x = sampe_size, y = F)) +

geom_point(size = 4) +

geom_errorbar(aes(ymax = U, ymin = L))+

xlab("sampe size") +

ylab("mean of p")

Appendix D

R code for estimating N , f and p of simulated values

from the generated probability distribution in S24

#Summation function in the probability equation

diCalc <- function(a,N,f,p){
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j <- 0:min(c(a,N))

return(sum(exp(lgamma(N+a-j+1)-lgamma(N-j+1)-

lgamma(j+1)-lgamma(a-j+1)+j*(log(p+(1-p)*f)

-log((1-p)*(1-f)))-log(N+a-j))))

}

#full condition for f

fcf <- function(N,f,p,x){

#summation

b <- sapply(x,diCalc,N,f,p)

#multiplying by thr prior

theta0 <- 1;gamma0 <- 1

fc <- (theta0 +sum(x)-1)*log(f)+(gamma0+length(x)*N-1)*log(1-

f)-(length(x)*N+sum(x))*log(p+(1-p)*f)+sum(log(b))

return(fc)

}

#full condition for p

fcp <- function(N,f,p,x){

#summation

b <- sapply(x,diCalc,N,f,p)

#multiplying by thr prior

alpha0 <- 1;beta0 <- 1

fc <- (alpha0 +length(x)*N-1)*log(p)+(beta0+sum(x)-1)*log(1-

p)-(length(x)*N+sum(x))*log(p+(1-p)*f)+sum(log(b))

return(fc)

}

#full condition for N
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fcN <- function(N,f,p,x){

#summation

b <- sapply(x,diCalc,N,f,p)

#multiplying by thr prior

fc <- length(x)*log(N)+N*length(x)*(log(p)+log(1-f)-

log(p+(1-p)*f))+sum(log(b))

return(fc)

}

#metrapolis hastings for f

MHf <- function(N,f_b,p,x,A1){

u <- runif(1,0,1)

f_c <- f_b+A1*2*(u-1/2)

r <- exp(fcf(N,f_c,p,x)-fcf(N,f_b,p,x)+dbeta(f_b,A1*f_c,A1*(1-f_c),

log=TRUE)-dbeta(f_c,A1*f_b,A1*(1-f_b),log=TRUE))

if(u<r){f_a <- f_c}else{f_a <- f_b}

return(f_a)

}

#metrapolis hastings for N

MHN <- function(N_b,f,p,x,A1){

k <- runif(2,0,1)

u1 <- k[1]

u2 <- k[2]

N_c <- exp(log(N_b)+A1*2*(u1-1/2))

r <- exp(fcN(N_c,f,p,x)-fcN(N_b,f,p,x))

if(u2<r){N_a <- N_c}else{N_a <- N_b}

return(N_a)

}
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#metrapolis hastings for p

MHp <- function(N,f,p_b,x,A1){

u <- runif(1,0,1)

p_c <- rbeta(1,A1*p_b,A1*(1-p_b))

r <- exp(fcp(N,f,p_c,x)-fcp(N,f,p_b,x)+dbeta(p_b,A1*p_c,A1*(1-p_c),

log=TRUE)

-dbeta(p_c,A1*p_b,A1*(1-p_b),log=TRUE))

if(u<r){p_a <- p_c}else{p_a <- p_b}

return(p_a)

}

N_b <- 1;p_b <- .0017;f_b <- 0.25;h <- list()

ptm <- proc.time()

for(i in 1:5000){

N_b <- MHN(N_b,f_b,p_b,x,0.09)

p_b <- MHp(N_b,f_b,p_b,x,2e5)

f_b <- MHf(N_b,f_b,p_b,x,0.05)

h[[i]] <- c(N_b,f_b,p_b)

}

#unlisting g

g <- unlist(h)

proc.time() - ptm

#Obtaining mcmc for N

Na <- g[seq(1,15000,3)]

plot(Na,type="l", xlab = "t",ylab = "N", main = "History plot of N")

z <- acf(Na, lag.max = 500,type = c("correlation"),plot

= TRUE, main = "Autocorrelation plot for N")
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mean(Na)

#Obtaining mcmc for p

pa <- g[seq(3,15000,3)]

plot(pa,type="l", xlab = "t",ylab = "p", main = "History plot of p")

z <- acf(pa, lag.max = 300,type = c("correlation"),plot

= TRUE, main = "Autocorrelation plot for p")

mean(pa)

#Obtaining mcmc for f

fa <- g[seq(2,15000,3)]

plot(fa,type="l", xlab = "t",ylab = "f", main = "History plot of f")

z <- acf(fa, lag.max = 300,type = c("correlation"),plot

= TRUE, main = "Autocorrelation plot for f")

mean(fa)

#Inference of p and N with f=0.3 (contsant)

N_b <- 3;p_b <- .0012;f_b <- 0.3;h <- list()

ptm <- proc.time()

for(i in 1:5000){

N_b <- MHN(N_b,f_b,p_b,k,0.06)

p_b <- MHp(N_b,f_b,p_b,k,3e6)

h[[i]] <- c(N_b,f_b,p_b)

}

g <- unlist(h)

proc.time() - ptm

#Obtaining mcmc for N
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Na <- g[seq(1,15000,3)]

#Na<- Na[seq(1,1000,60)]

plot(Na,type="l", xlab = "t",ylab = "N", main =

"History plot of N with f=0.3")

z <- acf(Na, lag.max = 500,type = c("correlation"),plot

= TRUE, main = "Autocorrelation plot for N with f=0.3")

mean(Na)

#Obtaining mcmc for p

pa <- g[seq(3,15000,3)]

plot(pa,type="l", xlab = "t",ylab = "p", main =

"History plot of p with f=0.3")

z <- acf(pa, lag.max = 500,type = c("correlation"),plot

= TRUE, main = "Autocorrelation plot for p with f=0.3")

mean(pa)

#######################################################################

#######################################################################

#obtaining mean and 95% credible interval for different sample sizes.

#single step Gibbs sampler

gibbstep1 <- function(theta,x,A){

#updating N

theta[’N’] <- MHN(theta[’N’],theta[’f’] ,theta[’p’],x,A[1])

#updating p

theta[’p’] <- MHp(theta[’N’],theta[’f’] ,theta[’p’],x,A[2])

#updating f

#to be commented out when f is constant

theta[’f’] <- MHf(theta[’N’],theta[’f’] ,theta[’p’],x,A[3])
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return(theta)

}

#multiple step Gibbs sampler.

gibbstepn <- function(init.va,n,x,A){

h <- list()

theta <- c(N=init.va[1],p=init.va[2],f=init.va[3])

h[[1]] <- theta

for(i in 1:n){

theta <- gibbstep1(theta,x,A)

h[[i+1]] <- theta

}

return(h)

}

#Require necessary packages

require(coda)

require(distr)

# the probability distribution of the clonotype cooy number

prb <- function(s,N,f,p){

j <- 0:min(c(s,N))

return (sum(exp(lgamma(N+s-j+1)- lgamma(N-j+1)-lgamma(s-j+1)-

lgamma(j+1)+(s-j)*log(1-p)+(s-j)*log(f)+

j*log(f)+(N-j)*log(1-f)-(N+s-

j)*log(p+(1-p)*f)+log(N)+N*log(p)-log(N+s-j))))

}
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#simuating data using given parameter values for N,,p and f

N <- 10;p <- 0.001;f <- 0.3;

s <- seq(0,5e6,1)

x <- r(DiscreteDistribution (supp=s,prob= sapply(s,prb,N,f,p)))(1000)

#lists t contain mean and 95% credible interva values for each of the 3 paramters

MEANN <- c()

MEANp <- c()

MEANf <- c()

CIN <- list()

CIp <- list()

CIf <- list()

for(i in 1:10){

y <- x[1:(i*100)]

d <- gibbstepn(c(10,0.001,0.3),3000,y,c(0.06,3e6,0.05))

g <- unlist(d)

#Obtaining mcmc for N

N <- g[seq(1,9000,3)]

#extracting the mean and credible interval

MEANN[i] <- mean(N)

CIN[[i]] <- HPDinterval(mcmc(N), 0.95)[seq(1,2,1)]

#Obtaining mcmc for p

p <- g[seq(2,9000,3)]

#extracting the mean and credible interval

MEANp[i] <- mean(p)

CIp[[i]] <- HPDinterval(mcmc(p), 0.95)[seq(1,2,1)]
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#Obtaining mcmc for f

f <- g[seq(3,9000,3)]

#extracting the mean and credible interval

MEANf[i] <- mean(f)

CIf[[i]] <- HPDinterval(mcmc(f), 0.95)[seq(1,2,1)]

}

######################################################

df <- data.frame(sample_size =seq(100,1000,100),

F =MEANN,

L =unlist(CIN)[seq(1,20,2)],

U =unlist(CIN)[seq(0,20,2)])

ggplot(df, aes(x = sample_size, y = F)) +

geom_point(size = 4) +

geom_errorbar(aes(ymax = U, ymin = L))+

xlab("sample size") +

ylab("mean of N")

df <- data.frame(sampe_size =seq(100,1000,100),

F =MEANp,

L =unlist(CIp)[seq(1,20,2)],

U =unlist(CIp)[seq(0,20,2)])

ggplot(df, aes(x = sampe_size, y = F)) +

geom_point(size = 4) +
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geom_errorbar(aes(ymax = U, ymin = L))+

xlab("sampe size") +

ylab("mean of p")

df <- data.frame(sample_size =seq(100,1000,100),

F =MEANf,

L =unlist(CIf)[seq(1,20,2)],

U =unlist(CIf)[seq(0,20,2)])

ggplot(df, aes(x = sample_size, y = F)) +

geom_point(size = 4) +

geom_errorbar(aes(ymax = U, ymin = L))+

xlab("sample size") +

ylab("mean of f")
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