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We present a general method of calculating rational approximants to holo- 
morphic function in n-dimensions. We establish analogs of some well-known 
properties of Pad& approximants. 

1. INTRODUCTION 

The problem of constructing convergent rational approximants in one 
variable to a Taylor series representation of a holomorphic function is well 
understood. However its generalization to several variables is still far from 
clear, although some attempts have been made by Lutterodt [I], Chisholm [2], 
and others. In this paper we present an extension of the method of con- 
structing rational approximants to holomorphic functions in several variables. 
The approach here is based on an earlier work (Lutterodt [3]), and differs 
somewhat from that of John and Lutterodt [4], which is specially tailored for 
numerical work on a computer. 

In Section 2 we discuss notation and some preliminary definitions. In 
Section 3 we introduce a definition of a rational approximant to a holomorphic 
function in several variables, and we discuss the setting up of equations. In 
Section 4 some analogs of properties known in the one dimensional Pad6 case 
are examined. Finally, in Section 5 we conclude with a brief discussion. 

2. PRELIMINARIES 

We shall assume the existence of a holomorphic function over some domain 
(by domain we mean an open connected domain) 9 C @” and in some neigh- 
borhood U, of a point w = (wl ,..., w,) E U, C 9 we define a Taylor devel- 
opment of the holomorphic function j by 

j(t) = : cd5 - WY, (2.1) 
n=o 
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where 

We let 

pm = i a,(5 - 4” and Q”(S) = i; 43(i - =y 
LY=O !3=0 

be relatively prime over the domain 9 except for the variety A on which both 
polynomials vanish. The notations C,“=, , a, , etc., are as follows: 

and b,..., # 0. 

CL, u represent the maximum “degrees” of the polynomials P,( 5) and QV( {), 
respectively. We introduce a rational function 

R,,(5) = $ff Y (2.2) 

wherever it has a determined value, finite or infinite, and ignore the variety 
of its indeterminate points given by 

d = (5 E C”: P,(5) = 0 and$&([) = 01. 

R,,(c) has at most 

NP = fi (Pj + 1) + fi (Vj + 1) 
j=l j=l 

parameters in a’s and b’s to be determined by setting up a system of linear 
equations. The setting up of the linear system of equations to determine the 
parameters of R,J{) forms the main theme of this paper. 

Defining rational approximants in several variables requires certain 
preliminary definitions, which are given below. We first define a difference 
function 

F(5) = f(5) - RuvG)> (2.3) 
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and we define the Taylor coefficients of this difference function by 

(2.4) 

The suffixes ;\ = (h, ,,.., X,), where Xi = 0, l,..., i = I ,..., n, span an n-dimen- 
sional infinite lattice /l. By using the bijective map X----f (l/X!) (alAi/a[“) we 
induce a lattice structure for the coefficients dA , which we call S”. 

DEFINITION 2.1. A finite subset A of SA that is such that do,., . ,. E A 
is said to have the inclusion property if whenever d,, E A, then dy E A for 
0 < y < A, i.e., 0 < yi < Ai , i = I,..., n. 

In geometric terms, what the above definition asserts is that when a finite 
subset A of S“ has the inclusion property and a coefficient d,, is in A, then a 
hyperrectangular subset of 5’” emanating from the origin with dA as its 
furthermost “corner” also lies in A. 

The inclusion property insures that there are no gaps in the coefficients 
that belong to A. A similar property is implied tacitly in Pad& approximant 
theory. 

DEFINITION 2.2. A finite subset A C SA is said to be null if every coeffi- 
cient in A is zero. 

As in the Pad6 approximant case, we choose the total number of equations 
to be N, = Np - 1 so that it is one less than the total number of parameters 
to be solved for. This choice, of course, enables us to fix one of the parameters 

of R,, , which in turn enables us to convert a certain homogeneous system of 
equations into an inhomogeneous one and hence to find conditions for a 
unique solution. 

It is convenient to characterize finite subsets of S* containing N, of the 
d-coefficients that have the inclusion property with the labels p and V. Such a 
subset will be written AIL”, where p refers to the l-J,:, (pj + 1) part of N, and 
v to the ny=, (v~ + 1) part. It should be noted that there is no such unique 
finite subset Au” of SA, for there are many suitable boundaries in Sl that 
could correspond to a form of A IL”. We shall denote such boundaries by L,, , 
and the isomorphism between SA and fl implies that the finite subsets EuY C A, 
corresponding to A uy in SA, have the same boundaries L,, . 

3. DEFINITION AND CONSTRUCTION 

In this section we give a formal definition of a rational approximant in 
several variables to a Taylor development of a holomorphic function f in 
some neighborhood of a point w in Cc”. 



92 C. H. LUTTERODT 

DEFINITION 3.1. The rational function RLIY( 5) is said to be a rational 
approximant to f ([) in some neighborhood U, of a point w E 2 if a finite 
subset Au” of P, containing N, d-coefficients with respect to a chosen 
boundary L,, , is null. 

The above definition is equivalent to the form 

g (f(5) - %(5)) = 0 VA E E&v. 
I i=w (3.1) 

This equation provides us with a nonlinear system of equations to solve in 
order to determine the parameters of R,, . We therefore need to linearize (3.1) 
into a form where we can then solve the linear equations involving some of 
the parameters of R,, . To establish that such a linearization of (3.1) is 
possible we need a generalized Leibnitz theorem, which we state as follows: 

LEMMA (Leibnitz). Suppose f and g E F(9), 9 (C QL) is some jinite 
domain; then at each point w E 9 we have for (J = (crl ,..., u,J, gi 3 0, 
i=l >*.., n, where ui’s are integers, 

The proof is by induction. Although we state the above lemma for f and 
g E C=(B), we shall in fact be applying it to cases where f and g are both 
holomorphic, and therefore the result is valid. 

The following theorem establishes the linearization of (3.1). 

THEOREM 1. If R,,(l) is a rational approximant to f (5) in the sense of 
DeJnition 3.1, then 

$ (f(5) - R,v(O) = 0 VA E EuY 
I r=w 

is equivalent to 

Proof. 

g (PY(5)f (0 - P,(5)) =o VA E EuY. 
I c=o 

(3.2) 

(i) (3.1) * (3.2). 

Write 

8v(t)f(r) - P,(l) = Qv(5) [f(5) - &y(5)]; (3.3) 

(3.1) 



RATIONAL APPROXIMANTS 93 

then by the lemma we get 

= 0 VA E Eu* by (3.1) and Definition 2.1. 

This establishes (i). 

(ii) (3.1) e (3.2). 

Q”(W) = b,..., # 0 3 3 some neighborhood U, (C U,) of w, whereQ”([) # 0 
for 5 E U, . We can then write 

&+Q”W5) - P&)1 = f(O - &L”(1)> (3.4) 

and by the lemma we get 

1 0 VA E EuV 

by (3.2) and Definition 2.1. This establishes (ii) and hence the equivalence 
between (3.1) and (3.2). 

Now, using the form (3.2), we set up the following system of linear equa- 
tions with the a’s and the b’s as the unknowns. In order to make the systems 
of equations tally with those of Pad6 approximants, we assign subset 
E’ = {A E Eu” j 0 < hi < pi, i = l,..., rz} to the inhomogeneous part of the 
equations from (3.2) involving both the b’s and a’s. That is: 

minh,d 
c &CA-, = aA , h E E’. (3.5) 
r=o 

This comprises a system of I$=: (pLi + 1) 1’ mear equations. The homogeneous 
system of I-J;=, (vi + 1) - 1 linear equations involving only the b’s are the 
following: 

min(A,u) 
c &CA-, = 0, 
T=O 

h E Eu”\E’. (3.6) 



94 C. H. LUTTERODT 

As already mentioned in Section 2, in order to solve for the a and 6 parameters 
we fix one of these, for convenience one of the b parameters, so as to transform 
the homogeneous system of equations into an inhomogeneous system. As in 
PadC approximant theory, we fix b,..., , normalizing it to unity (6,..., = 1). 
Equation (3.6) then becomes 

minL4.d 
C &CA-, = --c, , A E EuY\E’. (3.7) 
T#O 

Here Y # 0 means in Y = (rl ,..., Y,) we exclude the case 

where 
0 < ri < min(h, , vi), i = l,..., n. 

Equation (3.7) can be solved uniquely for the remaining b parameters after 
fixing b,..., = I provided the determinant of the matrix of the c-coefficients in 
(3.7) does not vanish. Since the c’s in the determinant array depend on 
h E Eu$!?’ and therefore on the boundary L,, , the choice of boundary becomes 
important. (A full discussion on boundaries is to be presented in a separate 
paper shortly.) If a unique solution of the b’s exists under the above stipula- 
tion, then by substitution into (3.5) we can evaluate the a’s. That is, we get a 
representation of the rational approximants R,, in terms of c-coefficients 
labeled by h E E*“\E’ depending on the boundary L,, . Thus the existence and 
the uniqueness of the representation of R,, with respect to L,, is determined 
by the nonvanishing condition of the determinant of the c-coefficients in 
Eq. (3.7). 

4. SOME PROPERTIES 

In this section we attempt to establish “analogs” of certain well-known 
properties of Pad&. approximants. These properties are established by means 
of three theorems, which are stated and proved below. 

THEOREM 2. Suppose a holomorphic function f (5) over 9 has a formal 
power series in some neighborhood U, of w E B (C @). And suppose the inverse 
function exists in the neighborhood of w. If R,, is a rational approximant to f in 
the sense of DeJinition 3.1 with respect to some boundary L,, , then the inverse of 
R,, is a rational approximant to the inverse off with respect to the same boundary 
L Lk” . 

Proof. From Eq. (3.1) we get 

f(w) = R&u) = c,,...,, # 0, 
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and therefore R;:(w) exists. Thus in some neighborhood of w (which can be 
chosen for simplicity to coincide with U,) R;:(t) exists. We now write 

1 - - 
f(l) & = 0” 

‘jig); ;M’ = T(i;) (f(5) - %v(I)), (4.1) 

where 

(4.2) 

Using the lemma on the R.H.S. of (4.1) and applying (3.1), we find 

= 07 X E Eu”; 
I i=w 

this implies 

Thus from Definition 3. I, R;z( 5) is a rational approximant to f-l{ [) in some 
neighborhood of w and with respect to the same boundary L,, . 

Remark. What the above theorem asserts seems analogous to the well- 
known statement that the inverse of a Pad6 approximant is the Pad& approxi- 
mant of the inverse, except, of course, that in several variables the boundary 
reference is important. 

The next property holds for multidiagonal rational approximants only. 
By a multidiagonal rational approximant we mean the special case for which 
the rational function Ii,, is such that ~1 = V, i.e., pi = vi , i = l,..., n. An even 
more ad hoc case, which we refer to as equimultidiagonal rational approxi- 
mant, is the one for which when p = v in R,, , then pLi = p, i = l,..., n. 

THEOREM 3. Suppose a holomorphic function f (1) over a domain has a 
formal power series in some neighborhood U, of w E 9. If R,,,(t) is a multi- 
diagonal rational approximant to j(c) with respect to the boundary L,, , then 
under the bilinear transformation f--f ((af + b)/(cf + d)) ad - bc + 0 and 
cf (w) + d # 0, the rational function 

a%,(5) + b a~&‘) + @Z?,(5) 
cf’&J + @w(i) 4&) + d 

is a multidiagonal rational approximant to the meromorphic function 
(uf (5) + b)/(+( [) + d) with respect to the same boundary L,, in the neigh- 
borhood U, . 

409/53/I-7 
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Proof. Since R,,(w) = f (w) from (3.1), therefore 

cRJw> + d = cf(w) + d # 0. 

Hence (c&,(w) + d)-l exists and in some neighborhood U, of 
w (CR,,(~) + d)-l exists, so that 

aLP(S) + b = UP,(i) + bQ!M 
&L(5) + d cpm + dQu(5) 

is well-defined in U, . We now write 

uf(5) + b _ UP&) + bQ&) 
cf(G + d CPA) + dQu(5) 

= w (Q,(4) f(s) - pm7 (4.4) 

where 

T(c) = (cf(5) + dP;icl:(; + @u(5)) * 
(4.5) 

Applying the lemma to the R.H.S. of (4.4) and making use of (3.3), we get 

which implies 

alAl af(g + b 
i 

up&) + bQ,(O ) 
W cf(5) + d - cPu(C) + dQ,(S) i ~i=to = ” 

VA E Euil. 

Thus from Definition 3.1 the result follows. 
The next theorem establishes a kind of “invariance” under a certain type 

of projective map of a polycylindrical neighborhood U, into itself, i.e., 
$: U,“-+ u, > where 4 is defined by 

77 = 4(C) = (% >.“, 4 
and 

ui - wi = 
a!f(Zi - WJ 

Y&i - WC> + 6, ’ 
i = l,..., n, 

with a$$ # 0 and yi # 0, i = l,..., FZ, also yi(zi - wi) + ai # 0, i = l,..., 7t. 
Here 01~ , yi , sj E @, i = I,..., 11 (see [5]). 

THEOREM 4. Let f (5) be a holomorphic function over a domain 9 C C”, 
with a power series representation in some neighborhood U, of w. Let (b be a 
projective map as deJned above. If R,,(4) is a multidiagonal rational approxi- 
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mant in the sense of Dejnition 3.1 to f(t;) w.r.t. L,, , then so is R,,(T) to 
f(q) w.r.t. L,, . 

Proof. R,,( 5) is a multidiagonal rational approximant to f (5) in U, w.r.t. 
L,, means that 

Under the projective mapping 4: [ + 77 we get 

(4.6) 

(4.7) 

where 

(4.8) 

and m, = mOl...on, which is a multiple of positive integers; Ct=, and 
(W)/(a~) are as introduced earlier in Section 1. NOW 

wheref ML’)> = g(5) is h 1 o omorphic in U, and has a power series representa- 
tion in 5 in U, , and 

p,o = I-IL (Y&i - 4 + Si> ~u,<1;> _ p (JJ 
Q,(v) I-L bibi - WJ + “J Q,(G S,(Q 

(y&q - Wi) + si # 0, i = l,..., Tz). 

By (4.6) and the inclusion property, the R.H.S. of (4.9) is made to vanish 
VA E Euu. Hence the result follows. 

5. DISCUSSION 

In our construction of rational approximants in n-dimensions presented 
in this paper it has been convenient to use rational functions constructed 
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from polynomials with hyperrectangular boundaries in several variables. 
The use of these polynomials enabled us to determine the limits of the 
summations in Eqs. (3.5) and (3.6), w ic were generalizations of the Pad6 h’ h 
set of equations. Use of nonhyperrectangular boundaries for the polynomials 
would require further insistence on a form of inclusion property for the 
coefficients of these polynomials. A more general approach along these lines 
was briefly discussed by John and Lutterodt (4), although the emphasis in 
that paper was on the computational aspect of the problem. It was also shown 
in the same paper how this more general use of “nonrectangular” polynomials 
is easily adaptable to a computer language. The numerical importance 
of rational approximants in several variables has been discussed by several 
authors recently, and a number of algorithms have been worked out (e.g., 
see [6]). 

An area with a lot of scope for further development is the use of rational 
approximants as a means of analytically continuing holomorphic functions 
outside neighborhoods where they may have Taylor expansions. Some 
numerical work on analytic continuation was considered by Lutterodt (3) in 
relation to a problem in mathematical physics. 
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