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Abstract: In this paper, I investigate the power of the Granger and Lee model of asymmetry via bootstrap and 
Monte Carlo techniques. The simulation results indicate that sample size, level of asymmetry and the amount 
of noise in the data generating process are important determinants of the power of the test for asymmetry 
based on bootstrap and Monte Carlo techniques. Additionally, the simulation results suggest that both 
bootstrap and Monte Carlo methods are successful in rejecting the false null hypothesis of symmetric 
adjustment in large samples with small error size and strong levels of asymmetry. In large samples, with 
small error size and strong levels of asymmetry, the results suggest that asymmetry test based on Monte 
Carlo methods achieve greater power gains when compared with the test for asymmetry based on bootstrap. 
However, in small samples, with large error size and subtle levels of asymmetry, the results suggest that 
asymmetry test based on bootstrap is more powerful than those based on the Monte Carlo methods. I 
conclude that both bootstrap and Monte Carlo algorithms provide valuable tools for investigating the power 
of the test of asymmetry. 
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1. Introduction 
 
Granger and Lee (1989) propose an approach to modelling asymmetry within the error correction 
framework. This model allows for asymmetric adjustment by partitioning the Error Correction Term (ECT) 
about its mean, thus permitting differing speeds of adjustment on either side of the cointegrating vector. 
However, the failure of the Granger and Lee model to capture asymmetric behaviour in practice led Cook, 
Holly and Turner (1999a) to examine its power via Monte Carlo simulation. It was found that the Granger and 
Lee model has low power. Alternatively, Acquah (2012) using bootstrap simulations demonstrated that the 
Granger and Lee model has low power in rejecting the null of symmetric adjustments in bootstrap samples. A 
comparison of the bootstrap and Monte Carlo methods is essential since it offers the opportunity to compare 
and understand the performance of the different simulation methods in the price asymmetry framework. 
Methodologically, the bootstrap method gives an advantage over the Monte Carlo methods which makes 
implicit assumptions about the distribution and true values of parameters. The robustness of the bootstrap 
methods which stems from its lack of reliance on asymptotic theory has not been extensively investigated in 
the asymmetric price transmission framework. The parametric bootstrap technique is applied in this study 
against alternative bootstrap methods since the noise variable of the data generating process are identically 
distributed.  
 
Though Cook, Holly and Turner (1999a) and Acquah (2012) sheds light on the low power of the Granger and 
Lee model via Monte Carlo and bootstrap simulations respectively, these previous studies fail to provide a 
comparison of the bootstrap and Monte Carlo methods in the power analysis test. A basic question such as, 
under what conditions will bootstrap and Monte Carlo techniques of testing for Granger and Lee asymmetry 
lead to the same results remains unaddressed. Furthermore, an additional question is, under what conditions 
will the bootstrap method outperform the Monte Carlo methods and vice versa. Empirically, these questions 
can be addressed in the literature by providing a comparison of Granger and Lee asymmetry test based on 
bootstrap with those based on Monte Carlo methods. This study is an attempt to fill the gap in the literature. 
The purpose of this study is to support the claim that the failure of the Granger and Lee model to capture 
asymmetry in practice is due to low power, and in so doing, provide a comparison of bootstrap and Monte 
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Carlo based test for asymmetry in the Granger and Lee model. The paper is organized as follows. The 
introductory section is followed by sections on literature review, testing for symmetry in the Granger and Lee 
model, Monte Carlo experiments and bootstrap methods. This is followed by the results and discussion and 
the conclusions of the study.  
 
2. Literature Review 
 
Granger and Lee (1989) were the first to develop a model to test for asymmetric price transmission using an 
error correction modelling framework. This approach of testing for asymmetry was later modified by various 
authors (Von Cramon-Taubadel and Loy (1996); Escribano-Pfann (1998) and Tong (1983). The Von Cramon-
Taubadel and Loy approach to measuring asymmetry involves specifying asymmetries to affect the direct 
impact of price increases and decreases as well as the equilibrium relationship. In this model, testing for 
asymmetry involves the use of a joint F-test. An alternative approach to model asymmetry within the error 
correction framework is the Escribano-Pfann (EP) model which partitions the ECT using the difference 
operator. The Escribano-Pfann (EP) approach has been met with success in practice (see Cook, Holly, and 
Turner, 1999b).  Cook, Holly and Turner (2000) demonstrate that the EP model has greater power when 
compared to the Granger and Lee asymmetric model. Tong (1983) developed the threshold error correction 
model in which deviation from the long-run equilibrium between the price series will lead to a price response 
if they exceed a specific threshold level. The Error Correction Term (ECT) is segmented into positive and 
negative component according to whether it is greater or less than a defined threshold value respectively. In 
effect, threshold modelling allows for non linear adjustment to equilibrium by introducing the concept of 
threshold cointegration. Some studies, Cook, Holly and Turner (1999a) and Acquah (2012) have examined 
the power of the Granger and Lee model via simulations and found that it has low power. However, a 
comparison of the Granger and Lee asymmetry test based on bootstrap and Monte Carlo approaches has not 
been extensively examined. 
 
3. Methodology 
 
The methodology describes the Granger and Lee test for asymmetry. Simulation methods employed in the 
study are presented. Emphasis is given to the parametric bootstrap and Monte Carlo methods. 
 
Testing for Asymmetry in the Granger and Lee Model: Assuming that the true data generating process can 
be characterized in the following ways: 

1 1,t t tx x                                                                                                                         (1) 
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The variable x is assumed to follow a random walk with a normally distributed error term  1. The 
dependent variable y is determined by a potentially asymmetric error correction model with an error term 

 2 which is uncorrelated with the errors driving the x process. There exists an equilibrium relationship 
between y and x which is defined by the error correction term. Symmetry in equation 2 is detected by 

determining whether the coefficients (
2


and
2


 ) are identical (that is
0 2 2:H    ). 

 
Simulation Methods: This study applies both the Monte Carlo and bootstrap simulation techniques. The 
Monte Carlo experimentation involves drawing the explanatory variable of the regression model and the 
error term from their respective distribution. If values are assumed for the true model parameters, then the 
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dependent variable can be obtained and any estimate of interest can be computed. Alternatively, the 
parametric bootstrap simulation involves sampling from the residual of a parametric model. We begin by 
estimating the parametric regression model and obtaining the residual. We then resample from the residual 
to obtain bootstrap samples of the residual. The re-sampled residuals are then added to the explanatory 
variable to obtain new outcome variable. Using the new outcome variable, the regression is re-estimated and 
the parameters of interest computed. The outlined process is repeated a large number of times. This process 
is referred to as parametric bootstrapping. A detailed discussion of the bootstrap methods is presented in 
Efron and Tibshirani (1993). 
 
4. Results and Discussion 
 
In order to investigate the power of the test for asymmetry under various conditions, a series of bootstrap 
and Monte Carlo comparison of the Granger and Lee model is carried out based on 10000 replications. In 
particular, the power of the Granger and Lee model is investigated under conditions of different sample sizes, 

noise levels and two levels of asymmetry given by
2( , ) (0.50,0.25) (0.75,0.25)or 

   . Subtle 

and strong levels of asymmetry are incorporated into the data generating process. The Granger and Lee 
model is evaluated in terms of its ability to reject the incorrect null of symmetric adjustment using an F-test of 
the restricted versus the unrestricted model.  The results in Table 1 and 2 indicate the low power of the 
conventional F-test in rejecting the incorrect null hypothesis of symmetry. Specifically, the Monte Carlo and 
bootstrap simulations indicate the low power of the conventional F-test in rejecting the null of symmetric 
adjustment in small sample sizes. For example in small samples with large error size and subtle level of 
asymmetry, the Monte Carlo method achieved a rejection frequency of 6% compared to 12% for the 
bootstrap at the 5% significance level as illustrated in the top parts of Tables 1 and 2.  
 
These results are consistent with the Monte Carlo experimentation of Cook, Holly and Turner (1999a). They 
noted that in small samples with large error size and subtle level of asymmetry, the Monte Carlo method 
achieved a rejection frequency of 9% at the 5% significance level. Similarly, Acquah (2012) suggests that in 
small samples with large error size and subtle level of asymmetry, bootstrap method achieved a rejection 
frequency of 12% at the 5% significance level. This is the same as the current rejection frequency of 12% for 
bootstrap at the 5% significance level. There is some increase in power when the amount of noise in the data 
generating process (DGP) is decreased systematically. Noticeably, when the difference in asymmetric 
adjustment parameters is increased from 0.25 to 0.50 in the true model, an increase in power is also observed 
in the Granger and Lee test for asymmetry based on bootstrap and Monte Carlo methods as illustrated in 
Tables 1 and 2.  These observations are consistent with Cook, Holly and Turner (1999a) and Acquah (2012) 
who noted that the power of the test for asymmetry increases with a decrease in noise levels and an increase 
in the difference in asymmetric adjustment parameters in Monte Carlo and Bootstrap experimentation 
respectively. However, it is only when the sample size is increased to 500 that a reasonable result is obtained. 
For example, both the bootstrap and Monte Carlo methods achieve a rejection frequency of approximately 
100 % with regards to the rejection of the incorrect null hypothesis of symmetric adjustments at the 5% 
significance level as illustrated in the bottom parts of Tables 1 and 2. In conclusion, the sample size, difference 
between the asymmetric adjustment parameters and the amount of noise in the data generating process is 
important in the power of the test for asymmetry based on bootstrap and Monte Carlo methods. With large 
sample size or small noise, the Granger and Lee model display greater power in rejecting the (false) null 
hypothesis of symmetric adjustments. 
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Table 1: Rejection frequencies based on 10000 Monte Carlo replications 

 
Table 2: Rejection Frequencies based on 10000 Bootstrap Replications 
 

Granger and Lee-Error Correction Model DGP(GL-ECM) 

Sample size 
 
 

Error Size 
Rejection     Frequencies 

5%                               1% 
50  3 0.1203 0.0351 
50  2 0.1230 0.0416 
50  1 0.1688 0.0687 
     

150  3 0.1451 0.0571 
150  2 0.1857 0.0742 
150  1 0.3438 0.1912 
     
500  3 0.2142 0.1014 
500  2 0.3212 0.1805 
500  1 0.7292 0.5614 
     
50  3 0.1343 0.0482 
50  2 0.1739 0.0673 
50  1 0.3539 0.1893 
     

150  3 0.2280 0.1012 
150  2 0.3490 0.1926 
150  1 0.7659 0.6048 
     

500  3 0.4641 0.2813 
500  2 0.7302 0.5490 
500  1 0.9968 0.9875 

Granger and Lee-Error Correction Model DGP(GL-ECM) 
Sample size  Error Size Rejection     Frequencies 

5%                               1% 
50  3 0.0551 0.0100 
50  2 0.0647 0.0142 
50  1 0.1111 0.0321 
     
150  3 0.0796 0.0211 
150  2 0.1099 0.0323 
150  1 0.2976 0.1304 
     

500  3 0.1493 0.0476 
500  2 0.2840 0.1188 
500  1 0.7869 0.5597 
     

50  3 0.0756 0.0212 
50  2 0.1096 0.0322 
50  1 0.3182 0.1279 
     

150  3 0.1580 0.0545 
150  2 0.3098 0.1285 
150  1 0.8227 0.6209 
     
500  3 0.4461 0.2206 
500  2 0.7847 0.5784 
500  1 0.9968 0.9875 

2 2( , )  

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 

2 2( , )  

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0,25, 0.50) 
( 0,25, 0.50) 
( 0,25, 0.50) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 

( 0.25, 0.75) 
( 0.25, 0.75) 
( 0.25, 0.75) 
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5. Conclusion 
 
The power of Granger and Lee approach of detecting asymmetry has been examined using bootstrap and 
Monte Carlo methods. The results of the bootstrap and Monte Carlo simulations indicate that the power of the 
Granger and Lee asymmetry depends on various conditions such as sample size, error size and the level of 
asymmetry. Rejection frequencies of the false null hypothesis of symmetry increases with increase in sample 
size, increases with increase in difference between the asymmetric adjustment speeds and increases with a 
decrease in the amount of noise in the true data generating process used in the application. The power of the 
test for asymmetry based on Monte Carlo and bootstrap methods have rejection frequency of approximately 
100% at the 5 percent significance level if the sample size is large with a small error size and strong level of 
asymmetry. In large samples with small error size and strong level of asymmetry, the test for asymmetry 
based on Monte Carlo provides greater power. However, in small samples with large error size and subtle 
level of asymmetry, the test for asymmetry based on bootstrap outperforms the Monte Carlo approach, 
though both display low power. The low power of the Granger and Lee model in rejecting the null of 
symmetric adjustment in the Monte Carlo and bootstrap simulations provides an explanation for the failure of 
the Granger and Lee model to capture asymmetric behaviour in practice. I conclude that both bootstrap and 
Monte Carlo techniques provide useful algorithms for investigating the power of the test of asymmetry. 
Furthermore, the study suggests that both the design characteristics and the type of simulation method are 
important in the power of the test for asymmetry. Future research will extend the current study by testing for 
the Granger and Lee asymmetry using non parametric bootstrap approach. 
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