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Abstract: Genomic selection (GS) can accelerate variety release by shortening variety development phase 

when factors that influence prediction accuracies (PA) of genomic prediction (GP) models such as training 

set (TS) size and relationship with the breeding set (BS) are optimized beforehand. In this study,  PAs for 

the resistance to fall armyworm (FAW) and maize weevil (MW) in a diverse tropical maize panel composed 

of 341 double haploid and inbred lines were estimated. Both phenotypic best linear unbiased predictors 

(BLUPs) and estimators (BLUEs) were predicted using 17 parametric, semi-parametric, and nonparametric 

algorithms with a 10-fold and 5 repetitions cross-validation strategy. n. For both MW and FAW resistance 

datasets with an RBTS of 37%, PAs achieved with BLUPs were at least as twice as higher than those realized 

with BLUEs. The PAs achieved with BLUPs for MW resistance traits: grain weight loss (GWL), adult 

progeny emergence (AP), and number of affected kernels (AK) varied from 0.66 to 0.82.  The PAs were also 

high for FAW resistance RBTS datasets, varying from 0.694 to 0.714 (for RBTS of 37%) to 0.843 to 0.844 (for 

RBTS of 85%). The PAs for FAW resistance with PBTS were generally high varying from 0.83 to 0.86, except 

for one dataset that had PAs ranging from 0.11 to 0.75. GP models showed generally similar predictive 

abilities for each trait while the TS designation was determinant. There was a  highly positive correlation 

(R=0.92***) between TS size and PAs for the RBTS approach while, for the PBTS, these parameters were 

highly negatively correlated (R=-0.44***), indicating the importance of the degree of kinship between the 

TS and the BS with the smallest TS (31%) achieving the highest PAs (0.86). This study paves the way 

towards the use of GS for maize resistance to insect pests in sub-Saharan Africa. 

Keywords: Prediction accuracy; Mixed linear and Bayesian models; Machine learning algorithms; Training 

set size and composition; Parametric and nonparametric models.
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INTRODUCTION 

Insect damage on maize plants and stored grains potentially impede food security in Africa (1–3). The 

fall armyworm (FAW) and stem borers in the field, and the maize weevil (MW) in storage facilities are 

some of the most devastating insect pests on the continent causing yield losses ranging from 10 to 90% 

leading to loss of grain marketability, and consumer health concerns due to the possible contamination of 

the grain with mycotoxin such as aflatoxins (3–6). In Africa, tremendous efforts were made during the last 

two decades to build host plant resistance to insect pests in maize through traditional pedigree 

(phenotypic)-based selection (PS) with substantial results. Several Africa adapted maize lines were 

developed and successfully tested for resistance to MW damage on grains MW damage on grains (7–12). 

Some of the success stories are from the International Center for Maize and Wheat Improvement (CIMMYT) 

of Kenya through the Insect Resistant Maize for Africa project (IRMA) that produced several storage pest 

and stem borer resistant maize lines (7,8,13–15). On the other hand, FAW is a recent pest on the continent 

and was first reported in 2016 in West and Central African countries (16), from where it spread throughout 

the African continent (17). Hence, although efforts to develop FAW resistant varieties are underway at 

several institutions including CIMMYT, published reports of FAW resistant varieties are not yet available 

(18,19). 

However, the complex nature of insect resistance traits makes PS slow and expensive, and thus, 

difficult to implement, especially for resource-constrained breeding programs (20). Application of 

traditional marker-assisted selection (MAS) is hampered by the necessity to first discover resistance-

associated genomic regions through genetic linkage and GWAS methods, both with several shortcomings, 

especially for complex traits (21–23) and have seldom been conducted in African germplasm (8,24), further 

impeding the application of MAS in the development of insect resistance maize lines in Africa. Moreover, 

in a previous study, we discovered several quantitative trait nucleotides and genes putatively associated 

with FAW and MW resistance which confirmed the quantitative nature of these traits, and thus, the 

difficulty in trying to improve these traits through MAS (25). An alternative to both PS and MAS is genomic 

selection (GS) which uses whole-genome markers to perform genomic prediction (GP) of breeding values 

of unphenotyped genotypes from which to select superior candidate genotypes for crossing to produce 

hybrids or to advance to the next generation (26). GS was reported to achieve up to threefold annual genetic 

gain in maize improvement when compared to MAS, due to a more efficient accounting of trait-associated 

QTL, faster selection cycles, and lower phenotyping costs (27–33). 

Several statistical and machine learning GP models with various strengths and weaknesses have been 

developed to adapt to different contexts partly influenced by the genetic architecture of traits (number and 

effect size of QTL, proportions of additive and non-additive genetic effects) and reproductive classes of 

plants (allogamous vs autogamous vs clonally propagated) (34–36). Therefore, to effectively implement GS 

in crop improvement programs, it is necessary to employ a holistic approach to determine the best GP 

strategy for particular breeding targets for given crop species (31,37).  Statistical models for GS vary on 

their prior assumptions and treatment of marker effects (31). Parametric models focus on parameter 

estimates rather than prediction while nonparametric algorithms give priority to prediction and have fewer 

assumptions (38). Some parametric methods assume the SNP effects follow a normal distribution with 

equal variance for all loci which seems unrealistic in practice. 

 Representative parametric methods are ridge regression best linear unbiased (RR-BLUP) (39) and 

genomic BLUP (GBLUP) (40). GBLUP was the first GP method developed and replaced the traditional 

pedigree-based relationship matrix by a genomic information-based matrix to improve prediction 

accuracies (PA) (41). Parametric methods BayesA (26) and weighted Bayesian shrinkage regression (wBSR) 

(42), on the other hand, consider a prior distribution of effect with a higher probability of moderate to large 

effects. Regarding parametric models such as BayesB (43) and BayesCπ (44), assumptions are made that 
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consider the effect of some SNPs to be zero. The Bayesian least absolute shrinkage and selection operator 

(Bayes LASSO) which is a assumes that the effects of all markers follow a double exponential distribution 

(45). Also, Zhou et al.(46) developed the Bayesian Sparse Linear Mixed Model (BSLMM) a parametric 

method that combines the hypotheses of both GBLUP and Bayesian methods and achieves higher PAs than 

BayesCπ, and BayesLASSO. Nonparametric or semi-parametric approaches like random forest, 

reproducing kernel Hilbert space (RKHS) (47,48), support vector regression (SVR) (49), and neural 

networks (NN) (50) are better suited for accounting for non-additive genetic effects (37,38) in contrast with 

parametric genomic prediction models (23,38,47,51). 

Several studies compared the performances of GP models under different conditions. In a simulation 

study, Meuwissen et al.(26) found that while GBLUP achieved PAs of up to 73.2%, BayesA and BayesB 

comparatively provided an additional increase of around 9 and 16%, respectively. However, when a 

population is composed of close relatives and the target traits are controlled by several small effect genes, 

the different methods perform similarly (52–54). On the contrary, BayesB and BayesCπ are better when 

dealing with distant relatives and traits affected by a small number of large-effect loci (23). Kernel methods 

such as RKHS are robust in predicting non-additive effects and in solving complex multi-environment 

multi-trait models (55,56). Compared to the above-mentioned parametric methods, deep learning 

techniques such as SVR, Multilayer Perceptron, and Convolutional Neural Networks models performed 

poorly in some studies (57,58). However, there are also instances where RKHS, SVR, and NN outperformed 

one or several of parametric methods, for instance, GBLUP, RRBLUP, and Bayesian algorithms for several 

traits in several crops including maize (53,59,60). These results are most likely because nonparametric GS 

models capture more adequately non-additive genetic components which are an essential characteristic of 

complex traits (23,37,38) and hence could be good candidate tools for the prediction of FAW and MW 

resistance traits which are controlled by both additive and non-additive gene action (12,61,70,62–69). 

Additional factors that influence PAs are the sizes of the training sets (TS) and breeding sets (BS) and 

their genetic relationships, the number of markers used to estimate genomic estimated breeding values 

(GEBV) of lines, the population structure and extent of linkage disequilibrium (21,23,31,41,71). Since 

phenotyping is the current bottleneck in plant breeding and one of the disadvantages of GP is the 

requirement of large TS for high PAs to be achieved, determination of effective TS composition and size is 

critical for effective implementation of GS in crop improvement programs (21,72–75). Also, the best TS 

determination will depend on the genetic architecture and the extent of population structure of the trait 

targeted for GP (74), two parameters that are substantially variable among plant breeding traits. Another 

factor that is a determinant of the predictive ability is the kinship between the TS and the BS (74). Several 

methods are used for TS optimization and these generally fall into two categories, namely: untargeted and 

targeted approaches. For the untargeted approach, the TS is determined independently of its genomic 

information whereas the targeted method considers the genomic relationship between the TS and the BS 

as a means of maximizing PAs (76). However, deciding the best TS selection method is not straightforward 

and depends on contexts (77). 

Furthermore, in maize, GPs were previously conducted using either genotypic best linear unbiased 

estimators (BLUEs) (78–80) or best linear unbiased predictors (BLUPs) (31,41,81) as a means of phenotypic 

corrections (81). BLUEs are obtained by treating the genotypic effect of a mixed linear model as fixed effects 

and provide an estimated mean for each individual of a population equal to its true value. On the other 

hand, BLUPs generated by considering the genotypic factors as radom and allow a shrinkage of the means 

towards the population mean (82). Whether to use BLUPs or BLUEs in GP is debatable. Phenotypic BLUEs 

allow avoiding double penalization which BLUPs suffer from. With phenotypic BLUPs, this double 

penalization is however compensated through maximization of the correlation between predicted and true 

line values while phenotypic BLUEs do not rely on this shrinkage (81). However, the shrinkage in the BLUP 

procedure accounts better for outliers and environmental variabilities (83) permitting better estimates of 

individual genetic effects than BLUEs (82) and, therefore, yield usually more accurate predictions of 
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phenotypic performance (81,83,84). Furthermore, BLUPs are better in handling unbalanced data where, for 

example, the number of individuals is not the same in different locations or in the different replications of 

an experiment (51,81). On this basis, the current study was conducted to evaluate the efficacy of different 

parametric, semiparametric, and nonparametric, statistical, and machine learning GP models in achieving 

high prediction accuracies (PA) for maize resistance to FAW and MW traits in a diverse panel using both 

genotypic BLUEs and BLUPs. 

MATERIAL AND METHODS 

Genetic material and field experiments 

The panel used in this study consisted of 358 maize lines from a diverse genetic and geographic 

background sourced from the National Crop Resources Research Institute (NaCRRI/Namulonge, Uganda), 

the International Institute for Tropical Agriculture (IITA/Ibadan, Nigeria) and The International Maize and 

Wheat Improvement Center (CIMMYT/Nairobi, Kenya). It consisted of 71 inbred lines developed for 

various purposes at NaCRRI, 28 and five stem borer (SB)-resistant inbred lines from CIMMYT and IITA, 

respectively (6,13,14), 19 storage pest (SP)-resistant inbred lines (7,8) and a doubled haploid (DH) panel of 

235 lines developed from insect-resistant parents at CIMMYT using six parents of which three were stem 

borer-resistant and one was a storage pest-resistant inbred line (these were also included in the population) 

and two were CML elite lines (one, CML132 was included in the panel) (Table S1). 

The panel was planted and evaluated in three environments, at the Mubuku Irrigation Experimental 

Station in Kasese, western Uganda in 2017 (316 lines) during the second rainy season (2017B) and the 

National Crop Resources Research Institute (NaCRRI), Namulonge, central Uganda in 2018 (92 lines) and 

2019 (252 lines) both during the first rainy seasons (2018A and 2019A, respectively). Detailed information 

on these locations is presented in Table 1. 

Table 1. Geographical, climatic, and soil characteristics of the planting locations (85). 

Locations 
Geographical 

coordinates 

Altitude above sea 

level 

Minimum 

rainfall 
Soil Characteristics 

Kasese 2017B 0°16’10’’ N 30°6’9’’ E 1330 m asl 1000 mm 
Sandy loam soils with a 

pH of 5.68 

Namulonge 2018A 0°31’30’’ N 32°36’54’’ E 1160 m asl 1300 mm Oxisols with a pH of 5.8 

Each combination of location and season was considered an environment amounting to three 

environments. An augmented experimental design was adopted in all three environments using six checks 

in 2017B, two in 2018A, and four in 2019A replicated in all the blocks (12 blocks in 2017B, five blocks in 

2018A, and 10 blocks in 2019A) containing unreplicated lines. The experiment in 2018A was replicated 

twice. 

FAW and MW resistance phenotyping 

After germination, plants were left unprotected to allow sufficient natural pressure of fall armyworm 

(FAW) population to build up. FAW damage scoring in all three environments was carried out two months 

after planting when adequate natural FAW infestation and pressure had manifested, and scoring was based 

on a visual assessment on a scale of 1 (no or minor leaf damage) to 9 (all leaves highly damaged) as 

described by (86) and illustrated in Figure S1 (18). 

Rearing and bioassay of MW were performed as described in previous experiments carried out at 

NaCRRI (87,88).  Weevils were reared prior to the bioassay to obtain enough insects aged between 0 to 7 

days for infestation. During rearing, standard conditions were provided for weevils to ensure proper 
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acclimatization during the experiment. Rearing was carried out by creating a weevil-maize grain culture of 

300 to 400 unsexed insects and 1.5 Kg of grains contained in 3000 cm3 plastic jars incubated for 14 days in 

the laboratory at a temperature of 28±2°C and relative humidity of 70±5%, to enhance oviposition. The lids 

of the jars were perforated and a gauze-wire mesh of pore size smaller than one mm was fitted on each lid 

to allow proper ventilation while preventing the weevils from escaping.  

After harvest and shelling, 30 grams of grains from each line of the panel were weighed from a bulk 

of all three environments with the aim of having three replicates per genotype. However, due to lack of 

enough seed for some of the genotypes, only 64 lines could generate three replicates while 123 provided 

two and 132 only one. Each of these samples was wrapped in polythene bags and kept at -20°C for 14 days 

to eliminate any weevil infestation prior to the start of the experiment. After this disinfestation process, 

samples were left to thaw and transferred into 250 cm3 glass jars and infested with 32 unsexed weevils. 

After 10-days incubation to allow oviposition, all dead and living adult insects were removed. One month 

after infestation (MAI), each sample was removed from its jar, and the grains and the flour were separated 

and their weights were recorded. The total number of holes inflicted by the weevils on the grains was 

counted along with the number of grains affected by such damages. Also, the number of dead and living 

weevils was recorded. After these measurements were collected, the grains were returned to their 

respective jars and all the measurements were repeated at two and three MAI. The collected data were used 

to infer for each sample, the cumulative grain weight loss (GWL), the cumulative number of emerged adult 

weevil progenies (AP), the final number of damage-affected kernels (AK), the total number of holes on 

grains (NH), and the cumulative weight of the flour produced (FP). 

Statical analyses of the phenotypic data 

For GP analyses, both best linear unbiased estimators (BLUEs) and predictors (BLUPs) were generated 

using the general linear model with only phenotype option of the software Trait ASSociation through 

Evolution and Linkage (TASSEL) (89) and the ranef function of the R package (90) lme4 (91), respectively. 

The mixed linear model for generating BLUEs (all factors considered as fixed) and BLUPs (all factors 

considered as random) for MW traits (GWL, AP, AK, NH, and FP) was as follows: 

 𝑌 =  𝜇 + 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟 

The mixed model for generating BLUEs (all factors considered as fixed) and BLUPs (with all factors 

considered as random) for FAW damage scores across environments model was: 

𝑌 = 𝜇 + 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐵𝑙𝑜𝑐𝑘 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛: 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟 

Where: 𝜇 in the two equation is the intercept. 

Strategies for TS and BS determination 

MW resistance traits 

To estimate GP accuracies for MW resistance, 37% (126 out of 341) of lines from the panel which had 

both genotypic and phenotypic data on grain weight loss (GWL), adult progeny emergence (AP), and 

number of affected kernels (AK) were used as the TS. The remaining 215 lines with no phenotypic data 

were considered as the breeding set (BS) for which the genomic-estimated breeding values (GEBV) were 

predicted. 

FAW damage resistance 

To determine TS and BS sizes and compositions for the evaluation of maize resistance to FAW damage, 

two strategies, namely: random-based TS (RBTS) and pedigree-based TS (PBTS) were used. 
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Random-based TS determination 

For the RBTS, first, 126 (37%) lines used for GPs of MW resistance traits were used as the TS to predict 

the GEBVs of the remaining lines. To build the second TS, the 215 (67%) lines used earlier as BS were 

considered as a TS. Then random selections of 75 and 85% of the lines in the entire panel were performed 

to determine the third and fourth TS to predict the GEBVs of the remaining lines.  

Pedigree-based TS determination 

The PBTS strategy is presented in Table 2. For the first dataset (FAW.Ped1), the 235 (68.91%) doubled 

haploid (DH) lines were used as a TS and the remainder as a BS. Regarding the second dataset, the TS and 

BS were switched to consider the TS in FAW.Ped1 as BS, and BS in FAW.Ped1 as the TS. The third dataset, 

FAW.Ped3, had a TS composed of the 294 (86.22%) that were stem borer (SB) and storage pest (SP) 

resistance lines not from the International Center for Maize and Wheat Improvement (CIMMYT) whilst the 

CIMMYT SB and SP resistant lines constituted the BS. In the last dataset, FAW.Ped4, the 235 DH lines, and 

the SB and SP lines from CIMMYT and the International Institute for Tropical Agriculture (IITA) 

amounting to 287 (84.16%) genotypes were considered as the TS and the remaining from NaCRRI lines 

were considered as the BS (Table 2). 

 

Table 2. Composition of the pedigree-based TS for fall armyworm (FAW) datasets. 

FAW Datasets FAW.Ped1 FAW.Ped2 FAW.Ped3 FAW.Ped4 

TS composition 
235 DH 

lines 
106 Non-DH lines 

294 Non-CIMMYT SB and SP 

resistant lines 

287 DH and CIMMYT and IITA 

SB and SP lines 

TS/Panel (%) 68.91 31.09 86.22 84.16 

DH=Doubled Haploid; FAW=Fall Armyworm; FAW.Ped1 to 4=FAW datasets 1 to 4 with TS based on 

pedigree information of the lines in the panel; SB=Stem borer; SP=Storage pest; TS=Training set; 

CIMMYT=International Center for Maize and Wheat Improvement; IITA=International Institute for 

Tropical Agriculture. 

Genomic prediction algorithms  

The GP analyses were performed using the BLUEs and BLUPs of the phenotypes and the 28919 single 

nucleotide polymorphism (SNP) markers that remained after duplicate removal (DRSNPs) and distributed 

across all the 10 chromosomes of the entire maize genome. Generation of the SNPs from this maize panel 

and duplicate removal were described in our previous study (25). The analyses were based on 17 prediction 

methods (a set of statistical and machine learning models, parametric, semi-parametric, and non-

parametric methods) available in 12 GP algorithms implemented on the Genomic Prediction 0.2.6 plugin 

of the KDCompute 1.5.2.beta (https:// kdcompute.igss-africa.org/kdcompute/home), an online database 

developed by Diversity Array Technologies (DArT, https://www. diversityarrays.com) for the analysis of 

DArT marker data. The 12 algorithms were drawn from five R packages designed for GP analyses: 

The Bayesian Generalized Linear Regression (BGLR) package fits various types of parametric and 

semi-parametric Bayesian regressions (92). Methods used from this package are BL (Bayesian least absolute 

shrinkage and selection operator [LASSO]) (93), BLR (Bayesian Linear Regression) (94), BRR (Bayesian 

Ridge Regression) (95), RKHS (Reproducing Kernel Hilbert Space) (47,48), BayesA (26), BayesB (43) , and 

BayesC (44). The Sommer (solving mixed model equations in R) package (96) implements the function 

mmer (mixed model equations in R) for GP. It uses four algorithms: Efficient Mixed Model Association 

(EMMA) (97), Average Information (AI) (98), Expectation Maximization (EM) (99), and the default Newton-

Raphson (NR) (100). 
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The BRNN (Bayesian regularization for feed-forward neural networks) package (101) fits a two-layer 

neural network (102,103). BRNN uses the Nguyen and Widrow algorithm (104) to assign initial weights 

and the Gauss-Newton algorithm to perform the optimization. 

The ridge regression best linear unbiased predictor (rrBLUP) packages can either estimate marker 

effects by ridge regression or alternatively, BLUPs can be calculated based on an additive relationship 

matrix or a Gaussian kernel. This package also implements the Mixed Model Solution (MMS) that calculates 

the maximum-likelihood (ML) or restricted-ML (REML) solutions for mixed models to perform GP (105). 

The R package missForest uses the function missForest that implements Breiman's random forest algorithm 

for classification and regression(106). On the KDCompute 1.5.2.beta platform, the user can choose either 

Square root or Regression options for the classification of the number of variables randomly sampled as 

candidates at each split (https://kdcompute.igss-africa.org/ kdcompute/plugins). The 16 methods used in 

this study and their statistical characteristics are presented in Table 3. 

Table 3. Genomic Prediction methods used for the analysis of the different traits and datasets. 

GP algorithms Abbreviations Method type 

Sommer function mmer with Average information (AI) mmer_AI Parametric/Mixed model 

mmer with Expectation Maximization (EM) mmer_EM Parametric/Mixed model 

mmer with Efficient Mixed Model Association (EMMA) mmer_EMMA Parametric/Mixed model 

mmer with default Newton-Raphson (NR) mmer-NR Parametric/Mixed model 

rrBLUP rrBLUP Parametric/Mixed model 

Mixed Model solution with Maximum Likelihood (ML) mms_ML Parametric/Mixed model 

Mixed Model solution with Restricted Maximum 

Likelihood (REML) 
mms_REML Parametric/Mixed model 

BayesB BayesB Parametric/Bayesian 

BayesA BayesA Parametric/Bayesian 

BayesC BayesC Parametric/Bayesian 

Bayesian LASSO BL Parametric/Bayesian 

Bayesian Ridge Regression BRR Parametric/Bayesian 

Bayesian Linear Regression BLR Parametric/Bayesian 

Bayesian regularization for feed-forward neural networks brnn Parametric/Bayesian 

RKHS RKHS Semi-parametric/Bayesian 

missForest with Square root (Sqt) missForest_Sqt Nonparametric/Machine learning 

missForest with Regression (Regression) missForest_Reg Nonparametric/Machine learning 

Cross-validations  and PA estimation 

To calculate the predictive accuracies of each of the 17 methods, a cross-validation approach was 

performed using the data for the TS with 10 folds and five repetitions amounting to 50 replications. The 

PAs were estimated as the correlation coefficient (R2) averaged across the 50 cross-validation replications 

between the observed phenotypic values and the predicted genomic-estimated breeding values (GEBV) 

(https://kdcompute.igss-africa.org/kdcompute/ plugins). 

RESULTS 

Higher PAs achieved with BLUPs for FAW and MW resistance traits as compared with BLUEs across 

GP algorithms 

Both genotypic BLUEs and BLUPs for resistance to FAW and MW traits such as AK, AP, and GWL 

were used in GPs. Generally, BLUPs produced better predictions than BLUEs by at least two orders of 

magnitude in terms of PAs (Figure 1). The PAs realized  
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Figure 1. Boxplot of PAs (prediction accuracies) for best linear unbiased estimators (BLUEs) (in pink) and 

predictors (BLUPs) (in blue) of maize resistance to FAW and MW across prediction models and 

correletations (r) between BLUEs and BLUPs of each trait. FAW (fall armyworm),MW (Maize 

weevil)resistance traits; GWL (grain weight loss), AP (adult progeny emergence (AP), number of affected 

kernels (AK), flour production (FP), and number of holes (NH). 

with BLUEs (Figure S2) varied from -0.246 for FAW (mms_ML) to 0.299 for AP (BayesB), while PAs for 

BLUEs ranged from 0.668 for AP (mmer_NR) to 0.823 for AP (missForest_Reg).  The differences in terms 

of accuracies between BLUEs and BLUPs were high despite the highly significant (P<0.001) correlations 

between BLUEs and BLUPs for each trait ranging from 0.93 for FAW to close to 1 for MW resistance traits 

such as AP, AK, and GWL (Figure 1), therefore, only results for BLUPs of resistance traits will be presented 

hereafter. 

PAs for MW resistance traits using BLUPs 

The PAs were generally high for the tested MW traits, mostly above 0.668 across the 12 GP models 

that were successfully run on the datasets (Figure 2), however, RKHS failed  
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Figure 2. Boxplots of the genomic prediction accuracies (PA) of BLUPs for MW resistance traits: GWL (grain 

weight loss), AP (adult progeny emergence (AP), and number of affected kernels (AK) (See Table 3 for GP 

algorithms). 

to work on the AK trait. The highest PAs were achieved for AP with missForest_reg (0.823), followed by 

BRR (0.805) and RKHS (0.804) with the lowest prediction accuracy of 0.667 obtained through the mmer_NR 

algorithm (Figure 2). The PAs achieved for GWL ranged from 0.742 for missForest_Sqt to 0.795 for 

mmer_NR, while for AK, they varied from 0.749 for missForest_sqrt to 0.779 for BRR (Figure 2). Generally, 

Bayesian models predicted better than both mixed model and machine learning methods, although the 

differences were small (Figure S3). 

PA for FAW resistance using BLUPs  

The different maize resistance to FAW datasets showed high predictive abilities achieved through 10 

of the 17 GP algorithms used in the study. Regarding the RBTS approach, the PAs were the lowest with the 

dataset that had a TS composed of 37% (lowest size) of the panel and the highest with the largest TS (85% 

of the panel). Even with a TS of 37%, the PAs were still high, ranging from 0.694 to 0.714 for mms_ML and 

BLR methods, respectively (Figure 3). However, it should be noted that with equal TS sizes and 

composition (37% of the panel), higher PAs were achieved for MW resistance  
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Figure 2. Boxplot of PA for maize resistance to the fall armyworm (FAW) datasets with the RBTS approach 

with random selection 37, 63, 75, and 87% of the entire panel (see Table 3 for GP algorithms). 

traits such as GWL, AP, and AK than for FAW resistance (Figure S3). The PA for the TS of 63% varied from 

0,833 for BL method to 0.838 for the missForest_Sqt, thus, there was a small variation among methods. 

Similarly, there was minimal variation among GP algorithms on the dataset with a 75% TS whose PAs 

varied from 0.838 for mms_REML to 0.843 for MissForest_Reg. The same trend was obtained on the dataset 

with a TS of 85% of the panel, with PAs ranging from 0.843 for the BRR model to 0.847 for the 

missForest_Reg method. Furthermore, there was a high and significant (P<22e-16) positive correlation of 

0.92 (Figure 4) between the PAs and TS sizes for FAW datasets for the RBTS  
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Figure 4. Pearson correlation between training set (TS) sizes and prediction accuracies across the 10 

genomic prediction models conducted on RBTS and PBTS datasets for fall armyworm resistance (FAW). 

denoting a steady improvement of the PAs as the TS sized increased. However, the PAs for FAW resistance 

reached a plateau at TS size above 63% of the panel (Figure 5). 

Although the PAs do not vary much among GP algorithms, especially when the analyses involved 

larger TS sizes equal or bigger than 63% of the panel, the Machine learning methods slightly outperformed 

other GP algorithms for almost all the traits, except for the TS of 37% where Bayesian methods such as BLR 

and BayesC showed a slight advantage over the former (Figure S4). 

The PAs for FAW resistance datasets with PBTS were generally high, mostly above 0.82 (Figure 6). For 

the first dataset (FAW.Ped1) with a TS of 68.91% of the panel (see Table 2), the PAs varied between 0.828 

for BLR to 0.835 for missForest_Sqt. Regarding FAW.Ped2 (TS=31.09%), the PAs ranged from 0.862 for 

BayesC to 0.864 for mms_REML. 
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Figure 5. Prediction accuracies for FAW with RBTS accros algorithms and training set (TS) sizes in 

percent of the total panel. 

For FAW.Ped4, with a TS of 84.16%, PAs varied between 0.860 to 0.864 for missForest_Sqt and mms_ML, 

respectively. However, for FAW.Ped3 with the largest TS (86.22%), eight of the 10 algorithms achieved low 

PAs (below 0.20) and only missForest_Reg and missForest_Sqt attained PAs of 0.749 and 0.750, 

respectively. Consequently, the Pearson correlation between the sizes of the PBTS datasets and the 

predictions accuracies for the 10 GP algorithms revealed a significant (P>2.4e-11) negative relationship of 

r=-0.33 (Figure 4). 

In these datasets, the PAs were more influenced by the composition of the TS and its pedigree 

relationship with the BS (see Table 2). Using the doubled haploid (DH) lines as TS (FAW.Ped1) and vice-

versa (FAW.Ped2) or DH and stem borer (SB) and storage pest (SP) resistant lines as TS (FAW.Ped4) 

permitted achieving higher PAs from all the 10 algorithms than when considering the CIMMYT SB and SP 

resistant lines as BS and the remainder as a TS (FAW.Ped3), where only Machine learning algorithms 

missForest_reg and missForest_Sqt achieved high PAs. Furthermore, the composition of the TS and its 

relationship with the BS determined which GP methods achieved the highest PAs with Machine learning 

algorithms working best on FAW.Ped1 and FAW.Ped3, linear mixed model approaches outperforming 

Bayesian and Machine Learning algorithms on FAW.Ped2 and FAW.Ped4, and  Bayesian methods ranking 

either second or third on all datasets (Figure S5). It should be noted that the PBTS strategy generally 

achieved better PAs than the RBTS irrespective of the size of the TS, except for the FAW.Ped3 dataset 

(Figures 3 and 6). 
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Figure 6. Boxplots of PAs for maize resistance to the fall armyworm (FAW) datasets using the PBTS 

approach (see Table 2 for the PBTS strategy and Table 3 for GP algorithms). 

DISCUSSION 

Tropical maize germplasm is characterized by rapid linkage disequilibrium (LD) decay with high 

diversity (107). These genetic characteristics make genomic selection (GS) a promising approach to 

integrate into African breeding programs (108). Given the diversity of GP models and their differential 

performances depending on crops and trait architectures and other other parameters such as the size of the 

training set (TS) and it its relationship with the breeding set (BS) (31,37), this study aimed at assessing the 

feasibility of genomic selection for maize resistance to FAW and MW through estimation of the genomic 

prediction accuracies achieved by parametric, semiparametric, and nonparametric genomic prediction 

(GP) algorithms  for  both traits using both BLUES and BLUPs of these phenotypes, and random and 

pedigree-based TS determination strategies. 

Higher PAs for BLUPs compared to BLUEs for both FAW and MW resistance traits 

With an RBTS of 37% of the panel, PAs were higher  (at least two-fold) across both FAW and MW 

resistance traits, and for all GP models when trait BLUPs were used as phenotypes compared to BLUES, 

although there were high Pearson correlations between these two categories of phenotypic data for each 
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trait. Generally, BLUPs were reported to have higher predictability than BLUEs owing to better accounting 

for outliers and environmental variabilities permitted by the shrinkage procedure in BLUPs which results 

in more accurate estimates of individual genetic effects (81–84). Furthermore, most of the predictive 

differences between BLUPs and BLUEs might have stemmed from BLUPs being more suitable than BLUEs 

in fitting data recorded from unbalanced experiments (51,81) as it was the case for both FAW damage scores 

across environments and MW bioassay in this study. Therefore, for all subsequent analyses with higher 

RBTS sizes and the PBTS strategy for FAW, only BLUPs were focused on in this study and will be further 

discussed. 

High PAs achieved for FAW and MW resistance traits using moderately sized training sets 

The obtained PAs were high for both MW and FAW resistance traits even with TS of moderate sizes 

confirming the potential of genomic selection (GS) in Africa adapted germplasms (28–30,33). With a TS of 

37% of the entire panel, high PAs (above 0.70) for MW resistance traits, grain weight loss (GWL), adult 

progeny emergence (AP), and the number of affected kernels (AK), and for FAW resistance were achieved 

in agreement with the moderate to high heritability values for these traits as earlier reported (21,31,41). 

These results are significantly important considering that one of the disadvantages of GS is the requirement 

of large TS which negatively impacts the reduction of phenotyping cost (73,75). 

 The PAs increased up to above 0.85 in proportion to the increase in TS (RBTS approach) size for FAW 

resistance which was the only trait phenotyped on all the lines of the panel. It would be interesting to 

phenotype other lines of the panel that were not evaluated for MW resistance traits to establish larger TS 

which may improve the PAs  (31,76,109,110). Very few reports of GP are available for maize resistance to 

biotic stresses. Similar and higher PAs were achieved for maize resistance to chlorotic mottle virus (up to 

0.95) and maize lethal necrosis (reaching 0.87) in tropical germplasm (78). However, lower PAs of up to 

0.59 were obtained in a study that assessed the predictability of maize resistance to the European corn borer 

(111) in temperate germplasm. Similarly, Gowda et al.(80) reported moderate PAs (close to 0.60) for maize 

resistance to the biotic stress, the maize lethal necrosis in tropical maize populations. 

GP algorithms performed differently on FAW and MW maize resistance traits  

In this study, several GP models including statistical and Machine Learning algorithms, parametric, 

semi-parametric, and nonparametric approaches were used to predict FAW and MW resistance traits. 

These GP algorithms, as expected, performed differently on the different traits although the predictive 

variations were generally minimal, especially when large TS were involved, similar to earlier model 

benchmarking reports (112,113). Bayesian models (parametric: BLR and BRR, and semi-parametric: RKHS) 

performed better on MW traits, GWL, AP, and AK, while nonparametric Machine Learning algorithms 

(missForest) and, to a lesser extent, linear mixed model (especially in the PBTS approach), achieved the 

highest PAs on FAW datasets. The differential performances of the different GP algorithms on the 

resistance traits evaluated in this study could be due to differences in the genetic structures (extent of 

additive vs. nonadditive gene action) of the respective traits (23,38,47,51). Maize resistance to FAW, which 

was moderately heritable across environments (25), would be expected to be controlled by both additive 

and nonadditive genetic factors (62,63,70), whereas, MW resistance traits such as GWL, AP, and AK with 

heritability values above 90% (25) were most likely characterized by a prevalence of additive gene action 

(64,68) in the current panel. 

Influence of the size and the composition of TS and BS on PAs 

Two factors, the relative sizes of the TS and BS (RBTS approach) and their kinship (PBTS approach), 

affected the PAs across FAW resistance datasets which corroborated earlier reports 
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(31,74,76,109,110,114,115). A net increase in PAs for maize resistance to FAW was realized when the size of 

the TS was increased from 37% (0.694 to 0.714) to 63% (0.833 to 0.838) similar to earlier reports on wheat 

yield (116). This increase was followed by a slight gain in predictability at 75% (0.837 to 0.843) and 85% 

(0.843 to 0.847). Similar to results in the current study, PAs were reported to reach a plateau and not increase 

significantly when TS reached a certain size (21,75,116–118). Consequently, future GS programs for maize 

resistance to FAW could be designed around TS composed of a minimum of 60% of the entire breeding 

germplasm to achieve high genetic gains. These results were further supported by the highly significant 

(p>2.2e-16) positive correlation (R=0.92) between TS size and PAs.  Similarly, positive correlations between 

the number of lines in the TS and the PAs, and plateau for the PAs were also reported by Edwards et 

al.(116). 

The composition of the TS and its relationship with the BS are determinant factors for the genomic 

predictability of complex traits (74,119–121). In the current study, using the PBTS approach, these 

parameters were more important than the size of the TS since higher PAs were achieved in FAW.Ped2 

(0.862 to 0.864) with a TS of 31.09% than in all other FAW PBTS datasets including FAW.Ped3 (0.114 to 

0.750) with the largest TS of 66.22%. In fact, FAW.Ped3 achieved the lowest PAs among all the PBTS FAW 

datasets. These results were further illustrated by the significantly (p<13e-08) negative correlation (R=-0.33) 

between the sizes of the PBTS and the achieved PAs. 

 However, it is not very clear why the prediction between the BS FAW.Ped3 (47 CIMMYT SB and SP 

resistant lines) and the TS (DH, IITA SB, and NaCRRI lines) led to lower PAs in FAW.Ped3. A possible 

explanation is that these two sets were distantly related since only two and one CIMMYT SB and SP 

resistant lines, respectively, were used as parents to develop the DH lines. Spindel et al.(118) argued that 

high PAs can be achieved with small-sized TS when lines in the TS and the BS are closely related, since 

such TS would have sampled the full genetic diversity of the population. However, the more distantly 

related the TS and the BS are, the larger the required TS size to reach high PAs (118). Using the CIMMYT 

SB and SP resistant lines as a TS would most likely lead to lower PAs since such a TS would be additionally 

disadvantaged by small size (47 lines). The DH lines in the current study are involved as a TS in most of 

the best performing GP datasets evaluated in the current study (both in the RBTS and PBTS approaches) 

and as unique lines in the BS of the best performing pedigree-based BS (FAW.Ped2). This DH population 

would be of interest in future breeding activities targeted at improving insect resistance in maize (23,122–

124) and potentially useful for GS of complex traits with low to moderate heritability (125). 

Conclusion 

This study assessed the influence of the size and composition of the training set on the genomic 

predictability of maize resistance to fall armyworm (FAW) and maize weevil (MW) in a diverse Africa 

adapted maize population using several parametric and non-parametric genomic prediction models. 

Prediction accuracies for maize resistance to FAW and MW traits were relatively high, even with a 

moderate training set size. For FAW resistance, although the prediction accuracies were positively 

correlatedwith the size of the training set, the composition and the relationship of the training set with the 

breeding set were more influencial in predicting line performance. Also, TS determination-related 

parameters were more important than the type of genomic prediction models in predicting FAW and MW 

resistance traits. Therefore, future genomic selection programs for maize resistance to insect pests such as 

the Fall armyworm and the maize weevil in Africa should put more effort in designing effective training 

set for improved genetic gains coupled with short breeding cycles and accelerated variety release. Such 

programs would greatly benefit from using the genetically diverse maize panel used in this study, as a base 

population since it consists of  lines adapted to several African agroecologies. 
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SUPPLEMENTARY: TABLES AND FIGURES 

Table S1. Descriptions of parents and crosses that constituted the doubled-haploid population 

Parents of the doubled-haploid population 

  Descriptions CKSBL10007 CKSBL10011 CKSBL10203 CKSPL10066 

CKSBL10007 CIMMYT Stem borer-resistant line         

CKSBL10011 CIMMYT Stem borer-resistant line         

CKSBL10203 CIMMYT Stem borer-resistant line        

CKSPL10066 CIMMYT Storage pest- resistant line   X     

CML312 CIMMYT elite line X    X   

CML485 CIMMYT elite line       X 

X=Crosses between lines 

 

    Figure S1. Rating of maize plants based on foliar damage by FAW (18). 
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Figure S2. Boxplot of PA for best linear unbiased estimators (BLUEs) of maize resistance to the fall 

armyworm (FAW) and maize weevil (MW) with identical training set size (37%) and compositions 
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Figure S3. Comparisons of genomic prediction accuracies of the three best algorithms for best linear 

unbiased predictors (BLUPs) of maize weevil resistance traits: number of affected kernels (AK), adult 

progeny emergence (AP), and grain weight loss (GWL) vs., fall armyworm resistance dataset with 

identical TS. 

 
Figure S4. Genomic prediction accuracies of the three best algorithms for each fall armyworm resistance 

BLUPs datasets with RBTS of 37, 62, 75, and 85% of the entire dataset. 

 
Figure S5. Genomic prediction accuracies of the three best algorithms for each fall armyworm resistance 

BLUPs datasets with PBTS. 
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