
International Journal of Finance and Accounting 2018, 7(1): 7-12 
DOI: 10.5923/j.ijfa.20180701.02 

 

All Markets are not Created Equal - Evidence from    
the Ghana Stock Exchange 

Carl H. Korkpoe1,*, Edward Amarteifio2 

1College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana 
2School of Business, University of Cape Coast, Cape Coast, Ghana 

 

Abstract  We investigated the model fit for volatility of returns from the Ghana Stock Exchange All Share Index for the 
Bayesian versions of GARCH(1,1) with student-t innovations and stochastic volatility. We found evidence in favour of the 
GARCH(1,1) with student-t innovations against the recommendation from the developed equity markets of preference for 
stochastic volatility models. We are of the view that model fit has to do with the development stage of a particular market. 
Issues like thin and asynchronous trading influence the data generating process; hence, we view financial econometric models 
as suitable to data depending on whether the market is developed, emerging or frontier. 
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1. Introduction 
Financial markets exhibit certain regularities in what has 

become known in the literature as stylized facts. Certain 
findings seem to occur with some regularity that it has come 
to be accepted as a matter of course. However, statistical 
models which seek to uncover the behaviour of financial 
variables has for long given mixed results when applied to 
different market settings. One such model, so central to 
finance and economics, is the volatility model used to 
estimate the heteroscedasticity of a financial time series. 
Volatility is ubiquitous in finance. It plays a major role in the 
pricing of financial instruments, trading, managing and 
monitoring of risk. As a concept, its latent nature means it 
can only be estimated from historical data and then forecast 
forwards. Estimating volatility has been challenging 
throughout finance and economics literature spawning 
numerous models to capture various aspects of it through 
time. Starting with the pioneering work of Engle [1] on 
autoregressive conditional heteroscedastic (ARCH) model 
for estimating volatility in inflation data of the United 
Kingdom, research has since exploded with researchers 
tinkling with various models based on the generalised 
autoregressive conditional heteroscedasticity (GARCH) 
developed by Bollerslev [2]. 

Among many variants, Nelson [3] proposed the 
exponential GARCH to account for the so-called leverage 
effect in volatility dynamics. Past negative observations tend  
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to have a larger effect on the conditional volatility compared 
with past positive returns of similar magnitude. This 
important observation was earlier reported in the literature 
by Black [4] and Christie [5]. Similarly, Glosten et al. [6] 
proposed a model that captured the asymmetry induced by 
negative shocks to the conditional volatility process. 
Majority of these models nest the GARCH. Zakoian [7] 
introduced the threshold GARCH (TGARCH) which does 
not nest the GARCH. The TGARCH differs from the other 
GARCH models in the way it uses standard deviation instead 
of variance in the modeling process. For a review of GARCH 
models and their applications see Xu et al. [8], Teräsvirta [9], 
Bauwens et al. [10], Brooks et al. [11], Poon and Granger [12] 
and Hentschel [13]. 

There are important shortcomings of GARCH, however. 
The accuracy of calculations and forecasts of volatility for 
nonlinear data using GARCH models have been the subject 
of continuing research and criticism [14]. This could be due 
to the very basic assumption underpinning GARCH models. 
GARCH family of models assumes deterministic volatility 
states. However, it is known that volatility itself can be taken 
as a stochastic variable. This gave rise to the adoption of 
models that assume the stochasticity of the volatility states. 
In the stochastic volatility (SV) paradigm, we remove the 
restrictions on the model parameters, a difficulty in 
GARCH-type estimation. More importantly, both the return 
equation and the volatility model are driven by separate 
innovative process. This makes SV models flexible and are 
able to capture the characteristics of the volatility in the 
returns.    

In this paper, we provided a Bayesian implementation of 
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the volatility of the returns of the Ghana Stock Exchange All 
Share index (henceforth GSE index) within both the 
framework of stochastic volatility and GARCH(1,1) with 
student's t innovations. Both models have been implemented 
using Bayesian statistics in order to have a uniform set of 
statistics as a basis for comparison.  

Our findings are two-fold. First we found that even for a 
large data set, the parameter estimates differ in both 
paradigms of volatility modeling. This result is consistent 
with findings in empirical finance of both the GARCH(1,1) 
and SV models giving different estimates of volatility 
parameters. We also found that for the period under review, 
the GARCH(1,1) seems adequate in terms of parsimony and 
model fit compared to the SV model. This is very much at 
odds with findings and recommendations in finance [15]. We 
think it may be due to the developmental stage of the 
particular market in question. This, in our view, warrants 
further research in markets with similar characteristics as 
that of the GSE. 

This paper is novel in one important aspect. It is the first, 
to the best knowledge of the authors, to incorporate Bayesian 
methodology in volatility estimation for both GARCH(1,1) 
and SV frameworks in modeling the volatility of the returns 
of the GSE index. This approach has been shown by Ghysels 
et al. [16] and Jacquier, Polson and Rossi [17] to be 
parsimonious. There is a plethora of papers on modeling 
volatility of returns of the GSE index; see Boako et al. [18], 
Frimpong and Oteng-Abayie [19] and Alagidede and 
Panagiotidis [20]. All these papers used GARCH class 
models. This research therefore should be seen as a departure 
from these approaches in adopting a Bayesian framework. 
Bayesian methods offer a natural solution to the generality of 
volatility modeling problems where we estimate parameters 
using own lag values. There could be other drivers of risk 
that are latent; thus escaping specification and/or accurate 
measurement. This transforms an otherwise deterministic 
problem into a stochastic one with consequences for the 
model. The Bayesian paradigm can therefore be seen as 
incorporation model uncertainty due to measurement errors, 
model misspecification and omitting variables. 

The rest of the paper is organised as follows. Section 2 
reviews the literature on GARCH, SV and the Bayesian 
modeling approach. The mathematical representation of the 
stochastic volatility and GARCH model is given in section 3. 
This mathematical representation relies on the Bayesian 
method of estimating model parameters. Section 4 is 
therefore on the prior estimation for the Bayesian posterior 
estimation. Section 5 looks at data analysis, results and 
discussion. This includes model comparison of SV with the 
GARCH(1,1). Finally section 6 concludes the paper.  

2. Literature 
(G)ARCH models were the first serious attempts at 

modeling time-varying conditional heteroscedasticity. 
Engle's [1] original idea of the ARCH models was to linearly 

regress the time t variance of the process on the p squared 
errors from prior time periods. This idea was a departure 
from the constant variance in vogue at the time. It was 
appealing intuitively and so it quickly gained traction among 
academics and finance practitioners. However, model 
parsimony was a problem. ARCH models required long lags 
into the past. It also has the limitation of being unable to deal 
with asymmetric and leverage effects in volatility. To deal 
with the first limitation, Bollerslev [2] proposed, in addition 
to the p lagged square errors, to include lagged values of the 
variance. This serves to make the GARCH model 
parsimonious. The model is also able to describe a wide 
range of behaviours that characterise volatility of returns 
empirically. 

SV models provide an alternative to GARCH models. 
Fundamentally, GARCH models have one source of 
variation which is the innovations zt distributed as iid 
N(0,σε

2). The expectation and variance of the innovations is 
deterministic. There is a single white noise process driving 
both the conditional mean and the conditional volatility. This 
does not allow for any variation in the error process of the 
volatility dynamics. This is clearly at variance with the 
empirical behaviour of volatility in financial time series. 
Additionally, GARCH models are subject to a number of 
constraints to ensure a positive variance. As Nelson [3] noted, 
these constraints are violated during the process of 
estimating the GARCH parameters. 

In observed financial times series, volatility clusters 
characterise returns. These clusters are observed to be 
time-varying too. This suggests to account for the random 
variation in the conditional expectation and the conditional 
variation separately. This is the idea of SV models. 
Unfortunately, SV modeling presents a difficulty. Instead of 
one, an additional error process has to be taken into account 
in modelling. This calls for Bayesian approaches. References 
to the use of Bayesian methods in volatility modeling go 
back to the work of Jeffrey [21] with the use of Jeffrey priors 
in significance testing. It was established then that the 
volatility of financial returns varies randomly with time. 
Clark [22] also documented this observation in an early 
attempt at giving a mathematical form to the variation in 
speculative futures. He proposed a mixture of distributions 
for the returns on stocks. An early application was by Taylor 
[23] who formalised the concept in a statistical form. He 
modelled the volatility of sugar prices by explicitly 
modelling the randomness of the conditional mean and 
conditional variance separately with the logarithm of the 
variance following an autoregressive process. In short SV is 
modelled to capture the heteroscedasticity of the volatility 
process by having its own set of innovations or shocks. Since 
then, there has been a plethora of papers extending SV in all 
areas of finance and economics. This has been made possible 
largely by the adoption of numerical techniques of analysis 
in solving computationally intractable problems using 
efficient Markov chain Monte Carlo (MCMC) methods for 
sampling posterior distributions. This has been made 
possible by advances in Bayesian statistics over the last three 
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decades. Bayesian methods are parsimonious and give 
outputs that are easily interpretable. The concept has been 
particularly used in the pricing of derivatives where risk 
modeling is of utmost importance.  

Andersen [24] extended stochastic volatility and provided 
a general framework for autoregressive modeling of the 
volatility of financial time series. Since then, numerous 
researchers have found various paths for applying this 
framework in finance and economics. They have found use 
particularly in the area of option pricing where volatility of 
the return on assets is a key input [25-28]. Hobson and 
Rogers [29], Renault and Touzi [30] and Andersen and 
Andreasen [31] explained the phenomenon of volatility 
smile surface in implied volatility using SV. SV has provided 
the tools to model jumps in financial data at multiscale [32]. 
In areas as varied as high frequency volatility modeling, 
jumps are a frequent feature and very difficult to capture. 
Busch et al [33] employed SV to capture these 
discontinuities in the foreign exchange, bond and stock 
markets.  It has also been used in coming up with new types 
of risks in the finance industry [34].  

3. The Models 
3.1. Stochastic Volatility 

We adopt the notation of Kastner [35] in specifying the 
stochastic volatility model. Consider a vector of return series 
{𝑦𝑡}𝑡=1𝑇  which have been demeaned. The SV is stated in 
hierarchical form as: 
𝑦𝑡|ℎ𝑡 ~ 𝒩(0, 𝑒ℎ𝑡)  
ℎ𝑡|ℎ𝑡−1,𝜑,𝜗,𝜎𝜂 ~ 𝒩�𝜑 + 𝜗(ℎ𝑡−1 − 𝜑),𝜎𝜂2�         
ℎ0|𝜑,𝜗,𝜎𝜂 ~ 𝒩(𝜑,𝜎𝜂2/(1 − 𝜗2))    

where 𝒩(𝜑,𝜎𝜂2) is a normal distribution with mean μ and 
variance 𝜎𝜂2. The vector of parameters 

Θ = (𝜑,𝜗,𝜎𝜂) 
where μ is the level of log-variance, φ is the persistence of 
log-variance and the volatility of log-variance is 𝜎𝜂 are to 
be estimated. The process ℎ = (ℎ0,ℎ1, .  .  . ,ℎ𝑛)  is the 
latent conditional volatility process with the ℎ0  as the 
initial stationary autoregressive process of order one. 

3.2. GARCH(1,1) 

Consider a stationary series given by {𝑦𝑡}𝑡=1𝑇 . The 
returns relation is stated as 

𝑟𝑡 = 𝜇 + 𝜎𝑡𝑧𝑡 
with 𝜀𝑡 ~ 𝑖𝑖𝑑 𝑡𝜈  being the student's t-innovations with 𝜈 
degrees of freedom. The GARCH(1,1) model is specified 
as: 

𝜎𝑡2 =  𝜔 +  𝛼𝜀𝑡−12 + 𝛽𝜎𝑡−12  
with the restriction on the parameters 𝜔,𝛼,𝛽 > 0  and 
𝛼 + 𝛽 < 1. The parameters {𝜇,𝜔,𝛼,𝛽} are to be estimated 
using the Bayesian sampling method.  

4. Prior Estimation 
Bayesian methods involve an integral which sometimes 

no analytic solution. A numerical method involving a 
Markov chain Monte Carlo algorithm offers a powerful and 
intuitive framework for solving flexibly the integration 
numerically. This has been made possible by the advent of 
low cost computing technology and efficient MCMC 
samplers. We use the random walk Metropolis-Hasting 
algorithm of the MCMC to construct the Markov-chain 
simulation of the posterior. We need to specify the prior and 
likelihood as the basis for estimating the posterior. From the 
posterior, we draw inferences about our volatility 
parameters.  

Choosing our priors for the problem relies on the 
recommendations set out in Kim et al. [36]. The prior 
consists of independent hyperparameters whose joint 
distributions is stated as a product given the parameter space 
Θ = {𝜑,𝜗,𝜎𝜂} as: 

𝑝(Θ) = 𝑝(𝜑)𝑝(𝜗)𝑝(𝜎𝜂), 
with the parameters previously defined. 𝜑, the level of 
log-variance, is taken to be a normal prior 𝜑 ~ 𝑁(𝑐𝜑,𝐶𝜑). 
This prior is chosen to be noninformative ie. 𝑐𝜑 = 0 and 
𝐶𝜑  ≥ 100. This is to allow the likelihood to contain most 
of the information. We chose a beta function with 
parameters 𝑚0,𝑛0  > 0 for the persistent parameter with 
𝜗 ∈ (−1, 1) to ensure the stationarity of the autoregressive 
volatility of the process ℎ0. The beta distribution is thus 
given as 𝜗+1

2
~ 𝐵(𝑚0,𝑛0)  with the density function 

expressed as: 

𝑝(𝜗) =  1
2𝐵�𝑚0,𝑛0�

�1+𝜗
2
�
𝑚0−1

�1−𝜗
2
�
𝑏0−1

. 

The expectation and variance of this distribution is given 
respectively as: 

𝐸(𝜗) =  
2𝑚0

𝑚0 + 𝑛0
− 1  

and  

𝑉(𝜗) =  4𝑚0𝑛0
(𝑚0+𝑛0)2(𝑎0+𝑏0+1)

. 

Suggestions for the choices of 𝑚0 and 𝑛0 are made in 
Kim et al. [36]. For the choice of the distribution of the of 
the volatility of log-variance 𝜎𝜂 , we follow the 
recommendations of Frühwirth-Schnatter and Wagner [37] 
who selected 𝜎𝜂2~𝐶𝜎𝜂 ∗ 𝜒1

2 =  𝒢𝑎𝑚𝑚𝑎(1/2,1/(2𝐶𝜎𝜂))  so 
that 

𝐸�𝜎𝜂2� =  𝐶𝜎𝜂. 

5. Data and Analysis 
We obtained the daily closing indices of the GSE 

All-Share Index for the period from January 04, 2011 to 
March 31, 2017 giving 1549 data points. We calculated the 
log-returns from 𝑟𝑡 = 𝐼𝑛( 𝑃𝑡

𝑃𝑡−1
)  where 𝑃𝑡  is the price at 

time t to obtain a total of 1548 data points. 
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5.1. Descriptive Statistics 

A time series plot in Figure 1 shows how the level of the 
index has evolved on the years. The index peaked around 
January 2014 and remained at that level with marked 
fluctuations until about July 2015. The market calmed 
thereafter with the level fluctuating around a downward 
trend until January 2017 when it bottomed up. 

 

Figure 1.  Time series of index levels of the GSE index 

To make the series stationary, we took the differences of 
the logarithm prices to get the returns. A plot of the returns in 
Figure 2 shows apparent stationarity. There were extreme 
outcomes in the returns towards the end of 2015. 

 

Figure 2.  Time series of log-returns of the GSE index 

 

Figure 3.  Histogram of the log-returns of the GSE Index 

We conducted the augmented Dickey-Fuller test for the 
series. It yielded a 𝑝 < 0.05 ; hence we reject the null 
hypothesis of unit root at the 5% significance level and 
conclude that the series is stationary. A histogram of the 
returns is shown in Fig. 3. We superimposed the normal 
curve on the histogram. We can see that the distribution has 
fat tails.  

A summary of the statistics of the returns is given in 
Table 1. The kurtosis confirms the presence of fat tails.  

Table 1.  Summary statistics of returns of GSE index 

Statistic Mean std dev Skew Kurtosis 

value 0.0004 0.0058 0.29 15.47 

Engle's LM test for the presence of GARCH effects 
yielded a 𝒳2- statistic of 295.66 with a 𝑝 < 2.2 ∗ 10−16 
confirming the presence of heteroscedasticity. 

5.2. SV and GARCH(1,1) 

We estimated the models for the Bayesian SV and 
GARCH(1,1) using student-t innovations. Our choice of 
t-innovations was informed by the fat tailed distribution. The 
result of the parameters for the SV and GARCH(1,1) are 
displayed in Table 2 and 3 respectively. 

Table 2.  Posterior summary of the SV model 

Parameter μ ω Φ θ Ν 

Mean 0.0265 0.0225 0.06737 0.44766 17.9804 

s.d 0.0077 0.0083 0.08103 0.04761 6.9685 

Table 3.  Posterior summary of the GARCH(1,1) model 

Parameter μ ω φ Θ Ν 

Mean 0.0265 0.0286 0.0824 0.3636 14.3554 

s.d 0.0071 0.0074 0.2610 0.1402 8.3150 

The penalised deviance of the SV and GARCH(1,1) are 
1917 and 1897 respectively. This shows that the GARCH 
model fits the data better than the SV. Figure 4 compares the 
evolution of volatility of both models. It is seen that the SV 
model consistently over-estimates the volatility during the 
period. 

 

Figure 4.  Conditional volatility of log-returns estimated by the SV and the 
GARCH(1,1) models 
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6. Conclusions 
Stochastic volatility models provide an alternative to the 

GARCH(p,q) models when estimating the parameters of the 
heteroscedastic process. In the developed markets, the SV 
has generally been found to be better in terms of model fit 
compared to the GARCH. This finding is across different 
asset classes. Frontier markets have their own idiosyncrasies 
which are clearly reflected in the statistics generated. Thin 
and asynchronous trading effects are two characteristics of 
trading in the relatively young markets. These effects 
influence the data generating process and give it different 
stylized effects. For example, the skew of the distribution of 
the return on the index was positive, a fact that has always 
been negative in developed markets. This may be due to the 
lack of crowding which leads to attractive valuations in 
frontier markets with above average returns. 

We showed in this paper that GARCH(1,1) fits the data 
better than the SV model. SV consistently over-estimated the 
volatility for the period. Given the centrality of risk in 
finance, any model that over-estimates volatility will likely 
lead to mispricing with serious consequences for investors. 
For markets in their early stage of development, we still have 
to rely on the recommendation of Hansen and Lunde [38] 
who noted that nothing beats the GARCH(1,1). 
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