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Abstract—In home network, to manage network bandwidth
usage, one solution is to control the server outgoing traffic with
a token bucket policy. Hull-based token bucket parameter setting
allows the guarantee of Quality of Service for variable bitrate
video streaming. Hull is an abstraction of the bitrate, following
the bandwidth requirement evolution dynamically. In the case of
multi-streaming, we investigate a shifting technique to reduce
the peaks impact. Postponing the streaming starting time of
a video helps to decrease the maximum required bandwidth.
The technique is then mixed with the hull-based reservation.
Simulations show the effectiveness of the combined approaches
to optimize bandwidth usage, guaranteeing the best QoS for
streaming. Online utilization is also discussed.

I. INTRODUCTION

Home networks now interconnect a lot of heterogeneous
devices to offer distributed streaming services at home. A
classical usage is to start a streaming application between a
server (a stored video in the home’s gateway) and a client (a
viewer). In this instance of close devices in a closed system,
the user expects the best Quality of Service (QoS), ensured by
providing the necessary quantity of resource at run-time (the
network bandwidth in the paper).

The home network designer is faced with two challenges.
The first is to provide a mechanism to reserve enough resource
for multimedia streams which are typically encoded with a
Variable BitRate (VBR). Thus, the required bandwidth fluctu-
ates during the streaming, with numerous peaks. Moreover,
the solution has to be implemented on legacy systems :
home networks are based on legacy technologies like TCP
for transport protocols and QoS standards.

In the literature, to solve the problem of QoS guarantee
for VBR transmission, the research proposals are based on
a complex and accurate model of VBR [1]. From these
models, resource reservation may be done with a QoS-oriented
negotiation between the clients and the server like in [2]. These
approaches, based on statistical model and QoS control loops,
are dedicated to open, dynamic and adaptive systems following
a best-effort paradigm, see iDASH [3] for Video on Demand
(VoD).

But, in the specific context of closed systems, since we have
a full knowledge of contents and architecture, we argue that
we can control resource usage precisely using a centralized
architecture and an accurate knowledge of bitrate to transmit
[4]. In this approach, the network admission is classically
solved by limiting the outgoing traffic on server devices with
a token bucket that shapes the outgoing traffic.

The problem relies then on the tocken bucket configuration.
One may set the token bucket parameters to a maximal value
of bitrate [5] to guarantee the best QoS. But this solution
results in an over-reservation. The reservation is based on the
worst bitrate value, generally a non representative peak. Token
bucket parameters may be set to an average value to optimize
the link usage but it may increase the network delay [6]. A
trade-off is proposed in [7], with an adapted joint rate and
admission control.

Following this idea, we proposed an original approach in
[8] based on an optimal hull (a worst case required bitrate) of
VBR. Optimality regards average resource usage and imple-
mentation constraints. Hull is used to compute token bucket
parameters to allocate network bandwidth dynamically, fol-
lowing as precisely as possible bitrate evolution and ensuring
the best QoS (minimum delay and data loss).

The hull-based approach works for giving priority to a video
stream transiting within the home network. But, if a new (or a
set of new) movie(s) are to be started simultaneously triggering
competition for the resource, priority cannot be used to decide
between streams for admission. In case of multiple streams, a
first idea is to produce a hull for the added VBR (the current
streaming video and the new one). But multiple streams induce
a peak problem, not solved by the hull definition. Figure 1
illustrates this issue: if videos A and B streaming start at the
same time, a peak appears at date 3. So before hull definition,
one needs to reduce peaks. The solution we investigate consists
in delaying some videos. By delaying B 1 second, the peak
decreases by 20 units.
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Fig. 1: Total required bandwidth for video streaming (a)
without and (b) with a start delay for the second video

In the context of home network, the current streaming
cannot be delayed (user requirements), the problem is then
to find the best delay for others videos, with the objective
of reducing peaks. The delay is limited by the maximum
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acceptable delay to start a new video streaming.
The paper proposes a video shifting algorithm to find the

best video starting time : when a user asks for a contents,
how much to postpone the begining of his video streaming
in order to minimize the peak bandwidth request during the
streaming, taking into account the other running streaming
process requirements during the period. The paper also inves-
tigates mixing the reservation algorithm proposed in [8] with
the shifting mechanism. Last, performances are measured in
order to check if the best shifting and hull computation can
be made online, when a new video is ready to start, within an
acceptable delay for the end-user.

The paper is organized as follows. Section 2 details related
works. Background and formalization of the problem is de-
scribed in section 3. Section 4 presents the shifting algorithms.
The way of mixing them with the reservation policy proposed
in [8] is explained in section 5. Section 6 is devoted to
simulation results.

II. RELATED WORKS

There is a large number of works about VBR Video traffic
models, see [9] for more details. All these works propose
to develop statistical predictive models of VBR behavior.
On the other hand, if one can compute the VBR itself,
deterministic services can offer guarantee for delay and loss
rate. It results into a low network utilization [10] because it
needs to reserve the bandwidth according to the peak rate. To
avoid this problem of deterministic approaches, we propose
a new original approach, sharing common ideas with some
statistical predictive approaches, even if some are relatively
old research works.

In [11], the authors propose a simplified hull of the em-
pirical envelope [12] to integrate implementation constraints.
And to provide deterministic QoS, [13] proposes a bounding
version of such characterization. We share with these works
the idea of a simplified view of the VBR to integrate imple-
mentation constraints and to provide deterministic QoS.

Because of time-independence, the problem of these ap-
proaches is that the required bandwidth may be very high
to ensure no delay, considering peak rate. RED-VBR [14]
and RCBR [15] propose flexible re-negotiation services to
reduce the impact of burstiness of VBR video. The idea is
to segment the video into sequences and to reserve adequate
resource for each segment. RCBR mechanism [16] proposes a
dynamic bandwidth allocation strategy to support VBR video
traffic. More recent work [17] proposes another accurate real-
time bandwidth reservation and on-line prediction. Following
these works we want to adapt online the network reservation,
following VBR evolution, in order to limit peaks impact.

All these works concentrate on predicting the required
quantity of resource (here the network bandwidth). On the
other hand, the Matrix framework [18] proposes an abstraction
of device state (offered quantity of resource) through a timing
evolution of discrete QoS levels. This abstraction acts as a
hull of offered quantity of resource, a QoS level is then the
minimal value of available quantity of resource. We share with

this work the idea of making an abstraction of VBR through
a timing evolution of discrete required bandwidth (worst bit-
rate) levels

These approaches are developed for individual streams. In
case of different videos, various smoothing algorithms [19]
have been proposed for statistical multiplexing. The idea is
to reduce cumulative peaks impact either by renegotiating
bandwidth allocation [20], or by removing or simply delaying
some frames [21]. In this work, we propose both to renegotiate
bandwidth allocation and to delay some videos diffusion to
both reduce the impact of cumulative peaks, and limit the
problem of over-reservation induced by deterministic services.

We introduce some notations and previous work before
presenting our contribution.

III. BACKGROUND AND MODELS

a) Hull based approach for single stream: We propose
an original approach in [8] based on an optimal hull (worst
case required bitrate) of VBR. Optimality regards average
resource usage and implementation constraints. Hull is used
to compute token bucket parameters of the streaming server
to allocate network bandwidth dynamically, following as pre-
cisely as possible bitrate evolution and ensuring the best
QoS (minimum delay and data loss). In [8], the network
bandwidth required for a video streaming is represented as
a sequence of values b = {b1, ..., bn} called bitrate. bi is
the bandwidth required during time slot i and is expressed
in e.g kbits/s. Such bitrate is computed from the stream file
by extracting the size of the frames. A hull is another sequence
of values h = {h1, ...., hn} such that ∀i ∈ [1..n], bi ≤ hi. It
represents a network bandwidth reservation sequence. Since
reservation is always higher than the requested bandwidth,
QoS is ensured. Based on graph theory, the optimization
algorithm minimizes the overcost (bandwith over-reservation)
defined as

∑n

i=1
(hi − bi). Obviously, if bi = hi, overcost

is null. However, this is not realistic since network equip-
ments cannot be reconfigurated as often as bitrate levels vary.
The optimization algorithm models this constraint by taking
into account two parameters : a reconfiguration frequency P

(minimal number of consecutive identical hi values) and/or
a maximal number of reconfigurations M (number of times
where hi+1 �= hi). Overcost is minimized according to the P

and M selected values. A movie bitrate series, and a possible
reservation hull are depicted on figure 2. The optimized cost
corresponds to the red area.

b) Handling multiple streams: Let a set of videos {Bi}
to be diffused at the same time and their associated bitrate
series {Bf

1 , B
f
2 , ..., B

f
nf}. {B

f
i } represents the bandwidth re-

quirements of video {Bf} for the period i. Let df be the delay
for video f and Δ its maximum. Let the video 1 be the current
streaming and cannot be delayed (d1 = 0). It represents the
video (or the set of videos) already started, with the amount of
data that have to be transmitted related to this (these) running
streaming(s). One goal is then to compute the starting times
df for (f ∈ [2..m]), for the not yet started streaming(s), such
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Fig. 2: A bitrate series and the optimal reservation hull accord-
ing to constraint P = 5 (minimal time before reconfiguring
the bandwith reservation level)

that df ≤ Δ and

maxt

m∑

f=1

B
f
df+t (1)

is minimum. Times t cover the whole time period of
streaming.

The optimization objective defined by eq. 1, by limiting the
peak, tries to limit the maximum reservation locally. As in
[8], we also keep the global objective of reducing over-cost
reservation induced by hull definition.

IV. SHIFTING ALGORITHMS

The problem of optimizing starting times for many videos
can be solved approximately or exactly. The former can be
realized by processing the videos one by one. The latter
corresponds to a search tree traversal.

c) Heuristic algorithm: In this case, the starting time of
one video is optimized considering fixed starting times for
previous videos.

Let’s consider the case of a two videos set {Ba, Bb}. Ba

starts at 0, and the first algorithm simply computes the peak
value for of all the allowed times in interval [0..Δ] for Bb.
The time leading to the minimal cumulative bandwidth peak
is selected. Complexity is O(Δ.n), with n as the video bitrate
size. A O(Δ.n.m) complexity algorithm can be derived for m

videos (algorithm 1). At each step k, Ba corresponds to the
cumulative bitrate series of videos 1 to k, according to their
starting times, and Bb is the (k + 1)th video, Bk+1. Notice
that the solution obtained is exact if m = 2 (remind that first
video B1 starts at time 0 and cannot be delayed). It computes
an approximate solution if m > 2.

d) Exact algorithm: On the contrary, the optimal solution
for a set of more than two videos is found by enumerating
all of the starting times combinations in the [0..Δ] interval
for videos 2 to m. It corresponds to the traversal of a search
tree (see figure 3). Each tree level except the root represents

Algorithm 1: Heuristic computation of starting times
Data: Δ, B = {B1, B2, ..., Bm}
Result: d = {d1, d2, ..., dm}
begin

d1 ← 0
for f ∈ [2..m] do

df ←∞
for d ∈ [0..Δ] do

obj ← maxt

∑m

f=1
B

f
d+t

if obj < df then
df ← obj

end
end

end
end

a video which can be postponed. A node has Δ children,
corresponding to the possible shifts. A path from root to a
leaf corresponds to a set of starting times for the set of videos.
The exact algorithm finds the optimal solution by exploring
the whole search tree. Its complexity is O(Δm).

0 1

0 1

0 1

root

movie

movie

movie

     3

     2

starting dates
     m

...

...

...

Δ

Δ

Δ

Fig. 3: Exact computation of starting times : the search tree
explorated for checking all starting times combinations. Each
combination is a path from root to a leaf

V. TESTS ON SHIFTING

In this section, we investigate both the run-time and the
quality of the two algorithms. The minimal peak is computed
by the exact algorithm, providing a bound on the quality of
the heuristic. The algorithms have been implemented in C,
run-time is measured onto an Intel i7, 2.8 GHz system with
8GB of memory. Test videos are Psych movie series episodes
of approximately 45 mn each, encoded with H264/avc1, 23.97
fps of size 720 x 402. Bitrates used are sampled per second,
leading to approximately 2700 bitrate series. Peaks are around
5000-6000 kbps.

A. Run-time
Run-time depends on the value of Δ (which defines the size

of the search space), and both the number and the length of
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the videos. The impact of the former is tested first.
Figure 4 depicts run-time in milliseconds for both exact and

heuristic algorithms, for computing the starting times of 1 to
3 new movies. Run-time is given according to Δ values (from
0 to 100 s). The curves reflect the complexity of algorithms:
O(Δ.m) for the heuristic, O(mΔ) for the exact algorithm, if
m is the number of movies, of a given fixed length. For 1 or
2 new movies, the exponential factor has not too much impact
on the exact algorithm run-time, but it explodes with the 3rd

movie. Heuristic algorithm is 1000 times faster than exact one
for a Δ of 100. Regarding the actual time of computation, the
heuristic algorithm returns in less than 3 ms, which makes it
applicable online.

If one remembers that heuristic algorithm provides the exact
solution if only one video is to be added, this algorithm is
obviously to be used in this single addition case. Furthermore,
the heuristic behaves efficiently for very large values of Δ,
even if users won’t accept a delay of more than a few seconds.
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Fig. 4: Run-times in milliseconds for up to 4 movies according
to Δ

Concerning the number of videos, the exact algorithm run-
time gets worse rapidly with the increase in number of videos.
For example, with Δ = 10 and 7 videos, the exact algorithm
runs within 10 s, while the heuristic is still at the millisecond.

The second video parameter that influences the run-time is
the lengths of the videos, corresponding to the number of times
to be compared. Figure 5 shows the evolution of the run-time
of the exact algorithm for various video lengths, with Δ = 5.
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Fig. 5: Run-times of exact algorithm for up to 4 movies of
variable lengths, with Δ = 5

Theoretically speaking, the shortest the bitrate lengths, the
better are the run-times, since the peak search computation

time is linear in term of video length at each step. However, if
a good solution is found early, the peak computation is aborted
early in subsequent configurations evaluations. This explains
the irregularities for the 2000 and 2500 points in figure 5.
Notice that heuristic run-time is about 3 ms for Δ = 5 and 4
2500-length movies.

B. Quality of solutions

The goal of the shifting is to minimize the peak value for
combined videos reservation. The figure 6 shows comparative
results for both the exact and heuristic algorithms. 1 to 3 new
movies are considered, with values of Δ in the range [2..100].
The results obtained can be compared to the case when no
shifting policy is applied, e.g if all of the movies start at the
same time.

optimal algorithm heuristic
# new movies # new movies

Δ 1 2 3 1 2 3
2 8482 8872 9539 8482 8872 9539
3 7365 7725 8233 7365 7725 8233
4 7365 7725 8233 7365 7725 8233
5 7166 7526 8010 7166 7526 8141

10 6915 7297 7873 6915 7340 7913
20 6915 7297 7873 6915 7340 7913
50 6915 7292 7821 6915 7340 7913

100 6683 6973 7667 6683 6973 7750

Fig. 6: Results comparison for exact and heuristic algorithms.
Minimal bandwith peaks (in kbps) for 1, 2 and 3 added
movies when maximum allowed shifting Δ varies for 2 to
100. Without any shifting strategy (simultaneous starting time
for all movies), peak is of 9225 (resp 10030, 10741) kbps for
1 added movie (resp. 2, 3)

First, adding shifting is efficient: if no shifting is considered,
peak values are more than 8 % higher, even for low values of
Δ. For example, if a single movie is added, a delay of Δ = 2
units (e.g. 2 seconds) leads to a peak value of 8482 kbps
instead of 9225 kbps if the second movie starts immediatly.
Second, the shifting results show that the heuristic is efficient.
Tests with Δ ≥ 5 are the only configurations where the peak
can be higher with the heuristic, but still less than 1.6% more
than optimal value provided by the exact algorithm. Highest
values of Δ considered here are theorical : postponing the
starting time of a movie streaming more than a few seconds
will not be acceptable for end-users. Furthermore, as shown
in figure 4 (a), the exact computation of starting times is time
consuming when the number of movies increases.

In terms of peak values, larger allowed shifts can lead to
better results. For 1 added movie, increasing Δ allows peak to
decrease from 8482 to 6683 kbps (21% gain). For 3 movies,
it reduces from 9539 to 7750 kbps (18% gain).

We now evaluate the impact of shifting on dynamic reser-
vation based on a hull.

424242
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VI. RESERVATION HULL OPTIMIZATION

The network cannot be reconfigured as often as require-
ments vary with a VBR encoded video. [8] proposes an algo-
rithm for optimizing the bandwidth allocation (see section I).
Remind that a series of configurations called hull is computed,
defining bandwidth allocation levels, that must cover the video
bitrate series. The hull definition is constrained by the number
of different allowed configurations (M value) and the minimal
period between 2 reconfigurations (P value). The algorithm
minimizes the cost of bandwidth reservation ( allocated bandwith

required bandwidth ).
In the following, it is noted as a percentage, e.g a ratio of 1.38
is denoted as 38%.

The hull algorithm has been designed for a single bitrate,
but it is applicable to a set of bitrates by considering the
cumulative values of the series.

In this section, we investigate how hull-based reservation
and shifting mechanism interact together. There are two ap-
proaches for the mixing process, depicted in figure 7.

2) shifting hulls

3) refining global hull

1) computing individual
    hulls

(a) shiftHulls

1) shifting bitrates

2) computing global hull

(b) shiftBitrates

Fig. 7: How to mix hull reservation with shifting for peak
optimization procedure

(a) shiftHulls hulls are first computed individually for each
stream. The shifting algorithm is then applied on the hull
shapes for finding the best starting times, leading to a min-
imal peak for the hulls. Due to the shifts, reconfigurations
induced by each hull may be non compatible. Thus, the hull
computation is to be repeated on the merged shifted hulls.
(b) shiftBitrates shifting algorithm is applied directly on the
bitrate series, then hull computation is made on the merged
shifted bitrates.

As an example, consider series A = 5 8 7 9 9 8 and
B = 3 2 2 2 5 6. With shiftHulls, with P=2, we obtain
hulls hA = 8 8 8 9 9 9 and hB = 3 3 2 2 6 6.
Shifting with Δ = 3 leads to a shift of 2 for hB and
a peak value of 12. The resulting cumulative values se-
ries is hA+hB= 8 8 8 12 12 11 2 6 6, with period P

non respected. The hull must be recomputed. The result is
hAB = 8 8 8 12 12 12 6 6 6 of cost 78.
With shiftBitrates, for the same P and Δ values, B is also

shifted of 2, leading to a peak of 11 for the cumulative series
A+B = 5 8 10 11 11 10 5 6. It leads to a final hull
hAB = 8 8 11 11 11 11 6 6 of cost 81.

First approach seems more complex but can leads to better
results. The run-times of the overall process and the quality
of the resulting hulls were investigated for the two considered
approaches (a) and (b). They are discussed next.

A. Quality of solutions
Shifting aims at minimizing the peak for cumulative band-

width of two or more videos. Hull reservation targets to limit
over-cost reservation induced by the hull definition (remember
that a hull is a worse bound of required bitrate depending on
the P and M parameters). So in this section, we investigate:

• the influence of combined hull definition: what is the
benefit of considering conjointly the videos instead of
making independent hull reservations;

• the impact of shifting technique on hull-based reservation
performance;

• the impact of hull parameters on shifting.
First, we evaluate the interest of making a global reservation

and the influence of the shifting onto the hull. The evaluation
is made for two videos for different Δ values. The over-cost
is expressed as a percentage of the sum of the considered
bitrates.

Hull global hull over-cost over-cost for
constraints for Δ ∈ [1..20] 2 distinct hulls

P = 5 21.6 – 22.7% 29.1%
P = 10 37.4 – 39.4% 49.1%

M = 1200 4.1 – 4.3% 5.0%
M = 600 11.3 – 11.8% 14.3%

Fig. 8: For various hull building constraints (P and M values),
global hull quality intervals for Δ ∈ [1..20] for 2 videos
of 2400s each. Also cost ratio if bandwidth allocation is
computed separately for the 2 videos instead of being made
on the cumulative bitrates of the 2 videos

The table 8 shows the over-cost values obtained when Δ
varies between 1 and 20.

A first conclusion on quality is that hull computation must
be made globally for minimizing the over-cost of separate
reservations: over-cost is always higher if allocation is made
individually for each of the videos, instead of computing a
common bitrate series first. The second conclusion is on the
fact that over-cost intervals are very tight: shifting the start of
a video doesn’t modify significantly the hull quality for these
simple test cases.

To evaluate impact of hull definition on peaks, we evaluate
the approaches (a) and (b) for the two different shifting
techniques on a more complex case. Table 9 shows the impact
onto the peak value, and on the over-cost for a set of 4 videos.

This example shows that over-cost, if linked to P and M, is
relatively independent of the shifting technique and integration
approach used. The difference is less than 6.67% in any case.

434343
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exact shift heur. shift
hull integration over- over-

constraints approach peak cost peak cost
P5 (a) 8339 16.2% 10741 16.5%

(b) 8010 16.1% 8141 16.8%
P10 (a) 10741 28.7% 10741 28.7%

(b) 8010 28.6% 8141 28.9%
M1200 (a) 8077 3.6% 8094 3.5%

(b) 8010 3.4% 8141 3.6%
M600 (a) 8077 9.5% 8293 9.6%

(b) 8010 9.0% 8141 9.4%

Fig. 9: Final hulls cost and peak values with exact and heuris-
tic shifting algorithm for (a) shiftHulls and (b) shiftBitrates
approaches. 4 videos and Δ = 5

Concerning peaks, exact method confirms its superiority,
with sometimes a large gap (e.g 8339 to 10741 ( + 28.8%)
for P5 with approach (a)). We also notice an impact of the
integration approach for peak minimization. Except in one case
(M1200 with heuristic shifting), the approach (b) shiftBitrates
produces better peak results than (a).

With the influence of hull parameters on shifting perfor-
mance, we notice that the obtained minimal peak is indepen-
dent of P and M, if the integration approach (b) is chosen. For
approach (a), a difference of 33 % (for P=10 and M=1200) is
possible.

To conclude, shifting does not reduce nor increase signifi-
cantly the over-cost for the global hull. On the other hand, P
and M parameters have influence on peak minimization only if
the integration approach is (a) shiftHulls. And shiftHulls is less
efficient than shiftBitrates for the peak optimization aspect.

B. Run-time
This section is devoted to compare run-times of the two

approaches (a) shiftHulls and (b) shiftBitrates. The following
aspects are considered. (1) Hulls provide a simplified view
of bitrates series. This could help reduce the run-time for
the shifting algorithm in shiftHulls and allows to extend the
applicability of the exact shifting algorithm (see fig. 5 for the
impact of input video length on shifting algorithm run-time).
(2) The relative run-time cost of the algorithms for the 2 phases
is evaluated, including the cost of pre-computed hull for (a).

We consider here the shifting of 4 videos with bitrate sizes
of around 2400 values (one value per second). The exact
(E) and the heuristic (H) shifting methods with Δ = 5 are
evaluated. Table 10 shows the different results.

The evaluation shows that the main cost is due to hull
computation, as compared to shifting. So (b) shiftBirates is
always faster, since it saves the individual hulls computation
run-time. The consequence is that (a) shiftHulls is interesting
only if individual hulls are pre-computed. In this case, run-
times are comparable (see the second line (a’)).

For this example, shifting and global hull computation run-
times are of the same order for P5 or P10. M1200 and M600
techniques are much more costly but stay under acceptable
limit of 1 sec.

hull approach ind. shift global total time
constraints hulls (E)/(H) hull (E)/(H)

P5 (a) 91 16/2 22 129/115
(a’) 16/2 22 38/24
(b) 12/1 22 34/23

P10 (a) 96 2/0 27 125/123
(a’) 2/0 27 29/27
(b) 8/0 27 35/27

M600 (a) 226 8/1 56 290/283
(a’) 8/1 56 64/57
(b) 13/0 52 65/52

M1200 (a) 161 10/1 73 244/235
(a’) 10/1 73 83/74
(b) 13/0 42 55/42

Fig. 10: Total and step run-times in milliseconds for (a)
shiftHulls and (b) shiftBitrates approaches. Steps are individual
hulls for (a), shifting and final global hulls for both approaches.
Δ = 5. For the shifting step, (E): exact and (H): heuristic

However, if the run-time cost of shifting increases due to a
high number of videos and/or a high Δ value (see section
V-A), heuristic algorithm (H) is to be used, especially for
online computation.

VII. SIMULATION

In this section, we simulate the approach using NS2 [22].
In order to shape the bandwidth needs, a typical approach
consists of using a Hierarchical Token Bucket (HTB), mainly
characterized by its throughput rate parameter. As an example,
HTB is used in Unix kernels. For the sake of simplicity,
only 10 minutes long portions of the test movies couple
are simulated. Simulations correspond to the streaming of
2 movies through a network, with a common bandwidth
allocation. The average throughput of the two movies is 768
and 925 kb/s respectively (a total of 1693 kb/s for both
movies). The maximum lateness of frames and the maximum
buffered data are measured as QoS indicators. The case A is
the reference case : it is realized without shifting and without
hull computation. Case B corresponds to the most promising
approach, shiftBitrates, with P = 10 and Δ = 5 for hull
constraints. The obtained peak values for cases A and B are
5519 and 4987 kbps respectively.
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Fig. 11: Delays and Buffer size for 2 videos streaming accord-
ing to HTB throughput rate. (A) without variable bandwidth
allocation, (B) with the shiftBitrates approach with parameters
Δ = 5 (shifting) and P = 10 (hull constraints),
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Results are shown in figure 11, for the bandwidth ranges
(x axis) allowing to reach the QoS requirements in each case.
In case A, a bandwidth allocation of 5500 kbps is needed for
satisfying the 0 delay QoS requirement. On the other side,
in case B, an average allocation of approximately 2215 kbps
is sufficient to obtain the same QoS with the shiftBitrates
approach, comparable with the average data throughput of
1693 kb/s. Notice that the shifting technique decreases the
peak from 5519 to 4987 kbps, limiting peak impact on
other network traffic. We also evaluate hull without shifting,
and obtain an average allocation of 2237 kbps for a zero-
delay result, confirming that shifting does not reduce hull
performances (2215 kbps with shifting).

Finally, the simulation shows that mixed approach helps
both on minimizing peak and reducing mean bandwidth al-
location.

VIII. CONCLUSION

This paper proposes a way to shape bandwidth allocation
for videos streaming in a home network. It consists of first
shifting the start of new videos to avoid cumulative peaks.
Then, reservation is based on a cumulative hull of the ob-
tained bitrates. Overall run-times measured range from 50 to
250 ms following the approach and parameters chosen. The
shaping (shifting and hull definition) can thus be computed
online when starting a new video, or resuming a paused one.
Simulations show that both delays and buffer consumption can
be decreased using the proposed approach, e.g. with an average
bandwidth of 2200 kbits/s instead of 6000 kbits/s for a 0-
delay and around 0-buffer streaming. We are now working on
implementing the technique as a specific reservation protocol
on Linux.
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