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A Simulation Study on SPSS Ridge

Regression and Ordinary Least

Squares Regression Procedures for

Multicollinearity Data

JOHN ZHANG� & MAHMUD IBRAHIM��

�Department of Mathematics, Indiana University of PA, Indiana, USA, ��Department of

Mathematics, Syracuse University, USA

ABSTRACT This study compares the SPSS ordinary least squares (OLS) regression and ridge
regression procedures in dealing with multicollinearity data. The LS regression method is one of
the most frequently applied statistical procedures in application. It is well documented that the
LS method is extremely unreliable in parameter estimation while the independent variables
are dependent (multicollinearity problem). The Ridge Regression procedure deals with the
multicollinearity problem by introducing a small bias in the parameter estimation. The
application of Ridge Regression involves the selection of a bias parameter and it is not clear if it
works better in applications. This study uses a Monte Carlo method to compare the results of
OLS procedure with the Ridge Regression procedure in SPSS.
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Introduction

SPSS is the statistical software of choice in Indiana University of PA, USA. Many appli-

cations require a regression method. In the Applied Research Lab, a statistical consulting

arm of the graduate school in our university, we often face the problem of parameter esti-

mation when there is multicollinearity. One simple solution to this problem is to drop some

of the highly correlated variables. This strategy usually works well. However, there are

times when the variables are too important to be excluded from the analysis. One strategy

is to apply Ridge Regression in such cases. Under some conditions, Ridge Regression has,

in theory, been shown to be effective in dealing with multicollinearity. However, it was

unclear in many applications that these conditions were satisfied. Indeed, we were

never sure if Ridge Regression provides a better model in these applications. In many

cases, we are also interested in how well the SPSS Ridge Regression procedure works.

We thus conducted this simulation study to evaluate the SPSS ridge regression.
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It is well known that OLS estimates of parameters are unstable when the vectors of the

explanatory variables are multicollinear. Multicollinearity refers to the situation where the

explanatory variables are not orthogonal. In addition to the problem of estimation, multi-

collinearity makes misleading or erroneous inferences on: identifying the relative effects

of the explanatory variables; prediction; and selection of an appropriate set of variables for

the model, etc.

Hoerl & Kennard (1970) have demonstrated that some of these undesirable effects of

multicollinearity can be reduced by using ‘ridge’ estimates in place of the least squares

estimates. The ridge estimates depend on a parameter, k that is determined by the data

in practice. Several mechanical rules and a graphical procedure, known as the ridge

trace, have been proposed for the selection of k.

The organization of this thesis is as follows: the next section provides background infor-

mation. The mechanical rule and evaluation criteria are outlined in third section. The

fourth section provides a detailed simulation procedure. The results of the simulations

are presented in the fifth section. The final section gives concluding remarks.

Background Information

Consider the multiple linear regression model: y 5 Xb1 e, where y is a (n � 1) vector of

observations on the dependent variable, X is a (n � p) fixed matrix of observations on the

explanatory variables, b is a (p � 1) vector of unknown regression coefficients, and e is a

(n � 1) vector of errors assumed to be normally distributed with E(e) ¼ 0 and

E(ee0) ¼ s2In. The usual estimator for b is the least squares estimator given by

b̂b ¼ (X0X)�1X0y.

When the vector of predictor variables is multicollinear, the least squares estimates are

likely to be large in absolute value and even with a wrong sign. The problem is a result of

the fact that (X0X) is near singular. The Gauss–Markov property gives the assurance that

the least squares estimator has minimum variance in the class of unbiased linear estima-

tors, but there is no guarantee that this variance will be small.

One way to alleviate this problem is to drop the requirement that the estimator of b be

unbiased. Suppose there is a biased estimator of b, say b̂b �, that has a smaller variance than

the unbiased estimator b̂b . Consider the mean squared error of the estimator b̂b �:

MSE(b̂b
�
) ¼ E(b̂b

�
� b)2 ¼ Var(b̂b

�
)þ ½E(b̂b

�
)� b�2

or

MSE(b̂b
�
) ¼ Var(b̂b

�
)þ (bias in b̂b

�
)2

It should be noted that theMSE is just the distance from b̂b
�
to b. By allowing a small bias

in b̂b
�
, the variance of b̂b

�
can be made smaller. Consequently confidence intervals on b

would be narrower using the biased estimator. The small variance for the biased estimator

also implies that b̂b
�
is a more stable estimator of b than is the unbiased estimator b̂b . Hence

a model using b̂b
�
may have better predictive power.

Following this line of thinking, Hoerl & Kennard suggested that the least squares

estimators be replaced by the ‘ridge’ estimators b̂b (k), where, for a fixed k . 0, b̂b (k) ¼

(X0Xþ kIp)
�1X0y:
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The ridge estimator is a linear transformation of the least squares estimator since

b̂b (k) ¼ (X0Xþ kIp)
�1X0y

¼ (X0Xþ kIp)
�1(X0X)b̂b

¼ Zkb̂b

Therefore

E½b̂b (k)� ¼ E(Zkb̂b ) ¼ Zkb

and b̂b (k) is a biased estimator of b.
The covariance matrix of b̂b (k) is

Var(b̂b (k)) ¼ s2(X0Xþ kI)�1X0X(X0Xþ kI)�1

The mean squared error of the ridge estimator is

MSE ¼ Var(b̂b (k))þ ½bias in b̂b (k)�2

¼ s2Tr½(X0Xþ kI)�1X0X(X0Xþ kI)�1� þ k2b0(X0Xþ kI)�2b

¼ s2
Xp
j¼1

lj

(lj þ k)2
þ k2b0(X0Xþ kI)�2b,

where l1, l2, . . . ,lp are eigenvalues of X
0X. The first term on the right-hand side of the

above equation is the sum of the variances of the parameters in b̂b (k) and the second term is

the square of the bias. If k . 0, the bias in b̂b (k) increases with k. However, the variance

decreases as k increases. We would like to select a k such that the reduction in the variance

term is greater than the increase in the squared bias. If this can be done, the mean squared

error of the ridge estimator b̂b (k) will be less than the variance of the least squares estimator

b̂b . Hoerl & Kennard (1970) proved that there exists a non-zero value of k for which the

MSE of b̂b (k) is less than the variance of the least squares estimator b̂b , provided that

b0b is bounded.

The residual sum of squares is

SSE ¼ ½(y� Xb̂b (k)�0½(y� Xb̂b (k)�

¼ (y� Xb̂b )0(y� Xb̂b )þ ½b̂b (k)� b̂b �
0X0X½b̂b (k)� b̂b �:

Since the first term on the right-hand side of the preceding equation is the residual sum of

squares for the least squares estimator b̂b , we see that as k increases, the residual sum of

squares increases. Consequently because the total sum of squares is fixed, R2 decreases

as k increases. Therefore, the ridge estimate will not necessarily provide the best ‘fit’ to

the Data. This should not be of concern, when the objective is to provide a stable set of

parameter estimates. The ridge regression may result in an equation that does a better
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job of predicting future observations than the least squares regression (although there is no

conclusive proof that this will happen).

The Evaluation Criteria and Selection of Parameter k

To compare estimators of the unknown coefficient vector b, a criterion for measuring the

‘goodness’ of an estimator is needed. A criterion is the total mean squared error function

defined by

E(L�) ¼ E½(b̂b
�
� b)0(b̂b

�
� b)�

The total mean squared error is the sum of the mean squared errors for the individual

coefficients. Since it represents the expected squared distance between b and b̂b
�
, a

‘good’ estimator is characterized by a relatively small mean squared error.

Hoerl & Kennard (1970) have demonstrated the existence of a range of k values for

which the associated ridge estimators are better with respect to mean squared error than

the least squares estimator. The ridge parameter, k in their argument is assumed to be

fixed, and the range of k values for which the ridge estimators are demonstrated to be

better than the least squares depends on the unknown coefficient vector b as well as

s 2. Thus, no constant value of k can be assured to yield a ridge estimator that is better

than least squares for all unknown coefficients vectors. Consequently, several ‘rules’

have been proposed for choosing k.

The choice of k used in this study is the one proposed by Hoerl et al. (1975). The

appropriate choice for k suggested is

k ¼ pŝs2=b̂b
0
b̂b

where ŝs
2, an estimate of s2, is defined by

ŝs
2
¼ (y� Xb̂b )0(y� Xb̂b )=(n� p� 1)

The estimates b̂b and ŝs2 are obtained from the least squares solution. It should be pointed

out that since the choice of k depends on the particular sample under investigation, the

properties associated with ridge regression for fixed k may not hold. In addition, the

least squares estimation procedure corresponds to a choice of k ¼ 0.

Simulation

The simulations in this study are similar to Gibbons (1981). One hundred observations are

generated using the statistical software package, SPSS for each of three explanatory variables.

In the notation of Chapter 2, p ¼ 3 and n ¼ 100. The explanatory variables are generated by

xij ¼ (1� r2)zij þ rzi4 i ¼ 1, . . . , n; j ¼ 1, . . . , p

where zi1, zi2, zi3 and zi4 are independent standard normal pseudo-random numbers, and r is

specified so that the correlation between any two explanatory variables is given by r 2.

These variables are then standardized so that X0X is in correlation form. Four different sets

of correlations are considered corresponding to r ¼ 0.80, 0.90, 0.95 and 0.99.
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For each set of explanatory variables so constructed, two choices for the true coefficient

vector b are considered. The mean square error function, E[L(k)], associated with ridge

estimation depends on the explanatory variables (through the lj), on s2 and on b.
Newhouse & Oman (1971) have noted that if E[L(k)] is regarded as a function of b with

s2, k and the explanatory variables fixed, then subject to the constraint that kbk ¼ 1,

E[L(k)] is minimized when b is the normalized eigenvector corresponding to the

largest eigenvalue of the X0X matrix. Similarly, E[L(k)] is maximized when b is the nor-

malized eigenvector corresponding to the smallest eigenvalue of the X0X matrix. It is

understood that these remarks are not necessarily true when k is not fixed. We use the nor-

malized eigenvectors corresponding to the largest and smallest eigenvalues of the corre-

lation matrix in our simulation and denote the two vectors as bL and bS respectively.

Observations on the dependent variable are determined by

yi ¼ b0 þ b1xj1 þ b2xi2 þ b3xi3 þ ei

i ¼ 1, . . . , n,

where the ei are independent normal pseudo-random numbers with mean zero and variance

s2, and b0 is taken to be identically zero. Seven values of s are investigated in this study:

0.01, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0.

For each set of dependent and explanatory variables so constructed, the class of estima-

tors defined by

b̂b ðkÞ ¼ (X0Xþ kIp)
�1X0y

are determined. The variables are standardized so that X0y represents the vector of

correlations of the dependent variable with each explanatory variable. The standardized

least squares and ridge regression coefficients are computed. The LS regression estimates

are computed by using the linear regression program on SPSS while the ridge regression

estimates are computed by first augmenting the standardized data as follows:

XA ¼
Xffiffiffi
k

p
Ip

� �
, yA ¼

y

0p

� �

where
ffiffiffi
k

p
Ip is a p � p diagonal matrix with diagonal elements equal to the square root of

the biasing parameter and 0p is a p � 1 vector of zeros. The estimates are then computed

using the SPSS linear regression program:

b̂b (k) ¼ (X0
AXA)

�1X0
AyA ¼ (X0Xþ kIp)

�1X0y

The estimated length of the true standardized coefficient vector is determined from an

unbiased estimator of b0b obtained as follows:

Q ¼ b̂b 0b̂b � ŝs2
Xp
1

l�1
j

where the lj, j ¼ 1, . . . , p, represent the eigenvalues of the correlation matrix, b̂b rep-

resents the standardized least squares estimate, and ŝs2 is the estimate of the variance

for the standardized model. The standardized coefficients are transformed back to the orig-
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inal model (Wichern & Churchhill, 1978). A constant term is estimated for the model by

b̂b0(k) ¼ �yy�
X3
1

b̂b0(k) �xxj

where

�yy ¼

Pn
1 yi

n
and �xxj ¼

Pn
1 xij

n

j ¼ 1, 2, 3. The mean squared error and the k values are computed for the least squares and

ridge regression methods. The estimation procedure that performed the best (minimum

squared error) and the estimation procedure that performed the worst (maximum

squared error) are noted.

Figure 1. Ratio of the estimatedMSE of ridge regression to the estimatedMSE of the LS regression

as a function of s (r ¼ 0.80). The top (bottom) graph presents results for bL (bS)

576 J. Zhang & M. Ibrahim



Additional samples of size n ¼ 100 are generated. The X0X matrix and b vector remain

fixed, while the random error and hence dependent variable change. After five samples

have been generated, the following quantities are computed for each estimator:

(1) Average squared error (estimated mean squared error)

(2) Average k value

(3) Average R2

(4) The ratio of the estimatedMSE for a particular ridge estimator to the estimated MSE

Some Simulation Results

Ridge estimators are constructed with the aim of having smaller MSE than least squares

(LS) estimators. A measure of improvement is the ratio of the estimated MSE for a

Figure 2. Ratio of the estimatedMSE of ridge regression to the estimatedMSE of the LS regression

as a function of s (r ¼ 0.90). The top (bottom) graph presents results for bL (bS)
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particular ridge estimator to the estimated MSE for LS. This measure, denoted M is con-

venient in that it allows the results for all (r, s, b) to be represented on the same scale.

The ratio is plotted in Figures 1 through 4. Each figure represents a fixed value of r and

presents the ratio M for each of the estimators as a function of s. The top graph presents

the results for bL and the bottom graph for bS. Each point plotted represents the average

of five repeated simulations. In each run, the MSE and R2 for the LS estimator as well as

the ridge estimator are computed for each s. The average MSE and average R2 for each

estimator are recorded.

From Figures 1–4, we have the following summary.

b ¼ bL

(1) The ridge estimator is at least as good as the LS estimator; that isM � 1 for the (r, s)

combination when r ¼ 0.80 or r ¼ 0.90. However, mixed results are obtained for the

(r, s) when r ¼ 0.95 or r ¼ 0.99.

Figure 3. Ratio of the estimatedMSE of ridge regression to the estimatedMSE of the LS regression

as a function of s (r ¼ 0.95). The top (bottom) graph presents results for bL (bS)
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(2) The best performance of the ridge estimator is observed when r ¼ 0.80 and the worst

performance is observed when r ¼ 0.95.

(3) The least value ofM, 0.78 is observed when r ¼ 0.80 and the highest value ofM, 1.08

is observed when r ¼ 0.95. That is 0.78 � M � 1.08.

b ¼ bS

(1) The ridge estimator is at least as good as the LS estimator; that isM � 1 for the (r, s)

combination when r ¼ 0.80 or r ¼ 0.90. However, mixed results are obtained for the

(r, s) when r ¼ 0.95 or r ¼ 0.99.

(2) The best performance of the ridge estimator is observed when r ¼ 0.90 and the worst

performance is observed when r ¼ 0.99.

(3) The least value ofM, 0.77 is observed when r ¼ 0.90 and the highest value ofM; 1.07

is observed when r ¼ 0.99. That is 0.77 � M � 1.07.

Figure 4. Ratio of the estimatedMSE of ridge regression to the estimatedMSE of the LS regression

as a function of s (r ¼ 0.99). The top (bottom) graph presents results for bL (bS)
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The quantity tabulated in Table 1 gives the average R2 in five samples based on the

LS coefficients, while the quantity tabulated in Table 2 is based on the ridge

coefficients.

For a fixed (r, s) combination, R2 is generally smaller when b ¼ bS than when b ¼ bL.

Low R2 values (�0.5) are observed when s ¼ 1 and b ¼ bS in both Tables 1 and 2. The

largest R2 value, 1 is observed when 0.01 � s � 0.2 for all b; and the smallest R2 value,

Table 1. Average R2 values of LS coefficients obtained in simulation

r

s b 0.80 0.90 0.95 0.99

0.01 bL 1.000 1.000 1.000 1.000

bS 1.000 1.000 1.000 1.000

0.1 bL 1.000 1.000 1.000 1.000

bS 1.000 1.000 1.000 1.000

0.2 bL 0.999 0.999 0.999 0.999

bS 0.998 0.998 0.998 0.998

0.3 bL 0.994 0.993 0.993 0.994

bS 0.990 0.992 0.991 0.992

0.4 bL 0.982 0.979 0.977 0.979

bS 0.971 0.973 0.972 0.973

0.5 bL 0.948 0.945 0.953 0.951

bS 0.925 0.934 0.935 0.936

1 bL 0.560 0.559 0.558 0.537

bS 0.482 0.445 0.464 0.452

Table 2. Average R2 values of ridge coefficients obtained in simulation

r

s b 0.80 0.90 0.95 0.99

0.01 bL 1.000 1.000 1.000 1.000

bS 1.000 1.000 1.000 1.000

0.1 bL 1.000 1.000 1.000 1.000

bS 1.000 1.000 1.000 1.000

0.2 bL 0.999 0.999 0.999 0.999

bS 0.998 0.998 0.998 0.998

0.3 bL 0.994 0.993 0.993 0.993

bS 0.991 0.992 0.992 0.991

0.4 bL 0.980 0.978 0.978 0.978

bS 0.968 0.971 0.972 0.973

0.5 bL 0.952 0.948 0.951 0.949

bS 0.926 0.932 0.933 0.929

1 bL 0.541 0.556 0.520 0.526

bS 0.460 0.420 0.454 0.409
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0.409 is observed in Table 2 when b ¼ bS, s ¼ 1 and r ¼ 0.99. The range of values in

Table 1 is 0.445 � R2
� 1 and that of Table 2 is 0.420 � R2

� 1.

The R2 values of the ridge coefficients are plotted against the R2 values of the least

squares coefficients. Figures 5–8 present the straight-line relationship between the R2

values of the ridge coefficients and the R2 values of the LS coefficients for r ¼ 0.80,

r ¼ 0.90, r ¼ 0.95 and r ¼ 0.99 respectively.

Figure 5. Scatterplot of R2 values of ridge coefficients (rrsq) versus R2 values of LS

coefficients (lsrsq) for r ¼ 0.80. The top (bottom) graph presents results for bL (bS)
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Figures 5–8 indicates that the difference is minimal in R2 between Ridge and OLS

regression.

The average of the k values observed in five samples are recorded for the ridge esti-

mation procedure in each (r, s, b) combination. Figures 9–12 present the results for

r ¼ 0.80, r ¼ 0.90, r ¼ 0.95 and r ¼ 0.99 respectively.

Figure 6. Scatterplot of R2 values of ridge coefficients (rrsq) versus R2 values of LS coefficients

(lsrsq) for r ¼ 0.90. The top (bottom) graph presents results for bL (bS).
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For b ¼ bL, the average k is an increasing function of s, with the minimum value

2.88 � 1028 and the maximum value 3.15. Similarly for b ¼ bS, the average k is an

increasing function of s, with the minimum value 2.83 � 1028 and the maximum value

2.88.

For b ¼ bL, the average k is an increasing function of s, with the minimum value

3.263 � 1028 and the maximum value 2.716. Similarly for b ¼ bS, the average k is an

Figure 7. Scatterplot of R2 values of ridge coefficients (rrsq) versus R2 values of LS coefficients

(lsrsq) for r ¼ 0.95. The top (bottom) graph presents results for bL (bS)
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increasing function of s, with the minimum value 2.873 � 1028 and the maximum value

3.601.

For b ¼ bL, the average k is an increasing function of s, with the minimum value

3.097 � 1028 and the maximum value 2.75. Similarly for b ¼ bS, the average k is an

increasing function of s, with the minimum value 2.816 � 1028 and the maximum

value 3.33.

Figure 8. Scatterplot of R2 values of ridge coefficients (rrsq) versus R2 values of LS coefficients

(lsrsq) for r ¼ 0.99. The top (bottom) graph presents results for bL (bS)
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For b ¼ bL, the average k is an increasing function of s, with the minimum value

3.022 � 1028 and the maximum value 3.215. Similarly for b ¼ bS, the average k is an

increasing function of s, with the minimum value 2.945 � 1028 and the maximum

value 3.819.

Concluding Remarks

The performance of the evaluated ridge estimator, as well as the potential performance

of any ridge-type estimator, depends on the variance of the random error, the corre-

lations among the explanatory variables and the unknown coefficient vector. The simu-

lations described in this study were conducted in such a way that the performance of

the estimators can be observed as one of these factors is changed while the remaining

two are fixed. The ridge estimator evaluated in this study has not been shown to be

Figure 9. The average k value as a function of s (r ¼ 0.80). The top (bottom) graph presents results

for bL (bS)
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better than the least squares estimator in all cases. It achieves a substantial reduction in

MSE in some cases while increasing the MSE somewhat in others. The ratio of the

MSE for the ridge estimator to the MSE for the least squares estimator, M ranges

from 0.77 to 1.08 in the cases investigated. The range of the R2 values for the least

squares estimator is from 0.445 to 1 while the range of values for the ridge estimator

is from 0.420 to 1. The average k value for the ridge estimator is from 2.83 � 1028

to 3.15.

From the scatterplots of the R2 values of the ridge coefficients against the R2 values of

the LS coefficients, the square of the correlation coefficient (R2) for r ¼ 0.80, r ¼ 0.90,

r ¼ 0.95 and r ¼ 0.99 is 1 in each case. This shows that R2 cannot be used to determine

which estimator is better in this particular study.

For r ¼ 0.80 and r ¼ 0.90, ridge regression has been shown to be better in terms

of yielding a lower MSE than the least squares estimator. However, when r ¼ 0.95

Figure 10. The average k value as a function of s (r ¼ 0.90). The top (bottom) graph presents results

for bL (bS)
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and r ¼ 0.99, the results from the simulations are inconclusive. This indicates that

while ridge regression may be effective when multicollinearity is not serious, it is

not effective when the explanatory variables are highly correlated. This contrasts

sharply with the results obtained in the simulation studies conducted by Hoerl et al.

(1975) and Gibbons (1981). Their results show that the ridge regression performed

better overall; and there were substantial reduction in MSE in the cases of severe

multicollinearity. Also, better MSE estimates were obtained when b ¼ bL than

when b ¼ bS.

The lack of agreement between this study and that undertaken by Hoerl et al. (1975)

and Gibbons (1981) could be attributed to factors like the precision level of the statistical

software package, SPSS employed in the simulations.

Figure 11. The average k value as a function of s (r ¼ 0.95). The top (bottom) graph presents results

for bL (bS)

SPSS Ridge Regression and OLS Regression 587



In conclusion, this study has not shown conclusively that ridge regression yields better

estimates than the least squares regression overall. On the contrary, in cases of a high

degree of multicollinearity, the least squares regression sometimes produces better esti-

mates than the ridge regression. Therefore the widespread use of ridge regression in

SPSS will not be recommended without further study.

References

Gibbons, D. G. (1981) A simulation study of some ridge estimators, Journal of the American Statistical Associ-

ation, pp. 131–139

Hoerl, A. E. & Kennard, R. W. (1970) Ridge regression: biased estimation for nonorthogonal problems,

Technometrics, 12, pp. 55–82.

Hoerl, A. E., Kennard, R. W. & Baldwin, F. W. (1975) Ridge regression: some simulations, Communication in

Statistics, 4, pp. 105–123.

Newhouse, J. P. & Oman, S. D. (1971) An evaluation of ridge estimators, Rand Report, #R–716–PR, 1–28.

Wichern, D. W. & Churchill, G. A. (1978) A comparison of ridge estimators, Technometrics, 20, pp. 301–311.

Figure 12. The average k value as a function of s (r ¼ 0.99). The top (bottom) graph presents results

for bL (bS)

588 J. Zhang & M. Ibrahim


