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Abstract. The study explores the optimal harvesting of renewable resources like fisheries.
The fish biomass dynamics is described by a nonlinear growth model that maximizes the
total net revenue whilst taking into consideration the sustainable and effective utilization
of the resource. In addition, stability dynamics of the model is assessed through bifurca-
tion analysis. Pontryagin’s maximum principle is used to derive the optimality system and
characterize the optimal control. A numeric iterative method employing the fourth order
Runge-Kutta scheme facilitates the solution of the optimality system. The simulation re-
sults obtained are then discussed. The results show that the sum of the maximum allowable
harvest and the final biomass level must not exceed the maximum sustainable yield (MSY).

Key words: optimal control, effective utilization rate, fish biomass, logistic growth model,
bifurcation analysis, shadow price, maximum sustainable yield (MSY).
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Résumé. L’étude explore la récolte optimale des ressources renouvelables comme la pêche.
La dynamique de la biomasse des poissons est décrite par un modèle de croissance non
linéaire qui maximise le revenu net total tout en tenant compte de l’utilisation effective
et durable de la ressource. En outre, la dynamique de la stabilité du modèle est évaluée
grâce une analyse de bifurcation. Le principe maximal de Pontryagin est utilisé pour
dériver le système d’optimalité et caractériser le contrôle optimal. Une méthode itérative
numérique employant le schéma Runge-Kutta de quatrième ordre facilite la solution du
système d’optimalité. Les résultats de simulation obtenus sont ensuite discutés. Ils montrent
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que la somme de la récolte maximale admissible et du niveau de biomasse finale ne doit pas
dépasser le rendement maximal durable (MSY).

1. Introduction

In recent times, there has been a surge in the population of the world. This, invariably,
has led to an increase in the exploitation of renewable resources like fisheries. The Food
and Agriculture Organization (FAO) of the United Nations (UN) assessment of fisheries
reveals that the share of fish biomass within biologically sustainable levels has exhibited a
downward trend, declining from 90% in 1974 to 68.6% in 2013; see FAO (2016).

Renewable resources, by nature, possess self-regeneration capabilities and can provide
mankind with an essentially endless supply of goods and services. However, mankind, in
turn, possesses capacities for both conservation and destruction of the resource base, see
Clark (1973). As Kompas (2005) rightly observed, inefficient fisheries are plagued by low
profits and excessive fishing capacity, giving rise to the all too familiar outcome of ”too
many boats chasing too few fish”. Therefore, there is the need for efficient and effective
utilization of the resource to ensure sustainability. This calls for the use of appropriate and
effective technology in the exploitation of the resource.

The basic Gordon-Schaefer model of renewable resource exploitation makes use of the fol-
lowing growth function with harvesting

dx(t)

dt
= g(x)− h(t) , x(0) = x0 (1)

where the sate variable x(t) denotes the biomass of fish population at time t, x0 is the
initial fish biomass, g(x) is the natural growth rate of fish biomass, and h(t) is the rate of
harvesting of the fish biomass at time t; see Gordon (1954); Schaefer (1954).

The assumption is that the growth function g is differentiable and concave, and it satisfies,
for 0 < x < K,

g(0) = 0, g(K) = 0, g(x) > 0, and g′′(x) < 0 (2)

where K denotes the carrying capacity of the ecosystem; that is, the maximum sustainable
fish biomass. Thus

lim
t→∞

x(t) = K (3)

The most common growth function favoured by most researchers is the Pearl-Verhulst
logistic function; see, for example, Clark (2010); Clark and Munro (1975); Craven (1995);
Dubey and Patra (2013); Dubey et al. (2003); Tar and Chakraborty (2009). In a pioneering
work, Clark and Munro (1975) proposed a nonlinear optimal control model that permitted
the rate of fishing effort to be nonlinear, thereby introducing nonlinear costs into the
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model. The model was also extended to make it non-autonomous in both the price and
cost parameters. Craven (1995) in an exposition on the fishery resource, used a growth
rate function that satisfies (2) and (3). Additionally, in determining the net revenue for the
harvested fish, the model not only considered the unit price and unit cost of the fish but
also the diminishing returns when there is a large amount of fish to sell. Dubey and Patra
(2013) proposed a model that involves the interaction of the human population and the
resource population. They considered the human population to be partially dependent on
the resource, which is then harvested for the benefit of society. Also, Dubey et al. (2003)
modeled the effect that a reserve zone has on the exploitation of a fishery resource. It is
shown that even if the fishery is exploited continuously in the unreserved zone, the fish
population can be maintained at an appropriate steady-state level in the habitat. Tar and
Chakraborty (2009) developed a logistic growth model to assess the effect of harvesting
on the Bangladesh shrimp fishery. Their work showed that it was feasible to assess the
biological, social and economic impacts of the existing shrimp resource of the country,
as well as providing appropriate measures to maintain long run sustainability of the resource.

In a recent paper, Wu et al. (2015) proposed an extension to the basic Gordon-Schaefer
model in the determination of the net revenue. They emphasized on the need to include
the effective utilization rate s(t) in the objective functional to ensure that the fishing
resources are prudently utilized. The effective utilization of the resource is a function of
the technology used in harvesting the resource. The technological change envisaged may
include a better engine, more efficient fishing gear, and navigation aids; see Kompas (2005).
This change in technology would impact greatly on the fishing activity and hence the
expected revenue. There is therefore the justification to modify the objective functional
to accommodate the technology used in harvesting. For other related works with modified
objective functional, see Clark and Munro (1975); Craven (1995); Hanson and Ryan (1998).

It is our intention to use the Gordon-Schaefer model with a modified objective functional
as proposed by Wu et al. (2015). However, the model dynamics is explored and equilibrium
points determined. The optimal control problem is then analyzed using the current-value
Hamiltonian and the optimal harvesting policy and level of fish biomass are determined
using numerical techniques. Also, the behavior of shadow price and net revenue of the
resource through the various harvesting strategies is explored.

In Section 2, the optimal control model is formulated consisting of the biomass dynamics
and the complete bio-economic model. Bifurcation analysis of the model is performed in
Section 3. Optimality of the model, which consists of the characterization of the optimal
control as well as the singularity analysis of the model, is in Section 4. Numerical and
graphical illustrations of the model are portrayed in Section 5 whilst the last chapter deals
with the discussion and conclusion.
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2. Model formulation

The formulation of the model takes into account the biological outcomes as well as the
economic objectives of fisheries management.

2.1. The biomass dynamics

As mentioned previously, the growth function of choice in many fishery research is the logistic
growth function

g(x) = rx(t)

(
1− x(t)

K

)
(4)

where r > 0 is the intrinsic growth rate or per capita growth rate of fish biomass. Clearly, (4)
satisfies conditions in the model dynamics described by (2) and (3) regarding the growth
function g(x). Therefore, the fish biomass dynamics with harvesting, as proposed by Gordon
(1954) and Schaefer (1954), is described by an initial value problem

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− h(t) , x(0) = x0 (5)

To obtain the equilibrium points, we set (5) to zero and solve the resulting quadratic equation
to yield

x1 =
K

2

(
1−

√
1− 4h

rK

)
, x2 =

K

2

(
1 +

√
1− 4h

rK

)
(6)

provided h < rK
4 . When h ≥ rK

4 , there is at most one equilibrium point. Therefore, h = rK
4

is a saddle-node bifurcation point for the model presented in (5). The equation for the
sustainable yield is

hS = rx
(

1− x

K

)
(7)

The MSY occurs when

dhS
dx

= r

(
1− 2x

K

)
= 0 (8)

Thus the biomass level at MSY is

xMSY =
K

2
(9)
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Additionally, substituting the value of the biomass level at MSY, (9), into (7) gives the value
of MSY

hMSY =
rK

4
(10)

Therefore hMSY is the maximum amount that can be harvested whilst keeping the popula-
tion constant. That is, dx

dt = 0.

2.2. The bioeconomic model

Adding economic parameters into the afore-mentioned biological model, (5) gives the bioe-
conomic model. Let the discounted net revenue for the harvested or landed fish per unit
time be expressed as

e−δt(p− c)h(t) (11)

where p is the price per unit biomass of landed fish, c is the cost per unit biomass of landed
fish, h(t) is the rate of harvesting, and δ is the social discount rate.

To ensure that the fishery is managed in a sustainable way so as to avoid wastage and
pollution to the ecosystem, we incorporate the effective utilization rate, s(t) into the objective
functional. Then s(t) should satisfy the following assumptions:

1. With the development of technology, the effective utilization rate s(t) will gradually
increase with respect to time t; that is, s′(t) > 0

2. The increase in s(t) will become more difficult after it reaches a certain level in time
(diminishing returns); that is, s′′(t) < 0

3. The ideal is for the complete or total utilization of resources; that is, limt→∞ s(t) = 1

The function that satisfies the preceding assumptions and is therefore the effective utilization
rate is

s(t) = 1− ae−bt a, b > 0 (12)

In addition, let the initial utilization rate be s(0) = s0 and the achievable effective utilization
rate at the terminal time T be s(T ) = sT . Then, the parameters a and b in s(t) can be
obtained as follows:

a = 1− s0

b =
1

T
ln

1− s0
1− sT

(13)
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Thus the modified net revenue for the proposed model is

e−δt(p− c)h(t)(1− ae−bt)

and hence the optimal control problem can be cast as

max
h

J(h) =

∫ T

0

e−δt(p− c)h(t)(1− ae−bt) dt

subject to
dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− h(t)

0 ≤ h(t) ≤ hmax
x(0) = x0, x(T ) = xT (14)

3. Bifurcation analysis

A bifurcation can be described as the change in the number of equilibrium points or periodic
orbits, or in the stability properties of a dynamical system if a parameter is varied. The
value of the parameter where the stability dynamics change is called a bifurcation point;
see Daci and Spaho (2013).

As mentioned earlier, there are two equilibrium points associated with the state dynamics of
the model described by (14) when the harvest is less than the bifurcation point. These are
x1 and x2, and the bifurcation point is given by h = rK

4 . The slope fields and solution curves
of the state equation were plotted with the aid of the software dfield8 by John Polking.
This is illustrated by using the following parameter values: r = 4.4 and K = 100000. Thus
h = 110000 is the bifurcation point.

Figure 1 presents the solution curves for the case where the harvest h = 80000 is less than
the bifurcation point. It is observed that there are two equilibrium points: x1 = 23888.35 and
x2 = 76111.65. When the biomass level is greater than 76111.65, the biomass monotonically
decreases towards this upper equilibrium point in the long run whilst for a biomass level
less than the lower equilibrium point 23888.35, the biomass monotonically decreases towards
zero. In other words, the biomass would be completely depleted in finite time. Also, when
the biomass level is between the two equilibrium points, the biomass approaches the upper
equilibrium point. Of course, biomass levels originating in the equilibrium points always
maintain their course on these levels. Thus the point x1 is unstable while x2 is stable.

Solution curves corresponding to the case where h = hMSY = 110000, the bifurcation
point, is presented in Figure 2. At the bifurcation point, there is only a single equilibrium
point, xMSY = 50000 . That is, for any initial biomass level greater than 50000, the long-
term population of fish stock approaches this equilibrium point. On the other hand, for a
biomass level less than 50000, the biomass monotonically decreases towards zero and the
resource would become extint in finite time. For an initial biomass level of 50000, the resource
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Fig. 1: Solution curves for h = 800000

stock remains on this level. Therefore, this point is semi-stable and known as a saddle-node
bifurcation point.

The case where harvest level, h = 150000 is greater than the bifurcation point is shown
in Figure 3. Corresponding to this harvest level, there exists no equilibrium point. In this
situation, whatever the initial fish population, the fish will die out as a result of overfishing
or excessive harvesting in finite time; see Edwards and Penney (2004); Suri (2008).

4. Optimality of the model

In this section, we first find a characterization for the optimal control h∗ and then determine
the presence of singular path or lack thereof in the model described by (14).
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Fig. 2: Solution curves for h = 110000
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4.1. Characterization of the optimal control

The goal, as stated earlier, is to maximize the net revenue while taking into consideration the
effective utilization of the resource. We therefore seek an optimal control h∗ such that

J(h∗) = max{J(h)
∣∣h ∈ U},

where the control set is Lebesgue measurable and defined by

U = {h | 0 ≤ h ≤ hmax, t ∈ [0, T ]}.

In order to derive the necessary conditions for the optimal control, we employ Pontryagin’s
maximum principle; see Joshi et al. (2015); Pontryagin et al. (1962). The current-value
Hamiltonian for the optimal control problem described by (14) is

H(x, λ, h, t) = (p− c)h(1− ae−bt) + λ
[
rx
(

1− x

K

)
− h
]

(15)

The adjoint variable λ is governed by

λ′ = δλ− ∂H

∂x

= δλ− λ
(
r − 2rx

K

)
(16)

The switching function is defined as

ψ =
∂H

∂h

= (p− c)(1− ae−bt)− λ (17)

Therefore the characterization of the optimal control is

h∗ =

 0, if ψ < 0 ,
∈ (0, hmax), if ψ = 0 ,
hmax, if ψ > 0 .

(18)

4.2. Singularity analysis of the model

The singularity analysis would determine the choice of method for the solution of the model
presented in (14). For a singular control, we assume that there is an interval I for all
t ∈ I ⊂ [0, T ] such that

ψ(t) = 0 (19)

Thus from (17) and (19),
(p− c)(1− ae−bt)− λ = 0 (20)
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So, solving for λ we find
λ = (p− c)(1− ae−bt) (21)

Differentiating (21) with respect to t, it follows that

λ′ = (p− c)abe−bt (22)

By plugging the λ expression in (21) into the adjoint, (16), we get

λ′ = (p− c)(1− ae−bt)
(
δ − r +

2rx

K

)
(23)

Setting the (22) and (23) equal to each other and simplifying, we obtain

x =
K

2r

(
r − δ +

abe−bt

1− ae−bt

)
(24)

Thus, on the singular interval I we can take the derivative of (24) with respect to t. This
gives us

x′ =
K

2r

−ab2e−bt

(1− ae−bt)2
(25)

comparing (25) to the state equation in the model described by (14), we see that they
are not equal for all t. So h∗ is nowhere singular and thus it is bang-bang with at most
two switching times, occurring where the functions λ(t) and (p − c)(1 − ae−bt) intersect.
Therefore, the inclusion of the utilization factor effectively rules out the singular path and
only the bang-bang approach is feasible.

Hence the bang-bang control is

h∗ =

{
0, if λ > (p− c)(1− ae−bt) ,
hmax, if λ < (p− c)(1− ae−bt) . (26)

Therefore the optimal harvesting regime involves extreme policies only, either harvesting
at full capacity or none at all. In other words, the resource should be harvested if and
only if the net revenue per unit harvest, taking into consideration the effective utilization
rate, exceeds the shadow price of the resource; see Tar and Chakraborty (2009). The
computations were performed using using the symbolic algebra software Maple.

It is normal in optimal control problems to ensure the existence of the optimality system,
which is simply the state equation and the adjoint equation together with the characteri-
zation of the optimal control and the boundary conditions. In this vein, it should be noted
that the state equation, which is logistic with harvesting is a priori bounded. Also, the
state equation and the objective functional are both linear in the control h. Therefore, by
standard arguments, an optimal control as well as the optimal state exists; see Fleming and
Rishel (1995); Joshi et al. (2015).
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5. Numerical simulations

The optimality system is solved using an iterative method with a Runge-Kutta fourth order
scheme. The state is solved forward in time and the adjoint equation is solved backward in
time with an initial guess. At the end of each iteration, the control is updated using the
derived formula for the optimal control. The iterations continue until convergence is achieved.

Using a modified MATLAB code, originally developed by Lenhart and Workman (2007), the
numerical solutions to the optimality system are obtained with the following reasonably
realistic parameter values in Table 1. The values illustrate the scenario of a reservoir
inhabited by a fishery resource undergoing harvesting for a year, given the initial fish
biomass and a pre-determined final biomass level.

Table 1: Parameter values for model

Parameter Description Value Unit

K Carrying capacity of ecosystem 100000 tons
r Per capita growth rate 4.4 year−1

p Price per unit harvest 38 $ ton−1

c Cost per unit harvest 20 $ ton−1

δ Discount rate 0.1 year−1

hmax Maximum rate of harvest 20000 tons year−1

T Terminal time 1 year
x(0) Initial biomass level 5000 tons
x(T ) Terminal biomass level 70000 tons

The parameter values a = 0.4 and b = 0.05 are obtained from (13) using the values of
s0 = 0.60 and sT = 0.62.

The adjoint variable, also known as the shadow price of the resource, can be interpreted
as the additional revenue accruing to the fisher as a result of adding one more fish to the
biomass at time t; see Lenhart and Workman (2007); Yusuf and Benyah (2012). We present
the optimal harvesting strategies corresponding to three values of the maximum rate of
harvest hmax. These are; 20000, 30000, and 40000 tons year−1 . Simulation results detailing
the relationship between the shadow price and net revenue are illustrated.

Figure 4 depicts harvesting at the maximum rate of 20000 tons year−1 , where the shadow
price is convex and the revenue, linear. At the start of the harvesting period, the shadow
price of fish, $34.25 is significantly higher than the net revenue, $10.80. This signifies that
the revenue due an additional fish being added to the biomass is greater than the expected
revenue from harvesting the fish. So at this instance it is prudent not to harvest. As time
progresses the shadow price experiences a sharp decline in value whilst the revenue slightly
increases until the two intersect at the switching time t∗ = 0.34. Thereafter, the shadow
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Fig. 4: Shadow price and revenue for hmax = 20000

price continues to fall to a low value of $6.05 at t∗ = 0.75 before rising slightly to end at a
value of $7.71. Meanwhile, the revenue has appreciated and ends with a terminal value of
$11.15. Thus, after 4 months (the switching time) it is now profitable to harvest the fish as
the revenue would be greater than the shadow price.

In Figure 5 the revenue maintains it monotonicity, as well as the initial and terminal values.
The shadow price also retains it parabolic shape; however, the initial and terminal values
change, from $47.22 to $11.67. Again, at the initial period it is advisable not engage in any
harvesting as the shadow price is higher than the revenue. With time, the revenue acts as
secant line to the shadow price producing two switching times at t∗ = 0.48 and t∗ = 0.99.
Therefore, harvesting is only recommended between the switching points where the revenue
exceeds the shadow price. It is interesting to note that the lowest value of the shadow price
is $9.07 and occurs at t∗ = 0.73.

The shadow price starts from its highest value of $50.92 to equally highest terminal value
of $12.62. The revenue remains unchanged and is the same as the previous two scenarios.
This situation produces the greatest difference between the shadow price and revenue, with
a value of $40.12. Thus the preferable course of action is not to harvest the resource at the
initial time. Similar to Figure 5, the revenue gives rise to two switching times, t∗ = 0.54 and
t∗ = 0.93. However, the period between the switching times is shorter, indicating that the
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Fig. 5: Shadow price and revenue for hmax = 30000

harvest should start late and end early. Also, the shadow price attains its minimum value
of $9.96 at t∗ = 0.73. This is illustrated in Figure 6.

Simulation results for the harvesting strategy and biomass level relating to the case where
hmax = 20000 tons year−1 are presented in Figures 7 and 8. In Figure 7, it is observed that
the switching time occurs at t∗ = 0.34 (see Figure 4) indicating that for the initial 4 months
of the year, no harvesting should occur. Thereafter, the maximum rate of harvest should
be applied. This harvesting policy allows the fishery resource to grow naturally for almost
4 months before full exploitation starts. A slight change in the growth of fish biomass can
be observed once the maximum rate of harvest begin (see Figure 8).

The performance measure, which is the total net revenue per year, for this harvesting policy
is computed and has a value of $136,104.20.

For the case where hmax = 30000 tons year−1 , the plots for the harvesting policy and
biomass level are shown in Figures 9 and 10. Two switching times can be identified in
the harvesting strategy at t∗ = 0.48 and t∗ = 0.99 (see Figure 5). The optimal harvesting
policy, as shown in Figure 9, is therefore to wait for almost 6 months before starting any
harvesting and to stop the harvest just before the close of the year. Figure 10 shows that
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Fig. 6: Shadow price and revenue for hmax = 40000

the growth of fish biomass is affected at the switching points. The total net revenue per
year for this harvesting regime is $148,710.80.

Figures 11 and 12 are the plots for the harvesting strategy and biomass level illustrating
the case where hmax = 40000 tons year−1 . The optimal harvest policy also involves two
switching times, at t∗ = 0.54 and t∗ = 0.93 (see Figure 6). The strategy in this case is
to start the harvest a little over 6 months and to stop well before the year ends. This is
illustrated in Figure 11. The fish biomass level is similarly affected once harvesting starts
(see Figure 12). A value of $152.416.50 is obtained as the total net revenue per year.

6. Conclusion

The study considered an optimal control model that incorporated into the model the
effective utilization of the fishery resource. The appropriate biological model was formulated
and subsequently economic parameters were added to produce the bioeconomic model.
Subjecting the model to bifurcation analysis showed that harvesting of the resource should
only be contemplated when the rate of harvest is less than the MSY (bifurcation point).
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Fig. 7: Harvesting strategy for hmax = 20000
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Fig. 8: Fish biomass for hmax = 20000
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Fig. 9: Harvesting strategy for hmax = 30000
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Fig. 10: Fish biomass for hmax = 30000
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Fig. 11: Harvesting strategy for hmax = 40000
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Fig. 12: Fish biomass for hmax = 40000
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In determining the optimality of the model, characterization of the optimal control, the
harvesting rate, was performed. Also, the model was analyzed for singularity and the
outcome showed that only the bang-bang path was applicable.

Afterwards, a simulation was carried out using realistic parameter values for the cases
hmax = 20000 tons year−1 , hmax = 30000 tons year−1 and hmax = 40000 tons year−1 .
The results indicated that the case where hmax = 40000 tons year−1 provided the greatest
revenue. However, if early harvesting is desired because of market demands, then the case
where hmax = 20000 tons year−1 should be given a consideration since it recommends the
earliest commencement of harvesting among the three scenarios.

It is instructive to note that, for a terminal biomass level of 70000 tons, convergence of
the iterates is not achieved for harvests greater than 40000 tons. This is not surprising, as
the MSY for the model is 110000 tons. This value exactly equals the sum of the maximum
allowable harvest per year, 40000 tons and the final biomass level, 70000 tons.
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