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Abstract 

In this paper, we prove that the Boundary Condition Constants for the Boundary 

Value Problem  
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can be replaced by Boundary Condition Functions  and that the Boundary 

Condition Functions are asymptotically equivalent for large values of λ , to the 
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1  Introduction 

Over the years quite a good number of mathematicians have studied 

boundary condition functions. The use of boundary condition functions for 

boundary value problems was first considered by Kodaira in [1].  

In this paper Kodaira considered the replacement of boundary condition 

constants of separated boundary conditions , associated with real differential 

equations of arbitrary even order , by solutions of the differential equation. In [2] 

E. C. Titchmarsh proved that, the self-adjoint boundary value problem:  
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is equivalent asymptotically, for suitably large values of λ , to the corresponding  

Fourier problem:  

)()()2( xx λφφ =−                   
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The coefficient q and the constantsα , β  are real valued and [ ]baCq ,∈ . W. 

N. Everitt in [3] also worked on self-adjoint boundary value problems. D. N. Offei 

in [4] extended the use of boundary condition functions to non-self adjoint 

boundary value problems with complex-valued coefficients and constants and 

with boundary conditions separated or otherwise. 
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In [5], D. N. Offei proved that the boundary condition functions, for the 

boundary value problem: 

)()()()()()( 3
)1(

2
)3(3 xxxPxxPxiL λφφφφφ =++≡        

0)()()( )1( === bba φφφ                

are asymptotically equivalent, for suitably large values of λ , to the corresponding 

functions, for the corresponding Fourier problem. In [9], M. B. Osei showed that 

the boundary condition functions of the second order boundary value problem are 

asymptotically equivalent to the boundary condition functions of the 

corresponding Fourier problem of the boundary value problem. 

 

 

2  Notation  

In this section we give some properties of the linear differential expression L  

and  some notations used in subsequent sections of this paper. 

1. For a suitable set of functions ),(xrφ  ),41( ≤≤ r  the symbol )(xΦ  denotes    

the 4 x 4 matrix  )]([ )1( xs
r

−φ )4,1( ≤≤ sr . 
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Also )(ˆ xg  represents the column vector with components 

(1) ( 1)( ), ( ),..., ( ).ng x g x g x−  

2.  The symbol *( )xB   denotes the conjugate transpose of the matrix ( )xB  

whilst )(ˆ* xb  denote the row vector with components (1) ( 1)( ), ( )... ( )nb x b x b x− . 

3. Given the linear expression 𝐿 defined by  

 
 



124                                    Asymptotic behaviour of  boundary condition functions … 

)()()()()()()()()()( 4
)1(

3
)2(

2
)3(

1
)4(

0 xxPxxPxxPxxPxxPL φφφφφφ ++++≡     

)( bxa ≤≤ . The Lagrange adjoint of L is denoted  by +L  and  defined as  

ψψψψψψ )())(1()()1()()1()()1( 4
)1(

3
)2(

2
2)3(

1
3)4(

0
4 xPPPPPL +−+−+−+−≡+ . 
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(b)     If  ),(1 xP  )(2 xP  and )(3 xP   are identically zero in some neighbourhood of      

          a and b  and 0P  is a constant independent of x then 
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 (c)  The Lagrange adjoint of +L  is L  and for suitable pair of functions g and f 
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        The jkA  are dependent on the coefficients of the differential expression +L    

       and ][)( jkAx =A . 

5. If ( , )xϕ λ  is a solution of Lϕ λϕ=  and ( , )xψ λ  is a solution of Lψ λψ+ =   

       then   
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3  Preliminaries 

The boundary value problem to be considered is of the form 
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where the functions )(2 xP , )(3 xP , )(4 xP ,  the constants rsm  and rsn  and the 

parameter λ  are complex- valued.  The functions )(xPr   ( r = 2, 3, 4)  are of the 

class )4( rC −  on the closed bounded interval [a, b] and )(2 xP , )(3 xP  are identically 

zero in a neighbourhood of both a and b . 

The corresponding Fourier boundary value problem for π  is given by  
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Likewise ),/( λψ xaFr  and ),/( λχ xbFr  are solutions of )()()4( xx ψλψ =   such 

that  

*)()( MBΨ aa =     and .*)()( NBΧ bb =  

Let )},/(),,/({ λλ xbgxaf rr  )41( ≤≤ r  be the boundary condition 

functions for the boundary value problem    
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),()()4( xx λφφ =  and    )(ˆ)(ˆ 44 bIaIU φφφ += =
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where I 4  is the 4 x 4  unit matrix. Then ),/(),,/( λλ xbgxaf rr  are solutions of 

)()()4( xx ψλψ =  such that  

F(a)  =  B(a)I 4  =  B(a)   and   G(b)  =  B(b)I 4   =  B(b). 

     

 

4  Proof of Theorems 

We now prove five Theorems that will enable us to prove our main results in 

Theorem 6. 

Theorem 1  
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                                     )()()4( xx ψλψ =                         (5)   

 such that  

                                    F(a)  =  B(a)I 4  =  B(a)                      (6) 
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i.e., 
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This implies that   

H(a)  =  F(a)M*  . 

But from  (6) F(a)   =  B(a),  therefore    

H(a)  =  B(a)M* . 

Now ),/( λψ xaFr  )41( ≤≤ r  are solutions of the same (5) such that 
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E.K. Essel, E. Yankson and S.M. Naandam                                                                129 
 

then ),( λxqr  )41( ≤≤ r  are solutions of (5) such that Q(b)  =  B(b)N*   and so 

 ),/( λχ xbFr  =   ),( λxqr   =  ),/(
4

1
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s
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. 

This proves (i) and (ii). 

 (iii) ),/( λxaf r  )41( ≤≤ r  are solutions of )()()4( xx ψλψ =  such that  

    F(a)  =  B(a)I 4  =  B(a)      
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The general solution of the equation )()()4( xx ψλψ =  can be obtained as follows: 
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Since the fourth roots of unity are 1, -1, i and –i we see that the four roots of the 

equation λρ =4  are 0ρ ,- 0ρ , -i 0ρ  and i 0ρ . Put 0ρ=P  then the four roots are P, 

-P , iP and –iP. The general solution of the equation 
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which implies that 1 2( ) ( / , ).R x f a x λ=  
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Therefore )(3 xR   =  ).,/(4 λxaf  Finally, )(3 xR  = )()3(
1 xf− implies that 

                                 ),/(4 λxaf    =  ).()3(
1 xf−           (16) 

It follows from (14), (15) and (16) that  
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)(xf s = )()1( )1(
1

)1( xf ss −−−    ( 42 ≤≤ s ). 

Similarly )(xgs = )()1( )1(
1

)1( xg ss −−−    ( 42 ≤≤ s ). The proof of the theorem is 

complete.                                                                                                      □ 

         

Theorem 2 Let 
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Then using the formula 
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(2) (2) (2) (1)

(2) (2)
2

( / , ) ( ) ( / , ) ( ) ( / , ) ( )

( ) ( / , ) ( )  ( ) ( )

x

r Fr r r
a
x

Fr r r
a

a x x R t x t dt R x x x

x R t x t dt P x x

ψ λ ψ λ ψ λ ψ

ψ λ ψ ψ

= + +

= + −

∫

∫
  

(3) (3) (3) (2) (1)
2

(3) (3) (1)
3 2

( / , ) ( ) ( / , ) ( ) ( / , ) ( ) [ ( ) ( )]

( ) ( / , ) ( ) ( ) ( ) [ ( ) ( )]

x

r Fr r r r
a
x

Fr r r r
a

a x x R t x t dt R x x x P x x

x R t x t dt P x x P x x

ψ λ ψ λ ψ λ ψ ψ

ψ λ ψ ψ ψ

= + + −

= + + −

∫

∫

(4) (4) (4) (3)

(1)
3 2

(4) (4)
4

(2)(1)
3 2

( / , ) ( ) ( / , ) ( ) ( / , ) ( )

( ) ( ) [ ( ) ( )]

( ) ( / , ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( ) .

x

Fr r r
a

r r
x

Fr r r
a

r r

a x x R t x t dt R x x x

P x x P x x

x R t x t dt P x x

P x x P x x

ψ λ ψ λ ψ λ ψ

ψ ψ

ψ λ ψ ψ

ψ ψ

= + +

+ −

= + −

 + −  

∫

∫
    

By definition, ),/( λxtR  being a solution of )()4( xψ = )(xψλ  implies that 
(4) ( / , ) ( / , )R t x R t xλ λ λ=  and so 

        
(4) (4) (4)

(2)(1)
4 3 2

( ) ( ) ( / , ) ( )

( ) ( ) [ ( ) ( )] ( ) ( )

x

r Fr r
a

r r r

x x R t x t dt

P x x P x x P x x

ψ ψ λ λ ψ

ψ ψ ψ

= +

 − + −  

∫
                     (22)  

Substituting (21) into (22) we have 
(2)(4) (4) (1)

4 3 2( ) ( ) [ ( ) ( )] ( ) ( ) [ ( ) ( )] ( ) ( ) .r Fr r Fr r r rx x x x P x x P x x P x xψ ψ λ ψ ψ ψ ψ ψ = + − − + −  
But,  )()4( xψ = )(xψλ  implies that )()4( xFrψ = )(xFrψλ  and hence,  
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(4) (4)

4
(2)(1)

3 2

( ) ( ) [ ( ) ( )] ( ) ( )

[ ( ) ( )] ( ) ( )
r Fr r Fr r

r r

x x x x P x x

P x x P x x

ψ λψ λ ψ ψ ψ

ψ ψ

= + − −

 + −  
        

)()4( xrψ  = )(xrψλ  − )()(4 xxP rψ  + )1(
3 )]()([ xxP rψ − [ ] )2(

2 )()( xxP rψ        (23) 

)()4( xrψ  + )()(4 xxP rψ  − )1(
3 )]()([ xxP rψ + [ ] )2(

2 )()( xxP rψ  = )(xrψλ , hence  

( )xrψ ( )41 ≤≤ r  are solutions of (23) such that *)()( MBΨ aa =  .     

Similarly ( )xrχ  ( )41 ≤≤ r  are solutions of (23) such that *)()( NBΧ bb = .   

Hence we conclude that )},/(),,/({ λχλψ xbxa rr  are the set of boundary 

conditions of π .                                                                                                       □ 

 

Theorem 3 

( ))()1()1( ),/( axss
Fr ePOxa −−− = σλψ  as ∞→λ ( )4,1 ≤≤ sr       

),/()1( λχ xbs
Fr

−  = ( ))()1( xbs ePO −− σ  as ∞→λ ( )4,1 ≤≤ sr      

Proof. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4

1

1 2 2 3 3 4 4

(1) (2) (3)
1 2 1 3 1 4 1

( / , ) ( / , )

/ , / , / , / ,

/ , / , / , / , .

Fr rs s
s

ri r r r

ri r r r

a x m f a x

m f a x m f a x m f a x m f a x

m f a x m f a x m f a x m f a x

ψ λ λ

λ λ λ λ

λ λ λ λ

=

=

= + + +

= − + −

∑
 

For r=1 1r =  and using (12) we have 

       

{ }

{ }

{ }

{ }

3 ( ) ( ) ( ) ( )11
1

2 ( ) ( ) ( ) ( )12

1 ( ) ( ) ( ) ( )13

( ) ( ) ( ) ( )14

( / , )
4

4

4

4

p x a p x a ip x a iP x a
F

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

ma x p e e ie ie

m p e e e e

m p e e ie ie

m e e e e

ψ λ − − − − − − −

− − − − − − −

− − − − − − −

− − − − − −

= − + − +

− − − + +

+ − + + −

− − − − −

            

Furthermore, 
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3 ( ) ( ) ( ) ( )
1 1

2 ( ) ( ) ( ) ( )
2

1 ( ) ( ) ( ) ( )
3

( ) ( ) ( ) ( )
4

( / , ) p x a p x a ip x a iP x a
F

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

a x K P e e ie ie

K P e e e e

K P e e ie ie

K e e e e

ψ λ − − − − − − −

− − − − − − −

− − − − − − −

− − − − − −

≤ − + − +

+ − − + +

+ − + + −

+ − − − −

 

         

{ }
{ }
{ }

{ }

3 ( ) ( ) ( ) ( )
1

2 ( ) ( ) ( ) ( )
2

1 ( ) ( ) ( ) ( )
3

( ) ( ) ( ) ( )
4

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

p x a p x a ip x a iP x a

K P e e e e

K P e e e e

K P e e e e

K e e e e

− − − − − − −

− − − − − − −

− − − − − − −

− − − − − −

≤ + + +

+ + + +

+ + + +

+ + + +

    

        
( )

{ }

1 2 3
4 3 2 1

( ) ( ) ( ) ( )p x a p x a ip x a iP x a

K K P K P K P

e e e e

− − −

− − − − − −

≤ + + + ⋅

⋅ + + +
       (24)                                                                                              

Since p = τσρ i+=  we see that 

)( axpe −  = ;)( axe −σ

   
)( axpe −− = ;)( axe −−σ

   
)( axipe − = ;)( axe −−τ

   
)( axipe −− = .)( axe −−τ

                                                                                           
(25) 

From (24) and (25) we find that 

( ){ }
1

1 2 3 ( ) ( ) ( ) ( )
4 3 2 1

( / , )F

x a x a x a x a

a x

K K P K P K P e e e eσ σ τ τ

ψ λ
− − − − − − − − −≤ + + + + + +

≤ ( )3
1

2
2

1
34

−−− +++ PKPKPKK  { }( ) ( ) ( ) ( )x a x a x a x ae e e eσ σ τ τ− − − −+ + +  

≤  2 ( )3
1

2
2

1
34

−−− +++ PKPKPKK       { }( )( ) x ax ae eτσ −− +  

as ∞→λ , ∞→P  and so   02 →−P ;   01 →−P ;       .03 →−P  

Hence, ),/(1 λψ xaF ≤  ( ))()( axax eeK −− + τσ , where 𝐾 = 2𝐾4. But from (9) 

4cos4
1

θσ r=  and 4sin4
1

θτ r=  and so τσ >  and 0≥σ . Thus,  

( )( )
1( / , ) x a

F a x K eσψ λ −≤  as ∞→λ  and so ( )( )
1( / , ) x a

F a x O eσψ λ −=  as 

.∞→λ    
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By similar argument 

),/()1(
1 λψ xaF  =  ( ))( axepO −σ   as ∞→λ  )41( ≤≤ s     

and so, 

),/()1(
1 λψ xas

F
−  =   ( ))()1( axs ePO −− σ  as ∞→λ  ).41( ≤≤ s     

Also, 

),/()1(
2 λψ xas

F
−  =  ( ))()1( axs ePO −− σ  as ∞→λ  )41( ≤≤ s     

Similarly, 

),/()1(
1 λχ xbs

F
−  =  ( ))()1( xbs ePO −− σ  as ∞→λ  )41( ≤≤ s     

),/(2 λχ xbF       =  ( ))()1( xbs ePO −− σ  as ∞→λ  ).41( ≤≤ s     

By combining all the result we have 

      ),/()1( λψ xas
Fr

−  =  ( ))()1( axs ePO −− σ  as ∞→λ  )41( ≤≤ s         (26) 

      ),/()1( λχ xbs
Fr

−   =  ( ))()1( xbs ePO −− σ  as ∞→λ  ).41( ≤≤ s    

                                                                                                                                 □  

 

Theorem 4 

),/()1( λxtR s−   =  ( ))()2( txs ePO −− σ   as ∞→λ  )41( ≤≤ s     

),/()1( λxtS s−   =  ( ))()2( xts ePO −− σ  as ∞→λ   )41( ≤≤ s  and .τσ ip +=   

Proof.  

),/( λxtR  = ),/()( 14 λxtftP   −  ),/()( )1(
13 λxtftP  + ),/()( )2(

12 λxtftP        (27) 

From (12) 

{ }

{ }

3 ( ) ( ) ( ) ( )
1

3 ( )( ) ( )( ) ( )( ) ( )( )

1( / , )
4
1
4

p x a p x a ip x a iP x a

i x a i x a i i x a i i x a

f a x p e e ie ie

p e e ie ieσ τ σ τ σ τ σ τ

λ − − − − − − −

− + − − + − + − − + −

= − + − +

= − + − +
       

),/(1 λxtf ≤
3

4

−P
  ( )( ) ( )( ) ( )( ) ( )( )i x a i x a i i x a i i x ae e ie ieσ τ σ τ σ τ σ τ+ − − + − + − − + −+ + +  
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If 𝑧 = 𝑥 + 𝑖𝑦 then .xz ee =  Hence, 

),/(1 λxtf   ≤     
3

4

−P
      )()()()( txtxtxtx eeee −−−− +++ ττσσ     

  ≤     
3

4

−P
    2 )()( 2 txtx ee −− + τσ     

  ≤     
3

2

−P
     )()( txtx ee −− + τσ  as .∞→λ   

3
( )

1( / , )
2

x tP
f t x eσλ

−
−≤   as .∞→λ      

Similarly 
2

(1) ( )
1( / , )

2
x tP

f t x eσλ
−

−≤        as ∞→λ    

and  
1

(2) ( )
1( / , )

2
x tP

f t x eσλ
−

−≤        as ∞→λ      

Since )(4 tP  , )(3 tP  and )(2 tP  are continuous in [a,b] they are bounded in [a,b] and 

so  

                      ,)( 14 KtP ≤   ,)( 23 KtP ≤   .)( 32 KtP ≤           (28) 

Substituting all the above into (27) we have 
3 2 1

1 2 3 ( )( / , )
2 2 2

x tK P K P K P
R t x eσλ

− − −
−

  ≤ − + 
  

        

1 ( )( / , ) x tR t x K P eσλ − −≤    as .∞→λ               (29) 

or 

),/( λxtR   =  ( ))(1 txePO −− σ     as ∞→λ              (30) 

From (27) 

),/()1( λxtR  = ),/()( )1(
14 λxtftP   −  ),/()( )2(

13 λxtftP  + ),/()( )3(
12 λxtftP . 
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By similar argument 

),/()1( λxtR   ≤   
2

2
1

−PK
  −  

2

1
2

−PK
  + 

2

0
3

−PK
     )( txe −σ    ≤  0−PK )( txe −σ

or      

),/()1( λxtR   =  ( ))( txeO −σ   as ∞→λ               (31) 

Combining (30) and (31) and generalizing we have 

),/()1( λxtR s−   = ( ))(2 txs ePO −− σ     as ∞→λ    ).41( ≤≤ s  

Similarly 

                 ),/()1( λxtS s−  = ( ))(2 txs ePO −− σ      as ∞→λ    ).41( ≤≤ s           □ 

 

Theorem 5 

),/( λψ xar  =  ( ))( axeO −σ  as ∞→λ         

),/( λχ xbr  =  ( ))( xbeO −σ  as .∞→λ         

Proof. Let  

),/( λψ xar  =  ( ))(),/( ax
r exaF −σλ    as ∞→λ            (32) 

then 

)(trψ  =  ( ))()( at
r etF −σ      as ∞→λ             (33) 

and 

),/( λxaFr = ),/()( λψσ xae r
ax−−                           (34) 

Next we substitute   ),/( λψ xar   =  ∫+
x

a
rFr dttxtRxa )(),/(),/( ψλλψ  into (34) to 

obtain 

),/( λxaFr = )( axe −−σ    ∫+
x

a
rFr dttxtRxa )(),/(),/( ψλλψ   .        (35) 

Similarly, substituting (33) into (35) we have 
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),/( λxaFr = )( axe −−σ ∫+
x

a
Fr xtRxa ),/(),/( λλψ  )( xte −σ dttFr )(    as .∞→λ  

Now 

  ),/( λxaFr ≤ .)(),/(),/( )()( dttFextRxae r
xt

x

a
Fr

ax −−− ∫+ σσ λλψ           (36)  

But from (26) and (29) 

),/( λψ xaFr ≤ )(
1

axeK −σ ;       ),/( λxtR ≤ )(1
2

txePK −− σ  

By the mean value theorem for integrals 

∫
x

a
r dttF )(  = ))(,/( axaFr −λξ  

where  a <ξ   < x . But (𝑥 −  𝑎) being  a constant imply that  

∫
x

a
r dttF )(   =  KxaFr ),/( λ  

where ],,[ bax∈  K = (𝑥 − 𝑎). Substituting the above  into (36) we have 

),/( λxaFr ≤  ),/(1
31 λxaFPKK r

−+  

where )(223 axKKKK −== . Therefore,  

),/( λxaFr − ),/(1
3 λxaFPK r

− ≤ 1K . 

Hence,   

),/( λxaFr )1( 1
3

−− PK ≤ 1K  

and so 

            ),/( λxaFr ≤
)1( 1

3

1
−− PK

K
 provided that 01 1

3 >− −PK  .        (37) 

This is true if P is large enough. Substituting (37) into (32) we have 

)(
4),/( ax

r eKxa −≤ σλψ   as ∞→λ  

where  4K   =  1
3

1

1 −− PK
K

  and so 
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),/( λψ xar  = )( )( axeO −σ     as  .∞→λ               (38) 

Similarly ),/( λχ xbr  = )( )( xbeO −σ     as  .∞→λ                                                     □

  

Theorem 6 

),/()1( λψ xas
r

−   ~  ),/()1( λψ xas
Fr

−  as  ∞→λ       

),/()1( λχ xbs
r

−  ~  ),/()1( λχ xbs
Fr

−  as  ∞→λ ( ).41 ≤≤ r        

Proof. 

),/( λψ xar   =  ∫+
x

a
rFr dttxtRxa )(),/(),/( ψλλψ            (39) 

),/()1( λψ xar   =  ∫+
x

a
rFr dttxtRxa )(),/(),/( )1()1( ψλλψ           (40) 

From (30), (31) and (38) 

( )
( )

1 ( )

(1) ( )

( / , ) as

( / , ) as

x t

x t

R t x O P e

R t x O e

σ

σ

λ λ

λ λ

− −

−

= →∞


= →∞

                                                     (41)  

)(trψ   =  ( ))( ateO −σ  as ∞→λ           

According to (35) there exist constants 1K , 2K  and 3K  such that 

1 ( )
1

(1) ( )
2

( / , ) as

( / , ) as

x t

x t

R t x K P e

R t x K e

σ

σ

λ λ

λ λ

− −

−

≤ →∞


≤ →∞ 
                                                     (42) 

)(trψ     ≤ )(
3

ateK −σ  as ∞→λ            

Substituting (42) into (39) we have 

dttxtR r

x

a

)(),/( ψλ∫ ≤   dtePKK ax
x

a

)(1
31

−−

∫ σ  

  ≤   )()(1
31 axePKK ax −−− σ    since ∫ −=

x

a

axdt )(  

  =  )(1
31 )( axeabPKK −− − σ    since if  bxa ≤≤ , then axab −≥−                      
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  =  )(1
4

axePK −− σ  as ∞→λ  

∫
x

a
r dttxtR )(),/( ψλ =  ( ))(1 axePO −− σ  as .∞→λ                (43) 

Similarly ∫
x

a
r dttxtR )(),/()1( ψλ    =  ( ))( axeO −σ            (44) 

From (39) and (43) 

),/( λψ xar   =  ( ))(1),/( ax
Fr ePOxa −−+ σλψ  as ∞→λ           (45) 

From (40) and (44) 

),/()1( λψ xar   =  ( ))()1( ),/( ax
Fr eOxa −+ σλψ   as .∞→λ           (46) 

Combining (45) and (46) we obtain a general formula  

),/()1( λψ xas
r

−   =  ( ))()2()1( ),/( axss
Fr ePOxa −−− + σλψ  as .∞→λ          (47) 

Similarly  

),/()1( λχ xbs
r

−   =  ( ))()2()1( ),/( bxss
Fr ePOxb −−− + σλχ  as .∞→λ          (48) 

If follows from theorem 3 and (47) that 

),/()1( λψ xas
r

−    ~  ),/()1( λψ xas
Fr

−        as .∞→λ   

Similarly it follows from theorem 3 and (48) that  

),/()1( λχ xbs
r

−   ~  ),/()1( λχ xbs
Fr

−   as ∞→λ  4,1( ≤≤ sr ). 

The proof is complete.                                                                                             □ 

 

    

5  Conclusion 

We have successfully proved that the boundary condition functions for the 

boundary value problem in (1) and (2) are asymptotically equivalent for large 

values  of |𝜆|, to the boundary condition functions for the corresponding Fourier 

boundary value problem for 𝜋, given by (3) and (4). 
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