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Isogeometric analysis (IGA) is a recently developed simulation method that allows integration of finite element analysis (FEA)

with conventional computer-aided design (CAD) software [1,3]. This goal requires new software design strategies, in order to

enable the use of CAD data in the analysis pipeline. To this end, we have initiated G+++SMO (Geometry+Simulation Modules),

an open-source, C++ library for IGA. G+++SMO is an object-oriented, template library, that implements a generic concept for

IGA, based on abstract classes for discretization basis, geometry map, assembler, solver and so on. It makes use of object

polymorphism and inheritance techniques to provide a common framework for IGA, for a variety of different basis-types

which are available. A highlight of our design is the dimension independent code, realized by means of template meta-

programming. Some of the features already available include computing with B-spline, Bernstein, NURBS bases, as well as

hierarchical and truncated hierarchical bases of arbitrary polynomial order. These basis functions are used in continuous and

discontinuous Galerkin approximation of PDEs over (non-)conforming multi-patch computational (physical) domains.
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1 Isogeometric Analysis

Isogeometric analysis, introduced by Hughes et al. in 2005 [1], proposes the integration of design and analysis, i.e. a bi-

directional communication between Computer-aided Design (CAD) and simulation software. The last years this topic has

received increased interest from the communities of engineering, geometric design and of numerical analysis, due to its

promising potential.

IGA uses the same class of basis functions for both representing the geometry of the computational domain and approx-

imating the solution of problems modeled by PDEs. This approach allows to perform simulations directly on CAD models,

avoiding the expensive intermediate meshing step. Some of its advantages include the property that the exact CAD geometry is

preserved and the fact that considerably less degrees of freedom are required when comparing with high-order finite element

discretizations. The discretization spaces used in IGA are collections of Non-Uniform Rational B-Splines (NURBS) basis

functions, which are widespread in CAD for representing surfaces (Fig. 1), as well as an industrial standard. They are known

to have good approximation properties which make them suitable for analysis. Another advantage is the increased smoothness

across element edges or faces.

The B-spline basis functions of a given degree are defined in a set of successive intervals (1D elements), whose endpoints

are called knots. Their evaluation is done by the Cox-de Boor recursion formula applied to the knot vector. In 2D or 3D,

the respective B-spline basis functions are derived as tensor products of one dimensional B-Spline basis functions, therefore

defined on a rectangular domain (Fig. 2). For a more detailed description we refer the reader to [3].

Several challenges arise when applying the IGA paradigm. One important problem comes from the fact that the refinement

propagates along knot-lines of tensor-product bases, causing the number of control variables to explode. Also, even though

meshing is not needed, the conversion of CAD solids (B-reps) to analysis-suitable models is a non-trivial task. CAD models

consist of many patches, each one parameterized by B-spline basis functions. These play the role of sub-domains, and coupling
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Fig. 1: A surface patch defined by B-splines. Black dots

denote the control points.

Fig. 2: Bi-variate tensor-product B-splines defined on a

square domain. End conditions may be un-clamped (left)

or clamped (right).
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Fig. 3: Solving a 2D diffusion problem. defined on a

domain partitioned in B-spline patches. Coupling of in-

terfaces is using a IGA Discontinuous Galerkin method.
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Fig. 4: A diffusion PDE on a torus surface, both

the geometry and the solution are parameterized by

NURBS basis functions.

the interfaces between them is a non-trivial task, especially when the parameterizations at the interface are non-matching or

contains small gaps. Furthermore, this topology of patches allows extra-ordinary vertices and singularities, which require

special treatment.

2 A C++ library for IGA

Isogeometric analysis requires seamless integration of FEA and CAD software. The existing software libraries, however,

cannot be adapted easily to the arising new challenges, since they have been designed and developed for different purposes. In

particular, FEA codes are traditionally implemented by means of functional programming, and are focused on treating nodal

shape function spaces. In CAD packages, on the other hand, the central objects are free-form curves and surfaces, defined by

control points, which are realized in an object-oriented programming environment.

G+++SMO is an object-oriented, template C++ library, that implements a generic concept for IGA, based on abstract classes

for geometry map, discretization basis, assemblers, solvers and so on. It makes use of object polymorphism and inheri-

tance techniques in order to support a variety of different discretization bases, namely B-spline, Bernstein, NURBS bases,

hierarchical and truncated hierarchical B-spline bases of arbitrary polynomial order [4], and so on.

Regarding architecture, the library is organized into three main levels: The iso-geometry level, which contains the abstract

IGA, geometry and simulation concepts, the implementation level where a variety of different realizations of IGA bases,

geometries, solvers is done, and the I/O level, that consists of utilities related to file input and output, visualization and

plug-ins for third-party software.

Our design allows the treatment of geometric entities such as surfaces or volumes through dimension independent code,

realized by means of template meta-programming. Available features include simulations using continuous and discontinuous

Galerkin approximation of PDEs, over conforming and non-conforming multi-patch computational domains [5], see Fig. 3.

PDEs on surfaces(Fig. 4) as well as integral equations arising from elliptic boundary value problems are also supported.

Boundary conditions may be imposed both strongly and weakly. In addition to advanced discretization and generation tech-

niques [6], efficient solvers like multi-grid iteration schemes are available [2]. Methods for solving non-linear problems are

under development. Finally, we aim to employ existing high-end libraries for large-scale parallelization. For more details visit

www.gs.jku.at.
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