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Abstract

This paper is devoted to the effects of surface roughness during hydrodynamic lubrication. In the numerical analysis a very fine mesh is

needed to resolve the surface roughness, suggesting some type of averaging. A rigorous way to do this is to use the general theory of

homogenization. In most works about the influence of surface roughness, it is assumed that only the stationary surface is rough. This

means that the governing Reynolds type equation does not involve time. However, recently, homogenization was successfully applied to

analyze a situation where both surfaces are rough and the lubricant is assumed to have constant bulk modulus. In this paper we will

consider a case where both surfaces are assumed to be rough, but the lubricant is incompressible. It is also clearly demonstrated, in this

case that homogenization is an efficient approach. Moreover, several numerical results are presented and compared with those

corresponding to where a constant bulk modulus is assumed to govern the lubricant compressibility. In particular, the result shows a

significant difference in the asymptotic behavior between the incompressible case and that with constant bulk modulus.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

To increase the hydrodynamic performance in different
machine elements during lubrication, e.g. journal bearings
and thrust bearings, it is important to understand the
influence of surface roughness. To consider the surface
effects in the numerical analysis, a very fine mesh is needed
to resolve the surface roughness, suggesting some type of
averaging. A rigorous way to do this is to use the general
theory of homogenization. This theory facilitates the
analysis of partial differential equations with rapidly
oscillating coefficients, see e.g. [1]. Homogenization was
recently applied to different problems connected to
lubrication with much success, see e.g. [2–16].

In general, the density of a lubricant is a function of the
pressure. In this paper we will consider two special cases,
where the density is assumed to be constant, i.e. an
incompressible lubricant, and where the compressibility of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the lubricant is modelled, assuming that the lubricant has a
constant bulk modulus, see e.g. [17].
If only one of the two surfaces is rough and the rough

surface is stationary, then the governing Reynolds type
equation is stationary. When at least one of the moving
surfaces is rough, then the governing Reynolds type
equations will then involve time. Most of the previous
studies on the effects of surface roughness during lubrica-
tion are devoted to problems with no time dependency.
One technique within the homogenization theory is the

formal method of multiple scale expansion, see e.g. [18,19].
Recently, the ideas in [2] were used to study the
compressible unstationary Reynolds equation under the
assumption of a constant bulk modulus. In this paper, the
method of multiple scale expansion is applied to derive a
homogenization result for the incompressible unstationary
Reynolds equation, see also [6]. In particular, the result
shows a significant difference in the asymptotic behaviors
between the incompressible case and the case with constant
bulk modulus. More precisely, the homogenized equation
contains a fast parameter in the incompressible case. Hence
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the pressure distribution oscillates rapidly in time, while it
is almost smooth with respect to the space variable. This is
contrary to the case of constant bulk modulus where the
homogenized pressure solution does not contain any fast
parameters, i.e. the pressure solution is smooth in both
space and time. Moreover, it is clearly demonstrated by
numerical examples that the homogenization result permits
the surface effects in lubrication problems to be efficiently
analyzed.

We want to point out that in the more mathematical
oriented works in [6,9], Reynolds type equations modelling
roughness on both surfaces were analyzed by using the
method known as two-scale convergence. Concerning the
concept of two-scale convergence, the reader is also
referred to e.g. [20–22]. However, in this work we use the
more engineering oriented method of multiple scale
expansions.

2. The governing Reynolds type equations

Let Z be the viscosity of the lubricant and assume that
the velocity of surface i is V i ¼ ðvi; 0Þ, where i ¼ 1; 2 and vi

is constant. Moreover, the bearing domain is denoted by O;
the space variable is represented by x 2 O � R2 and t 2

I � R represents the time. To express the film thickness we
introduce the following auxiliary function:

hðx; t; y; tÞ ¼ h0ðx; tÞ þ h2ðy� tV 2Þ � h1ðy� tV 1Þ,

where h1 and h2 are assumed to be periodic. Without loss of
generality it can also be assumed that for both h1 and h2 the
cell of periodicity is Y ¼ ð0; 1Þ � ð0; 1Þ, i.e. the unit cube in
R2. By using the auxiliary function h we can model the film
thickness he by

heðx; tÞ ¼ hðx; t;x=e; t=eÞ; e40. (1)

This means that h0 describes the global film thickness, the
periodic functions hi, i ¼ 1; 2, represent the roughness
contribution of the two surfaces and e is a parameter that
describes the roughness wavelength, see Fig. 1.

If the lubricant is compressible, i.e. the density r depends
on the pressure, the pressure pðx; tÞ satisfies then the
u1

h0(x)+h2(x/ε)

h1(x/ε)

x3

x1

x2

Fig. 1. Bearing geometry and surface roughness.
unstationary compressible Reynolds equation

q
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h3
e
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rðpeÞrpe

� �
�
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2

q
qx1
ðrðpeÞheÞ on O� I ,

(2)

where v ¼ v1 þ v2. If the lubricant is incompressible, i.e. r
is constant, Eq. (2) is then reduced to the unstationary
incompressible Reynolds equation

qhe

qt
¼ r �

h3
e

12Z
rpe

� �
�

v

2

qhe

qx1
on O� I . (3)

Note that Eq. (2) is non-linear and Eq. (3) is linear. This
means that in general it is much more difficult to analyze
the compressible case. The situation is rather simplified if
the relation between density and pressure is assumed to be
of the form

rðpeÞ ¼ ra e
ðpe�paÞ=b, (4)

where the constant ra is the density at the atmospheric
pressure pa and b is a positive constant (bulk modulus).
This relation is equivalent to the commonly used assump-
tion that the lubricant has a constant bulk modulus b, see
e.g. [17]. Note that this assumption is valid for reasonably
low pressures. Due to the special form of relation (4) it is
possible to transform the non-linear Eq. (2) into a linear
equation. Indeed, if the function we is defined as
weðx; tÞ ¼ rðpeðx; tÞÞ=ra, then

rwe ¼ b�1 eðpe�paÞ=brpe ¼ b�1r�1a rðpeÞrpe

and equation (2) is converted into the linear equation

g
q
qt

weheð Þ ¼ r � h3
erwe

� �
� l

q
qx1
ðweheÞ on O� I , (5)

where g ¼ 12Zb�1 and l ¼ 6Zvb�1.
For small values of e, the coefficients, including he, are

rapidly oscillating functions. This implies that a direct
numerical analysis of the deterministic problems (2), (3)
and (5) becomes difficult for small values of e, because a
very fine mesh is needed to resolve the surface roughness.
This suggests some type of averaging. In this work, the
multiple scale expansion method is used to homogenize the
unstationary incompressible Reynolds equation (3), where
he is defined as in (1). These results will also be compared
with known homogenization results for (5). A significant
difference in the asymptotic behavior between the incom-
pressible case and the case with constant bulk modulus will
be seen.
Of note is that in the more mathematical oriented works

[6,9] another method known as two-scale convergence was
used to analyze Reynolds type equations modelling rough-
ness on both surfaces. In particular, [9] considers air flow,
where the air compressibility and slip-flow effects are
considered. More precisely, the following non-linear
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equation is homogenized:

a
q
qt
ðpeheÞ ¼ r � ððh

3
epe þ bh2

e ÞrpeÞ � c � rðpeheÞ on O� I ,

where a and b are positive constants and c 2 R2.
3. Homogenization (constant bulk modulus)

The focus of this work is the homogenization of the
incompressible unstationary Reynolds equation. However,
the results will be compared with the corresponding
homogenization results for the unstationary equation
corresponding to the constant bulk modulus case recently
obtained in [2], see also [23]. Therefore, for the readers
convenience, we review the main conclusions in [2].

Let wi, i ¼ 1; 2; 3 be the solutions of the local problems

ry � ðh
3
ryw1Þ ¼ �

qh3

qy1

on Y ,
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3
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þ l
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on Y .

Moreover, let hðx; tÞ, the vector function bðx; tÞ and the
matrix function Aðx; tÞ ¼ ðaijðx; tÞÞ be defined as
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The main result in [2] states that the deterministic solution
we of (5) can be approximated with high accuracy by w0ðx; tÞ,
where w0 is the solution of the homogenized (averaged)
equation

g
q
qt
ðhw0Þ ¼ �r � ðbw0Þ þ r � ðArw0Þ. (6)

It was also clearly demonstrated that by using this homo-
genization result, an efficient method is obtained for analyzing
the rough surface effects in problems where the lubricant has a
constant bulk modulus and the governing equation is the time
dependent compressible Reynolds equation (2).

Remark 1. If h is independent of t, i.e. h ¼ hðx; y; tÞ, then
the homogenized equation (6) has the form

0 ¼ �r � ðbw0Þ þ r � ðArw0Þ. (7)
4. Homogenization in the incompressible case

Consider the incompressible transient Reynolds equation

G
qhe

qt
þ L

qhe

qx1
� r � ðh3

erpeÞ ¼ 0, (8)

where G ¼ 12Z and L ¼ 6Zv. Assume the following multi-
ple scale expansion of the solution pe:

pe ¼ p0 þ ep1 þ e2p2 þ � � � , (9)

where pi ¼ piðx; y; t; tÞ. The chain rule then implies that

G
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� �
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Let A0, A1 and A2 be defined as
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q
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h3 q
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� �
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3
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q
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q
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3
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Then (8) may be written as

G
q
qt
þ

1

e1
q
qt

� �
hþ L

q
qx1
þ

1

e
q
qy1

� �
h

� ðe�2A0 þ e�1A1 þA2Þðp0 þ ep1 þ e2p2 þ � � �Þ ¼ 0.

The idea is now to collect terms of the same order of e. For
the homogenization it is sufficient to consider the orders
�2, �1 and 0.

�A0p0 ¼ 0, (10)

G
qh

qt
þ L

qh

qy1

�A0p1 �A1p0 ¼ 0, (11)

G
qh

qt
þ L

qh

qx1
�A0p2 �A1p1 �A2p0 ¼ 0. (12)

It is well-known that equations of the form A0u ¼ f have a
unique solution up to an additive constant, if and only if
the average over Y of the right-hand side is 0, see e.g. [24,
p. 93]. Hence, it is clear from (10) that p0 does not depend
on y, i.e. p0 ¼ p0ðx; t; tÞ. Using this fact and averaging (11)
with respect to y gives

Z
Y

G
qh

qt
þ L

qh

qy1
� ry � h3ryp1

� �
� ry � h3rxp0

� �� �
dy ¼ 0.
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Table 1

Common problem specific parameters

Parameter Value Unit

hmin 4� 10�6 m

k 1=4
c1 ¼ c2 1=8
L 1� 10�1 m

v1 1 m s�1

v2 0 m s�1

Z 0:14 Pa s

b 1� 1011
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By considering Y-periodicity, this is reduced toZ
Y

qh

qt
dy ¼ 0. (13)

Hence, the assumption that pe may be expanded as in (9)
requires h to satisfy (13). We observe that h fulfills this
condition in our case. Physically this means that the
surface-to-surface volume does not depend on the relative
position of the surface roughness. The fact that p0 ¼

p0ðx; t; tÞ implies that Eq. (11) is

ry � ðh
3
ryp1Þ ¼ G

qh

qt
þ L

qh

qy1

� ry � ðh
3
rxp0Þ,

where x; t and t are parameters. By linearity, p1 is of the
form

p1ðx; y; t; tÞ ¼ v1ðx; y; t; tÞ þ
qp0
qx1

v2ðx; y; t; tÞ þ
qp0

qx2
v3ðx; y; t; tÞ,

where vi is the solutions of the following local problems:

ry � ðLhe1 � h3
ryv1Þ ¼ �G

qh

qt
,

ry � ðh
3
ðe1 þryv2ÞÞ ¼ 0,

ry � ðh
3
ðe2 þryv3ÞÞ ¼ 0,

and fe1; e2g is the canonical basis in R2.
Averaging Eq. (12) with respect to y gives the equation

G
q
qt

Z
Y

hdyþ rx �

Z
Y

Lhe1 � h3
ryv1

� �
dy

�rx �
qp0

qx1

Z
Y

h3
½e1 þryv2�dy

�

þ
qp0

qx2

Z
Y

h3
½e2 þryv3�dy

�
¼ 0. ð14Þ

If we introduce the notation hðx; t; tÞ ¼
R

Y
hdy and define

the homogenized vector bðx; t; tÞ and the homogenized
matrix Aðx; t; tÞ ¼ ðaijðx; t; tÞÞ as

b ¼

Z
Y

ðLhe1 � h3
ryv1Þdy,

a11

a21

 !
¼

Z
Y

h3
ðe1 þryv2Þdy and

a12

a22

 !
¼

Z
Y

h3
ðe2 þryv3Þdy,

then (14) takes the following form:

G
qh

qt
ðx; t; tÞ þ rx � bðx; t; tÞ � rx � ðAðx; t; tÞrp0Þ ¼ 0. (15)

Note that t and t are just parameters. The appearance of
the fast parameter t in the homogenized equation (15)
means that for small wavelengths the pressure will oscillate
rapidly in time. This should be compared with the case of
liquid flow with a constant bulk modulus, see (6), where the
pressure is almost smooth with respect to time, i.e. the
amplitude of the oscillations in time, in the deterministic
pressure solution pe, is very small for small wavelengths. In
both cases, the pressure is almost smooth in the space
variable.
It should be noted that if h is independent of t, i.e. h ¼

hðx; y; tÞ; then the homogenized equation (15) has the form

rx � ðAðx; tÞrxp0ðx; tÞÞ ¼ rx � bðx; tÞ. (16)

It should also be noted that if only one of the surfaces is
rough (either the moving or the stationary), i.e. h is of the
form hðx; y; t; tÞ ¼ h0ðx; tÞ þ hiðy� tV iÞ, where i ¼ 1 or 2,
then h, b and A are independent of t. This means that the
solution p0 of the homogenized problem (15) is indepen-
dent of t and this simplifies problem (15).

5. Numerical results

In this section we present some numerical results based
on the homogenized equations obtained in the previous
sections. To perform the numerical analysis, the algorithms
presented in [2,3] are used. In all examples the solution
domain O is a subset of R2 such that 0px1pL and
�L=2px2pL=2. For simplicity, the global film thickness
h0 is assumed to be time independent. More precisely,

h0ðxÞ ¼
hminð1þ kÞ; x1oL=2;

hmin; x14L=2

(

and the roughness contribution is represented by

hiðy� tviÞ ¼ cihmin sinð2pðy� tviÞÞ.

This means that a step bearing with surface roughness is
considered (in the numerical simulations the discontinuity
has been smoothened). The specific parameters, common
to all the numerical computations, may be found in
Table 1.

5.1. Incompressible case

Fig. 2 depicts the deterministic solutions pe of (8) for a
fixed e and time t. In Fig. 3 the corresponding homogenized
solution p0 of (16) is plotted. It should be noted that the
deterministic solution pe oscillates rapidly, while the
homogenized solution is smooth (fixed time t and e).
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Fig. 2. Pressure distribution in the incompressible case for a fixed e.
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Fig. 3. Homogenized pressure distribution for the imcompressible case.
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The convergence of the deterministic pressure towards
the homogenized pressure p0, as e! 0, was analyzed above
by multiple scale expansions. This convergence will now be
illustrated by means of numerical solutions. Indeed, Fig. 4
represent part of the pressure distribution between the two
rough surfaces along the x2 ¼ 0 line at a particular point in
time for different values of e. As seen in the figure, the
pressure distribution pe approaches that of the homoge-
nized pressure as e tends to zero. Fig. 5 represents an
enlargement of a portion of Fig. 4, showing clearly the
decrease in the amplitude of the pressure distribution
towards the homogenized pressure solution as the rough-
ness wavelength e tends to zero.
As mentioned before in the analysis by multiple scale
expansions, the appearance of the fast parameter t in the
homogenized equations (15) and (16) means that for small
wavelengths the pressure will oscillate rapidly in time. This
fact is illustrated in Fig. 6, which depicts the pressure
distribution at some different times (within a period) for a
fixed e and the corresponding homogenized solutions.
In addition to the visual illustration of the convergence

of pe to p0, a more quantitative convergence analysis is
considered here. For this purpose we consider what
happens with the load carrying capacity as e tends to 0.
The load carrying capacity le corresponding to pe and l0
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corresponding to p0, are defined as

leðtÞ ¼

Z
O

peðx; tÞdx and l0ðtÞ ¼
Z
O

p0ðx; tÞdx. (17)

In Fig. 7 we see that le! l0 as e approaches zero. The
difference in load carrying capacity at t ¼ t ¼ 0; which is
the worst case scenario, is approximately 1%. It is also
noted that, in the case with perfectly sinusoidal surface
roughness descriptions, for a specific value of e between 1

64

and 1
32
, a seemingly small variation of the load carrying

capacity in time is obtained, i.e. it is possible to optimize
the surfaces to reduce vibrations.
5.2. Constant bulk modulus case

In the analysis by multiple scale expansions we observed
a significant difference in the asymptotic behavior between
the incompressible case and the case with constant bulk
modulus. No fast parameter t is found in the homogenized
equation of the constant bulk modulus case. This implies
that we only have one homogenized solution in our
example where h0 ¼ h0ðxÞ contrary to the incompressible
case where we have different homogenized solutions for
different times t within a period. This fact is illustrated in
Fig. 8, which corresponds to Fig. 6 in the incompressible
situation.
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In Fig. 9 we observe that, for perfectly smooth surfaces,
as b is increased, the pressure distribution in the constant
bulk modulus case, approaches that in the incompressible
case. However, this does not seem to be the case for rough
surfaces, due to the different asymptotic behavior between
the constant bulk modulus case and the incompressible
case.

6. Concluding remarks

We have clearly demonstrated that homogenization may
be used to efficiently analyze the effects of surface
roughness in incompressible thin film unstationary lubrica-
tion flow. This has been done using the method of
asymptotic expansions and numerical examples where we
visualize the convergence and give a quantitative conver-
gence analysis of the load capacity. One important
observation is that there is a difference in the asymptotic
behavior between the incompressible case and the case with
constant bulk modulus. When the lubricant is assumed to
be incompressible, the homogenized (averaged) equation
contains a fast parameter that is connected to the time.
This means that for small wavelengths the pressure
distribution oscillates rapidly in time, while it is almost
smooth with respect to the space variable. For liquid flow
of a lubricant with a constant bulk modulus, the pressure
solution of the homogenized equation does not contain any
of the fast parameters. Thus, for small wavelengths the
pressure is almost smooth in both the space and time
variables. There are many interesting directions to deepen
our study of hydrodynamic lubrication, where both
surfaces are assumed to be rough. For example, to include
a model that regards cavitation, another would be to
consider non-Newtonian lubricants.
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Department of Mathematics, Luleå University of Technology; 2006

16pp, ISSN 1400-4003.

[16] Wall P. Homogenization of Reynolds equation by two-scale

convergence. Chin Ann of Math 2007;28:to appear.

[17] Elrod HG. A cavitation algorithm. J Lubr Technol 1981;103:350–4.

[18] Bensoussan A, Lions JL, Papanicolaou G. Asymptotic analysis for

periodic structures. Amsterdam: North-Holland; 1978.

[19] Persson LE, Persson L, Svanstedt N, Wyller J. The homogenization

method: an introduction. Lund: Studentlitteratur; 1993.

[20] Allaire G. Homogenization and two-scale convergence. SIAM J

Math Anal 1992;23:1482–518.

[21] Lions J-L, Lukkassen D, Persson L-E, Wall P. Reiterated homo-

genization of nonlinear monotone operators. Chin Ann Math

2001;22(B):1–12.

[22] Nguetseng G, Lukkassen D, Wall P. Two-scale convergence. Int J

Pure Appl Math 2002;2(1):35–86.

[23] Almqvist A. On the effects of surface roughness in lubrication. PhD
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