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Abstract. We prove a homogenization result for monotone operators by using
the method of multiscale convergence. More precisely, we study the asymptotic
behavior as ε → 0 of the solutions uε of the nonlinear equation

div aε(x,∇uε) = div bε,

where both aε and bε oscillate rapidly on several microscopic scales and aε

satisfies certain continuity, monotonicity and boundedness conditions. This kind

of problem has applications in hydrodynamic thin film lubrication where the

bounding surfaces have roughness on several length scales. The homogenization

result is obtained by extending the multiscale convergence method to the setting

of Sobolev spaces W 1,p
0 (Ω), where 1 < p < ∞ . In particular we give new proofs of

some fundamental theorems concerning this convergence that were first obtained

by Allaire and Briane for the case p = 2.
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1. Introduction

We study the asymptotic behavior of the solutions uε of the nonlinear

boundary value problem

(1)
div aε(x,∇uε) = div bε in Ω

uε = 0 on ∂Ω

as the parameter ε tends to zero. Here Ω is assumed to be an open

bounded subset of R
N and the functions aε and bε are assumed to have

oscillations in the frequency range of “fast” to “ultra fast”, corresponding to

the wavelengths ε, ε2, . . . , εk , where k is an arbitrary positive integer. The

idea of homogenization is that the effects of the oscillations on the solution

is averaged out.

As an application we show that for particular choices of aε and bε
it is possible to analyze the effects of multiscale surface roughness in

some interesting linear and non-linear lubrication models. For example

the stationary incompressible Reynolds equation, governing the pressure

build-up in a fluid film bearing, falls into this category. The surface

micro topography is recognized as an important factor in hydrodynamic

lubrication. For very thin films, even small roughness becomes significant

and the distance between the two surfaces becomes a rapidly oscillating

function. In reality, all technical surfaces are rough due to flaws in the

manufacturing process – in fact almost smooth surfaces are very expensive

to produce – so surface roughness is something modern technology has to

deal with. But there is another incentive to understand the influence of

surface roughness in hydrodynamic lubrication. It has been observed that

smoothening of the surfaces in a fluid film bearing may lead to a decrease

in the hydrodynamic performance. Hence, artificially machined roughness

or surface texture can also be considered as a parameter in bearing design.

The effects of surface roughness in various lubrication regimes have

been studied with homogenization techniques in numerous works, e.g.

[6, 7, 8, 9, 10, 14, 22]. In these investigations the roughness is assumed

to be periodic of a single wavelength ε . The main result of this paper

makes it possible to study the effects of multiscale surface roughness with

several wavelengths, in some linear and nonlinear lubrication models. In the

linear case, the homogenized equation obtained by multiscale convergence

coincides with that of [4], which was obtained by the asymptotic expansion

method. Thus the present analysis gives a rigorous justification of the latter

method.

Multiscale homogenization of the present class of monotone operators has

also been studied in [21] by the periodic unfolding method and in [15, 16, 18]
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by a combination of methods. To our knowledge, the present analysis is the

only treatment that relies on multiscale convergence alone. We also give

generalizations and new proofs of some fundamental theorems concerning

this convergence that were first obtained by Allaire and Briane [2].

2. Preliminaries and notation

Throughout this paper, the letters p , q , α , β and θ denote constants

that satisfy 1 < p < ∞, 1
p + 1

q = 1, 0 < θ < 1, 0 < α ≤ min{1, p −
1}, max{2, p} ≤ β <∞.

A function f : RN → R
N is said to belong to the class Mp

α,β(θ) provided

the following conditions are satisfied for any ξ, η ∈ R
N :

f(0) = 0,(2a)

|f(ξ)− f(η)| ≤ θ−1(1 + |ξ|+ |η|)p−1−α |ξ − η|α ,(2b)

[
f(ξ)− f(η)

] · (ξ − η) ≥ θ
|ξ − η|β

(1 + |ξ|+ |η|)β−p
.(2c)

The symbol � denotes the N -dimensional torus R
N/ZN . In most

situations, we identify a function defined on � with its natural extension

to a 1-periodic (in each argument) function defined on R
N . The subscript

‘per’ is employed as a reminder of this. Let k be a positive integer. A

typical element of the set Ω× �k is denoted by xk = (x, y1, . . . , yk). If f

is a measurable function on Ω × �k and 1 ≤ j ≤ k we denote by f
j
the

average of f w.r.t. the last j variables, i.e. f
j
is the function on Ω×�k−j

defined by

f
j
(xk−j) =

∫
�j

f(xk) dyk−j+1 · · · dyk.

By convention we set f
0
= f . The function aε : Ω× R

N → R
N appearing

in (1) is assumed to be of the form

(3) aε(x, ξ) = a
(
x,
x

ε
, . . . ,

x

εk
, ξ
)

(x, ξ) ∈ Ω× R
N

where a : Ω × �k → Mp
α,β(θ) ⊂ C(RN ;RN ) is a function of Carathéodory

type. The function bε is of the form

bε(x) = b
(
x,
x

ε
, . . . ,

x

εk

)
, where b ∈ Lq(Ω;Cper(�k))N .

The dual of a Banach space X is denoted by X ′ . Moreover, for x ∈ X

and f ∈ X ′ , 〈f, x〉 denotes the value of the linear functional f at the
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point x . The Banach space W 1,p
per(�) consists of periodic functions that

have weak derivates (in the sense of distributions) and finite Sobolev norm.

The subscript ‘	 ’ on a function space indicates that it consists of periodic

functions with zero integral, e.g. f is said to belong to Lp
� (�) provided

f ∈ Lp
per(�) and

∫
� f dx = 0. By analogy to the notational convention

W−1,q(Ω) = W 1,p
0 (Ω)′ we write W−1,q(�) = W 1,p

per(�)′ . Moreover,

W−1,q
� (�) consists of linear functionals f in W−1,q(�) such that 〈f, 1〉 = 0.

A weak solution of (1) is defined as an element uε of W 1,p
0 (Ω) satisfying

(4)

∫
Ω

aε(x,∇uε) · ∇φdx =

∫
Ω

bε · ∇φdx

for all φ ∈W 1,p
0 (Ω). Let Aε : W

1,p
0 (Ω) →W−1,q(Ω) be defined by

〈Aε(u), φ〉 =
∫
Ω

aε(x,∇u) · ∇φdx u, φ ∈W 1,p
0 (Ω).

By (2b) and Hölder’s inequality, we obtain

(5)

‖Aε(u)−Aε(v)‖W−1,q(Ω) ≤ θ−1
∥∥1 + |∇u|+ |∇v|∥∥p−1−α

Lp(Ω)
‖u− v‖αW 1,p

0 (Ω) .

Hence Aε is continuous. Furthermore, (2c) implies that Aε is strictly

monotone, i.e.

(6)
〈Aε(u)−Aε(v), u − v

〉 ≥ 0

with equality if and only if u = v . Utilizing (2c) and standard estimates,

e.g. Hölder’s and Friedrichs’ inequality, we can find a positive constant C

such that

(7)
〈Aε(u), u

〉
=

∫
Ω

aε(x,∇u) · ∇u dx ≥ C ‖u‖p
W 1,p

0 (Ω)
,

provided ‖u‖W 1,p
0 (Ω) is large enough, hence Aε is coercive. Throughout the

paper the letter C is reserved for a positive constant that may depend on

p , α , β , θ or Ω. The value of C may differ from one place to another.

Owing to (5), (6) and (7), it is clear that Aε satisfies the hypotheses of the

Browder–Minty theorem (see e.g. [23] p. 557). Hence, for each ε > 0, there

exists a unique uε that solves (4). Moreover, putting φ = uε in (4) and

utilizing (7) and Hölder’s inequality we obtain

(8) ‖uε‖pW 1,p
0 (Ω)

≤ C
(
1 + ‖bε‖qLq(Ω)

)
.
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In view of the Riemann–Lebesgue lemma, the sequence bε is weakly

convergent. Hence it is bounded and we conclude from (8) that the sequence

uε is bounded in W 1,p
0 (Ω).

3. Multiscale convergence

In 1989 Nguetseng [19] introduced a generalized notion of weak

convergence that proved suitable for analyzing homogenization problems

with periodic coefficients and one microscopic scale. This technique was

later further developed by Allaire [1] who named it two-scale convergence.

Two-scale convergence in the setting of Lebesgue spaces Lp(Ω) with 1 < p <

∞ is described in [20]. The benefit of the two-scale convergence technique

is that it inherently copes with many of the classical difficulties encountered

in homogenization, such as passing to the limit in the product of two weakly

convergent sequences.

Homogenization with k microscopic scales, where k > 1, was initially,

as described in the book [11], referred to as reiterated (or iterated)

homogenization. In the present context however, we think it is more

appropriate to use the term multiscale homogenization. Two-scale

convergence (one microscopic scale) was generalized to (k + 1)-scale

convergence or multiscale convergence (k microscopic scales) in 1996 by

Allaire and Briane [2]. As pointed out by these authors (see Remark 2.9

following Theorem 2.6), the case k > 1 is more delicate due to the

possible interactions of the small scales. The results of [2] being valid for

L2(Ω) and W 1,2
0 (Ω), it has hitherto not been clear whether the multiscale

theory extends to Lp(Ω) and W 1,p
0 (Ω) for all p such that 1 < p < ∞ .

Nevertheless, many authors seem to have taken for granted that such a

generalization is possible, see e.g. Theorem 3.8 in [5] or Theorem 1.7 in

[12]. To our knowledge, proofs for p �= 2 have been lacking until now.

In this paper we develop a multiscale convergence theory for an arbitrary

number of scales and 1 < p < ∞ . In particular we give a new proof of

Theorem 1.2 in [2] which is preceded by the comment “. . . its proof is the

most difficult (if not important) result of this paper.” Another proof of this

theorem, also for p = 2, is due to Balder [3] and relies on the fact that

rotation-free vector fields on Y = (0, 1)N (the “cell of periodicity”) can

be represented as gradients of functions in W 1,2
0 (Y ). Our proof relies on

a different kind of representation (see Theorem 3.3) and is more similar in

spirit to that of [2, 19].

The cornerstones of the multiscale convergence theory are three theorems

related to

(1) compactness of bounded sequences in Lp(Ω),



22 Multiscale homogenization

(2) multiscale limits of gradients (of bounded sequences in W 1,p
0 (Ω)),

(3) multiscale convergence and monotonicity.

With these theorems in place, homogenization of problem (4) becomes

a rather short story. In the definition of multiscale convergence stated

below the small scales are assumed to be naturally separated, i.e. they

are all integer powers of a small parameter ε : e.g. {εj}kj=1 . In the more

general situtation (separated scales), we regard the small scales ε1, . . . , εk
as functions of the parameter ε , that satisfy

lim
ε→0

εj = 0 for 1 ≤ j ≤ k and lim
ε→0

εj+1

εj
= 0 for 1 ≤ j ≤ k − 1.

It should be noted that all results presented here, although stated for

naturally separated scales, remain valid for separated scales. The reason for

sacrificing generality in this way is that we want to keep technicalities to a

minimum. Moreover, with the present application in mind, there is hardly

no need to consider other small scales than integer powers of ε . Therefore,

throughout this paper, multiscale convergence is defined in the following

way:

Definition 3.1. Let k be a positive integer. A bounded sequence uε
in Lp(Ω) is said to (k + 1)-scale converge to an element u of Lp(Ω ×�k)

provided

(9) lim
ε→0

∫
Ω

uεφ
(
x,
x

ε
, . . . ,

x

εk

)
dx =

∫
Ω×�k

uφdxk

for every test function φ of the form φ(xk) = ϕ(x)
∏k

i=1 ψi(y
i), where

ϕ ∈ C(Ω) and ψ1, . . . , ψk ∈ Cper(�). We write uε
k+1→ u .

We note that it is possible to replace the set of test functions by

C∞
c (Ω;C∞

per(�k)), i.e. the space of all smooth functions φ : Ω × R
kN → R

such that φ is periodic in the second argument and has compact support

with respect to x .

From the definition of multiscale convergence we see that (k + 1)-

scale convergence implies k -scale convergence, 1-scale convergence being

equivalent to weak convergence in Lp(Ω). More precisely, if uε
k+1→ u , then

uε
j+1→ uk−j =

∫
Ω×�k−j

u dyj+1 · · · dyk for 0 ≤ j < k.

In particular uε → uk weakly in Lp(Ω).

Definition 3.1 is motivated by the following compactness result:
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Theorem 3.2 (Compactness). Every bounded sequence in Lp(Ω)

contains a (k + 1)-scale convergent subsequence.

Proof. The proof is very similar to the two-scale case, see e.g. ([20],

Theorem 7), and is therefore omitted. �

The proof of the second important result in multiscale convergence theory,

Theorem 3.6 below, is split into several independent results each of which

could be interesting in its own right. Before stating these we recall some

basic notions and facts that are nonetheless essential to the subsequent

analysis.

The p-Laplace operator Δp is defined for p ≥ 1 by

Δpu = div
(
|∇u|p−2 ∇u

)
.

Recall the well known fact that if f ∈ Lp
per(�) and φ ∈ Lq(RN ) is a

measurable function with compact support, then there exists a positive

integer m such that∫
RN

f(nx)φdx ≤ mN/p ‖f‖Lp(�) ‖φ‖Lq(RN ) ∀n ∈ N,

m depending only on the size of the support of φ . The trivial identity∫
�
ψ(nx) dx =

∫
�
ψ dx ∀ψ ∈ L1

per(�), n ∈ N

is also useful.

The first result pertains to the image of the div -operator.

Theorem 3.3. For each f ∈ W−1,q
� (�) there exists a unique u in

W 1,p
� (�) such that

(10) 〈f, φ〉 =
∫
�
|∇u|p−2 ∇u · ∇φdx ∀φ ∈W 1,p

per(�).

In other words f = − divF , where F = |∇u|p−2 ∇u ∈ Lq
per(�)N .

Moreover, there exists a constant C > 1 , independent of f , such that

(11) ‖f‖W−1,q(�) ≤
(∫

�
|∇u|p dx

)1/q

= ‖F‖Lq(�) ≤ C ‖f‖W−1,q(�) .

Proof. It is a standard result that the periodic p-Poisson equation

−Δpu = f in � has a unique solution u ∈ W 1,p
� (�) if and only if

f ∈ W−1,q
� (�). This can be proved either by the direct methods of the
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calculus of variations or by the theory for monotone operators. In terms of

weak solutions this establishes (10). By Hölder’s inequality

|〈f, φ〉| ≤
(∫

�
|∇u|p dx

)1/q

‖φ‖W 1,p
per (�) ∀φ ∈W 1,p

per(�).

Hence

‖f‖W−1,q(�) ≤
(∫

�
|∇u|p dx

)1/q

.

Taking φ = u in (10) and using the Poincaré–Wirtinger inequality yields

(∫
�
|∇u|p dx

)1/q

≤ C ‖f‖W−1,q(�) .

�

Next, we apply Theorem 3.3 to a sequence of “almost divergence free”

vector fields.

Lemma 3.4. Let ψ1, . . . , ψk be functions in C1
per(�) and let Ψ be a

divergence free vector field in Lq
�(�)N . For n ∈ N define

(12) Ψk
n(x) =

k∏
i=1

ψi(n
k−ix)Ψ(nkx).

Then divΨk
n ∈ W−1,q

� (�) with

(13) lim
n→∞

∥∥divΨk
n

∥∥
W−1,q(�)

= 0

Proof. Let ukn ∈ W 1,p
� (�) denote the weak solution of Δpu

k
n = divΨk

n

and set F k
n =

∣∣∇ukn∣∣p−2 ∇ukn . In view of (11), (13) is equivialent to

(14) lim
n→∞

∫
�

∣∣∇ukn∣∣p dx = 0 for k = 1, 2, . . . .

To prove (14) we shall use induction over k , but first we need to prove that∫
�
∣∣∇ukn∣∣p dx is bounded for each k . By definition ukn satisfies

∫
�

∣∣∇ukn∣∣p dx =

∫
�

k∏
i=1

ψi(n
k−ix)Ψ(nkx) · ∇ukn dx.
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Thus, (11) and Hölder’s inequality gives

(15)

(∫
�

∣∣∇ukn∣∣p dx
)1/q

≤ ‖Ψ‖Lq(�)

k∏
i=1

‖ψi‖C(�) .

Proof of (14) when k = 1. Using the definition of weak solution we obtain∫
�

∣∣∇u1n∣∣p dx =

∫
�
ψ1Ψ(nx) · ∇u1n dx = −

∫
�
u1nΨ(nx) · ∇ψ1 dx.

The function x �→ Ψ(nx) · ∇ψ1(x) tends to zero weakly in Lq(�) by the

Riemann–Lebesgue lemma. In view of (15) and the Rellich–Kondrachov

selection theorem we can extract a subsequence u1nj
that converges strongly

in Lp(�). The strong and weak convergence implies that
∫
�
∣∣∇u1n∣∣p dx→ 0

for a subsequence and by uniqueness of the limit it holds for the whole

sequence.

Assume now that (14) holds true for k = ν , where ν is some positive

integer. By definition, uν+1
n satisfies

∫
�

∣∣∇uν+1
n

∣∣p dx =

∫
�

ν+1∏
i=1

ψi(n
ν+1−ix)Ψ(nν+1x) · ∇uν+1

n dx

=

∫
�
F ν
n (nx) · ∇(ψν+1u

ν+1
n ) dx︸ ︷︷ ︸

Aν
n

−
∫
�
uν+1
n Ψν

n(nx) · ∇ψν+1 dx︸ ︷︷ ︸
Bν

n

.

Hölder’s inequality yields

|Aν
n| ≤

(∫
�
|∇uνn|p dx

)1/q (∫
�

∣∣∇(ψν+1u
ν+1
n )

∣∣p dx)1/p

.

Because of (15) and the fact that
∫
� |∇uνn|p dx → 0 by assumption, it

follows that Aν
n → 0 as n → ∞ . As to Bν

n , (15) and the Rellich–

Kondrachov selection theorem asserts that we can extract a subsequence

uνnj
that converges strongly in Lp(�). However, the Riemann–Lebesgue

lemma and the strong convergence of uνnj
implies that Bν

nj
→ 0. Thus∫

�
∣∣∇uν+1

n

∣∣p dx→ 0 for some subsequence and by uniqueness of the limit it

holds for the whole sequence. This proves that (14) is true for each k ≥ 1.

�

The following statement asserts that vector fields orthogonal to divergence

free fields are gradients.
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Theorem 3.5. Suppose F ∈ Lp(Ω×�k)N satisfies

(16)

∫
Ω×�k

F ·Ψ dxk = 0

for all Ψ in Lq(Ω × �k)N such that divyk Ψ = 0 . Then F = ∇yku for

some u in Lp(Ω×�k−1;W 1,p
� (�)) .

Proof. Set V = Lp(Ω × �k)N . First we project F onto the “space of

yk -gradients”. To this end, define

Vpot =
{∇ykv : v ∈ Lp(Ω×�k−1;W 1,p

� (�))
}
.

Because of the Poincaré–Wirtinger inequality, Vpot is a closed subspace of

V . Since V is uniformly convex, there exists a unique element ∇yku of

Vpot that minimizes the distance from F to Vpot , i.e.

(17)
∥∥F −∇yku

∥∥
V
≤ ‖F − Φ‖V

for all Φ ∈ Vpot . Set η = F −∇yku . Computing the first variation of the

minimization problem (17) yields∫
Ω×�k

|η|p−2
η · Φ dxk = 0

for all Φ ∈ Vpot . In other words divyk |η|p−2η = 0. Thus we can take

Ψ = |η|p−2
η in (16), yielding

0 =

∫
Ω×�k

F · |η|p−2
η dxk =

∫
Ω×�k

|η|p dxk.

Hence η = 0, which proves the statement. �

The aim of Theorems 3.3, 3.5 and Lemma 3.4 is to prove

Theorem 3.6 (Multiscale limit of gradients). Suppose that uε is a

sequence in W 1,p
0 (Ω) such that

(1) uε → u weakly in W 1,p
0 (Ω) ,

(2) ∇uε k+1→ ξ ∈ Lp(Ω×�k)N .

Then there exists functions uj ∈ Lp(Ω×�j−1;W 1,p
� (�)) , j = 1, . . . , k , such

that

(18) ξ = ∇u +

k∑
j=1

∇yjuj.
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Proof. To avoid cumbersome notation we write un in place of u1/n , for

all n ∈ N . Let ϕ ∈ C1
c (Ω); ψ1, . . . , ψk−1 ∈ C1

per(�) and Ψ ∈ Lq
per(�)N

such that divΨ = 0. For 1 ≤ j ≤ k , set

Ijn =

∫
Ω

ϕΨj
n · ∇un dx,

where

Ψj
n(x) =

{
ψ1(nx) · · ·ψj−1(n

j−1x)Ψ(njx) if 1 < j ≤ k

Ψ(nx) if j = 1.

The case j = 1 . On the one hand, from the definition of multiscale

convergence,

lim
n→∞ I1n =

∫
Ω×�

ϕ(x)Ψ(y1) · ξk−1
dx1.

On the other hand, using first that divΨ = 0 then the strong convergence

of un and the Riemann–Lebesgue lemma,

I1n = −
∫
Ω

unΨ(nx) · ∇ϕdx→ −
∫
Ω×�

u(x)Ψ(y1) · ∇ϕ(x) dx1

as n→ ∞ . By a density argument, we thus obtain∫
Ω×�

(
ξ
k−1 −∇u

)
· Φ dx1 = 0

for all Φ ∈ Lq(Ω × �)N satisyfing divy1 Φ = 0. Hence, by Theorem 3.5,

there exists a u1 ∈ Lp(Ω;W 1,p
� (�)) such that

(19) ξ
k−1

= ∇u +∇y1u1.

The case 1 < j ≤ k . Consider Ijn and suppose in addition that Ψ satisfies∫
� Ψ dx = 0, i.e. Ψ ∈ Lq

�(�)N . On the one hand, the definition of

multiscale convergence gives

(20) Ij
def
= lim

n→∞ Ijn =

∫
Ω×�j

ϕ(x)ψ1(y
1) · · ·ψj−1(y

j−1)Ψ(yj) · ξk−j
dxj

On the other hand, we can write

Ijn =

∫
Ω

Ψj
n · ∇(ϕun) dx −

∫
Ω

unΨ
j
n · ∇ϕdx.
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Estimating the first term yields∣∣∣∣
∫
Ω

Ψj
n · ∇(ϕun) dx

∣∣∣∣ ≤ C
∥∥divΨj

n

∥∥
W−1,q(�)

(∫
Ω

|∇(ϕun)|p dx
)1/p

,

where C is a constant depending only on p and Ω. Since un is bounded in

W 1,p
0 (Ω) and

∥∥divΨj
n

∥∥
W−1,q(�)

→ 0 by Lemma 3.4 we conclude that this

term tends to zero. As to the second term, the Riemann–Lebesgue lemma

and the strong convergence of un implies that limn→∞
∫
Ω unΨ

j
n ·∇ϕdx = 0.

Thus Ij = 0 and by a density argument this is equivalent to∫
Ω×�j

(ξ
k−j − ξ

k−j+1
) · Φ dxj = 0

for all Φ ∈ Lq(Ω×�j)N such that divyj Φ = 0. By Theorem 3.5,

(21) ξ
k−j − ξ

k−j+1
= ∇yjuj

for some uj ∈ Lp(Ω×�j−1;W 1,p
� (�)).

Since ξ = ξ
0
can be written as

ξ = ξ
k−1

+
k∑

j=2

ξ
k−j − ξ

k−j+1
,

we verify the assertion (18) by applying (19) and (21). �

The following theorem could be called the “fundamental theorem of

multiscale convergence and monotonicity”. A two-scale version of the

statement can be found in [17], Theorem 14.

Theorem 3.7 (Multiscale convergence and monotonicity). Let a : Ω ×
�k → Mp

α,β(θ) ⊂ C(RN ;RN) be a Carathéodory function and set

aε(x, ξ) = a
(
x,
x

ε
, . . . ,

x

εk
, ξ
)

(x ∈ Ω, ξ ∈ R
N ).

Moreover, let vε be a bounded sequence in Lp(Ω)N such that

vε
k+1→ v and aε(·, vε) k+1→ ζ

for v ∈ Lp(Ω×�k)N and ζ ∈ Lq(Ω×�k)N . Then

(22) lim inf
ε→0

∫
Ω

aε(x, vε) · vε dx ≥
∫
Ω×�k

ζ · v dxk
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and if equality holds, then ζ = a(·, v) .
Proof. Let Φ be a vector field in C(Ω;Cper(�k))N and set

Φε(x) = Φ
(
x,
x

ε
, . . . ,

x

εk

)
.

By the monotonicity of a∫
Ω

aε(x, vε) · vε dx ≥
∫
Ω

aε(x, vε) · Φε + aε(x,Φε) · (vε − Φε) dx.

The limit, as ε → 0, of the right hand side of the above inequality exists.

Hence

(23) lim inf
ε→0

∫
Ω

aε(x, vε) · vε dx ≥
∫
Ω×�k

ζ · Φ + a(xk,Φ) · (v − Φ) dxk

and by density and continuity this holds also for any Φ in Lp(Ω × �k)N .

Thus, we establish (22) by taking Φ = v .

Suppose now that equality holds in (22). Taking Φ = v + tw in (23),

where w ∈ Lp(Ω×�k)N and t ∈ R , we obtain

t

∫
Ω×�k

(
a(xk, v + tw)− ζ

) · w dxk ≥ 0.

Dividing by t and using the continuity of a and letting t→ 0± yields∫
Ω×�k

(
a(xk, v)− ζ

) · w dxk = 0

for all w ∈ Lp(Ω×�k)N . Hence ζ = a(·, v) a.e. �

4. A multiscale homogenization method

Based on Theorems 3.2, 3.6 and 3.7, we outline a homogenization method

for the nonlinear boundary value problem (1).

In view of estimate (8) and the remark following that, the sequence of

solutions uε to (4) is bounded in W 1,p
0 (Ω). Applying Theorems 3.2 and 3.6

we can find u ∈ W 1,p
0 (Ω), uj ∈ Lp(Ω×�j−1;W 1,p

� (�)) (j = 1, . . . , k ) and

ζ ∈ Lq(Ω×�k)N such that, up to a subsequence,

(1) uε → u weakly in W 1,p
0 (Ω),

(2) ∇uε k+1→ ξ = ∇u+
∑k

j=1 ∇yjuj ,

(3) aε(·,∇uε) k+1→ ζ .
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Note that

ξ
j
= ∇u+

k−j∑
i=1

∇yiui or equivalently ξ
k−j

= ∇u+

j∑
i=1

∇yiui.

Passing to the limit in the weak formulation (4) and using the defintion

of multiscale convergence gives

(24)

∫
Ω×�k

ζ · ∇φ(x) dx2 =

∫
Ω×�k

b · ∇φ(x) dxk ∀φ ∈ C∞
c (Ω).

For 1 ≤ j ≤ k , let the testfunction φ in (4) be

φ(x) = εjϕ(x)

j∏
i=1

ψi

( x
εi

)
,

where ϕ ∈ C∞
c (Ω), ψi ∈ C∞

per(�) (i = 1, . . . , j ). Then

∫
Ω

aε(x,∇uε) ·
(
ϕ

j−1∏
i=1

ψi

( x
εi

)
∇ψj

( x
εj

)
+ ε · · ·

)
dx

=

∫
Ω

bε ·
(
ϕ

j−1∏
i=1

ψi

( x
εi

)
∇ψj

( x
εj

)
+ ε · · ·

)
dx.

In the limit as ε→ 0 we obtain

(25)

∫
Ω×�k

ζ · ϕ(x)
j−1∏
i=1

ψi(y
i)∇ψj(y

j) dxk

=

∫
Ω×�k

b · ϕ(x)
j−1∏
i=1

ψi(y
i)∇ψj(y

j) dxk.

By (24), (25) and a density argument it follows that ζ satisifies

(26)

∫
Ω×�k

ζ ·
⎛
⎝∇φ(x) +

k∑
j=1

∇yjφj(x
j)

⎞
⎠ dxk

=

∫
Ω×�k

b ·
⎛
⎝∇φ(x) +

k∑
j=1

∇yjφj(x
j)

⎞
⎠ dxk

for all φ ∈W 1,p
0 (Ω) and φj ∈ Lp(Ω×�j−1;W 1,p

� (�)) (1 ≤ j ≤ k ).
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Let us now characterize ζ . On the one hand, taking φ = u and φj = uj
(1 ≤ j ≤ k ) in the identity (26) gives

(27)

∫
Ω×�k

ζ · ξ dxk =

∫
Ω×�k

b · ξ dxk.

On the other hand, taking φ = uε in (4) yields

(28) lim
ε→0

∫
Ω

aε(x,∇uε) · ∇uε dx = lim
ε→0

∫
Ω

bε · ∇uε dx =

∫
Ω×�k

b · ξ dxk.

Combining (27) and (28), we see that

lim
ε→0

∫
Ω

aε(x,∇uε) · ∇uε dx =

∫
Ω×�k

ζ · ξ dxk

Appealing to the fundamental theorem of multiscale convergence and

monotonicity, Theorem 3.7, we conclude that ζ(xk) = a(xk, ξ(xk)) for a.e.

xk ∈ Ω×�k .

The following homogenization result holds.

Theorem 4.1. For ε > 0 , let uε ∈ W 1,p
0 (Ω) denote the solution of the

variational problem∫
Ω

aε(x,∇uε) · ∇φdx =

∫
Ω

bε · ∇φdx ∀φ ∈W 1,p
0 (Ω).

Then it holds for the whole sequence uε that uε → u weakly in W 1,p
0 (Ω)

and that ∇uε k+1→ ξ = ∇u+∑k
j=1 ∇yjuj as ε→ 0 , where u ∈ W 1,p

0 (Ω)and

uj ∈ Lp(Ω × �j−1;W 1,p
� (�)) (1 ≤ j ≤ k ). The functions u and uj

(1 ≤ j ≤ k ) are the unique functions that satisfy the “homogenized system”

(29)

∫
Ω×�k

a(xk, ξ) · Φ dxk =

∫
Ω×�k

b · Φ dxk

for all Φ of the form Φ(xk) = ∇φ(x)+∑k
j=1 ∇yjφj(x

j) where φ ∈W 1,p
0 (Ω)

and φj ∈ Lp(Ω × �j−1;W 1,p
� (�)) (1 ≤ j ≤ k ). Moreover, the following

estimate holds

(30) ‖∇u‖pLp(Ω) ≤
∥∥∇u +∇y1u1

∥∥p
Lp(Ω×�)

≤ · · ·

≤
∥∥∥∥∥∥∇u +

k∑
j=1

∇yjuj

∥∥∥∥∥∥
p

Lp(Ω×�k)

≤ C
(
1 + ‖b‖qLq(Ω;C(�k))

)
,
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where C depends only on p , β , θ and Ω .

Proof. We have already proved that a subsequence of ∇uε (k+1)-scale

converges to some ξ that satisifies (29). However, any ξ = ∇u+∑k
j=1 ∇yjuj

satisfying (29) is unique. For suppose that ξ̂ = ∇û+∑k
j=1 ∇yj ûj is also a

solution of (29). Then (29) implies∫
Ω×�k

(
a(xk, ξ)− a(xk, ξ̂)

) · (ξ − ξ̂) dxk = 0.

From the strict monotonicity of a we infer that ξ = ξ̂ a.e. Consequently,

the whole sequence ∇uε (k+1)-scale converges to some ξ as above. Due to

the respective assumptions on the functions u and u1, . . . , uk (being zero

on the boundary and having zero integral) we conclude that they are all

uniquely determined by a and b .

To prove (30) we first note that Jensen’s or Hölder’s inequality implies∥∥∥ξk∥∥∥
Lp(Ω)

≤ · · · ≤
∥∥∥ξ1∥∥∥

Lp(Ω×�k−1)
≤ ‖ξ‖Lp(Ω×�k) .

If ‖ξ‖Lp(Ω×�k) is “big” we can find a C such that

C ‖ξ‖pLp(Ω×�k) ≤
∫
Ω×�k

a(xk, ξ) · ξ dxk

=

∫
Ω×�k

b · ξ dxk ≤ ‖b‖Lq(Ω×�k) ‖ξ‖Lp(Ω×�k),

whence

(31) ‖ξ‖pLp(Ω×�k) ≤ C−q ‖b‖qLq(Ω×�k) .

Thus an estimate of the type (30) holds (with a different C ). �

5. Iterated homogenization

The system (29) is not a suitable form if one is interested in computing

the functions u, u1, . . . , uk of Theorem 4.1. The aim of this section is to

devise an iterative algorithm for computing these functions.

To this end, set a0 = a and for 1 ≤ j ≤ k define aj : Ω × �k−j →
C(RN ;RN ) inductively, for xk−j ∈ Ω×�k−j and η ∈ R

N , by

(32) aj(xk−j , η) =

∫
�
aj−1(xk−j , s, η +∇v(s)) ds,



A. Almqvist, E. K. Essel, J. Fabricius, P. Wall 33

where v ∈ W 1,p
� (�) is a weak solution of the cell problem

(33) divs a
j−1(xk−j , s, η +∇v(s)) = divs b

j−1
(xk−j , s) s ∈ �.

Remark 5.1. A priori it is not obvious that each aj is well defined,

let alone continuous and monotone w.r.t. the variable η . To prove this

is somewhat tedious. We therefore do not include the details. What

makes things complicated is that the aj :s do not map to the same class

of continuous, monotone functions as a .

Next, (29) implies that for each 1 ≤ j ≤ k∫
Ω×�k

a(xk, ξ) · ∇yjφj(x
j) dxk =

∫
Ω×�k

b · ∇yjφj(x
j) dxk.

for all φj ∈ Lp(Ω × �j−1;W 1,p
� (�)). An equivalent way of stating this is

that for a.e. xj−1 ∈ Ω×�j−1 , uj satisfies

(34) divyj

∫
�k−j

a
(
xk, ξ(xk)

)
dyj+1 · · · dyk = divyj b

k−j
(xj), yj ∈ �.

We claim that

(35)

∫
�k−j

a
(
xk, ξ(xk)

)
dyj+1 · · · dyk = ak−j

(
xj , ξ

k−j
(xj)

)
for j = 0, . . . , k−1. The proof is done by induction over j . When j = k−1

the claim readily follows from (34) and the definition of a1 . Suppose (35)

holds true for some 1 ≤ j ≤ k − 1. For this j , (34) can be written

(36) divyj ak−j
(
xj , ξ

k−j+1
(xj−1) +∇yjuj(x

j)︸ ︷︷ ︸
ξ
k−j

(xj)

)
= divyj b

j
(xj) yj ∈ �.

On comparing (36) to (33), we see that by the definition of ak−j+1 (see

(32)),

ak−j+1(xj−1, ξ
k−j+1

(xj−1)) =

∫
�
ak−j

(
xj , ξ

k−j
(xj)

)
dyj

=

∫
�k−j+1

a
(
xk, ξ(xk)

)
dyj · · · dyk.

Thus (35) is true also for the integer j − 1 and by induction for all

0 ≤ j ≤ k − 1. Finally, taking φ1 = · · · = φk = 0 in (29) and using
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(35) with j = 0, yields

(37) divx a
k(x,∇u(x)) = divx b

k
(x) x ∈ Ω.

Summing up, we have the following homogenization algorithm:

(1) Solve the cell problem (33) iteratively for j = 1, 2, . . . , k . At each

step compute the function aj defined by (32). We call aj the

“homogenized operator after the j :th iteration”.

(2) Solve the homogenized equation (37) to find u .

(3) The functions uj are easily found as solutions (that have already

been computed) to the cell problems (36).

6. Application to hydrodynamic lubrication

The Reynolds equation is a two-dimensional approximation of the

pressure that develops in a thin film of viscous fluid (lubricant) as the

bounding surfaces are set in relative motion. An important application

is in mechanical engineering, where it is used to compute the pressure

distribution in various fluid film bearings. A simple form of the Reynolds

equation reads

(38)

2∑
i=1

∂

∂xi

(
h3

12μ

∂u

∂xi

)
=
v

2

∂h

∂x1
in Ω,

where u is the unknown pressure distribution, Ω ⊂ R
2 is the “bearing

domain”, h : Ω → R is the film thickness function, μ is the lubricant

viscosity (taken as constant) and (v, 0) is the constant velocity of the lower

surface x3 = 0. The upper surface x3 = h(x1, x2) is assumed to remain

fixed. To study the influence of surface roughness on several length scales

we introduce a small parameter ε and let the film thickness function be

described by the rapidly oscillating function

hε(x) = h0(x) +

k∑
j=1

hj

( x
εj

)

where h0 : Ω → R , the smooth film thickness, is continuous and each

hj : � → R (j = 1, . . . , k ), the contribution from roughness of wavelength

εj , is continuous and 1-periodic. In addition, we impose suitable restrictions

on these functions to ensure that for some 0 < θ < 1 it holds that

θ ≤ h3ε ≤ θ−1 for each ε > 0.



A. Almqvist, E. K. Essel, J. Fabricius, P. Wall 35

The natural boundary condition for the pressure distribution is uε = 0 on

∂Ω. The main homogenization result of this paper, Theorem 4.1, therefore

applies by setting

aε(x, ξ) = hε(x)
3ξ bε(x) = 6μvhε(1, 0).

In this case we take p = β = 2 and α = 1.

The linear structure of (38) is a direct consequence of the the Newtonian

properties of the fluid, i.e. a linear relationship between the shear stress

and the strain rate. If one assumes a nonlinear constitutive relation for

the fluid, it can be shown that the pressure must satisfy a nonlinear

equation. Whereas such equations can be considered to fully describe non-

Newtonian behaviour, closed form expressions for the terms in the equation,

expressed as functions of h , ∇u , are often very complicated or impossible

to obtain. Therefore such models have limited value in practice. This leads

to the question whether it is possible to modify (38) only slightly so as to

capture non-Newtonian effects. In this regard, the following correction has

been suggested for incompressible non-Newtonian lubricants which obey the

Rabinowitsch constitutive relation, see e.g. He [13] for details,

(39)

2∑
i=1

∂

∂xi

(
h3

12μ

∂u

∂xi
+
κh5

80μ

(
∂u

∂xi

)3
)

=
v

2

∂h

∂x1
,

where κ > 0 is a constant.

To write (39) in the form (1), choose

(40) aε(x, ξ) = h3εξ +
3

20
κh5ε(ξ

3
1 , ξ

3
2), and bε = 6μvhε(1, 0).

Theorem 4.1 then applies with p = β = 4 and α = 1.

To illustrate the utility of homogenization in hydrodynamic lubrication

we conclude this section with a concrete example including some numerical

simulations. For simplicity we restrict ourselves to roughness on one

lengthscale only.

Example 6.1. The geometry of a pocket bearing is shown in Figure 1.

It consists of a lower surface x3 = 0 and an upper surface, referred to as a

“pad”. The pad has a depression, so that a pocket is formed, as well as a

small undulation in the x1 -direction. We wish to analyze the effects of this

roughness for very small wavelengths in a non-Newtonian setting by using

equation (39). To model this type of bearing, set Ω = (0, L1)× (0, L2) and

hε(x) = h0(x)+A sin(2πx1/ε). Here h0 is a continuous function which takes

the value hmax inside the pocket, the value hmin outside the pocket, except

on a set in close proximity to the boundary of the pocket where a smooth
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transition between these two extreme values occurs. Surface and fluid

parameters are displayed in Table 1. These were kept constant throughout a

series of simulations which consisted in solving equation (1) with aε and bε
as in (40) for successively smaller values of ε . The result was compared with

the homogenized solution. We also computed the homogenized solution for

a Newtonian fluid, by setting κ = 0, to compare with the non-Newtonian

case.

Conclusions of the experiment. As ε → 0 it was observed that the

deterministic solutions uε converge to the homogenized solution u as

illustrated in Figure 3. Moreover, it was seen that the effects of the small

surface undulations on the pressure solution is eventually averaged out.

Indeed, as seen in Figure 2, the homogenized pressure distribution shows

no rapid oscillations. This shows that homogenization is an efficient tool

for analyzing the effects of small scale surface roughness. The difference in

behaviour between the Newtonian and non-Newtonian fluid is illustrated in

Figure 4.

Table 1. Input parameters

Parameter Description Value Unit
L1 Pad length (x1) 0.1 m
L2 Pad width (x2) 0.2 m
μ Fluid viscosity 0.2 Pa s
κ Rabinowitsch constant 5 · 10−8 Pa−2

A Roughness amplitude 10−6 m
hmin Pocket minimum film thickness 10−5 m
hmax Pocket maximum film thickness 1.1 · 10−5 m
v Speed in x1-direction 1 m/s
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Figure 1. Geometry of a pocket bearing with surface roughness
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Figure 2. Homogenized pressure distribution with a non-
Newtonian fluid
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Figure 3. Homogenized and deterministic non-Newtonian
pressure solutions along the line x2 = 0
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Figure 4. Homogenized Newtonian and non-Newtonian
pressure solutions along the line x2 = 0
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