
Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

ISSN: 1735-0611

CJMS. 2(2)(2013), 147-157

Periodicity in a System of Differential Equations with
Finite Delay

Ernest Yankson 1

1 Department of Mathematics and Statistics, University of Cape Coast,
Ghana

Abstract. The existence and uniqueness of a periodic solution of
the system of differential equations

d

dt
x(t) = A(t)x(t− τ)

are proved. In particular the Krasnoselskii’s fixed point theorem

and the contraction mapping principle are used in the analysis. In

addition, the notion of fundamental matrix solution coupled with

Floquet theory is also employed.
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1. INTRODUCTION

Periodic solutions of differential equations have recently been studied
extensively. We refer to [5]-[14] and the references therein for a wealth
of information on this subject.

In this paper, we study the existence and uniqueness of a periodic
solution of the system of equations

d

dt
x(t) = A(t)x(t− τ), (1.1)
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where A(t) is an n× n matrix with continuous real-valued functions as
its elements and τ is a positive constant.

Floquet theory offers a lot of results on the periodicity of the system
(1.1) when τ = 0. In [16], the author extended Floquet theory to non-
autonomous linear systems of the form z′ = A(x)z, where A : C→ C is
an ω− periodic function in the complex variable x, whose solutions are
meromorphic. There are however no corresponding results for system
(1.1). The qualitative properties of the scalar version of (1.1) have
been studied in [4]. Therefore, in this paper by using the notion of the
fundamental solution coupled with Floquet theory we prove the existence
and uniqueness of solutions of (1.1).

2. EXISTENCE OF PERIODIC SOLUTIONS

We begin this section by assuming that there exists a nonsingular
n× n matrix G(t) with continuous real-valued functions as its elements
such that

d

dt
x(t) = G(t)x(t)− d

dt

∫ t

t−τ
G(s)x(s)ds+ [A(t)−G(t− τ)]x(t− τ).(2.1)

Lemma 2.1. Equation (1.1) is equivalent to (2.1).

Proof. By differentiating the integral term in (2.1) we obtain

d

dt

∫ t

t−τ
G(s)x(s)ds = G(t)x(t)−G(t− τ)x(t− τ).

Substituting this into (2.1), we obtain

d

dt
x(t) = G(t)x(t)−G(t)x(t) +G(t− τ)x(t− τ)

+[A(t)−G(t− τ)]x(t− τ) = A(t)x(t− τ).

�

For T > 0 let PT be the set of all n-vector functions x(t), periodic
in t of period T . Then (PT , ‖.‖) is a Banach space with the supremum
norm

‖x(.)‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]
|x(t)|,

where |.| denotes the infinity norm for x ∈ Rn. Also, if A is a n× n real
matrix, then we define the norm of A by |A| = max1≤i≤n

∑n
j=1 |aij |.

Definition 2.2. If the matrix G(t) is periodic of period T , then the
linear system

y′ = G(t)y (2.2)
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is said to be noncritical with respect to T if it has no periodic solution
of period T except for the trivial solution y = 0.

In this paper we assume that

A(t+ T ) = A(t), G(t+ T ) = G(t). (2.3)

Throughout this paper it is assumed that the system (2.2) is noncritical.
We next state some known results [7] about system (2.2) which will be
useful in the rest of the paper.

Let K(t) represent the fundamental matrix of the system (2.2) with
K(0) = I, where I is the n× n identity matrix. Then:

(i) det K(t) 6= 0.
(ii) There exists a constant matrix B such that K(t+T ) = K(t)eBT ,

by Floquet theory.
(iii) System (2.2) is noncritical if and only if det(I −K(T )) 6= 0.

Lemma 2.3. Suppose (2.3) hold. If x(t) ∈ PT , then x(t) is a solution
of (2.1) if and only if

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{
∫ t+T

t
K−1(u)[A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds]du

}
. (2.4)

Proof. Let x(t) ∈ PT be a solution of (2.1) and K(t) is a fundamental
system of solutions of (2.2). We first rewrite (2.1) as

d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
= G(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
−G(t)

∫ t

t−τ
G(s)x(s)ds

+ A(t)x(t− τ)−G(t− τ)x(t− τ). (2.5)

Since K(t)K−1(t) = I, it follows that

0 =
d

dt
(K(t)K−1(t)) =

d

dt
(K(t))K−1(t) +K(t)

d

dt
(K−1(t))

= (G(t)K(t))K−1(t) +K(t)
d

dt
(K−1(t))

= G(t) +K(t)
d

dt
(K−1(t)).
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This implies

d

dt
(K−1(t)) = −K−1(t)G(t). (2.6)

If x(t) is a solution of (2.1) with x(0) = x0, then

d

dt

[
K−1(t)

(
x(t) +

∫ t

t−τ
G(s)x(s)ds

)]
=

d

dt
K−1(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
+K−1(t)

d

dt

(
x(t) +

∫ t

t−τ
G(s)x(s)ds

)
.

Substituting (2.5) and (2.6) in the above equation, we obtain

d

dt

[
K−1(t)

(
x(t) +

∫ t

t−τ
G(s)x(s)ds

)]
= −K−1(t)G(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
+K−1(t)

{
G(t)

[
x(t) +∫ t

t−τ
G(s)x(s)ds

]
;− G(t)

∫ t

t−τ
G(s)x(s)ds+A(t)x(t− τ)

−G(t− τ)x(t− τ)
}

= K−1(t)A(t)x(t− τ)−K−1(t)G(t− τ)x(t− τ)

−K−1(t)G(t)

∫ t

t−τ
G(s)x(s)ds.

After integrating on [0, t], we have

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)

[
x0 +

∫ 0

−τ
G(s)x(s)ds

]
+ K(t)

∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du. (2.7)

Since x(T ) = x0 = x(0), we obtain from (2.7) that

x0 +

∫ 0

−τ
G(s)x(s)ds = (I −K(T ))−1

∫ T

0
K(T )K−1(u)

[
A(u)x(u− τ)

− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du.

(2.8)
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Substituting (2.8) into (2.7), we obtain

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)

(
(I −K(T ))−1

∫ T

0
K(T )K−1(u)

[A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du
)

+ K(t)

∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du. (2.9)

We will now show that (2.9) is equivalent to (2.4).
Since

(I −K(T ))−1 = (K(T )(K−1(T )− I))−1 = (K−1(T )− I)−1K−1(T ),

equation (2.9) turns to

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

∫ T

0
K−1(u)

[
A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

+ K(t)

∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

= −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{∫ T

0
K−1(u)

[
A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

+

∫ t

0
K−1(T )K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

−
∫ t

0
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du
}
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= −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

+

∫ t

0
K−1(T )K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du
}
.

By letting u = i− T, the above expression implies

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

+

∫ t+T

T
K−1(T )K−1(i− T )

[
A(i− T )x(i− T − τ)

−G(i− T − τ)x(i− T − τ)− G(i− T )∫ i−T

i−T−τ
G(s)x(s)ds

]
di
}

(2.10)

Using condition (ii) we have K(t − T ) = K(t)e−BT and K(T ) = eBT .
Hence, K−1(T )K−1(i− T ) = K−1(i). Consequently, (2.10) becomes

x(t) = −
∫ t

t−τ
G(s)x(s)ds+K(t)(K−1(T )− I)−1

{∫ T

t
K−1(u)

[
A(u)x(u− τ)− G(u− τ)x(u− τ)−G(u)

∫ u

u−τ
G(s)x(s)ds

]
du

+

∫ t+T

T
K−1(u)

[
A(u)x(u− τ)−G(u− τ)x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

]
du
}
.

Combining the two integrals in the above equation gives equation, we
obtain (2.4). This completes the proof of Lemma 2.3.

�
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Define a mapping H by

(Hϕ)(t) = −
∫ t

t−τ
G(s)ϕ(s)ds+K(t)(K−1(T )− I)−1

{∫ t+T

t
K−1(u)[

A(u)ϕ(u− τ)− G(u− τ)ϕ(u− τ)−G(u)∫ u

u−τ
G(s)ϕ(s)ds]du

}
. (2.11)

It is clear from (2.11) that H : PT → PT by the way that it was con-
structed in Lemma 2.3.

Theorem 2.4. (Krasnosel’skii Theorem [15]) Let M be a closed convex
nonempty subset of a Banach space (B, ||.||). Suppose that C and B map
M into B such that

(i) C is continuous and CM is included in a compact set,
(ii) B is a contraction mapping.
(iii) x, y ∈M, implies that Cx+By ∈M.

Then there exists z ∈M with z = Cz +Bz.

To apply Theorem 2.4 we need to construct two mappings of which
one is a contraction and the other is compact. Therefore we express
equation (2.11) as

(Hϕ)(t) = (Bϕ)(t) + (Cϕ)(t),

where B,C : PT → PT are given by

(Bϕ)(t) = −
∫ t

t−τ
G(s)ϕ(s)ds, (2.12)

and

(Cϕ)(t) = K(t)(K−1(T )− I)−1

∫ t+T

t
K−1(u)[A(u)ϕ(u− τ)−

G(u− τ)ϕ(u− τ)− G(u)

∫ u

u−τ
G(s)ϕ(s)ds]du (2.13)

respectively.

Lemma 2.5. Suppose that the assumptions of Lemma 2.3 hold. C is
continuous and the image of C is included in a compact set.

Proof. Let ϕ,ψ ∈ PT . Given ε > 0, take δ = ε/N with N = rT (|A| +
|G|+ |G|2τ) where

r = sup
t∈[0,T ]

(
sup

t≤u≤t+T
|[K(u)(K−1(T )− I)K−1(t)]−1|

)
. (2.14)
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Now for ‖ϕ− ψ‖ < δ, we have that

‖Cϕ(.)− Cψ(.)‖ ≤ r

∫ T

0

[
|A|‖ϕ− ψ‖+ |G|‖ϕ− ψ‖+ |G|2τ‖ϕ− ψ‖

]
du

≤ N‖ϕ− ψ‖ < ε.

This proves that C is continuous. To show that the image of C is
contained in a compact set, we consider D = {ϕ ∈ PT : ‖ϕ‖ ≤ R},
where R is a fixed positive constant. Let ϕn ∈ D where n is a positive
integer. Thus,

‖Cϕn(.)‖ ≤ r

∫ T

0

[
|A|R+ |G|R+ |G|2τR

]
du

≤ rT
[
|A|R+ |G|R+ |G|2τR

]
≤ L,

for some positive constant L. We next we calculate (Cϕn)′(t) and show
that it is uniformly bounded. Using (2.3) we obtain by taking the de-
rivative of (2.13) that

(Cϕn)′(t) = K ′(t)(K−1(T )− I)−1

∫ t+T

t
K−1(u)[A(u)ϕn(u− τ)

−G(u− τ)ϕn(u− τ)− G(u)

∫ u

u−τ
G(s)ϕn(s)ds]du

+ K(t)(K−1(T )− I)−1K−1(t+ T )[A(t)ϕn(t− τ)

−G(t− τ)ϕn(t− τ)− G(t)

∫ t

t−τ
G(s)ϕn(s)ds]

− K(t)(K−1(T )− I)−1K−1(t)[A(t)ϕn(t− τ)

−G(t− τ)ϕn(t− τ)− G(t)

∫ t

t−τ
G(s)ϕn(s)ds]

= G(t)(Cϕn)(t) +K(t)(K−1(T )− I)−1
[
K−1(t+ T )−K−1(t)

]
×
(
A(t)ϕn(t− τ)−G(t− τ)ϕn(t− τ)

−G(t)

∫ t

t−τ
G(s)ϕn(s)ds

)
.

By noting that K−1(t+ T ) = e−BTK−1(t), we have

K−1(t+ T )−K−1(t) = (e−BT − I)K−1(t) = (K−1(T )− I)K−1(t).
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Using this in the last expression, we obtain

(Cϕn)′(t) = G(t)(Cϕn)(t)

+
(
A(t)ϕn(t− τ)−G(t− τ)ϕn(t− τ)

−G(t)

∫ t

t−τ
G(s)ϕn(s)ds

)
.

Thus,

‖(Cϕn)′‖ ≤ |G|L+ |A|R+ |G|R+ |G|2Rτ.

Therefore, the sequence Cϕn is uniformly bounded and equi-continuous.
Hence by Arzela-Ascoli theorem C(D) is compact. The proof is com-
plete. �

Lemma 2.6. Suppose that

|G|τ < 1, (2.15)

then B is a contraction.

Proof. Let B be defined by (2.12). Then for ϕ,ψ ∈ PT we have

‖Bϕ(.)−Bψ(.)‖ = sup
t∈[0,T ]

|Bϕ(t)−Bψ(t)|

≤ τ |G|‖ϕ− ψ‖.

Hence B defines a contraction mapping with contraction constant τ |G|.
�

Theorem 2.7. Suppose the hypothesis of Lemma 2.6 holds. Let r be
given by (2.14). Suppose further that (2.3) hold. Let J be a positive
constant satisfying the inequality

rT
[
|A|+ |G|+ |G|2τ

]
J + τ |G|J ≤ J. (2.16)

Let M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. Then (1.1) has a solution in M.

Proof. Define M = {ϕ ∈ PT : ||ϕ|| ≤ J}. By Lemma 2.5, we have that C
is continuous and CM is contained in a compact set. Also, from Lemma
2.6, the mapping B is a contraction and it is clear that C,B : PT → PT .
We next show that if ϕ,ψ ∈M, we have ||Cϕ+Bψ|| ≤ J. Let ϕ,ψ ∈M
with ||ϕ||, ||ψ|| ≤ J. Then

||Cϕ(.) +Bψ(.)|| ≤

r

∫ T

0

[
|A|||ϕ||+ |G|||ϕ||+ |G|2τ ||ϕ||

]
du+

∫ t

t−τ
|G|||ψ||ds

rT
[
|A|+ |G|+ |G|2τ

]
J + τ |G|J ≤ J.
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We now see that all conditions of Krasnoselskii’s theorem are satisfied.
Thus there exists a fixed point z in M such that z = Cz+Bz. By Lemma
2.3, this fixed point is a solution of (1.1). Hence (1.1) has a T -periodic
solution. �

Theorem 2.8. Suppose (2.3) holds. If

τ |G|+ rT
[
|A|+ |G|+ |G|2τ

]
< 1, (2.17)

then (1.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (2.11). For ϕ,ψ ∈ PT , we have
that

‖Hϕ(.)−Hψ(.)‖ ≤
∫ t

t−τ
|G|‖ϕ− ψ‖ds+ r

∫ T

0

[
|A|+ |G|+ |G|2τ

]
‖ϕ− ψ‖ds

≤
(
τ |G|+ rT [|A|+ |G|+ |G|2τ ]

)
‖ϕ− ψ‖

< ‖ϕ− ψ‖.

Thus, H is a contraction. Thus by the contraction mapping principle,
(1.1) has a unique T -periodic solution. This completes the proof. �
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