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PERIODICITY IN MULTIPLE DELAY VOLTERRA DIFFERENCE
EQUATIONS OF NEUTRAL TYPE

E. YANKSON

ABSTRACT. We prove the existence and uniqueness of a periodic solution for
the multiple delay difference neutral Volterra equation

N
Az(n) = -— Z aj(n)r(n —7j(n)) + AQ(n,z(n — 11(n)), ..., x(n — 75 (n))
j=1

N n
2 2 k)i a(s),

j=1 n—r1; (n)
The contraction mapping principle and a Krasnoselskii’s fixed point theorem
are used in the analysis.

1. INTRODUCTION

Research into the qualitative behaviour of solutions of difference equations has
received a lot of attention from some mathematicians in recent times. These qualita-
tive properties include stability, and periodicity of solutions of difference equations,
see [1], [3], [5], [7], [9], [10] and the references cited therein. In this paper we
consider the Volterra difference equation with variable multiple delays

Az(n) = —Zaj(n)x(n—rj(n))+AQ(n,x(n—Tl(n)),...,x(n—TN(n))

N n—1
+ Z Z kj(”?‘s)fj(svx(s))v (1)
J=1s=n—7;(n)
wherea; : ZT = R, k;j : ZYXNZ = R, f; : ZT xR - R, Q; : Zt xRxRx..xR —» R
and 7; : Zt — Z*, for j =1,...,N.

Here A denotes the forward difference operator. That is, Az(n) = z(n+1)—x(n)
for any sequence {z(n) : n € Z*}. This work is mainly motivated by the work of
Raffoul in [5] where he proved the existence and uniqueness of a periodic solution
for the equation

Az(n) = —a(n)x(n—71), (2)
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where 7 is a positive constant. In this paper, we obtain sufficient conditions for (1)
to have a unique periodic solution..

The rest of the paper is organized as follows. In the next section we state some
preliminary results needed in the paper. We state and prove our main result in
section 3.

2. PRELIMINARIES

Let T be an integer such that T' > 1. Define Pr = {p € C(Z,R) : o(n+T) =
w(n)} where C(Z,R) is the space of all real valued functions. Then (Pr,||.||) is a
Banach space with the maximum norm

el = max o)

In this paper we assume that for j=1,...,N,

aj(n+T)=aj(n), 7j(n+T)=1i(n), 7j(n)>717>0
kiin+T,s+T)==Fkj(n,s), fj(n+T,z)= f;(n,x), (3)
and
|fi(n,2) = fi(n,y)| < pjllz —yll. (4)
Suppose further that
Qn+T,z,x,x,..,x) = Q(n,x,x, 2, ..., x), (5)
and
N
|Q(n,x,x,x, ,.T) - Q(nvya v,Y, 7y)| S ZL]Hx - yH (6)
=1

Lemma 1 Let h; : Z — R be an arbitrary sequence, for j = 1,...,N and
Hn)=1- Zjv L hi(n ) Suppose that HT np H(r) #1, for all n € Z,

hj(in+T)=hj(n)forj=1,...,N, (7)

and (3) hold. If x € Pr, then z is a solution of equation (1) if and only if

z(n) = Qn,z(n—711(n)),....z(n—7n(n +Z Z hj(s)x(s)
=1 s=n—r,(n)

n—1 n—1

+i- 11 OIS [Z{h — aj(s)}a(s = 75(s))

r=n—T s=n—-T j=1

—[1 = H(s)]Q(s,z(s = 11(9)), ..., x(s — 75 (8)) — [1 — H(s)] Z z_: hj(r)z(r)

N

+Z i kj(s,u)f;(u, z(u) }HH

Jj=1 u:s—Tj(s) u=s+1
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Proof. Let € Pr be a solution of (1). Rewrite (1) as

= —Zh n)+ A, Z Z h(s)a(s)

j=1 s=n—7;(n)
+ Z{hj(n —7j(n)) —a;j(n)}z(n —7(n))

+AQ(n,z(n — 1 (n)),...,xz(n —7n5(n))

LS k) fi(sx(s)).

j=1s=n—r;(n)

where A,, denotes the difference taken with respect to n. The above equation is

equivalent to

N
zn+1) = H(n)x(n)—FAnZ hj(s)z(s)

+> {hj(n—7;(n)) — a;j(n)}x(n — 75(n))

Jj=1

30D ki s)f(s,a(s). )

Jj=1s=n—7;(n)

Rewrite equation (9) as

An[ﬁﬂ(u)lz(u)] - [AHXN: nf hy(s)a(s)
u=0

Jj=1s=n—7;(n)

+ Z{hj (n —7;(n)) —a;(n)}z(n — 7(n))

+AQ(n, x(n —mi(n)), ... x(n — 75 (n)) (10)

N n—1
—1—2 Z k;i(n,s)f;(s,x(s) }HH

j=1s=n—7;(n) u

Summing (10) from (n — T') to (n — 1) we obtain
ZA[HH SR SN SE SR
s=n—T s=n—T J=1r=s—7;(s)

N

+Z{hj(8 —75(8)) — a;(s)}z(s — 7;(s))

+Q(s,z(s —11(5))y oy (s — TN (8))
N

+ Z i kj(s,u)fj(uw(u))} HH(U)—l_

i=1u=s—7;(s)
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Consequently, we have

n—1 n—T-1
z(n) [[Hw™ —2(n—-17) [[ Hw)™
n:Ll_O N s—1 h
=Y (A X mmao
s=no J=1r=s—7;(s)
N
+ Z{h] (s = 75(s)) — a;j(s)}a(s — 75(s))
+AQ(s,z(s — 11(8)), ..., x(s — TN (9))

+ Z Z kj(s,u)fj(u,x(u))] H H(u)™.
u=0

J=1u=s—7;(s)

Dividing both sides of (11) by [['—4 H(u)~" we obtain

1 n—1 N s—1
z(n) = Ay hj(r)z(r
( ) 1- H:};:L—T H(T) s:%;T |: jz_:lrzs—z;j(s) ( ) ( )

N
+ Z{hj(s —75(8)) = a;(s) (s — 75(s))

+AQ(s,z(s — 11(8)), ..., z(s — TN (5))

+ i S b 2(w))] Tnl:[;mm
Using the summation b;p;;: _f;;ijl)ula, we obtain _
5 AQ(s.2(s = 71(5)), - 2(s = 7v(5)) 1T #w
= Q(s,2(s — 71(5)), ..o, (s — T (5)) [1 = ﬁTH(r)}
- ”ZITQ@ #(s = 71(5)), (s = T ()1~ H(s)] HH()

and

s=n—T u=s+1 j=1 7=S—TJ(6)

N n—1 n—1
=3 Y e i- I #Hw)

j=1s=n—7;(n) u=n—T
n—1 n—1 s—1

113

(11)
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Substituting (13) and (14) into (12) gives the desired results.

The following result which is found in [8] will be used to establish our main
results in the next section.

Theorem 2 [Krasnoselskii] Let M be a closed convex nonempty subset of a
Banach space (B, ||.||). Suppose that J and A map M into B such that

(i) J is compact and continuous,
(ii) A is a contraction mapping,
(iii) x,y € M, implies Jx + Ay € M.

Then there exists z € M with z = Jz + Az.

3. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS

In this section we state and prove our main results. We begin by defining the
maps A,J : Pr — Pr by

(Ap)(n) = Q(n,z(n — 11(n)), ...,z(n — 7n(n)) + Z Z hj(S)I(S% (15)
and

n—1 n—1

o = [1- ] IS [Z{h s = 75(5)) = a;(s)}a(s = 75(s))

r=n—T s=n—-T j=1

N

—[1—H(s)]Q(s,2(s —11(8)), ..., x(s — Tn(8)) — [1 — H(3)] Z i hj(r)x(r)

Jj=1r=s—1;(s)
N s—1
—1—2 Z k;i(s,u)f;(u, z(u ] H H(u (16)
J=1u=s—1;(s) u=s+1

Lemma 3 Suppose (3)-(6) hold. If J is defined by (16) then J : Pr — Pr is

continuous and compact.

Proof. We will first show that (Jy)(n+T) = (J¢)(n). Let ¢ € Pr. Then using
(16) we obtain

n+T-—1 _1n+T71 N
Uon+T) = [1= [T #@] D [ thils = m(s) = as()kals = 75(s))
r=n s=n j=1

—[1—H(s)]Q(s, (s — Tl(s)):..,m(s —7n(8))
N s—1
A Y Ay

j=1u=s—7;(s)
N s—1 n+T-—1

+Z Z ki(s,u)f;(u, z(u } H H(r

7j=1 u:s—‘rj(s) r=s+1
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Let v =s5—T, then

n+1T-—1 1 n—1 N

(Je)n+T) = [1- 1 HO)| Y [ thilo+T -0+ 1)

v=n—-T j=1
—a;(v+T)}e(v+T —715(v+T))
—[1—H(U+T)]Q(U+T z(v+T—-m(v+T)),z(v+T —1nv(v+T))
v+T—1

Hv+T)] Z Z hj(uw)x(u)

j=1u=v+T—71;(v+T)

N v4+T—1 n+T-1
£ Y ke+Twheew)] T HE)
J=lu=v+T—-7;(v+T) r=v+T+1
n+T-1 _q n—l N
= - II #0)] Y [t —m) - as)}ato - 75(v))
r=n v=n—-T j=1
—[1 - HW)]Q(v,z(v—11(v)),...,x(v — 75 (v))
N v—1
“L-HEIY Y hi(wa(w)
J=1 u=v—7;(v)
Y k)] IT #6
J=1u=v—1;(v) i=v+1
Now let i = r — T, then
n—1 _ n—1 N
(Je)n+T) = [1- H(i)] 'Y [ > thi(0 = 75(0)) = 3 ()}l = 75(v)
1=n—T v=n—-T j=1
[ WIQ, z(v = 71(v)), .., (v — Tn (V)

N v—1
+Z Z ki (v, u) fi(u, x(u ] H H(i (n).

j=1 u:U—Tj(v) 1=v+1

We next show that .J is continuous. Let o, ¢ € Pp with ||| < and ||¢]| < . Let

1
_ By = ha(n)l, ... h }
R e o) il W LR L
53=max{n£§>;’n]\kl(n,u>|7 ...,negg};m]|kzv<n,u>|}, fa= max \ZH H()|
Bs = max{ max |aj(n)|, ..., max |aN(n)|}, L =max{L;, j=1,..,N},
n€[n—T,n] ne[n—T,n]
T :max{%%?)%yn] [71(n)], .. nefga}} |7'N(n)\}, p=max{p;, j=1,...,N}. (17)
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Given € > 0, choose § = 47 such that |[¢ —v|| < 6, where M = TS 84N (B2 +
B5) + NBoL + N2B37 + N7f33p]. Using (16) we obtain

n—1

Te)m) = (o)) < B Y [N(Ba+ Bs)lle — vl

s=n—T

+NBaLllp — 9| + N2B37(|0 — ]
+ N7B3p|lp — ¢|I}ﬁ4
= TBiB:[N (B2 + Bs) + NB2L + N23r
+N7ﬁ3p}llw—wll
< THiB [N(BQ + B5) + NBoL + N2B2r + NTﬁgp} 5
_—

Thus,
I1(Je) = (J)|| < e

This proves that J is continuous.

We next show that J maps bounded subsets into compact sets. Let u be given such
that S={p € Pr : ||lp|| < p}and F = {(Jp)(n) : ¢ € S} then S is a subset of
RT which is closed and bounded thus compact. Since J is continuous in ¢ it maps
compact sets into compact sets. Then F' = J(S) is compact. This completes the
proof.

Lemma 4 Suppose that (6) hold. If A is given by (15) and
N(L+782) <a1 <1 (18)

then A is a contraction.

Proof. Let A be defined by (15). Let L, 32 and 7 be given by (17). Then for
v, € Pr we have

A

N N n—1
A — DIl < S Llle=vll+3] Y hits)|lle— vl

j=1 s=n—7;(n)

N(L +7f2)l|e = ¢
arlfe — |-

IN A

Hence, A is a contraction.

Theorem 5 Let v; = max{f;(n,0), j =1,..,N} and v = ||Q(n,0,0,...,0)|/.
Let B1, B2, B3, B4, and B5 be given by (17). Suppose (3)-(6) and (18) hold. Suppose
further that there is a positive constant v such that all solutions of (1), z(t) € Pr
satisfy |z(t)| < v, the inequality

{T8181(N (B2 + B5) + NS> L+ N6 + Nrfyp)

+NL+ NTBQ}V + TB1 Ba(NBavy + N7B3v2) + 01 < v (19)
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holds. Then equation (1) has a T-periodic solution.

Proof. Define M = {¢ € Pr : |l¢|| < v}. Then Lemma 3 implies J :
M — Pr and is continuous and compact. Moreover, it follows from Lemma 4
that the mapping A is a contraction and it is clear that A : M — Pr. We finally
show that if ¢,¢¥ € M, we have ||Jo + Ay|| < G. To this end, let ¢, € M,
then from (15)-(16) and the fact that |Q(n,z,z,...,z)| < Z;VZI Ljl||z|| + v2 and
F5(m,2)] < pyllell + 1153 (n, 0)|] we obtain

() (m) + (Aw) ()
= = T 0] X [tk =) — as9)hels = 750

N

= H)Q (s — (), pls —7w(s) — 1 H Y. 3 hy(r)e(r)

J=1r=s—7;(s)

N s—1 n—1
3 Y keuhwew)] I 2w
J=lu=s—7;(s) u=s+1

LQUm b — ()t £ S h()(s)

j=1s=n—7;(n)

n—1

B> [N B2+ Bs)llel

s=n—T
+NBLigll + NByor + N2B37] ¢l
+ Nrfapllel + Nrfavs | B
+ NL|[l| + v + N7sall
T38| (N (B2 + B5) + NBs L+ N*B3r + Nrap)v

IN

IN

+(Nﬂ2’l)1 —+ NT/33U2)i| —+ NLI/ —+ U1 —+ NT/BQV
= {TBBN (B2 + B5) + NBsL + N*3r + Nrfsp)

+NL + NTﬁz}V + T'51Ba(NBav1 + N1B3v2) + 11

V.

IA

Thus,
1(Je) + (AY)[| < v

Therefore, all the conditions of the Krasnoselskii’s theorem are satisfied on the set
M. Thus, equation (1) has a T-periodic solution.

Theorem 6 Suppose (3)-(6) and (18) hold. Let 31, 82, B3, B4, and 85 be given
by (17). If
N(L + 7B2) +TB1B4[N (B2 + B5)
+ NBoL + N?B27 + N7833p] < ag < 1, (20)
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then equation (1) has a unique T-periodic solution.

Proof. Define a mapping H : Pr — Pr by (Hp)(n) = (Ae)(n)+ (Jp)(n). Then

for ¢, € Pr we have

(H)(n) = (HY)(n)|
= ((p)m) + (TR)m) - ((Ap)(m) + (J¥)(m) ) |

= [(4p)m) - (av)m) - (Te)w) = (Fe)m))|

< N(L+7Bo)lle = ¥l + THiSa [N (B2 + ) + NBaL
+N2837 + N7Bap] |l — vl

= {N(L+78) + BB [N (B2 + B5) + NG L

+N2837 + N7Bsp| I -
< azllp —¥|].

By the contraction mapping principle, (1) has a unique T-periodic solution.
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