
1

Reiterated homogenization applied in
hydrodynamic lubrication
A Almqvist1, E K Essel2,3, J Fabricius2∗ and P Wall2

1Division of Machine Elements, Luleå University of Technology, Luleå, Sweden
2Department of Mathematics, Luleå University of Technology, Luleå, Sweden
3Department of Mathematics and Statistics, University of Cape Coast, Cape Coast, Ghana

The manuscript was received on 11 March 2008 and was acccepted after revision for publication on 9 June 2008.

DOI: 10.1243/13506501JET426

Abstract: This work is devoted to studying the combined effect that arises due to surface
texture and surface roughness in hydrodynamic lubrication. An effective approach in tackling
this problem is by using the theory of reiterated homogenization with three scales. In the numer-
ical analysis of such problems, a very fine mesh is needed, suggesting some type of averaging. To
this end, a general class of problems is studied that, e.g. includes the incompressible Reynolds
problem in both artesian and cylindrical coordinate forms. To demonstrate the effectiveness
of the method several numerical results are presented that clearly show the convergence of the
deterministic solutions towards the homogenized solution. Moreover, the convergence of the fric-
tion force and the load carrying capacity of the lubricant film is also addressed in this paper. In
conclusion, reiterated homogenization is a feasible mathematical tool that facilitates the analysis
of this type of problem.
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1 INTRODUCTION

Throughout the years, the general theory of homo-
genization has been successfully applied to different
problems connected to hydrodynamic lubrication, see
e.g. [1–7]. In these works it was shown that the rapid
oscillations (in the coefficients of the Reynolds type
equation under consideration) induced by the sur-
face roughness, could efficiently be averaged by the
homogenization method employed. In these previ-
ous results, it is assumed that the lubrication prob-
lem exhibits two separable scales, i.e. a global scale
describing the geometric shape of the application and
a local scale describing the surface roughness.

In the present work, it is assumed that the prob-
lem of interest, exhibits three separable scales, i.e. one
global scale describing geometry, one oscillating local
scale describing the surface texture, and a faster oscil-
lating local scale describing the surface roughness.

∗Corresponding author: Department of Mathematics, Luleå

University of Technology, Luleå, SE-971 87, Sweden. email:

John.Fabricius@ltu.se

Homogenization of problems with two or more oscil-
lating scales are referred to as reiterated homogeniza-
tion, see e.g. [8–10]. In this paper, a generalized form of
the Reynolds problem is considered, governing incom-
pressible and Newtonian flow, with the advantage to
unify both the Cartesian and the cylindrical coordi-
nate formulations. In particular, the aim is to obtain a
general homogenized problem that corresponds to a
class of problems modelled by equation (1). One tech-
nique within the homogenization theory is the formal
method of multiple scale expansion, see e.g. [8, 11].
To accomplish this aim the formal method of multiple
scale expansion is employed to obtain a homogenized
problem (8) for equation (1). For other problems con-
nected to the incompressible Reynolds that have been
studied by multiple scale expansion see [1, 3, 7].

By means of numerical analysis, the convergence,
of the direct numerical solution towards the homoge-
nized counterpart, in terms of load carrying capacity
and hydrodynamically induced friction is quantified.
The results show that the combined effect due to the
texture and roughness on a modelled bearing can be
effectively analysed through reiterated homogeniza-
tion. More specifically, the discrepancies, between the

JET426 © IMechE 2008 Proc. IMechE Vol. 222 Part J: J. Engineering Tribology



2 A Almqvist, E K Essel, J Fabricius, and P Wall

proposed method and the direct numerical approach,
in terms of predicted load carrying capacity and fric-
tion force are tolerably small; O (1 per cent) for textures
as well as roughness of wavelengths likely to be found
in a real application. That is, wavelengths within the
ranges 1/100–1/10 of the length bearing for the texture
and 1/10 000–1/100 for the roughness.

2 THE HOMOGENIZATION PROCEDURE

In this section, a class of equations that includes the
Reynolds equation governing incompressible New-
tonian flow is considered. It can be seen that the
generalized form (1), makes it possible to study the
Reynolds problem in its Cartesian, and cylindrical
coordinate forms. (See section 4).

Let � be an open bounded subset of R
2, Y = (0, 1)2,

and Z = (0, 1)2. Introduce the auxiliary matrix A =
(aij), where aij = aij(x, y, z), and i = 1, 2, and j = 1, 2
are smooth functions that are Y -periodic in y and
Z-periodic in z. It is also assumed that a constant α > 0
exists such that

2∑
i,j=1

aij(x, y, z)ξiξj � α|ξ |2 for every ξ ∈ R
2

Moreover, the auxiliary vector b = (bi) is introduced,
where bi = bi(x, y, z) and i = 1, 2, are smooth func-
tions that are Y -periodic in y and Z-periodic in z. Let
ε > 0 and define the matrix Aε and the vector bε as

Q1

Aε(x) =
(

aε
11(x) aε

12(x)

aε
21(x) aε

22(x)

)
= A

(
x, x
ε

,
(x

ε

)2
)

bε(x) =
(

bε
1(x)

bε
2(x)

)
= b

(
x,

x
ε

,
(x

ε

)2
)

Consider the following boundary value problem

∇x · (Aε(x)∇xpε(x)
) = ∇x · bε(x) in �

pε(x) = 0 on ∂�
(1)

For small values of the parameter ε, the coefficients
in equation (1) are rapidly oscillating. This suggests
some type of asymptotic analysis; pε → p0 as ε → 0
and p0 can be found by solving a so-called homoge-
nized equation (8), which does not contain any rapid
oscillations. This means that p0 may be used as an
approximation of the solution pε for small values of ε.

The method of multiple scale expansion devel-
oped in the homogenization theory is used to derive
a homogenization result connected to equation (1).
For general information concerning this method in
connection to homogenization, see e.g. [8, 11]. The
homogenization of Reynolds type equations involv-
ing only one local scale have been studied by multiple
scale expansion in references [1], [3], [7], and [12].

Assume that pε is of the form

pε(x) =
∞∑

i=0

εipi

[
x,

x
ε

,
x2

ε

]
(2)

where pi = pi(x, y, z) is Y -periodic in y and Z-periodic
in z. The main idea is to insert the expansion (2) into
equation (1), and then collect terms of the same order
of ε and analyse the system of equations obtained. A
comprehensive analysis can be found in Appendix 2.
The main result is that the leading term p0 in the expan-
sion (2) is of the form p0 = p0(x) and is found by the
following homogenization algorithm:

Step 1: solve the local problems (on the z-scale)

∇z · (A(∇zui + ei)) = 0 in Z , (i = 1, 2) (3)

∇z · (A∇zu0 − b) = 0 in Z (4)

where ui = ui(x, y, z), i = 0, 1, 2, is Y -periodic in y,
Z-periodic in z, and {e1, e2} is the canonical basis in
R

2. Use these local solutions to define the matrix

A = A(x, y, z) =

⎛
⎜⎜⎝

1 + ∂u1

∂z1

∂u2

∂z1

∂u1

∂z2
1 + ∂u2

∂z2

⎞
⎟⎟⎠

Step 2: solve the local problems (on the y-scale)

∇y ·
[

AAz
(∇y vi + ei)

]
= 0 in Y , (i = 1, 2) (5)

∇y ·
[

AAz∇y v0 −
(

b − A∇zu0
z
)]

= 0 in Y (6)

where vi = vi(x, y), i = 0, 1, 2, is Y -periodic in y and
AAz

is the average with respect to Z . Use these local
solutions to define the matrix

B = B(x, y) =

⎛
⎜⎜⎝

1 + ∂v1

∂y1

∂v2

∂y1

∂v1

∂y2
1 + ∂v2

∂y2

⎞
⎟⎟⎠

Step 3: compute the homogenized matrix A0 and the
homogenized vector b0 by the following formulas

A0(x) = AABz y

and b0(x) = b − A∇zu0 − AA∇y v0
z y

(7)

Step 4: find p0 by solving the so called homogenized
problem

∇x · (A0(x)∇xp0(x)) = ∇x · b0(x) in �

p0(x) = 0 on ∂�
(8)
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The main advantage of the above algorithm is that
the scales are treated separately, i.e. first one ‘aver-
ages’ with respect to the z-scale, then with respect to
the y-scale and finally one solves the homogenized
equation. It is noted that the homogenized equation
does not contain any oscillating coefficents, neverthe-
less, it takes into account the effects of the local scales,
see equation (7). The fact that the scales can be sepa-
rated in this way, significantly simplifies the numerical
analysis of the problem.

3 AN ADDITIONAL RESULT

In this section, the convergence of ∇pε is investigated.
The functions pi, i = 0, 1, 2, in the expansion is of the
form

p0 = p0(x), p1 = p1(x, y), p2 = p2(x, y, z)

see Appendix 2. When inserted into equation (2)

∇xpε(x) = ∇xp0(x) + ∇y p1(x, y) + ∇zp2(x, y, z) + ε[. . .]

which means that

∇xpε(x) ≈ ∇xp0(x) + ∇y p1(x, y) + ∇zp2(x, y, z)

for small values of ε. According to the analysis in
Appendix 2, p1 and p2 can be expressed in terms of
the solutions ui and vi of the local problems (3), (4),
(5), and (6), respectively. Making use of equations (49)
and (53) in addition to equations (45) and (58) yields

∇xpε(x) ≈ ∇zu0(x, y, z) + A(x, y, z)∇y v0(x, y)

+ A(x, y, z)B(x, y)∇xp0(x) (9)

after some straightforward calculations. According to
references [10], [13], and [14], the following conver-
gence holdsQ2

∫
�

∇xpε(x)ϕ

(
x,

x
ε

,
(x

ε

)2
)

dx −→
∫

�

∫
Y

∫
Z
[∇zu0 + A∇y v0 + AB∇xp0]

× ϕ(x, y, z) dz dy dx (10)

for any smooth function ϕ that is Y -periodic in y and
Z-periodic in z.

4 APPLICATION TO HYDRODYNAMIC
LUBRICATION

In this section, it is studied how the general reitera-
ted homogenization result can be applied to analyse
the effects of texture and surface roughness in the

hydrodynamic lubrication goverened by the Reynolds
equation. For this purpose, an auxiliary function is
introduced, which may be used to represent the
lubricant film thickness

h(x, y, z) = h0(x) + hT(x, y) + hR(x, y, z), (11)

where

(a) h0(x) describes the geometry of the bearing;
(b) hT(x, y) is a Y -periodic function in y, representing

surface texture;
(c) hR(x, y, z) is a Y -periodic function in y and

a Z-periodic in z, representing the roughness
contribution.

Note that this formulation admits studying prob-
lem where the texture and the roughness changes with
position at the tribological interface. For example, this
enables studying the effects of a texture only on a
part of the surface, which in turn may exhibit different
surface roughness patterns at different parts of the tex-
ture itself. However, here the numerical examples are
restricted to consider the case where the texture and
the roughness representation does not change with
the position, i.e. hT = hT(y) and hR = hR(z). By making
use of the auxiliary function h, it is possible to model
the deterministic film thickness hε as

hε(x) = h
[

x,
x
ε

,
(x

ε

)2
]

= h0(x) + hT

(x
ε

)
+ hR

(x
ε

)2

(12)

where ε is a parameter that describes the texture and
roughness wavelength.

Now, by choosing

Aε(x) =
(

h3
ε (x) 0

0 h3
ε (x)

)
(13a)

bε(x) = 6μUhε(x)e1 (13b)

in equation (1), where e1 = (1, 0), the Reynolds
equation describing incompressible Newtonian flow
in Cartesian coordinates is obtained, that is

∇x ·
[(

h3
ε 0

0 h3
ε

)
∇xpε

]
= 6μU∇x · (hεe1) in �

pε(x) = 0 on ∂�

(14)

where, pε is the hydrodynamically induced pressure
distribution, μ the (constant) viscosity of the Newto-
nian lubricant, and U the linear speed of the moving
smooth surface.

JET426 © IMechE 2008 Proc. IMechE Vol. 222 Part J: J. Engineering Tribology



4 A Almqvist, E K Essel, J Fabricius, and P Wall

It is also observed that by choosing

Aε(x) =
(

h3
ε (x)/x2 0

0 x2h3
ε (x)

)
(15a)

bε(x) = 6μωx2hε(x)e1 (15b)

in equation (1), where ω is the angular speed of the
smooth rotating surface and (x1, x2) are the angu-
lar and the radial coordinates, the Reynolds equation
describing incompressible Newtonian flow in cylindri-
cal coordinates is obtained

∇x ·
[(

h3
ε (x)/x2 0

0 x2h3
ε (x)

)
∇xpε

]

= 6μωx2∇x · (hεe1) in �pε(x) = 0 on ∂�

(16)

It should be noted that the homogenization result,
which is that pε → p0 as ε → 0, does not require any
restrictions on the geometry, neither on the texture
(y-scale) nor on the roughness (z-scale). The only limi-
tation is that ε should be sufficiently small in order to
approximate the hydrodynamic pressure pε with p0. As
will be seen this is actually no limitation since ε is very
small in realistic examples.

From the homogenization result, convergence of
load carrying capacity Iε automatically follows, that is

Iε =
∫

�

pε(x) dx −→
∫

�

p0(x) dx = I0

Moreover, the convergence of ∇pε in section 3 is stud-
ied. The convergence of hydrodynamically induced
friction force, Fε, and frictional torque, Tε, are con-
nected to the derivative ∂pε/∂x1, and by making use of
equation (10), the following expressions are obtained

Fε =
∫

�

(
μU

hε(x)
+ hε(x)

2
∂pε

∂x1

)
dx −→

F0 =
∫

�

∫
Y

∫
Z

(
μU

h(x, y, z)
+ h(x, y, z)

2
∂p0

∂x1

)
dz dy dx

+
∫

�

∫
Y

∫
Z

h(x, y, z)

2

[
∂u0

∂z1
+ ∂u1

∂z1

∂p0

∂x1

+ ∂u2

∂z2

∂p0

∂x2

]
dz dy dx +

∫
�

∫
Y

∫
Z

h(x, y, z)

2

×
[
∂v0

∂y1
+ ∂v1

∂y1

∂p0

∂x1
+ ∂v2

∂y2

∂p0

∂x2

]
dz dy dx

+
∫

�

∫
Y

∫
Z

h(x, y, z)

2

⎡
⎢⎢⎣
⎛
⎜⎜⎝

∂u1

∂z1

∂u2

∂z1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
⎛
⎜⎜⎝

∂v0

∂y1

∂v0

∂y2

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

∂v1

∂y1

∂v2

∂y1

∂v1

∂y2

∂v2

∂y2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂p0

∂x1

∂p0

∂x2

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦dz dy dx (17)

for friction force and

Tε =
∫

�

x2

(
μωx2

hε(x)
+ hε(x)

2x2

∂pε

∂x1

)
x2 dx1 dx2 −→

T0 =
∫

�

{∫
Y

∫
Z

x2

(
μωx2

h(x, y, z)
+ h(x, y, z)

2x2

∂p0

∂x1

)
dz dy

}

× x2 dx1 dx2 +
∫

�

{∫
Y

∫
Z

h(x, y, z)

2

[
∂u0

∂z1

+∂u1

∂z1

∂p0

∂x1
+ ∂u2

∂z2

∂p0

∂x2

]
dz dy

}
x2 dx1 dx2

+
∫

�

{∫
Y

∫
Z

h(x, y, z)

2

[
∂v0

∂y1
+ ∂v1

∂y1

∂p0

∂x1

+∂v2

∂y2

∂p0

∂x2

]
dz dy

}
x2 dx1 dx2

+
∫

�

⎧⎪⎪⎨
⎪⎪⎩

∫
Y

∫
Z

h(x, y, z)

2

⎡
⎢⎢⎣
⎛
⎜⎜⎝

∂u1

∂z1

∂u2

∂z1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
⎛
⎜⎜⎝

∂v0

∂y1

∂v0

∂y2

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

∂v1

∂y1

∂v2

∂y1

∂v1

∂y2

∂v2

∂y2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂p0

∂x1

∂p0

∂x2

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦dz dy

⎫⎪⎪⎬
⎪⎪⎭ x2 dx1 dx2

(18)

for frictional torque. To clarify, from the equations
above, the resulting homogenized quantity is made up
of friction force/torque due to the smooth (averaged)
film thickness plus a corrector term identified by three
separate contributions, i.e. due to roughness or texture
acting alone or roughness and texture acting together.

In the following, numerical investigations are con-
ducted to the convergence associated with load car-
rying capacity and the hydrodynamically induced
friction force by employing a second-order finite-
difference scheme. The results of these investigations,
justify the applicability of the homogenization pro-
cess presented in this paper. Subsequently, the effects
of periodic texture and surface roughness are stud-
ied by considering a thrust pad bearing problem. It is
observed that for one-dimensional texture and rough-
ness representation only very small differences exist
between the homogenized numerical solution (HNS)
and the direct numerical solution (DNS). It is pointed
out that it is only possible to find the DNS in the case
of transversal and longitudinal (i.e. one-dimensional)
texture and roughness due to the enormous number
of discretization points that is required in the general
case. From the general analysis, it is clear that it is
always possible to obtain an approximate solution p0

of pε, with very high accuracy by solving the homoge-
nized equation. From an application point of view, this
means that for arbitrary (i.e. also two-dimensional)
yet physically relevant, texture and roughness, a highly
accurate approximation p0 of the pressure solution pε,
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can be obtained by solving the homogenized equation.
This is one of the benefits with the method.

4.1 A numerical investigation of convergence

Computationally, it is extremely demanding to retrieve
the DNS for short wavelength roughness (and texture).
Therefore, to assess and quantify the convergence, the
one-dimensional problem was first revisited. This ele-
mentary problem constitutes an excellent benchmark
for the implemented numerics, since it is possible to
obtain closed form expressions for the coefficients
in the homogenized equation. Specifically, a one-
dimensional representation of the Reynolds equation
is obtained, for incompressible and Newtonian flow,
in Cartesian coordinates by considering equation (14),
that is

d
dx

(
h3

ε (x)
dpε

dx
(x)

)
= 6μU

dhε

dx
(x) in 0 � x � L

pε(0) = pε(L) = 0 (19)

where L is the length of the stationary surface exhibit-
ing texture and roughness.

Through equation (11), the film thickness function
of the modelled linear slider bearing, is described with

h0(x) = hmin + hmin

4

(
1 − x

L

)

hT(s) = 2hR(s) = hmin

4

[
1
2
(1 − cos(2πs))

]

where hmin denotes the fixed minimum film thick-
ness of the corresponding smooth problem, i.e. the
problem with a smooth stationary surface as well as
a smooth moving surface. To generalize the results,
the dimensionless variables X = x/L, H = h/hmin, and
Pε = pε/(6μUL/h2

min) were introduced to obtain a
dimensionless Reynolds problem

d
dX

(
H 3

ε (X )
dPε

dX
(X )

)
= dHε

dX
(X ), in 0 � X � 1

(20)

Pε(0) = Pε(1) = 0

The dimensionless representation of the auxiliary film
thickness function is also presented, in terms of these
dimensionless variables, that is

H (X , y, z) = 1 + 1
4
(1 − X ) + 1

4

[
1
2
(1 − cos(2πy))

]

+ 1
8

[
1
2
(1 − cos(2πz))

]

The homogenized problem corresponding to equation
(20) reads as

d
dX

(
1

H −3(X , y, z)zy

dP0

dX

)

= d
dX

(
H −2(X , y, z)zy

H −3(X , y, z)zy

)
, in 0 � X � 1 (21)

P0(0) = P0(1) = 0

Figure 1 illustrates the convergence of load carrying
capacity Iε towards I0 with decreasing ε. In fact, it is
the measure

|Iε − I0|
I0

(22)

(equivalent to

∫ 1

0
|Pε(X ) − P0(X )| dX

∫ 1

0
P0(X ) dX

if Pε, P0 � 0) that is considered as being a function
of ε in the figure. When computing the DNS, 25 dis-
crete nodes were used to represent a single wavelength
of the texture, e.g. for ε = 2−7, a total number of
(1/2−7)225 = 219 grid nodes were used. As deduced
from the figure, the rate of convergence is very close to
linear, with the goodness of fit equaling 0.99. To further
elaborate on the convergence of Pε towards P0, a set of
DNS (Pε) and the HNS (P0) is illustrated in Fig. 2.

To facilitate the derivation of the specific ver-
sion of equation (17) that corresponds to the one-
dimensional dimensionless form of equation (1), Aε =
H 3

ε (x1) and bε = Hε(x1) are first chosen. Then, owing

Fig. 1 Convergence of load carrying capacity Iε towards
I0 with decreasing ε
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Fig. 2 A set of DNS (Pε) and the HNS (P0)

to equation (17), the following convergence, in terms
of dimensionless friction force Fε = Fε/(μUL/hmin) is
obtained

Fε =
∫ 1

0

1
Hε(X )

+ 3Hε(X )
dPε

dX
(X ) dX −→ (23)

F0 =
∫ 1

0

∫ 1

0

∫ 1

0

(
1
H

+ 3H
dp0

dX

)
dz dy dX

+
∫ 1

0

∫ 1

0

∫ 1

0
3H

(
∂u0

∂z
+ ∂u1

∂z
dp0

dX

)
dz dy dX

+
∫ 1

0

∫ 1

0

∫ 1

0
3H

(
∂v0

∂y
+ ∂v1

∂y
dp0

dX

)
dz dy dX

+
∫ 1

0

∫ 1

0

∫ 1

0
3H

[
∂u1

∂z

(
∂v0

∂y
+ ∂v1

∂y
dp0

dX

)]
dz dy dX

(24)

For the one-dimensional problem, the cell problems
(3), (4), (5), and (6) can be solved explicitly. Inserting
the solutions

∂u0

∂z
= H −2(X , y, z) − H −2(X , y, z)z

H −3(X , y, z)z
H −3(X , y, z)

∂v0

∂y
= H −2(X , y, z)z − H −2(X , y, z)zy

H −3(X , y, z)zy
H −3(X , y, z)z

∂u1

∂z
= −1 + H −3(X , y, z)

H −3(X , y, z)z

∂v1

∂y
= −1 + H −3(X , y, z)z

H −3(X , y, z)zy

into F0, it is found that

F0 =
∫ 1

0

∫ 1

0

∫ 1

0

1
H (X , y, z)

+ 3H (X , y, z)

×
{

H −2(X , y, z) − H −2(X , y, z)z

H −3(X , y, z)z
H −3(X , y, z)

+ H −3
(
X , y, z

)
H −3

(
X , y, z

)z

⎡
⎢⎣H −2

(
X , y, z

)z

−
⎛
⎜⎝H −2

(
X , y, z

)zy

H −3
(
X , y, z

)zy

⎞
⎟⎠H −3

(
X , y, z

)z

⎤
⎥⎦

+ H −3
(
X , y, z

)
H −3

(
X , y, z

)z

H −3
(
X , y, z

)z

H −3
(
X , y, z

)zy

dP0

dX

⎫⎪⎬
⎪⎭ dz dy dX

Figure 3 displays the convergence of Fε. Actually, Fig. 3
visualizes the variation with ε in the expression

|Fε − F0|
F0

= |Fε − F0|
F0

(25)

In comparison to the (almost) linear convergence
for Iε, the rate of convergence of Fε is lower than
linear, according to the figure. However, the results
presented above, particularly those shown in Figs 1
and 3, clearly serve as justification of the applicabil-
ity of the proposed reiterated homogenization result.
More specifically, the discrepancies in terms of pre-
dicted load carrying capacity and friction force are
tolerably small; O(1 per cent) for textures as well as
roughness of wavelengths likely to be found in a real
application. That is, wavelengths within the ranges
1/100–1/10 of the length bearing for the texture and
1/10 000–1/100 for the roughness.

Fig. 3 Convergence of friction force Fε towards F0 with
decreasing ε.
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4.2 Application to a thrust pad bearing problem

The effects of periodic texture and surface rough-
ness are here exemplified by considering a thrust pad
bearing problem. The flow is assumed to be mod-
elled through the cylindrical coordinate formulation
of the Reynolds problem, i.e. equation (16). A point
x in the bearing is identified by its cylindrical coordi-
nates x = (x1, x2) ∈ � = [−θ0/2, θ0/2] × [R, 2R (with x1

denoting the angular and x2 the radial coordinate). In
this case, convergence of frictional torque, Tε, is given
by equation (18).

There are two ways of approaching the lubrication
problem. In the preceding section, the separation hmin

between the surfaces on the global scale is regarded
as an input parameter and retrieved the solution in
terms of the single dependent parameter, i.e. dimen-
sionless hydrodynamic pressure Pε, by solving the
Reynolds equation (20). Observe that due to the spe-
cific dimensionless formulation chosen, the solution
pε for arbitrary hmin > 0 is obtained.

In approaching the present thrust pad bearing
problem, a force-balance equation is employed

W −
∫

�

pε(x) x2 dx2 dx1 = 0 (26)

where the applied load W appears as an input para-
meter. The Reynolds equation (26) and the force-
balance equation (26) are then solved to retrieve the
solution in terms of the two dependent parameters,
namely the separation between the surfaces on the
global scale h00 and the hydrodynamic pressure pε.
Again, equation (11) is used to represent the film
thickness and define

h0(x) = h00 − x2(sin(x1) − sin(θ0))

R sin(θ0)
θ0 R tan α (27)

to model a single bearing segment. Note that h00

exactly defines the height of the parallel gap between
the trailing edge and the rotating shaft surface and
that its value depends on the applied load W . (For
the smooth problem (hT = hR ≡ 0), h00 represents the
minimum film thickness.) In equation (27), R denotes
the inner radius, θ0 defines the size of the pad in radi-
ans and α controls the pad inclination. See Fig. 4 for a
schematic description of a bearing segment within the
bearing.

The effects of periodic texture and surface rough-
ness are examined by considering the homogenized
correspondence equations (8) to (16). The case of
transversal sinusoidal surface texture as well as the
surface roughness is addressed first

hε(x) = hε
00 − x2(sin(x1) − sin(θ0))

R sin(θ0)
θ0 R tan α

+ hε
T(x) + hε

R(x) (28)

Fig. 4 A schematic descriptions of a single pad

where

hε
T(x) := hT

(x
ε

)
and hε

R(x) := hR

(x
ε

)2

Explicitly, the auxiliary functions are

hT(y) = aT

2
[1 − cos(2πy1)] (29)

and

hR(z) = aR

2
[1 − cos(2πz1)] (30)

The separation hε
00 is regarded as a parameter that is

parameterized in ε and dependent on W , and there-
fore the Reynolds equation (16) and the force-balance
criterion (26) are solved for hε

00 and pε (or h0
00 and p0

for the corresponding homogenized system of equa-
tions). The input parameters chosen for this specific
problem are found in Table 1.

To resolve the direct numerical solution (DNS) prop-
erly, each roughness wavelength is resolved with 25

discrete nodes. For the results presented here, this
means a total number of uniformly distributed nodes
of 25(24)2 = 213 in the x1-direction for ε = 2−4, whereas
26 nodes were considered sufficient for the discretiza-
tion in the x2-direction. The coefficients in the homo-
genized matrix and vector, both given in equation (7),
were obtained by solving the (one-dimensional) peri-
odic Y or Z cell problems with 26 nodes in the y1- and
the z1-directions.

Table 1 Input parameters

Parameter Description Value Unit

θ0 Pad size (in ◦) 25 ◦
R Pad inner radius 10 · 10−3 m
μ Fluid viscosity 0.3 Pa s
ω Smooth surface

angular speed
2.5 rad/s

α Pad inclination 1.6 · 10−4 rad
W Applied load 10 N
a Roughness ampli-

fication scaling
parameter

0.5 · 10−6 m
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Table 2 Normalized homogenized property h0
00/hs

00,
transversal sinusoidal texture and roughness

aT\aR 0 a 2a 4a 8a

0 1.0000 0.9639 0.9298 0.8677 0.7636
a 0.9639 0.9278 0.8937 0.8317 0.7277
2a 0.9298 0.8937 0.8597 0.7978 0.6942
4a 0.8677 0.8317 0.7979 0.7363 0.6341
8a 0.7636 0.7277 0.6942 0.6341 0.5364

Table 2 displays normalized homogenized sepa-
ration h0

00/hs
00, where hs

00 = 6.72 · 10−6 m denotes the
minimum film thickness for the correspondingly
smooth problem. In the table, texture amplitude aT

increases vertically downwards, whereas roughness
amplitude aR increases horizontally to the right, as
indicated by aT\aR.

For ε = 2−4, the maximum relative difference
between hε

00 and h0
00 was found to be less than 0.01.

More specifically, for ε = 2−4, corresponding to a tex-
ture wavelength θ02R/24 ≈ 0.5 · 10−3 m measured at
the outer radius (x2 = 2R) and for (aT, aR) = (8a, 8a),∣∣hε

00 − h0
00

∣∣ /h0
00 = 0.0097 is obtained. The fact that the

maximum difference occurs for (aT, aR) = (8a, 8a) is
to be expected, as an increase in texture amplitude or
roughness amplitude also increases the discretization
errors. Since, in theory, it makes sense to distinguish
between roughness and texture only when both of
them are present, the first row and column in Table 2
could be used as a benchmark of the numerical routine
employed. Although the figures in the table seem to
indicate that the rigid body separation is symmetrical
with respect to texture and roughness amplitude, no
theoretical evidence supporting this is reported here.

Table 3 presents the variation in the normalized
homogenized frictional torque, T0/Ts. The numerical
values of T0 are computed from equation (18) and
the frictional torque exhibited for a set of perfectly
smooth surfaces, is found to be Ts = 1.16 · 10−3 Nm.
Also, for ε = 2−4 and (aT, aR) = (8a, 8a), it is found that
|Tε − T0|/T0 = 0.0037.

According to Table 3, the previously remarked sym-
metry observed in Table 2, with respect to texture
and roughness amplitude also to hold true for the
homogenized frictional torque. For example, a texture

Table 3 Normalized homogenized frictional torque
T0/Ts, transversal sinusoidal texture and
roughness

aT\aR 0 a 2a 4a 8a

0 1.0000 1.0005 1.0021 1.0083 1.0312
a 1.0005 1.0011 1.0026 1.0087 1.0314
2a 1.0021 1.0027 1.0043 1.0106 1.0333
4a 1.0083 1.0089 1.0106 1.0170 1.0404
8a 1.0312 1.0318 1.0336 1.0403 1.0641

of amplitude 2a combined with roughness of ampli-
tude 0, i.e. (aT, aR) = (2a, 0), and a texture of ampli-
tude 0 combined with roughness of amplitude 2a,
i.e. (aT, aR) = (0, 2a), yields approximately the same
h0

00 or T0 according to the tables, i.e. h0
00 = 0.9298

and T0 = 1.0021, whereas (aT, aR) = (a, a) results in
h0

00 = 0.9278 and T0 = 1.0011. However, superposi-
tioning the effects resulting from (aT, aR) = (a, 0) and
(aT, aR) = (0, a) gives, with four decimal places, h0

00 =
0.9278 and T0 = 1. 0010. The relative discrepancies
between the superpositioned results and the directly
computed results were found to be 3.15 · 10−6 for h0

00

and 1.35 · 10−5 for T0. For the frictional torque, it is
suggested that this relative difference is attributed to
the last term in equation (18), i.e. the term for the
combined effect of texture and roughness.

Next, the textured pad from the preceding case is
considered, i.e. equations (28) and (29), but with a lon-
gitudinal instead of a transversal sinusoidally shaped
surface roughness,

hR(z) = aR

2
[1 − cos(2πz2)] (31)

The results are compiled in Tables 4 and 5.
These tables illustrate how a longitudinally shaped

roughness (or texture, interpreting the data in the first
row as being induced by a surface texture instead
of surface roughness) influences film formation to a
higher degree than the transversal correspondence.
When considering the induced frictional torque, the
effects caused by the longitudinally shaped rough-
ness (or texture) shows a less pronounced effect than
that of the corresponding transversal case. This corres-
ponds well with what would be intuitively expected

Table 4 Normalized homogenized property h0
00/hs

00,
transversal sinusoidal texture and longitudinal
sinusoidal roughness

aT\aR 0 a 2a 4a 8a

0 1.0000 0.9627 0.9251 0.8493 0.6947
a 0.9639 0.9266 0.8890 0.8132 0.6585
2a 0.9298 0.8925 0.8549 0.7790 0.6242
4a 0.8677 0.8304 0.7928 0.7167 0.5610
8a 0.7636 0.7262 0.6884 0.6115 0.4532

Table 5 Normalized homogenized frictional torque
T0/Ts, transversal sinusoidal texture and
longitudinal sinusoidal roughness

aT\aR 0 a 2a 4a 8a

0 1.0000 1.0003 1.0013 1.0053 1.0219
a 1.0005 1.0009 1.0019 1.0059 1.0225
2a 1.0021 1.0025 1.0035 1.0075 1.0242
4a 1.0083 1.0087 1.0098 1.0138 1.0305
8a 1.0312 1.0316 1.0327 1.0369 1.0541
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Table 6 Normalized homogenized property h0
00/hs

00, dif-
ferent textures and roughnesses

equation equation
TType\RType Smooth (30) (31) Fig. 7 Fig. 8

Smooth 1.0000 0.8054 0.7615 0.5641 0.7781
equation (30) 0.7636 0.5752 0.5218 0.3355 0.5464
equation (31) 0.6947 0.5002 0.4573 0.2596 0.4723
equation (32) 0.9346 0.7420 0.6951 0.5012 0.7142
equation (33) 0.9808 0.7866 0.7422 0.5454 0.7592

Table 7 Normalized homogenized property T0/Ts, differ-
ent textures and roughnesses

equation equation
TType\RType Smooth (30) (31) Fig. 7 Fig. 8

Smooth 1.0000 1.0199 1.0133 1.0245 1.0197
equation (30) 1.0312 1.0524 1.0451 1.0573 1.0521
equation (31) 1.0219 1.0471 1.0370 1.0534 1.0458
equation (32) 1.0143 1.0349 1.0281 1.0396 1.0347
equation (33) 1.0027 1.0228 1.0161 1.0274 1.0226

Fig. 5 Artificially ground surface texture hT(y)

and confirms what is already well known within the
field.

Tables 6 and 7 compare the two more realistic sur-
face roughness representations found in Figs 7 andQ3
8 with the previously considered sinusoidal repre-
sentations as well as the smooth case. In addition
to the transversal and longitudinal sinusoidal tex-
tures, the textures given by equation (32) (displayed
in Fig. 5) and equation (33) (displayed in Fig. 6) were
also considered. All four roughness representations
were scaled to exhibit an average roughness value
Ra(=

∫
Z |hR(z) − ∫

Z hR(z) dz|dz) of 1 μm. This means
that the corresponding amplitude of the sinusoidal
representations (both the transversal and the longi-
tudinal) become aR = Rz/2 = πμm, i.e. Rz = 2πμm ≈
6.28 μm. The rough surface in the Fig. 7 has Rz =
6.10 μm and the one in Fig. 8 has Rz = 11.00 μm. In all
simulations (except for the case without any texture),
the texture amplitude was held fixed, i.e. aT = 4 μm.

Fig. 6 Artificially dimpled surface texture hT(y)

Figure 5 presents the mathematical description of
the surface texture given by

hT(y) = 10−50(y1−1/2)2
cos

[
2π

(
y1 − 1

2

)]
(32)

while the surface representation presented in Fig. 6 is
modelled mathematically by

hT(y) = 10−25((y1−1/2)2+(y2−1/2)2) cos
[

2π

(
y1 − 1

2

)]

× cos
[

2π

(
y2 − 1

2

)]
(33)

Figure 7 displays a surface roughness representation
hR(z), exhibiting an almost unskewed striated pat-
tern, whereas Fig. 8 displays a negatively skewed
surface roughness representation hR(z) that exhibits
a reasonably random pattern. Both of these rough-
nesses originate from measurements but have been
resampled and normalized for the assessments con-
ducted here. Normalized to an average roughness
value, Ra = 1 μm, these roughness representations
have Rz = 6.10 μm and Rz = 11.00 μm (as previously
mentioned) and their corresponding skewness values,
RSK = −0.0061 and RSK = −1.7284. In studying Table 6,
one notices that the longitudinal texture deteriorates
film formation most, i.e. produces the smallest values
of the ratio h0

00/hs
00, and the artificially dimpled tex-

ture (33) the least without considering the perfectly

Fig. 7 A surface roughness hR(z), exhibiting a striated
pattern, originating from a surface measurement
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Fig. 8 A negatively skewed surface roughness hR(z)

exhibiting a reasonably random pattern, originat-
ing from a surface measurement

smooth surface. The surface roughness representa-
tion shown in Fig. 7 is by far the most detrimental
in terms of film formation. This surface roughness
representation exhibits exactly the same Ra (ensured
by the scaling) and approximately the same Rz and
RSK values as those corresponding to the transver-
sal sinusoidal representation. The same table clearly
shows that after the perfectly smooth surfaces, it is the
transversal sinusoidal roughness representation that
generates the thickest film. Hence, it is concluded that
for a prediction to be reliable it must consider more
information than the three abovementioned surface
roughness parameters.

Addressing frictional torque, it is – according to
Table 7 – the artificially dimpled texture (33) is again
the texture inducing the smallest effect. However, it
is the transversal and not the longitudinal sinusoidal
texture that influences frictional torque the most. In
optimizing the performance in terms of film forma-
tion and induced frictional torque, it is clear that
perfectly smooth surfaces are preferred, this was also
previously confirmed, see e.g. [3]. However, disregard-
ing the unrealistic perfectly smooth bearing, it is the
artificially dimpled surface texture (33) that yields
the thickest films and induces the smallest frictional
torque. As well, it is the grounded surface roughness
representation displayed in Fig. 7 that clearly has the
most severe influence on film formation and frictional
torque. Thus, from a manufacturing point-of-view, in
choosing from the selection of textures and rough-
nesses found in Tables 6 and 7, it would probably be
most convenient to use a laser dimpling technique
to achieve the 4 μm deep texture and then radially
grind to a 1 μm Ra-value. This would be a rather
successful combination according to the present find-
ings. However, if the surface is further processed from
its grounded state, e.g. also chemically de-burred, it
might display a surface finish similar to that presented
in Fig. 8. In turn, this should facilitate film formation as
well as lower the induced frictional torque, according
to the results presented here.

5 CONCLUSIONS

The main result is that a reiterated homogenization
procedure is successfully developed for a class of prob-
lems by using multiple scale expansion. In particular,
the Reynolds problem, which governs incompress-
ible and Newtonian flow in Cartesian and cylindri-
cal coordinates, belongs to this class. This made it
possible to efficiently study problems connected to
hydrodynamic lubrication including shape, texture
and roughness. Herein lies the novelty of the results,
whereas only two scales, i.e. shape and roughness,
have been considered previously we can consider a
third scale, i.e. the texture.

In addition, the convergence of the pressure gra-
dient is analysed. This enabled to study the limiting
behaviour of hydrodynamically induced friction force
and frictional torque, as the wavelengths of the local
scales tend to zero.

To demonstrate the applicability and effectiveness
of the method, several numerical results are presented,
which clearly show the convergence of the determini-
stic solutions towards the homogenized solution. The
quantification of convergence was given in terms of
load carrying capacity and friction force. In these
convergence illustrations, only transversal and longi-
tudinal roughness and texture were considered. The
reason for this was that it is impossible to obtain the
full numerical solution for two-dimensional rough-
ness and texture, due to enormous amount of dis-
cretization points, which are required to resolve the
surface. However, by using the homogenization result
it is possible to study the effects of arbitrary roughness
with very high accuracy by solving the derived smooth
homogenized equation. This was demonstrated in an
example connected to a realistic thrust pad bearing
problem, where the effects of texture and roughness on
film formation and frictional torque were investigated.

Based on the general convergence result for the
pressure gradient, the limit of the deterministic
expression is deduced for the frictional force. The
resulting homogenized quantity is made up of friction
force due to the smooth (averaged) film thickness plus
a corrector term. Moreover, in this corrector term, one
can identify three separate contributions, i.e. due to
either roughness or texture acting alone or texture and
roughness acting together. The presence of terms of
the latter kind implies that roughness could enhance
(or diminish) certain effects that are essentially due to
texture (and vice versa). The numerical results indicate
that the combined effect due to texture and rough-
ness on the modelled hydrodynamic bearings can
be efficiently analysed using reiterated homogeniza-
tion. The resulting discrepancies in terms of predicted
load carrying capacity and friction force are small;
O(1 per cent) for textures as well as roughnesses of
wavelengths likely to be found in a real application.
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That is, wavelengths within the ranges 1/100–1/10 of
the length bearing for the texture and 1/10 000–1/100
for roughness.

From the assessment of the combined effects of tex-
ture and roughness – that arise in the modelled thrust
pad bearing – the conclusion that reiterated homoge-
nization is a feasible tool is drawn. For any prediction
to be reliable, more information regarding the surface
than the three surface roughness parameters, Ra, Rz ,
and RSK are required.
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APPENDIX 1

Notation

aij elements of matrix A
Aε deterministic matrix
A 0 homogenized matrix
Ai differential operator, i = 0, . . . , 4
bε deterministic vector
b0 homogenized vector
ei Canonical basis in R

2, e1 = (1, 0) and
e2 = (0, 1)

f
z

average of f with respect to Z (= ∫
Z f dz)

f
z y

average of f with respect to Z and
Y (= ∫

Y

∫
Z f dz dy)

Fε deterministic frictional force
F0 homogenized frictional force
Fε dimensionless friction force

= Fε/μUL/hmin)

F0 dimensionless homogenized friction force
h auxiliary function used to model film

thickness
h0 function describing global geometry of

bearing
hR Function describing the roughness part of

film thickness
hε deterministic film thickness
hT function describing the texture part of film

thickness
hmin fixed minimum film thickness = min of h0

H dimensionless film thickness = h/hmin

Iε deterministic load carrying capacity
I0 homogenized load carrying capacity
L Length of stationary surface exhibiting

texture and roughness
pε deterministic pressure solution
pi the ith term in the expansion of the

pressure pε

p0 homogenized pressure solution
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Pε dimensionless deterministic
pressure = pε/(6μUL/h2

min)

Tε deterministic frictional torque
T0 homogenized frictional torque
Ts frictional torque for a perfectly smooth

surface (= 1.16 · 10−3 Nm)
ui Z-periodic solution of the local problems,

i = 0, 1, 2
U linear speed of moving surface
vi Y -periodic solution of the local problems,

i = 0, 1, 2
x local spatial coordinate, x = (x1, x2)

X dimensionless spacial coordinate = x/L
y local spatial coordinate,

y = (y1, y2) = (x1/ε, x2/ε)

Y Y -cell = [0, 1]2

z local spatial coordinate,
z = (z1, z2) = (x1/ε

2, x2/ε
2)

Z Z-cell = [0, 1]2

ε parameter describing the roughness and
texture scale (ε > 0)

� open bounded subset of R
2

∂� Boundary of �

∇x gradient operator, ∇x = ∇
∇y Gradient operator, ∇y = (∂/∂y1, ∂/∂y2)

∇z gradient operator, ∇z = (∂/∂z1, ∂/∂z2)

APPENDIX 2

In this appendix the analysis leading to the homog-
enization result is presented, by deriving the homo-
genized equation (8) corresponding to equation (1).
The method used is known as multiple scale expan-
sion. For more information concerning this method in
connection with homogenization see e.g. [8].

It is observed that the chain rule applied to a smooth
function of the form ψε(x) = ψ(x, y, z), where y = x/ε

and z = x/ε2 gives that

∇xψε(x) =
(

∇x + 1
ε
∇y + 1

ε2
∇z

)
ψ(x, y, z) (34)

Inserting the expansion equation (2) (of pε) into
equation (1) and making use of equation (34), it is
obtained(

∇x + 1
ε
∇y + 1

ε2
∇z

)
·
[

A
(

∇x + 1
ε
∇y + 1

ε2
∇z

)

×
∞∑

i=0

εipi

]
=
(

∇x + 1
ε
∇y + 1

ε2
∇z

)
· b (35)

Let the differential operators Ai, i = 0, . . . , 4 be
defined as

A0 = ∇z · (A∇z)

A1 = ∇z · (A∇y) + ∇y · (A∇z)

A2 = ∇x · (A∇z + ∇y · (A∇y) + ∇z · (A∇x)

A3 = ∇x · (A∇y) + ∇y · (A∇x)

A4 = ∇x · (A∇x)

Using the above notation (35) may be written as

(ε−4A0 + ε−3A1 + ε−2A2 + ε−1A3 + A4)(p0 + εp1

+ ε2p2 + · · · ) = (ε−2∇z + ε−1∇y + ∇x) · b

By comparing terms with the same order of ε (from −4
to 0), the following system of equations are obtained

A0p0 = 0 (36a)

A0p1 + A1p0 = 0 (36b)

A0p2 + A1p1 + A2p0 = ∇z · b (36c)

A0p3 + A1p2 + A2p1 + A3p0 = ∇y · b (36d)

A0p4 + A1p3 + A2p2 + A3p1 + A4p0 = ∇x · b (36e)

In the following, the following well-known result is
frequently used

�u = f has a solution if and only if
∫

Z
f dz = 0 (37)

In this case, u is unique up to an additive constant,
where � is any of the operators A0, A1, A2, . . . and Z
may be replaced with Y . See for example [11, p. 39] for
a proof of equation (37). According to equation (37), it
is clear that p0 in equation (36a) does not depend on
z, that is

p0 = p0(x, y) (38)

and this simplifies equation (36) to

A0p1(x, y, z) = −∇z · (A(x, y, z)∇y p0(x, y)) (39)

By linearity

p1(x, y, z) = u1(x, y, z)
∂p0

∂y1
(x, y)

+ u2(x, y, z)
∂p0

∂y2
(x, y) + p̃1(x, y) (40)

where the Z-periodic function ui = ui(x, y, z), i = 1, 2
is a solution (unique up to a constant) to the following
local problem

∇z · (A(∇zui + ei)) = 0 in Z (41)

According to equation (37), (36c) can be solved for
p2 if and only if

∫
Z
(A1p1 + A2p0) dz = 0 (42)
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Reiterated homogenization 13

Substituting equation (40) into equation (42) and
considering Z-periodicity, it is found that

∇y ·
{∫

Z

[
A
(
∇y p0 + ∇z

(
u1

∂p0

∂y1
+ u2

∂p0

∂y2

))]
dz
}

= 0

(43)

This is identical to

∇y ·
(

A(x, y, z)A(x, y, z)z∇y p0(x, y)
)

= 0 (44)

where f
z = ∫

Z f dz and

A = A(x, y, z) =
⎛
⎜⎝1 + ∂u1

∂z1

∂u2

∂z1
∂u1

∂z2
1 + ∂u2

∂z2

⎞
⎟⎠ (45)

It is remarked that the equation (44) is the homoge-
nized equation after the first reiteration.

Equation (44) implies that

p0(x, y) = p0(x) (46)

Thus, by virtue of equation (40)

p1 = p1(x, y) (47)

Using equations (46) and (47) in equation (36c) and
simplifying gives

A0p2 = ∇z · b − ∇z · [A(∇y p1 + ∇xp0)] (48)

By linearity, it is found that p2 is of the form

p2(x, y, z) = u0(x, y, z) + u1(x, y, z)(
∂p0

∂x1
(x) + ∂p1

∂y1
(x, y)

)
+ u2(x, y, z)(

∂p0

∂x2
(x) + ∂p1

∂y2
(x, y)

)
+ p̃2(x, y)

(49)

where u0 is a solution (unique up to an additive
constant) to the local problem

∇z · (A∇zu0 − b) = 0 in Z (50)

Recall that even though y is a parameter in this context,
u0 in equation (50), and u1 and u2 in equation (41) are
not only Z-periodic, but also Y -periodic functions.

To solve equation (36d) for p3, it must hold that
∫

Z
(A1p2 + A2p1 + A3p0 − ∇y · b) dz = 0

Expansion yields
∫

Z

(∇y · (A∇zp2

)+ ∇y · (A∇y p1

)+ ∇y · (A∇xp0

)
− ∇y · b

)
dz = 0 (51)

Inserting equation (49) in equation (51) and rearrang-
ing the terms, it is obtained that

∫
Z

∇y ·
{

A
[
∇xp0 + ∇z

(
u1

∂p0

∂x1
+ u2

∂p0

∂x2

)]

+ (A∇zu0 − b
)+ A

[
∇y p1 + ∇z

(
u1

∂p1

∂y1

+ u2
∂p1

∂y2

)]}
dz = 0

and by virtue of equation (45), this reduces to

∇y ·
(

AAz∇y p1

)
= −∇y ·

(
AAz∇xp0

)
+ ∇y · (b − A∇zu0

)z
(52)

By linearity, the equation (52) is satisfied if p1 is of the
form

p1(x, y) = v0(x, y) + v1(x, y)
∂p0

∂x1
(x)

+ v2(x, y)
∂p0

∂x2
(x) + p̃1(x) (53)

where the Y -periodic functions vi = vi(x, y) (i =
0, 1, 2) are the solutions of the following local problems
involving y⎧⎪⎨
⎪⎩

∇y ·
[

AAz∇y v0 −
(

b − A ∇zu0
z
)]

= 0 in Y

∇y ·
[

AAz (∇y vi + ei

)] = 0 on Y , (i = 1, 2)

(54)

Here x is regarded as a parameter.
A necessary condition for solving equation (36e) for

p4 is that
∫

Z
A1p3 + A2p2 + A3p1 + A4p0 − ∇x · b dz = 0 (55)

By integrating equation (55) over Y , expanding the dif-
ferential operators Ai and making use of the Y and Z
periodicity yields

∫
Y

∫
Z

∇x · (A(∇zp2 + ∇y p1 + ∇xp0) − b) dy dz = 0

(56)
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14 A Almqvist, E K Essel, J Fabricius, and P Wall

Next, it is shown on that the condition (56) leads to the
homogenized equation. By inserting equations (49)
and (53) in equation (56), it is obtained that

∇x ·
{

A∇z

[
u0 + u1

(
∂p0

∂x1
+ ∂p1

∂y1

)

+u2

(
∂p0

∂x2
+ ∂p1

∂y2

)
+ p̃2(x, y)

]zy
⎫⎬
⎭

+ ∇x ·
⎡
⎣A∇y

(
v0 + v1

∂p0

∂x1
+ v2

∂p0

∂x2
+ p̃1(x)

)zy
⎤
⎦

+ ∇x ·
(

A
z y

∇xp0

)

= ∇x ·
(

b
z y)

By simplifying and rearranging the following, it is
obtained

∇x ·
⎧⎨
⎩A

[
∇xp0 + ∇y

(
v1

∂p0

∂x1
+ v2

∂p0

∂x2

)]zy
⎫⎬
⎭

+ ∇x ·
⎡
⎣A∇z

(
u1

∂p0

∂x1
+ u2

∂p0

∂x2

)zy
⎤
⎦

+ ∇x ·
⎧⎨
⎩A∇z

[
u1

∂

∂y1

(
v1

∂p0

∂x1
+ v2

∂p0

∂x2

)]zy
⎫⎬
⎭

+ ∇x ·
⎧⎨
⎩A∇z

[
u2

∂

∂y2

(
v1

∂p0

∂x1
+ v2

∂p0

∂x2

)]zy
⎫⎬
⎭

= ∇x ·
{

b − A
[
∇zu0 + ∇y v0 + ∇z

(
u1

∂v0

∂y1

)

+∇z

(
u2

∂v0

∂y2

)]zy
⎫⎬
⎭ (57)

By defining

B = B(x, y) =

⎛
⎜⎜⎝

1 + ∂v1

∂y1

∂v2

∂y1

∂v1

∂y2
1 + ∂v2

∂y2

⎞
⎟⎟⎠ (58)

It is seen that the compressed form of

∇x ·
{

A
[
∇xp0 + ∇y

(
v1

∂p0

∂x1
+ v2

∂p0

∂x2

)]}
= ∇x · (AB∇xp0

)
(59)

Inserting equation (59) into equation (57) and rear-
ranging the terms, it is found that

∇x ·
{

ABz y

∇xp0

}

+ ∇x ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A

⎛
⎜⎜⎝

∂u1

∂z1

∂u2

∂z1

∂u1

∂z2

∂u2

∂z2

⎞
⎟⎟⎠

zy

∇xp0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ∇x ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A

⎛
⎜⎜⎝

∂u1

∂z1

∂v1

∂y1

∂u1

∂z1

∂v2

∂y1

∂u1

∂z2

∂v1

∂y1

∂u1

∂z2

∂v2

∂y1

⎞
⎟⎟⎠

zy

∇xp0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ ∇x ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A

⎛
⎜⎜⎝

∂u2

∂z1

∂v1

∂y2

∂u2

∂z1

∂v2

∂y2

∂u2

∂z2

∂v1

∂y2

∂u2

∂z2

∂v2

∂y2

⎞
⎟⎟⎠

zy

∇xp0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ∇x ·
{

b − A
[
∇zu0 + ∇y v0 + ∇z

(
u1

∂v0

∂y1

)

+∇z

(
u2

∂v0

∂y2

])zy
⎫⎬
⎭

By adding the corresponding components of the
matrices in the inner brackets and simplifying, it is
obtained that

∇x ·
(

AABz y

∇xp0

)

= ∇x ·
[

b − A∇zu0 − A
(

∇y v0 + ∇zu1
∂v0

∂y1

+∇zu2
∂v0

∂y2

)zy
⎤
⎦ (60)

Moreover

∇y v0 + ∇zu1
∂v0

∂y1
+ ∇zu2

∂v0

∂y2
= A∇y v0, (61)

and thus from equations (61) and (60), it can be seen
that

∇x ·
(

AABzy ∇xp0

)
= ∇x ·

(
b − A∇zu0 − AA∇y vzy

0

)
(62)
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Reiterated homogenization 15

By defining

A0(x) = AABz y

(63a)

b0(x) = b − A∇zu0 − AA∇y v0
z y

(63b)

and inserting in equation (62), it is finally obtained
that

∇x · (A0(x)∇xp0(x)
) = ∇x · b0(x) in �

p0(x) = 0 on ∂�
(64)

where A is defined as in equation (45) and B is defined
as in equation (58). In other words, equation (64) is
the reiterated homogenized boundary value problem
corresponding to the deterministic boundary value
problem given by equation (1).
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