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Abstract

Sufficient conditions for the zero solution of a certain class of neu-
tral Volterra difference equations with variable delays to be asymptot-
ically stable are obtained. The Banach’s fixed point theorem is em-
ployed in proving our results.
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1. Introduction

The study of the stability of the zero solution of difference equations has
gained the attention of many mathematicians lately, see [1], [2], [3], [5],
[7], [9], [11] and [12]. In this paper we consider the nonlinear difference
equation with variable delays

∆x(n) = −
NX
j=1

aj(n)x(n− τj(n)) +
NX
j=1

∆Qj(n, x(n− τj(n)))

+
NX
j=1

n−1X
s=n−τj(n)

kj(n, s)fj(s, x(s)),(1.1)

with the initial condition

x(n) = ψ(n) for n ∈ [m(n0), n0] ∩ Z,

where ψ : [m(n0), n0] ∩ Z→ R is a bounded sequence and for n0 ≥ 0,

mj(n0) = inf{n− τj(n), n ≥ n0}, m(n0) = min{mj(n0), 1 ≤ j ≤ N}.

Here∆ denotes the forward difference operator. That is, ∆x(n) = x(n+
1)− x(n) for any sequence {x(n) : n ∈ Z+}. We assume throughout this
paper that aj : Z

+ → R, kj : Z
+×([mj(n0),∞)∩Z)→ R, fj : Z

+×R→ R,
Qj : Z

+×R→ R and τj : Z
+ → Z+, for j = 1, ..., N. Special cases of (1.1)

have been considered by a number of researchers in recent times.

For instance, Raffoul in [7] considered the equation

∆x(n) = −a(n)x(n− τ),(1.2)

where τ is a positive constant. The first author in [11], extended the results
obtained in [7] to the equation

∆x(n) = −
NX
j=1

aj(n)x(n− τj(n)).(1.3)
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The first author also in [12] considered the the following nonlinear
Volterra difference equation

x(n+ 1) = a(n)x(n) + c(n)∆x(n− τ(n)) +
n−1X

s=n−τ(n)
k(n, s)q(x(s)).

(1.4)

Ardjouni and Djoudi in [1] considered the nonlinear Volterra difference
equation with variable delays

x(n+ 1) = a(n)x(n− τ1(n)) + c(n)∆x(n− τ2(n)) +
n−1X

s=n−τ2(n)
k(n, s)q(x(s)).

(1.5)

Moreover, Ardjouni and Djoudi in [2] considered the difference equa-
tions with variable delays

∆x(n) = −
NX
j=1

aj(n)x(n− τj(n)) +
NX
j=1

cj(n)∆x(n− τj(n)).(1.6)

Motivated by the above mentioned papers, we obtain in this paper suf-
ficient conditions for the zero solution of (1.1) to be asymptotically stable.

2. Stability

Let n0 ∈ Z ∩ [0,∞), be fixed. We let D(n0) be the set of bounded se-
quences ψ : [m(n0), n0] ∩ Z → R, with the norm |ψ|0 = max{|ψ(n)| : n ∈
[m(n0), n0] ∩ Z}. Also, let (B, ||.||) be the Banach space of bounded se-
quences x : [m(n0),∞) ∩ Z→ R with the maximum norm ||.||.
In this paper we assume that for j=1,...,N,

|Qj(n, x)−Qj(n, y)| ≤ L1||x− y||,(2.1)

and

|fj(n, x)− fj(n, y)| ≤ L2||x− y||(2.2)

for some positive constants L1 and L2. Also, for j=1,...,N,
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fj(n, 0) = 0, Qj(n, 0) = 0,(2.3)

and

n− τj(n)→∞ as n→∞.(2.4)

Lemma 2.1 Let hj : [m(n0),∞)∩Z→ R be an arbitrary sequence, for j =
1, ..., N. Suppose that H(n) = 1−PN

j=1 hj(n) 6= 0, for all n ∈ [no,∞) ∩ Z.
Then x is a solution of equation (1.1) if and only if

x(n) =

∙
x(n0)−

NX
j=1

Qj(n0, x(n0 − τj(n0)))−
NX
j=1

n0−1X
s=n0−τj(n0)

hj(s)x(s)

¸
n−1Y
u=n0

H(u)

+
NX
j=1

Qj(n, x(n− τj(n))) +
NX
j=1

n−1X
s=n−τj(n)

hj(s)x(s)

+
n−1X
s=n0

∙ NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

−[1−H(s)]
NX
j=1

Qj(s, x(s− τj(s)))− [1−H(s)]

NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r)

+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, x(u))

¸ n−1Y
u=s+1

H(u).(2.5)

Proof. Rewrite (1.1) as

∆x(n) = −
NX
j=1

hj(n)x(n) +∆n

NX
j=1

n−1X
s=n−τj(n)

hj(s)x(s)
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+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))

+
NX
j=1

n−1X
s=n−τj(n)

kj(n, s)fj(s, x(s)),

where ∆n denotes the difference taken with respect to n.

The above equation is equivalent to

x(n+ 1) = H(n)x(n) +∆n

NX
j=1

n−1X
s=n−τj(n)

hj(s)x(s)

+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))

+
NX
j=1

n−1X
s=n−τj(n)

kj(n, s)fj(s, x(s)).(2.6)

Rewrite equation (2.6) as

∆n

∙ n−1Y
u=n0

H(u)−1x(u)
¸
=

∙
∆n

NX
j=1

n−1X
s=n−τj(n)

hj(s)x(s)

+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))(2.7)

+
NX
j=1

n−1X
s=n−τj(n)

kj(n, s)fj(s, x(s))

¸ nY
u=n0

H(u)−1.
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Summing (2.7) from n0 to n− 1 we obtain

n−1X
s=n0

∆s

∙ s−1Y
u=n0

H(u)−1x(s)
¸
=

n−1X
s=n0

∙
∆s

NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r)

+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))

+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, x(u))

¸ sY
u=n0

H(u)−1.

Consequently, we have

n−1Y
u=n0

H(u)−1x(n)−
n0−1Y
u=n0

H(u)−1x(n0)

=
n−1X
s=n0

∙
∆s

NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r)

+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))

+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, x(u))

¸ sY
u=n0

H(u)−1.(2.8)

Dividing both sides of (2.8) by
Qn−1

u=n0 H(u)
−1 we obtain

x(n) = x(n0)
n−1Y
u=n0

H(u) +
n−1X
s=n0

∙
∆s

NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r)

+
NX
j=1

{hj(n− τj(n))− aj(n)}x(n− τj(n))

+
NX
j=1

∆Qj(n, x(n− τj(n)))
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+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, x(u))

¸ n−1Y
u=s+1

H(u).(2.9)

Using the summation by parts formula, we obtain

n−1X
s=n0

n−1Y
u=s+1

H(u)

∙ NX
j=1

∆Qj(n, x(n− τj(n)))

¸

=
NX
j=1

Qj(n, x(n− τj(n)))−
NX
j=1

Qj(n0, x(n0 − τj(n0)))
n−1Y
u=n0

H(u)

−
n−1X
s=n0

NX
j=1

Qj(s, x(s− τj(s)))[1−H(s)]
n−1Y

u=s+1

H(u),(2.10)

and

n−1X
s=n0

n−1Y
u=s+1

H(u)

∙
∆s

NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r)

¸

=
NX
j=1

n−1X
s=n−τj(n)

hj(s)x(s)−
n−1Y
u=n0

H(u)
NX
j=1

n0−1X
s=n0−τj(n0)

hj(s)x(s)

−
n−1X
s=n0

[1−H(s)]
n−1Y

u=s+1

H(u)
NX
j=1

s−1X
r=s−τj(s)

hj(r)x(r).(2.11)

Substituting (2.10) and (2.11) into (2.9) gives the desired results.

Theorem 2.1 Suppose (2.1), (2.2), (2.3) and (2.4) hold and let hj :
[m(n0),∞) ∩ Z → R be an arbitrary sequence, for j = 1, ...,N, such that
H(n) = 1−PN

j=1 hj(n) 6= 0, for all n ∈ [no,∞) ∩ Z. Suppose further that
there exist a constant α ∈ (0, 1) such that

NL1 +
NX
j=1

n−1X
s=n−τj(n)

|hj(s)|

+
n−1X
s=n0

∙ NX
j=1

|hj(n− τj(n))− aj(n)|
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+|1−H(s)|NL1 + |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄
≤ α.(2.12)

Moreover, assume that there exist a positive constant G such that¯̄̄̄ n−1Y
u=n0

H(u)

¯̄̄̄
≤ G,(2.13)

and

n−1Y
u=n0

H(u)→ 0 as n→∞.(2.14)

Then the zero solution of (1.1) is asymptotically stable.

Proof. Let � > 0 be given. Choose δ > 0 such that

δG[1 + α] + �α ≤ �.

Let ψ ∈ D(n0) such that |ψ(n)| ≤ δ and define

S = {ϕ ∈ B : ϕ(n) = ψ(n) if n ∈ [m(n0), n0] ∩ Z,

||ϕ|| ≤ � and ϕ(n)→ 0 as n→∞}.

Then (S, ||.||) is a complete metric space where, ||.|| is the maximum norm.
Define the mapping P : S → S by

(Pϕ)(n) = ψ(n) for n ∈ [m(n0), n0] ∩ Z,

and

(Pϕ)(n) =

∙
ψ(n0)−

NX
j=1

Qj(n0, ψ(n0 − τj(n0)))−
NX
j=1

n0−1X
s=n0−τj(n0)

hj(s)ψ(s)

¸
n−1Y
u=n0

H(u)
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+
NX
j=1

Qj(n, ϕ(n− τj(n))) +
NX
j=1

n−1X
s=n−τj(n)

hj(s)ϕ(s)

+
n−1X
s=n0

∙ NX
j=1

{hj(n− τj(n))− aj(n)}ϕ(n− τj(n))

−[1−H(s)]
NX
j=1

Qj(s, ϕ(s− τj(s)))− [1−H(s)]
NX
j=1

s−1X
r=s−τj(s)

hj(r)ϕ(r)

+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, ϕ(u))

¸ n−1Y
u=s+1

H(u), n ≥ n0.

(2.15)

Clearly, Pϕ is continuous. We first show that P : S → S. Using (2.15)
we obtain

|(Pϕ)(n)| ≤ δG[1 + α] +

½
NL1 +

NX
j=1

n−1X
s=n−τj(n)

|hj(s)|

+
n−1X
s=n0

∙ NX
j=1

|hj(n− τj(n))− aj(n)|

+|1−H(s)|NL1 + |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄¾
||ϕ||

≤ δG[1 + α] + α�

≤ �.

We next show that (Pϕ)(n)→ 0 as n→∞. The first term on the right
hand side of (2.15) goes to zero in view of condition (2.14). Since ϕ(n)→ 0
and n − τj(n) → ∞ as n → ∞, we have that Qj(n, ϕ(n − τj(n))) →
Qj(n, 0) = 0 as n→∞ for j = 1, ..., N. Thus showing that the second term
on the right hand side of (2.15) goes to zero as n→∞.



238 Ernest Yankson and Emmanuel K. Essel

Let ϕ ∈ S be fixed. The fact that ϕ(n) → 0 and n − τj(n) → ∞
as n → ∞, implies that, given �1 > 0 there exists N1 > n − τj(n) for
j = 1, ..., N such that |ϕ(s)| ≤ �1 for s ≥ N1. Thus

¯̄̄̄ NX
j=1

n−1X
s=n−τj(n)

hj(s)ϕ(s)

¯̄̄̄
≤ �1

NX
j=1

n−1X
s=n−τj(n)

|hj(s)|

≤ α�1 < �1.

Thus showing that the third term on the right hand side of (2.15) goes
to zero as n→∞. We next show that the last term on the right hand side
of (2.15) goes to zero as n → ∞. Since ϕ(n) → 0 and n − τj(n) → ∞ as
n → ∞, for each �2 > 0, there exists N2 > n0 such that s ≥ N2 implies
|ϕ(s − τj(s))| < �2 for j = 1, ...,N. Thus for n ≥ N2, the last term on the
right hand side of (2.15) satisfies

¯̄̄̄ n−1X
s=n0

∙ NX
j=1

{hj(n− τj(n))− aj(n)}ϕ(n− τj(n))

−[1−H(s)]
NX
j=1

Qj(s, ϕ(s− τj(s)))− [1−H(s)]
NX
j=1

s−1X
r=s−τj(s)

hj(r)ϕ(r)

+
NX
j=1

s−1X
u=s−τj(s)

kj(s, u)fj(u, ϕ(u))

¸ n−1Y
u=s+1

H(u)

¯̄̄̄

≤
N2−1X
s=n0

∙ NX
j=1

|hj(s− τj(s))− aj(s)||ϕ(s− τj(s))|

+|1−H(s)|L1
NX
j=1

|ϕ(s− τj(s))|+ |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)||ϕ(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)||ϕ(u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄

+
n−1X
s=N2

∙ NX
j=1

|hj(s− τj(s))− aj(s)||ϕ(s− τj(s))|

+|1−H(s)|L1
NX
j=1

|ϕ(s− τj(s))|+ |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)||ϕ(r)|
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+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)||ϕ(u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄

≤ max
σ≥m(n0)

ϕ(σ)
N2−1X
s=n0

∙ NX
j=1

|hj(s− τj(s))− aj(s)|

+|1−H(s)|L1N + |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄

+ �2

n−1X
s=N2

∙ NX
j=1

|hj(s− τj(s))− aj(s)|

+|1−H(s)|L1N + |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄
≤ �2 + �2α < 2�2.

Thus showing that the last term on the right hand side of (2.15) goes
to zero as n → ∞. Therefore, (Pϕ) → 0 as n → ∞. It therefore follows
that P maps S into S.
We finally show that P is a contraction. Let ϕ, η ∈ S. Then

|(Pϕ)(n)− (Pη)(n)| ≤
½
NL1 +

NX
j=1

n−1X
s=n−τj(n)

|hj(s)|

+
n−1X
s=n0

∙ NX
j=1

|hj(n− τj(n))− aj(n)|

+|1−H(s)|NL1 + |1−H(s)|
NX
j=1

s−1X
r=s−τj(s)

|hj(r)|

+L2

NX
j=1

s−1X
u=s−τj(s)

|kj(s, u)|
¸¯̄̄̄ n−1Y

u=s+1

H(u)

¯̄̄̄¾
||ϕ− η||

≤ α||ϕ− η||.
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This shows that P is a contraction. Therefore, by the contraction map-
ping principle, P has a unique fixed point in S which solves (1.1) and for
any ϕ ∈ S, ||Pϕ|| ≤ �. This shows that the zero solution of (1.1) is stable.
Moreover, (Pϕ) → 0 as n → ∞, showing that the zero solution of (1.1) is
asymptotically stable. This completes the proof.
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