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Brief research report: A Monte Carlo simulation study of small
sample bias in ordered logit model under multicollinearity
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ABSTRACT
This study investigated the small sample biasness of the ordered logit
model parameters under multicollinearity using Monte Carlo simulation.
The results showed that the level of biasness associated with the ordered
logit model parameters consistently decreases for an increasing sample
size while the distribution of the parameters becomes less variable with
low extreme values. In the presence of multicollinearity, the level of bias-
ness increases and this issue is particularly severe for small sample sizes.
By comparing three different approaches for dealing with the multicolli-
nearity problem in the model, the study demonstrated that the use of
penalized maximum likelihood estimation technique provides better results
which is interpretable compared to the other approaches considered.
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CATEGORICAL DATA ANALYSIS is often conducted in many disciplines to describe the effect
of a set of explanatory variables on a categorical dependent variable. Such a dependent variable
can be of three forms: count, nominal or ordinal (Long & Freese, 2011). When the dependent
variable is ordinal (such as rating systems as excellent, good, fair, or poor), there are many suit-
able models available to describe such a situation and the choice of a specific model over the
others may be influenced by some underlying assumptions (Fullerton, 2009; Long & Freese,
2011). Among the various models for the ordinal dependent variable with more than two out-
comes, the most commonly used one in many disciplines is the ordered logit model (Fagerland &
Hosmer, 2016; Fullerton, 2009; Lipsitz et al., 2013).

The ordered logit model (also known as cumulative logit or proportional odds model) has
been widely used because it allows for linear modeling of ordinal dependent variable with several
predictors (Tamura & Liu, 2015) and its interpretation is simple. The parameters of the ordered
logit model are usually obtained using the maximum likelihood estimation technique. The max-
imum likelihood estimators are known to be unbiased and consistent when large sample size is
involved (Murphy, Rossini, & van der Vaart, 1997). However, in many disciplines such as behav-
ioral and medical sciences, small samples are usually common because of many reasons including
financial constraints (McNeish, 2017). As observed in other known models (Bergtold, Yeager, &
Featherstone, 2018; Ye & Lord, 2014), the maximum likelihood estimation of ordered logit model
parameters using small sample can produce bias estimates with high standard errors (Zahid &
Ramzan, 2012).
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Apart from small sample size, multicollinearity or collinearity also causes biasness in the max-
imum likelihood estimator (Zahid & Ramzan, 2012). Multicollinearity describes a situation where
there exists a high correlation between two or more independent variables in a model. The exist-
ence of high level of multicollinearity will cause inconsistency or bias in the model parameters
and can also inflate the estimated standard errors associated with the model parameters (Lavery,
Acharya, Sivo, & Xu, 2017; Sinan & Alkan, 2015; Zahid & Ramzan, 2012). Multicollinearity can
also cause difficulty in the interpretation of the model parameters (Mackinnon & Puterman,
1989). Although the problem of small sample bias (Bergtold et al., 2018; Nemes, Jonasson, Genell,
& Steineck, 2009; Ye & Lord, 2014) and multicollinearity bias (Lavery et al., 2017) have been
studied for other modeling approaches, little is known about the ordered logit model, particularly
the combined effect. Such information is important for researchers to understand the effect or
the level of bias these two problems can have in their conclusions. Although, different studies
with regards to multicollinearity and small sample biasness have been conducted (Lavery et al.,
2017; Zainodin, Noraini, & Yap, 2011), it is difficult to know at what sample size a researcher
should be worried about multicollinearity problem.

For the past decades, researchers have tried to provide remedies to multicollinearity problems.
One of the simplest and most frequently used among the various approaches is the drop-variable
approach (Chen, 2012). This approach involves the removal of one of the collinear predictors from
the model. Another approach which is also in use is the principal component analysis (PCA).
The PCA method extract from the collinear variables a new variable called “component” which is
a linear combination of the collinear variables (Jolliffe, 2002). The collinear variables in the model
are then replaced with the component. In addition to the aforementioned approaches, an estimator
based method called penalized maximum likelihood (penalized MLE) estimation is also used. The
penalized MLE approach also known as ordinal ridge regression resolve multicollinearity problem
in a model by combing log-likelihood function with penalty term in order to obtain parameter
estimates with good compromise between bias and variance (Zahid & Ramzan, 2012).

Although, all these methods exist to remedy the multicollinearity problem, there is limited litera-
ture that compares their performance with regards to their suitability for different sample sizes.
This information is particular important as previous study argued that none of the method really
solve the problem (Chen, 2012). This study seeks to address the following questions: 1) How does
small sample affect the parameter distribution? 2) Does the presence of multicollinearity exacerbate
the parameter bias due to small sample? 3) How different are the results from the three methods of
resolving multicollinearity problem, particular with regards to small sample size?

The study aimed to examine the sample bias in the estimated parameters of ordinal logit model
under multicollinearity using Monte Carlo simulation techniques. Though this introduction has
focused on small sample and multicollinearity bias, we also extend the investigation to ascertain
the extent to which small sample cause biasness under multicollinearity. In addition, the study aim
to compare the three methods of handling multicollinearity problem in ordered logit model to
ascertain the extent to which each approach can yield less biased model parameter estimates.

Ordered logit model

The ordered logit model (also known as cumulative logit or proportion logit model) is an exten-
sion of the logistic regression model and was proposed by McCullagh (1980) to handle ordinal
dependent variable with more than two outcomes. Although, McCoullagh discussed a general
class of possible models for ordinal data, the ordered logit model is the most widely used
in practice because of its simplicity in terms of interpretation. Let Y represents an ordinal
response variable with k ordered outcomes and X represents a vector of explanatory variables,
then the ordered logit model describing the relationship between these variables can be expressed
Agresti, 2010):
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logit½Pðy � jÞ� ¼ log
Pðy � jÞ

1� Pðy � jÞ
� �

¼ aj þ bX, for j ¼ 1, 2, :::, k� 1 (1)

where Pðy � jÞ ¼ p1 þ p2 þ � � � þ pj are the cumulative probabilities, aj represents the intercept
parameter (also known as cutoff point or threshold parameter) of the cumulative probability j and b is
a column vector of parameters that describe the effects of the explanatory variable(s) on the dependent
variable. From (1), since the relationship between all pairs of categories is the same, we obtain only one
coefficient (beta) for the all the categories in the estimated model and different intercepts (alpha) for
each category. Model (1) can then be expressed in terms of cumulative probabilities as:

Pðy � jÞ ¼ exp ðaj þ bXÞ
1þ exp ðaj þ bXÞ , for j ¼ 1, 2, :::, k� 1 (2)

The parameters in the model (2) are estimated using the maximum likelihood estimation
method (Agresti, 2010; McCullagh, 1980).

Simulation setting

To investigate small sample and multicollinearity bias in the ordered logit model, a Monte Carlo
simulation studies was conducted. In the simulation 1,000 random samples (replications) of sizes
n¼ 30; 50; 100; 150; 200; 300; 500; 1000; 1500; 2000; and 5000 were generated based on model
(1). During data generation process three versions of ordered logit models were specified
to examine the small sample bias and multicollinearity bias of ordered logit model. These three
versions of data were simulated as follows:

In the first version, the following routing was done:

a. Generate three independent normal covariates x1, x2andx3 from a multivariate normal
distribution with mean vector l0 ¼ ð0, 2, 3Þ and covariance matrix:

R ¼
" 1 0 0
0 1 0
0 0 1

#
:

b. Use information in (a) to generate a latent variable y� from logistic distribution with location
parameter l ¼ �0:2x1 þ 0:6x2 þ 0:4x3 and scale parameter of 1.

c. Generate the observed response variable y which relates to the latent variable through the
following structural model:

y ¼
(1 if y� < s1
2 if s1 � y� < s2
3 if y� � s2

(3)

where s1 and s2 represent 0.3 and 0.7 quantile of the distribution of y�, respectively.

d. Fit ordered logit model ðy � x1 þ x2 þ x3Þ to the data obtain in (a) and (c).
e. Repeat the process from (a) to (d) 1,000 times for different samples and calculate the

appropriate parameters.

In the second version:

a. To allow for multicollinearity in the model, the three normal covariates x1, x2 and x3 were
generated from a multivariate normal distribution with mean vector l0 ¼ ð0, 2, 3Þ and
covariance matrix:
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R ¼
" 1 q 0
q 1 0
0 0 1

#
and q ¼ 0, 0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9, 0:95 and 0:99:

b. All other procedures remained the same as outlined in the first version.

In the third version:

a. To compared the three methods of handling multicollinearity described in the previous sec-
tion, the three normal covariates x1, x2 and x3 were generated from a multivariate normal
distribution with mean vector l0 ¼ ð0, 2, 3Þ and covariance matrix

R ¼
" 1 0:95 0
0:95 1 0
0 0 1

#
:

b. All other procedures remained the same as outlined in the first version.

In general, 1000 replications of each possible combination of 11 sample size and 12 collinearity
conditions were considered. This led to a total of 132,000 simulation replications.

The results for different sample sizes and multicollinearity level were compared using root
mean square error (RMSE) and mean absolute error (MAE). The RMSE is calculated as the
square root of the average squared distance between the true value and estimated parameter from
the model in each replication whiles the MAE is calculated as the average of the absolute distance
between the true value and estimated parameter from the model in each replication. The average
is performed over the 1000 replications. The computation was repeated for each sample size and
collinearity condition across all replications of that condition. Estimates with smaller RMSE and
MAE are preferred. All the analysis including data generation, simulation and estimation of
model parameters were conducted using R (R Core Team, 2018).

Results and discussion

The small sample bias in the parameters of ordered logit model was investigated using the first
version simulated data. The mean of the estimated parameters and their corresponding standard
error as well the empirical bias for different sample sizes is presented in Table 1. The bias was
measured using RMSE and MAE. The results suggest that the estimated parameters asymptotic-
ally approach the true value on average whilst their corresponding standard error also decreased
for increasing sample size on average. The two measures of bias also indicated that the bias for
the three parameters decrease for increasing sample size (Table 1). The results are consistent with

Table 1. Mean of the estimated parameter and their corresponding standard errors for ordered logit model with three inde-
pendent covariates and different sample sizes.

Coefficient Standard error MSE MAE

Sample size b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3
N¼ 30 �0.216 0.676 0.445 0.398 0.422 0.406 0.456 0.483 0.464 0.353 0.376 0.353
N¼ 50 �0.223 0.661 0.425 0.291 0.308 0.297 0.311 0.347 0.310 0.245 0.269 0.244
N¼ 100 �0.198 0.620 0.411 0.196 0.208 0.201 0.203 0.218 0.199 0.161 0.170 0.155
N¼ 150 �0.213 0.615 0.411 0.160 0.168 0.163 0.165 0.173 0.167 0.131 0.137 0.133
N¼ 200 �0.200 0.607 0.404 0.137 0.144 0.140 0.144 0.144 0.137 0.115 0.112 0.108
N¼ 300 �0.200 0.608 0.408 0.111 0.117 0.114 0.113 0.118 0.119 0.090 0.095 0.094
N¼ 500 �0.200 0.602 0.404 0.086 0.090 0.087 0.086 0.093 0.085 0.069 0.074 0.068
N¼ 1,000 �0.205 0.604 0.401 0.061 0.064 0.062 0.061 0.066 0.060 0.049 0.054 0.048
N¼ 1,500 �0.200 0.604 0.401 0.049 0.052 0.050 0.049 0.053 0.050 0.039 0.043 0.040
N¼ 2,000 �0.200 0.599 0.401 0.043 0.045 0.044 0.044 0.046 0.045 0.035 0.037 0.036
N¼ 5,000 �0.200 0.599 0.400 0.027 0.028 0.028 0.027 0.029 0.028 0.021 0.023 0.022
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the existing findings on the behavior of maximum likelihood estimation for increasing sample
size (Ye & Lord, 2014). It was also found that the small sample size did not only leads to more
bias in the model parameters, but it also translate to more variability and more extreme values in
the distribution of the model parameters and their corresponding standard errors (Figure 1).

The effect of multicollinearity was also investigated in addition to the sample size bias in the
ordered logit model parameters using the second version simulated data. The results showed that
the higher the level of multicollinearity the more variable the model coefficient (Top panel of
Figure 2). This was particularly true for small sample size. However, when the sample size
increases, the impact of the multicollinearity toward the model parameter becomes less severe.
For a sample of 500 and above, the model parameters are less variable for high level of multicolli-
nearity. The standard error of the model parameters also increases for an increasing level of mul-
ticollinearity (Bottom panel of Figure 2). Again, it was more pronounced for small sample size,
particularly below 500. For large sample size, the effect of multicollinearity in the standard error
becomes pronounced only in high values of multicollinearity (about 0.9 and above). These find-
ings confirm the notion that an increase in multicollinearity makes model parameters less stable

Figure 1. Boxplot of the simulated distribution of the parameters (top panel) and their standard error (bottom panel) for
ordered logit model with three independent covariates and for different sample sizes.

Figure 2. The estimated parameter (top panel) and their corresponding standard errors (bottom) for ordered logit model with
three covariates of which two ðx1 and x2Þ of them are collinear and for different sample sizes.
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across samples thereby increasing the associated standard error (Bergtold et al., 2018; Kutner,
Nachtsheim, Neter, & Li, 2005; Lavery et al., 2017). The results confirms already established
findings that the presence of multicollinearity cause biasness in model parameters (Lavery et al.,
2017). Also, the bias associated for collinear variables were found to be for higher levels
of multicollinearity (Figure 3).

In an attempt to minimize the level of biasness in model parameters due to multicollinearity,
three different approaches were explored. To begin with, the drop-variable approach which
involves omitting of the collinear variables was first explored. The results show that, excluding
one of the collinear variables from the model leads to a significant change in the coefficient of
the remaining collinear variable in the model (Table 2). Similar results were obtain irrespective of
the variable excluded from the model (i.e., either dropping variable x1 or x2). In addition, there is
the tendency for the sign of the coefficient to change and this may leads to incorrect interpret-
ation of the model parameter. For instance as observed in Table 2, the sign of the parameter
b1 changed from negative to positive after dropping the variable x2 from the model. The sign
remained positive irrespective of the changes in the sample sizes. This result may be influenced
by the fact that the parameters of a model formed from collinear covariates are unreliable and
interchangeable, thereby making it more difficult to determine the contribution of each predictor
in the model (Lavery et al., 2017). The level of biasness associated with the remaining variables in

Figure 3. The RMSE (top panel) and MAE (bottom) of the estimated parameters of ordered logit model with three covariates of
which two ðx1 and x2Þ are collinear and for different sample sizes.

Table 2. Estimated parametrs for ordered logit model with multicollinearity. The paramter are presented for the three
approaches described to handle multicollinearity problem.

Drop variable x1 Drop variable x2 PCA Penalized MLE

Sample size b2 b3 b1 b3 Component b3 b1 b2 b3
N¼ 30 0.435 0.436 0.394 0.436 �0.009 0.436 �0.105 0.536 0.435
N¼ 50 0.427 0.440 0.379 0.436 0.001 0.438 �0.172 0.590 0.442
N¼ 100 0.416 0.410 0.375 0.407 0.012 0.409 �0.159 0.567 0.411
N¼ 150 0.418 0.409 0.371 0.407 0.013 0.408 �0.217 0.625 0.410
N¼ 200 0.411 0.404 0.369 0.401 �0.001 0.402 �0.181 0.583 0.405
N¼ 300 0.416 0.405 0.374 0.402 �0.002 0.404 �0.182 0.589 0.405
N¼ 500 0.413 0.399 0.371 0.396 0.008 0.398 �0.190 0.594 0.399
N¼ 1,000 0.411 0.402 0.367 0.400 0.000 0.401 �0.209 0.609 0.403
N¼ 1,500 0.410 0.401 0.367 0.399 0.009 0.400 �0.196 0.596 0.402
N¼ 2,000 0.410 0.399 0.368 0.397 0.002 0.398 �0.198 0.599 0.399
N¼ 5,000 0.409 0.399 0.366 0.396 0.022 0.398 �0.198 0.597 0.399
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the models particularly the collinear variables was also high (Tables 3 and 4) compared to the
estimated bias for the same parameters in Table 1.

The use of principal component analysis to form a new variable from the set of correlated
variables was explored. The results showed that the estimated coefficients vary from the true
parameter values and this makes it difficult for interpretation (Table 2). In addition, the sign
of the coefficient kept on changing for different sample sizes, which would tend to affect its
interpretation. Although it was not possible to calculate the level of biasedness for the estimated
parameter of the component, the estimated bias for b3 was also high (Tables 3 and 4) compared
to the estimated bias for the same parameter in Table 1.

Lastly, the use of penalized maximum likelihood estimation (penalized MLE) technique also
known as ordinal ridge regression (Zahid & Ramzan, 2012) was explored. From the results the
penalized MLE approach produced more realistic parameters compared to the other two
approaches discussed (Table 2). The estimated bias for all the three parameters from the
penalized MLE was least compared to the other two approaches (Tables 3 and 4). The results also
showed that the level of biasness reduces for an increasing sample size.

Conclusion

This study investigated small sample biasness of ordered logit model under multicollinearity using
Monte Carlo simulation. Such study is important, particularly for practitioners to allow them to
understand the consequences of using a specific sample size. In addition, it will also allow them
to understand the effect of multicollinearity on model parameters and how to deal with them

Table 3. Estimated RMSE for ordered logit model with multicollinearity. The paramter are presented for the three approaches
described to handle multicollinearity problem

Drop variable x1 Drop variable x2 PCA Penalized MLE

Sample size b2 b3 b1 b3 Component b3 b1 b2 b3
N¼ 30 0.763 0.463 0.733 0.467 0.436 1.081 1.068 0.441
N¼ 50 0.693 0.351 0.650 0.350 0.313 0.821 0.821 0.318
N¼ 100 0.645 0.279 0.607 0.280 0.204 0.601 0.592 0.206
N¼ 150 0.639 0.251 0.594 0.253 0.163 0.493 0.501 0.164
N¼ 200 0.626 0.242 0.585 0.244 0.141 0.431 0.436 0.141
N¼ 300 0.627 0.225 0.585 0.228 0.113 0.346 0.350 0.113
N¼ 500 0.619 0.221 0.577 0.223 0.091 0.264 0.270 0.091
N¼ 1,000 0.613 0.208 0.570 0.210 0.064 0.190 0.193 0.064
N¼ 1,500 0.612 0.205 0.569 0.207 0.050 0.154 0.155 0.050
N¼ 2,000 0.612 0.205 0.569 0.208 0.043 0.135 0.135 0.043
N¼ 5,000 0.609 0.203 0.567 0.206 0.028 0.084 0.085 0.028

Table 4. Estimated MAE for ordered logit model with multicollinearity. The paramter are presented for the three approaches
described to handle multicollinearity problem.

Drop variable x1 Drop variable x2 PCA Penalized MLE

Sample size b2 b3 b1 b3 Component b3 b1 b2 b3
N¼ 30 0.661 0.374 0.623 0.375 0.481 0.864 0.851 0.342
N¼ 50 0.628 0.287 0.584 0.286 0.440 0.643 0.649 0.250
N¼ 100 0.616 0.231 0.575 0.232 0.407 0.480 0.469 0.163
N¼ 150 0.618 0.211 0.571 0.213 0.398 0.391 0.398 0.131
N¼ 200 0.611 0.208 0.569 0.211 0.406 0.346 0.351 0.111
N¼ 300 0.616 0.198 0.574 0.201 0.405 0.278 0.281 0.092
N¼ 500 0.613 0.202 0.571 0.205 0.393 0.210 0.213 0.072
N¼ 1,000 0.611 0.198 0.567 0.200 0.400 0.152 0.157 0.051
N¼ 1,500 0.610 0.199 0.567 0.201 0.391 0.123 0.125 0.040
N¼ 2,000 0.610 0.201 0.568 0.203 0.398 0.108 0.108 0.034
N¼ 5,000 0.609 0.201 0.566 0.204 0.378 0.068 0.068 0.022
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if present. The results from the simulation studies suggest that the empirical parameter of the
ordered logit model asymptotically approaches the true value. The bias of the model parameter as
determined by the two accuracy measures (RMSE and MAE) decreases for an increasing sample
size. The use of small sample in modeling does not only leads to bias but it also translates to
more variability and more extreme values in the empirical distribution of the model parameters.
Multicollinearity was found to increase the level of biasness in the model parameter, particularly
for small sample size. However, when sample size increase the effect of multicollinearity becomes
less severe. A comparison of the three approaches for handling multicollinearity in ordered logit
model showed that the use of penalized maximum likelihood approach for estimating the model
parameter is better compared to either excluding one of the collinear variables or applying
principal component analysis. It was also found that the use of penalized estimation method
provided results which are easily interpretable. The results from such approach have similar
characteristics to the model without multicollinearity problem. Hence, the use of such approach
is more recommendable in handling multicollinearity in ordered logit model compared to other
two approaches.

These findings of the study suggest that in applied research a sample size of 500 or more will
be appropriate when multicollinearity is expected and the coefficient of correlation is 0.9 or less.
In such a situation the multicollinearity will not have a detrimental effect on the model output
and the interpretation. On the other hand, if the expected coefficient of correlation is above 0.9,
it is recommended that a sample size above 500 should be used. In a situation where such
a sample cannot be obtained, it is recommended that the penalized maximum likelihood
approach should be used instead of the conventional mle approach.
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