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Abstract: In multivariate outlier studies, the sum of squares and cross-product (SSCP) is an important property of the data 

matrix. For example, the much used Mahalanobis distance and the Wilk's ratio make use of SSCP matrices. One of the SSCP 

matrices involved in outlier studies is the matrix for the set of multiple outliers in the data. In this paper, an explicit expression 

for this matrix is derived. It has then been shown that in general the discordancy of multiple outliers is preserved along 

Multiple-Outlier Displaying Components with much lower dimensions than the original high-dimensional dataset. 
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1. Introduction 

The SSCP matrices have important uses in multivariate 

data analysis. For example, the well known Wilk's k-outlier 

ratio given by 

S

S )( kI

kr =         (1.1) 

involve two matrices which are the SSCP of the entire 

sample S, and the SSCP for the remaining sample, 
kIS  

when a set of k outliers are deleted. A third matrix is the 

SSCP of the k-tuple outliers, 
kIA . The three matrices are 

related by the equation 
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We know that for a p-dimensional random sample 
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Suppose kI is an indexed set of k outliers from the sam-

ple. Then the SSCP, )( kIS  for the remaining )( kn −  ob-

servations, ,, kj Ij ∉x  is given by 
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Equation (1.2) is usually referred to as an updating for-

mula for )( kIS . 

It appears that in the multiple outlier case, an expression 

for 
kIA similar to those for S and )( kIS  has not been given 

the needed attention. That is, direct use for the matrix 
kIA

seems unpopular. In the single outlier case, 
kIA  is given as 
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n
jjI ,,2,1,

11
⋯=′−−

−
= xxxxA    (1.3) 

and substituting into Equation (1.2) gives the corres-

ponding updating formula [2]. Caroni and Prescott [3] make 

a rather consecutive use of the expression in Equation (1.1) 

for the most extreme observation after the previous most 

extreme one is deleted. This is equivalent to a consecutive 

use of the expression 
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(see Remark 2.1 for proof). In this case, the k-tuple of 

extreme observations are not examined simultaneously. The 

objective of the next section is to obtain a more `simulta-
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neous' and explicit expression for 
kIA . The result would 

enable us to concentrate on the k extreme observations each 

time instead of the remaining )( kn − . This will be used in 

Section 3 to generalize a result that enables us to obtain a 

reduced-dimensional dataset, equivalent of the original 

high-dimensional dataset, in which the discordancy of the 

k-tuple outlier is preserved. Our approach to discordancy of 

outliers follows that of Wilks [12]. Definitions and tests for 

discordancy of multivariate outliers are well presented in [2]. 

The last two sections provide illustration of the concept 

developed in the paper and conclusions of the results. 

2. Derivation of an Updating Formula 

Suppose that in the random matrix ],,,,[ 321 ′=× npn xxxxX ⋯  

of p-dimensional measurements, k of the observations be-

long to the indexed set },,,{ 21 kk iiiI ⋯=  of labelled 

outliers. Define an nn ×  matrix nD  by 

,
1
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n

11ID ′−=         (2.1) 

where  n
n ℜ∈′= )1,,1,1( ⋯1  (See e.g. [5]; [9]). The 

matrices S and 
kIS  may be written as xDxS n′=  and 

,1)( xCxS ′=
kI  where ( ).,diag1 0DC kn−=  From Equation 

(2.1) 
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If ,12 CDC −= n  then 

xCxA 2′=
kI        (2.2) 

Now, partitioning the matrix nD  in Equation (2.1) as  
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Thus, 2C  is given by 
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The matrix 
2C  may be written in another useful way as a 

sum of two matrices which is  
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The matrix 2C  in Equation (2.3) is of the form 
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where 11
2C  is of dimension )()( knkn −×− ;  12

2C  is of 

dimension kkn ×− )( ; 21
2C  is of dimension )( knk −× ;  

22
2C  is of dimension kk × . 

In order to make it comparable to the format of 2C , 

np×′X  is partitioned as 
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That is, the last k rows of the data matrix pn×X  have 

been labelled as the outlier observations, denoted by a 

pk ×  matrix Ix  and )(Ix  is pkn ×− )(  matrix without 

the outliers. 

Let the general element of the product matrix 2CX np×′  

be ijH . Then 11H , 12H , 21H  and 22H  are derived as 

follows. 
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where 
)1(

gx′  is data on the first g dimensions, pg < , and 

)1(
gx′  is the first g components of the mean vector. The 

12H  element is 
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The 21H  element is 
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where 
)2(

)( gp−′x  is data on the last )( gp −  dimensions, 

and 
)2(

)( gp−′x  is the second )( gp −  components of the mean 

vector. 

The last element of 2CX np×′  is given by 
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In this matrix, for the ith row of the first )( knp −×  part, 

all of the )( kn −  columns contain the same element which 

is of the form 
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The ),( ji  element of the second kp ×  part is of the 

form ).( jii xx −−  Thus, 2CX np×′  simplifies as 
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to the above as 
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Further simplification gives ),( ti  element of
kIA as 
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We substitute 
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which is the tth component of the sample mean vector, x . 

Equation (2.4) then becomes 
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simplification gives the ),( ti  element of 
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Finally, we drop i and t in Equation (2.5), and write 
kIA  

as the difference of the two pp × matrices as 
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This is the general expression for 
kIA  which satisfies 

Equation (1.2) and is referred to as the updating formula. 

2.1. Some Remarks on the Updating Formula 
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Relationship between Wilk's One-Outlier Ratio and Ge-

neralized Distance 

For the single outlier case, suppose the index set is 

}{iIk = },,2,1( ni ⋯= . Then iIk
xx = , and from Equation 

(2.6), 
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A  for the ith observation is given as 
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then from Equation (1.2), we obtain 

( )( )′−−
−

−=

−=

xxxxS

ASS

nn

II

n

n
k

1

1)(

 

multiplying both sides by 1−S  and taking determinant of 

both sides, we obtain 
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Observe that the left hand side of Equation (2.7) is kr , the 

Wilk's ratio. To determine the determinant on the right hand 

side, we note that the pp ×  matrix ( )( )′−− xxxx nn
 is of 

rank 1. Thus, ( )( )′−−−
xxxxS nn

1  is also of rank 1, and 

hence all except one of its eigenvalues is zero (see, e.g., [6]; 

[10]). That single non-zero eigenvalue may be written as 
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is an eigenvalue of the matrix on the right hand side of 

Equation (2.7). The remaining )1( −p  eigenvalues are all 

equal to 1. The determinant of the matrix on the right hand 

side, which is the product of its eigenvalues, is therefore 
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This expression is equal to the right hand side of Equation 

(1.4) which is kr  for one outlier. We note that 
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1  is the Mahalanobis generalized dis-

tance, )(nU  of nx  from x  which in this case is the largest 

of all )(iU . Therefore, for  1=k , kr  is a direct function of 

.)(nU  This result shows that for detecting one outlier, both 

the Mahalanobis distance and the Wilk's ratio produces the 

same result. 

3. Discordancy of Multiple Outliers 

In this section, we will apply the expression for the SSCP 

matrix, 
kIA  for a set of k-tuple extreme observations in a 

dataset. It will be shown that the value of the Wilks' k-outlier 

scatter ratio obtained from the original high-dimensional 

dataset is the same as that obtained from a re-

duced-dimensional dataset, equivalent of the original. 

Let kp×P  denote the matrix of eigenvectors corres-

ponding to the k non-zero eigenvalues of the matrix 
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corresponding to the k non-zero eigenvalues of kE  will 

generally be referred to as the k-Outlier Displaying Com-

ponents, or k-ODC ([7]; [4]). 
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Consider the projection pppn ××= VXY * . Then the va-

riance-covariance matrix of Y is .SVVSY ′=  This SSCP 

matrix is generally of the form 
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where kλλλ ,,, 21 ⋯  are the k non-zero eigenvalues of 
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Substituting the relevant results in Equation (3.4) gives 
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Therefore, from Equations (3.5) and (3.6), we obtain 

kk rr =)(Z . 

This result means that irrespective of the dimensionality 



34 B. K. Nkansah et al.: Discordancy in reduced dimensions of outliers in high-dimensional datasets:  

application of an updating formula 

of the data matrix X, the statistic, 
)(Z

kr  for testing the 

k-tuple of observations in the set kI  for discordancy in the 

transformed data Z is numerically the same as that obtained 

from the X. In addition, it can be verified that the eigen-

vectors corresponding to the k non-zero eigenvalues of 














′−−= ∑

∈

−

Ij

jjk ))((1
xxxxSE  

represent suitable dimensions along which the k-tuple of 

outliers can be optimally highlighted. 

3.1. Remarks on Effect of Dimensionality on Multiple 

Outlier Display 

In the derivation in this section, it has been noted that the 

product matrix SUU′ is generally of the form 















′
=′

G0

0I
SUU

k

 

It is clear that if the dimensionality of the dataset is equal 

to )1( +k  then the matrix is diagonal and 1=G . In this 

case, 1+=′ kISUU  which simplifies the proof. It is this case 

that has been shown [4] for 2=k  using a 3-dimensional 

dataset. The proof also establishes a basic condition that the 

number of outliers that can be highlighted on displaying 

components cannot exceed the dimensionality of the dataset. 

4. Illustration 

Single Outlier: Suppose εx is the single outlier. Then 

.))((1
1 ′−−= −

xxxxSE εε  It can be shown that the ei-

genvector corresponding to the single non-zero eigenvalue 

of 1E  is  ).(1
1 xxSV −= −

ε  which is the 1-ODC. Con-

sider the projection of the mean-corrected data onto .1V  

This yields the univariate data ).()( 1
xxSxX −′− −

ε Now, 

)()()()(max 11

,,2,1
xxSxxxxSxx −′−=−′− −−

=
εεεi

ni ⋯

 

The variation in the univariate projection 1*VXY =  is 

[ ]
)()(

)()(

)(

1

11

1

xxSxx

xxSSSxx

SVVY

−′−=

−′−=

′=

−

−−

εε

εε

Var

 

which is the same as the generalised distance of the outlier 

from the sample mean.  

Therefore the Wilks' one-outlier statistic given by 

( ) ( )xxSxx
S

S
−′−

−
−= −

nn

I

n

nk 1)(

1
1  

 is therefore equivalent to using the statistic 

( ) ( )xxSxx −′−−= −
εεε

1
)( )1(nD . 

which is compare to values of Table XXXII by Barnett 

and Lewis [2], assuming multivariate normality. Thus, the 

outlier is that observation whose removal optimally reduces 

the variation in the univariate data. This is a lot simplifica-

tion of repeated use of the Wilks' ratio. 

The plots in Fig. 1 is the projection of the U.S. Food Price 

data [11] on 1-ODC and a modified 1-ODC showing ob-

servation 10 as the single outlier. 

 

It has been shown [8] that the actual separation of the 

single outlier is more effectively highlighted along a mod-

ified component ).( )(
1
)( εεεεβ xxS −= −

 (shown in ‘× ` in 

Fig 1) which rather involves the mean )(εx of the remaining 

observations when εx is deleted from the dataset and its 

corresponding SSCP, )(εS . In this dataset, it can be verified 

that observation 10 is a discordant outlier at 5 percent level 

of significance. 

Outlier-pair: The Milk Transportation Cost data ([5]; [1]) 

is used in the case for .2=k  In this dataset, the pair of 

observations {9, 21} are known to be outliers. Fig. 2 gives 

the plot of the data along the two eigenvectors (2-ODC) 

corresponding to the two non-zero eigenvalues of the matrix 

.2E  
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Outlier-triple: The Iris Virginica dataset (see e.g. [5]; [1]) 

is used in this case for .3=k  In this dataset, observations 

{19, 18, 32} are known to be the outlier-triple. Fig. 3 gives 

the projection of the data along the three eigenvectors 

(3-ODC) corresponding to the three non-zero eigenvalues of 

the matrix .3E  It must be pointed out that generally, a truly 

distinct observation in three dimensional space may be dif-

ficult to observe. The coordinates of the point in space could 

actually reveal the real position of the point. 

 

Although observation 1 in Fig. 3 appears distinct, it is not 

a member of the outlier triple by our method. It can be ve-

rified that in both datasets, the Wilks' multiple-outlier sta-

tistic in the reduced dimensions is equal to that obtained in 

the original dataset. 

5. Conclusion 

The paper has established two main results. One of the 

results was derivation of an updating formula for multiple 

outlier detection and display. The paper shows that an ex-

plicit expression for SSCP matrix 
kIA , of the set of k out-

liers that satisfies the matrix equation 
kk II ASS −=)(  is 

given as 

( )( )

( )( )
k

k

j j

j I

I

j j I

j I

n

n k

k

n k

∈

∈

′ − − −
 =

′ 
− − − − 

∑

∑

x x x x

A

x x x x

 

The expression suggests that unlike a single outlier, mul-

tiple outliers could be more difficult to detect. In the multiple 

outlier case, the formula shows that one needs to take into 

consideration the relative position of each observation from 

the total sample mean as well as the position from the mean 

of the set of outliers. 

Using the updating formula, it has been shown that in 

general the discordancy of k-tuple outliers is preserved along 

k-Outlier Displaying Components with much lower dimen-

sions than the original high-dimensional dataset. The dis-

playing components are the eigenvectors corresponding to 

the k non-zero eigenvalues of the matrix 














′−−= ∑

∈

−

Ij

jjk ))((1
xxxxSE  

where },,,{ 21 kk iiiI ⋯= is an indexed set of labelled 

most extreme k-tuple of observations in the dataset. 

Appendix 

Remarks on the Properties of the 
2C  Matrix 

The matrix 2C  in Equation (2.3) has a number of inter-

esting properties. In the following theorem, we state and 

prove these properties. 

Theorem 

The matrix given by 
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Satisfies the following the following properties: 
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Proof 

Property 1: Clearly 22 CC =′ . 

Property 2 
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Let the general element of 
2

2C  be ).( ijC  Then 
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21C  can be shown similarly to be equal to 12C . Now 

taking 22C  we obtain 
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Thus, 
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which is the same as .2C  Therefore, 2
2
2 CC = . 

Property 3 
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Let the general element of this product be ).( ijt  
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It can be shown similarly that .2221 n0tt ==   

Therefore, nn×= 0CC 21 . 

Property 4 

Let ),,,( 21 pxxxx ⋯=  be the p-dimensional mean 

vector. Then consider the pn ×  matrix 

( )npninnn 1x1x1x1xx1 ⋯⋯21=′  

Now, partition each n
n ℜ∈1  in the form 
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The product with the ith column vector of x1 ′n  gives 
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Therefore, 0)(2 =′x1C n . 
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