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Abstract 

Experimental studies used in investigating the binding of specific 
factors to DNA along the genome are time consuming and expensive. 
Additionally, the increasing amount of data being produced with 
binding sites for different transcriptional regulators call for modern 
computational techniques for analysing binding patterns of several 
factors. In this paper, flexible statistical modelling techniques in the 
form of multivariate Hawkes processes have been used to model the 
occurrences of transcriptional regulatory elements (TREs) and their 
interaction along DNA sequence using 1% human genome ENCODE 
pilot data. We employed statistical procedures and techniques to 
model the transcription factor binding sites of ten TREs through 
favoured or avoided distances. It is generally revealed that there is 
significant interaction among transcription factor binding sites. In 
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addition, similar patterns of interaction effects of each TREs on the 
others are observed. In all cases, the Hawkes log kernel model gives a 
better fit. The model, which is also in terms of histone modification 
elements, adequately captures the extreme inter-distances that usually 
characterise the transform point processes. 

1. Introduction 

The accurate execution of biological processes such as development, 
propagation, apoptosis, aging, and variation requires a precise and carefully 
orchestrated set of steps that depend on the proper spatial and chronological 
expression of genes (Maston et al. [19]). A fertilized egg of mammals 
becomes a baby after some months and in the next years grows to become an 
adult. Without the regulation of genes, the monumental development from a 
fertilized egg to an adult containing millions of differentiated specialized 
cells, all containing the same genetic information, would be impossible 
(Carstensen [4]). How genes are being regulated need to be understood, since 
for all living organisms, hereditary information is passed from parents to 
their offspring. This information is stored in the DNA, DeoxyriboNucleic 
Acid, found in the nucleus of a living organism’s cell. Statistical analysis of 
transcription factor (motif) occurrences along a DNA sequence is an 
important task in computational molecular biology. Motifs are short 
sequences which allow interactions between DNA and proteins and initiate 
biological processes like gene transcription, restriction, DNA repair, 
replication, recombination and more (Gusto and Schbath [9]). 

Most of the functional motifs of the sequence of these DNA bases have 
been identified and some unanimity patterns have been proposed by 
researchers. It will be beneficial to determine functional motifs based on the 
statistical properties of their occurrences. The unexpected number or 
frequency of the occurrences of these motifs is proposed to follow Markov 
models (Reinert et al. [23]). Also, Robin and Daudin [25] and Stefanov [30] 
have used statistical methods to identify the rich and poor regions of motifs 
concentration in the DNA sequence. Gusto and Schbath [9] show that, for a 
common biological process, the space between the occurrences of any two 
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motifs (not necessarily consecutive) should be somehow fixed-favoured or 
avoided distances using Hawkes model. Transcriptional regulatory elements 
(TREs) are promoters or enhancers that bind to DNA sequence to enhance or 
repress gene expression. These elements interact and there exists dependence 
between the positions of the motifs or TREs. 

Experimental studies used in investigating the binding of specific factors 
to the DNA along the genome are time consuming and expensive (Carstensen 
[4]). However, an increasing amount of data is being produced with binding 
sites for different transcriptional regulators, for instance by ChIP-seq or 
ChIP-chip methods (Park [22]). Statistical computational methods for 
analysing binding patterns of different factors or the occurrences of different 
motifs (TREs) and the dependencies between the motifs or transcription 
factors along the genome can be useful for gaining insight into the complex 
nature of transcriptional regulation, even though they cannot completely 
replace the experimental validation of interactions between events 
(Carstensen [4]). Modelling the joint occurrences and dependencies among 
events in a real line is a common problem in statistics. 

The ultimate difficulty in gene regulation is the inadequate information 
in the DNA binding revealed by transcription factors, which leads to several 
untrue positives when predicting sites in genome sequences (Wasserman and 
Sandelin [32]). The combinations of binding sites produce additional 
information which are rich and responsible for tissue-specific expression, 
which can also be used for predictions (Krivan and Wasserman [16]; 
Wasserman and Fickett [31]). The advancement of experimental techniques 
has made it conceivable to measure the binding of DNA-binding proteins 
over a whole or partial genome; that is, Chromatin Immuno-Precipitation 
(ChIP) followed by sequencing, which is known as ChIP-seq (Park [22]) or 
ChIP followed by hybridization to DNA probes covering the genome, which 
is known as ChIP-chip (Buck and Lieb [3]). This leads to new ways of 
analysing gene regulation and especially the interaction between regulators 
or transcription factors. Though there have been improvement in 
computational and experimental developments in analysing regulatory 
factors, there is still more to do computationally in the area of multivariate 
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statistical analysis of the joint binding sites of multiple transcription factors 
and occurrences of other transcriptional regulatory elements. 

The paper’s goal is to use ENCODE pilot project data to model the 
dependence between transcription factors in order to identify favoured or 
avoided distances between TREs and also model the ground conditional 
intensity rates of these TREs. We employ statistical techniques to study the 
occurrences of transcriptional regulatory elements (TREs) along genomes. 
The paper uses the Hawkes process for modelling the joint occurrences of 
multiple TREs along the genome, which is flexible and capable of capturing 
the dependencies among elements involved in transcriptional regulation. 

2. Methods 

This section presents the methods and data used for analysis in this 
paper. The paper begins with introduction to point processes and then 
continuous with Hawkes process, considering the parameterisation of the 
conditional intensities, estimation of model parameters and finally, models 
diagnostic techniques for goodness-of-fit tests and the datasets are presented. 

2.1. Introduction of point processes 

The simplest point process is the Poisson process, where points arrive 
independently of each other. Point processes considered in the literature and 
relevant to this paper are all of a special kind called Hawkes processes 
(Hawkes [15]). A Hawkes process is a special point process of which the 
occurrence of a point affects the probability of occurrences of other points in 
a specific direction given by a function of the distance to the point (Hawkes 
[15]). A point process provides a model for points or events that occur 
randomly in time or time and space. The paper considers point processes 
occurring along the DNA sequence, where events can be represented as 
points on a one-dimensional space. It is assumed that only one point or event 
occurs at a time, giving a simple point process. The events of interest along 
the DNA sequence are the binding sites of transcription factors and could 
also represent the position of any feature such as transcription start sites. 
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A simple point process on +R  consists of a sequence of points ( ) ,N∈iit  

where ( ) ( ) ....210 <<≤ tt  The corresponding counting process to this simple 

point process is given by ( ) ( )[ ],1∑∈ ≤= Ni tittN  +∈ Rt  and the common 

point process is the Poisson process, where points occur completely at 
random on a given time interval. However, a homogeneous Poisson process 
arises when points occur with intensity λ, the mean number of points arriving 
in an interval ( ]s,0  is equal to λs. Generally, the theory of point process on 

the real line shows that, points do not occur completely at random but for a 
given position t, the information about previous points are contained in the 
history of the process. The intensity of point process is in general case 
dependent on the history of points before t. The intensity is a generalized 
form of the hazard function known from survival analysis, and a large 
intensity at a given position means that there is a relatively large probability 
that a point occurs immediately after that position. 

2.2. Hawkes processes 

Hawkes processes are point processes equivalent to autoregressive 
models. In seismology, Hawkes processes have been used to model 
earthquakes and their aftershocks, favoured or avoided distances between 
occurrences of motifs or transcriptional regulatory elements (TREs) on the 
DNA sequence and social interactions or financial phenomena (Hansen et al. 
[11]). However, there exist many equivalent forms of definition for Hawkes 
point process, the standard Hawkes process can be defined as a temporal 
point process with long memory, branching effect and self-exciting 
properties. Hawkes process is characterized by its associated conditional 
intensity process which describes the underlying dynamics of the process in a 
convenient system. 

Definition 2.1. The univariate unmarked Hawkes process ( )tN  with 

conditional intensity ( )[ ]tt H|∗λ  ),(( tH  the history of the occurrence of 

events), is defined for all values of t and 0→h  by 
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where ,0>μ  ( ) 0≥sh  for 0≥s  and zero otherwise. If the Hawkes process 

is assumed to be stationary, then ( ) .1
0∫
∞

<dssh  The parameter μ and the 

function ( )⋅h  are known as the background intensity and excitation function, 

respectively. The structure of conditional intensity is flexible, and it involves 
the description of the background intensity 0>μ  and the excitation function 

( ).⋅h  The common excitation function used is an exponential decay function 

(Hawkes [15]; Hautsch [14]; Laub et al. [17]). In this situation, ( ) ,teth β−α=  
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The parameters α and β are interpreted as; each arrival in the system 
instantaneously increases the arrival intensity by α, then over time this 
arrivals influence decays at rate β. 

Definition 2.2. Suppose a counting process ( )⋅N  has a conditional 

intensity function of the form 

 ( )[ ] ( ) ( ) ,| ⎟
⎠
⎞

⎜
⎝
⎛ −φ=λ ∫ ∞−

+ t
sdNsthtt H  (2.4) 
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where +→φ RR:  and .: R�R →+h  Then ( )⋅N  is known as a nonlinear 

Hawkes process. 

A particular case is Hawkes’s self-exciting point process, for which ( )th  

is non-negative and ( ) ,xx +μ=φ  where ,0>μ  reduces ( )⋅N  to the linear 

Hawkes process of Definition 2.1 (Daley and Vere-Jones [6]). This univariate 
nonlinear Hawkes intensity function, for instance, can be explained with 
regards to seismological purposes as: μ describes the spontaneous 
occurrences of real original earthquakes while the function ( )⋅h  models the 

self-interaction after a shock at time s, we observe an aftershock at time t 
with large probability if ( )sth −  is large. 

Definition 2.3. Suppose ( ) ( ) ( ) ( ){ }tNtNtNt d...,,, 21=N  is a multivariate 

point process, then the conditional intensity of the nonlinear multivariate 
Hawkes process is of the form 

 ( )[ ] ( ) ( ) ,|
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⎜
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where the symbols denote their usual meaning as explained in Definition 2.2. 
Bremaud and Massoulie [2] state the conditions on the functions jφ  (namely, 

Lipschitz properties) and on the functions ( )⋅ljh  to obtain existence and 

uniqueness of a stationary version of the associated process. Suppose that for 
any { },...,,2,1 dj ∈  the jφ  identity function form is 

 ( ) ( ) ,++μ=φ xx jj  (2.6) 

where 0>μ j  and ( )+⋅  denotes the positive part. Now, introducing a linear 

predictable transformation, ( ) ( ) ( )( ),...,,1 fff dψψ=ψ  for any j and any t, 

we obtain 

 ( ) ( ) ( )∑∫
= ∞−

−+μ=ψ
d t

jjjjt sdNsthf
1

0, ,
l

l  (2.7) 
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where ( ( ) ) djdjj hf ...,,2,1...,,2,10 , ==μ= ll  and ( )[ ] ( ( )) .| 0, +
+ ψ=λ ftt jtj H  

In this paper, ( )⋅λ j  is the intensity of a realization of the point process (i.e., a 

chromosome, in this study) with the mark type j (TRE). The ljh -functions 

represent the effect of the occurrence of points of type j (TRE) on subsequent 
points of type l  (TRE). The multivariate point process associated with this 
setup is called the multivariate Hawkes self-exciting point process (Hawkes 
[15]) and in this case, d is fixed and asymptotic properties are obtained when 
t tends to infinity. 

2.3. Parameterisation and estimation of conditional intensity 

In this paper, we have considered a multivariate Hawkes process which is 
the generalised linear Hawkes process. The conditional intensity, ( )[ ]ttj H|λ  

from now on shall be written as ( ).tjλ  The parameterisation of its 

conditional intensity is of the form 

 ( ) ( ) ( ) ( ) ,
1
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where [ ),,0: ∞→φ I  ,R⊆I  is a given function, the function ( )⋅ljh  is 

modelled as cubic B-spline basis functions and the process ( )tX  is an 

auxiliary, ( )0d -dimensional observed processes (at least discretely). In 

principle, the function ( )⋅ljh  could be arbitrary functions where the 

parameter space could be infinitely dimensional. The ( )⋅ljh  function is 

modeled as a linear combination of spline functions given as 

 ( ) ( ) ( ) ( )
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k
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T
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where ljβ  is parameter vector and ( ),d l
l R∈β  the ( )⋅kB s are cubic B-spline 

basis functions such that ( )⋅ljh  is a cubic spline (Green and Silverman [8]). 

The cubic B-splines with fixed equidistant knots are used to model ( )⋅ljh  
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and the value of the largest knot gives the maximum range within which the 
dependencies are detected. The number of knots determines how detailed the 
description of the dependencies can be. Choosing too many knots will lead to 
over-fitting of the model and base on literature, we choose six knots as 
breakpoints for the cubic B-spline and log and identity link functions 
(kernels) are considered in estimating the parameters in this paper. 

The vector of parameters, ( ) p
j

k
jj R⊂Θ∈βμ=θ l,  is given by 

( ( ) ( ) ( ) )....,,,...,,...,,,,...,,, d211d
1

2
1

1
1

0d21 d
jdjdjdjjjjjjj ββββββμμμ=θ  (2.10) 

Now, suppose we have observations point processes of the multivariate point 

process such that, ,21 tsss n <<<< lll

l
L  for ,...,,2,1 d=l  then intensity 
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where ( )tZ  is a process of dimension ( ) ( ) ( ).d1d0d dp +++= L  Each of 

the linear filter components ( )∑ = −l ln
i ik stB1  is computable from the 

observations and the fixed choice of basis. The minus logarithm-likelihood 
function for the jth mark type conditional intensity process is of the form 

 ( ) ( ( )) ( ( )).log
10 i

T
n

i

Tt
j tdssl ZZ θφ−θφ=θ ∑∫

=
 (2.12) 

The integral part of the minus log-likelihood function expression is not             
in general, analytically computable. The computation can be done by 
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discretising the limit interval ( ),0 t−  to form a total of ,0T  time points. The 

values of ( )tZ  at this discretised points are computed to form a matrix, Z of 

dimension .0 pT ×  If we let Δ denote a p dimensional vector of inter-

distances from the discretisation, then an approximation to the integral part 
of ( )θjl  is given by Hansen [12], as 

 ( ( )) ( ).
0

θφΔθφ∫ ZZ Tt T dss   (2.13) 

The approximated minus log-likelihood function is 

 ( ) ( ) ( ( ))∑
=

θφ−θφΔθ
n

i
i

TT
j tl

1
,log ZZ  (2.14) 

where the derivatives in the same manner approximated. 

All the inter-distances of Δ may be equal but generally it is advantageous 
to have different values for the inter-distances. This is especially situations 
where the intensity is constant over a region and fluctuates over other 
regions. The approximated expression gives a fast computation of an 
approximation to the minus log-likelihood function as well as its first and 
second derivatives. The major problem with this approach is, however, that 
the matrix Z may become extremely large for large datasets or models with 
many parameters (Carstensen [4]). Hawkes point processes are usually fitted 
with both parametric and non-parametric estimation techniques. The standard 
method of estimating the parameters of the Hawkes process is the use of 
maximum likelihood estimation techniques. In general, there is no closed 
form for the maximum likelihood estimates and the likelihood function has to 
be optimized by standard numerical maximisation algorithms (Carstensen et 
al. [5]; Embrechts et al. [7]). 

2.4. Diagnostic methods 

Numerical maximisation algorithms are employed to search over the 
parameter space for the set of parameters that can maximise the log-
likelihood since there is no close form. Therefore, assessing the goodness-of-
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fit of the model parameters of some dataset is an important practical 
consideration. In performing this assessment the point process’ compensator 
is essential, as is the random time change theorem (Laub et al. [17]). 

2.4.1. Transformation to a Poisson process 

The random time change theorem states that if { }nttt ...,,, 21  is a 

realisation over a time interval [ ]t,0  from a point process ( )⋅N  with 

conditional intensity function ( ),⋅λ  and if ( )⋅λ  is positive over [ ]t,0  and ( )tΛ  

,∞<  a.s., then the transformed points ( ) ( ) ( ){ }nttt ΛΛΛ ...,,, 21  form a Poisson 

process with unit rate. The random time change theorem is fundamental to 
the model fitting procedure known as residual analysis. 

The residual analysis states that if there is an unbounded, increasing 
sequence of time points { }...,, 21 tt  on ,+R  and a monotonic continuous 

compensator ( )⋅Λ  such that ( ) ,lim ∞=Λ∞− tt  a.s., then the transformed 

sequence { } ( ) ( ){ },...,,...,, 2121 tttt ΛΛ=∗∗  with counting process ( )tN  is a 

realisation of a unit Poisson process if and only if the original sequence 
{ }...,, 21 tt  is a realization from the point process defined by ( ).⋅Λ  Therefore, 

with a close form of the compensator, statistical inference can be conducted 
to test for Poisson process fitness. 

2.4.2. Test for Poisson process 

There are various techniques for testing whether a series of points form a 
Poisson process. To examine whether the transformed point process follow a 
homogeneous Poisson process, one can run the basic test by examining         
the hypothesis that { } ( ).~1 tPoisi tti∑ <  If this basic test succeeds, then the 

inter-arrival times { } { },...,,,...,,, 23121321
∗∗∗∗∗ −−=τττ ttttt  will be i.i.d. 

exponentially distributed with unit rate. A quantile-quantile (q-q) plot can be 
employed to graphically investigate the fitness or a Kolmogorov-Smirnov 
test which can quantitatively test the fitness of the exponential distribution       
to the data. The test for independence is employed to examine the 
autocorrelation in the iτ  sequence. Understandably, the zero autocorrelation 
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does not imply independence, but a non-zero amount would certainly imply a 
non-Poisson model. A graphical examination of the autocorrelation is 

conducted by plotting the points ( ),,1 ii UU +  where .1 ieUi
τ−−=  If there 

are noticeable patterns, then the iτ  are autocorrelated. Otherwise the points 

should look evenly scattered. The transformed points can be extended to a 
multivariate point process, ( ) { },...,,2,1 djjN ∈  given as the random time 

changes 

 ( ) { },...,,2,1,
0
∫ ∈λ=∗

j
it

t j
j

i djdsst  (2.15) 

where ∗j
it  transformed the multivariate point process, ( ( )) { },...,,2,1 djjN ∈⋅  

into a multivariate Poisson process with independent variables each having 
unit rate (Daley and Vere-Jones [6]). 

2.5. Description of dataset 

The paper aims at employing computational techniques to model 
occurrences and interactions between transcription factor binding sites along 
a genome or DNA sequence. It employs a dataset known as ENCODE pilot 
data. The ENCODE data is a pilot project of 1% human genome (The 
ENCODE Project Consortium [27]). This 1% human genome is a ChIP-chip 
data which is directed by Affymetrix and studied by several laboratories and 
researchers (Carstensen et al. [5]). The data consists of 44 regions where 
transcriptional regulatory elements (TREs) concentrations are located and 
studied by several different laboratories. Our study considers the ChIP-chip 
data steered by Affymetrix of the ENCODE pilot project. The data contains 
locations of binding sites, within the ENCODE pilot regions, for eight 
different TREs and two histone modifications in retinoic acid stimulated 
human HL-60 cells gathered after 0, 2, 8 and 32 hours. ENCODE data 
contains locations of binding sites for ten different TREs, namely: BRG1:- 
SWI/SNF related, matrix associated, acting dependent regulator of 
chromatin, sub-family a, member 4; CEBPE:- CCAAT/enhancer binding 
protein (C/EBP), epsilon; CTCF:- CCCTC-binding factor (zinc finger 
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protein); H3K27me3 (H3K27):- Histone H3 tri-methylated lysine 27; 
H4KAC4 (HisH4):- Histone H4 tetra-acetylated lysine; P300:- E1A binding 
protein p300; PU1:- Spleen focus forming virus proviral integration 
oncogene; RARA (RARecA):- Retinoic Acid Receptor-Alpha; RNAP:- RNA 
polymerase II; SIRT1:- sirtuin (silent mating type information regulation 2 
homolog) 1. 

3. Results and Discussions 

In this section, we present results and discussions on the analysis of 
ENCODE pilot phase data of 1% of the human genome. The section begins 
with preliminary analysis for the occurrences of ENCODE data as a point 
process and later continues with the modelling of TFBS as multivariate 
Hawkes process. Due to the huge values of the occurrence times of this 
transcription factor binding sites, which requires super computers with a 
minimum of 30 gigabytes (GB) RAM for running the analysis, the data 
points are transformed by computing the square-root of the points and then 
divided the result by 100. 

3.1. Preliminary analysis 

Table 1 shows a summary of the dataset employed. It shows the number 
of TREs occurrence in each chromosome and the total number of occurrence 
of the transcription factor binding sites (TFBS). It is observed that, H4KAC4 
recorded the highest number of occurrences of TFBS along the sequence, and 
SIRT1 recorded the least number of occurrences of TFBS along the genome 
sequence under study. It is also observed that Chromosome 7 recorded the 
highest number of TFBS whilst the lowest is observed in Chromosome 9 
with none occurrence of SIRT1 TRE. 

Figure 1 shows a detailed occurrences of the transcription factor binding 
sites (TFBS) of TREs along the first six chromosomes of the ENCODE 
sequence. A combined occurrence of the TFBS along a sequence is displayed 
on the first two sequences on top of each chromosome in Figure 1. The 
bottom part of the six chromosomes graphs display the individual 
occurrences of transcriptional regulatory elements along the genome 
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sequence. Generally, TFBS can be observed to occur in a genome sequence 
as displayed in the two combined sequences on the top part of the six 
magnified chromosome graphs. The plots show the occurrences of the TFBS 
as point processes with their corresponding times. Time of occurrences is 
measured in units of base pair (bp) units. 

Table 1. Frequency distribution of the events of TFBS in each chromosome 
Chrom. BRG1 CEBPE CTCF H3K27 H4KAC4 P300 PU1 RARA RNAP SIRT1 TOTAL 

chr1 15 28 9 24 56 15 16 31 40 7 241 
chr2 92 58 56 112 106 76 29 109 60 5 713 
chr4 22 32 20 34 29 36 2 43 25 13 256 
chr5 49 59 65 82 176 84 37 126 59 13 750 
chr6 92 84 76 106 186 67 37 134 63 17 862 
chr7 311 342 234 543 596 324 100 642 303 61 3456 
chr8 25 22 21 59 18 24 15 39 27 1 251 
chr9 5 6 4 10 34 6 6 7 9 0 87 

chr10 39 33 31 31 21 35 2 54 31 11 288 
chr11 73 95 61 109 150 81 36 128 91 8 832 
chr12 31 48 32 40 84 39 19 77 23 12 405 
chr13 23 36 18 40 65 26 13 34 29 2 286 
chr14 34 42 32 52 45 34 20 37 33 4 333 
chr15 22 19 14 21 50 19 20 36 34 1 236 
chr16 60 54 38 59 47 64 20 55 45 7 449 
chr18 66 91 53 80 75 85 38 162 71 19 740 
chr19 17 44 9 22 53 25 28 37 48 4 287 
chr20 17 22 10 16 51 18 9 31 39 6 219 
chr21 70 147 82 100 302 89 58 229 183 15 1275 
chr22 46 47 31 65 112 56 33 67 73 8 538 
chrX 45 42 28 67 114 48 27 66 75 12 524 
Total 1154 1351 924 1672 2370 1251 565 2144 1361 236 13028 

Chromosomes 2 and 6 show evenly arrivals of TREs between 148.30-
148.40 and then clustering is observed afterwards. However, the occurrences 
of the TFBS in Chromosomes 4 and 7 shows complete clustering over the 
magnified period. It can be observed that in Chromosomes 1 and 5 the case is 
different; the occurrence of the TFBS is a mixture of clustering and evenly 
arrivals over the magnified range. The occurrences of the TFBS along the 
chromosomes as displayed in Figure 1 demonstrate that the TFBS occur in 
batches (clustering). This shows the tendency of interaction among 
themselves leading to biological and chemical reactions in the nucleus of the 
cells. 
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Figure 1. Magnified detail occurrences plot of TREs along the chromosomes 
with respect to time. 

To assess whether the occurrences of the TFBS are Poisson distributed, 
we employ a graphical test known as empirical cumulative distribution plot 
and a one-sample Kolmogorov-Smirnov test. Figure 2 displays the empirical 
cumulative distribution plots of the transformed times (points) of the TFBS 
which are assumed to be uniformly distributed on the interval [ ).1,0  The 

empirical cumulative distribution of ( )iU  for the ten TFBS with 95% 

confidence limits for Kolmogorov distribution which assume that the ( )iU  
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are uniformly distributed on [ )1,0  is displayed in Figure 2, where ( )iU  is 

explained in the methods. 

The empirical cumulative distribution plots examine whether the 
transformed point processes of the TREs are uniformly distributed on 
interval zero to one. When the cumulative distribution plots produce a 
straight diagonal line and the points are lying within the confidence bounds 
plotted, then we have a good fit to the data. A good fit to the data means that 
the transformed points are Poisson distributed with unit rate and implies 
Hawkes process. 

It is observed from Figure 2 that RARA, RNAP, PU1, SIRT1 and 
H4KAC4 empirical cumulative plots lie within the 95% confidence bounds 
even though the curves of the plots do not exactly lie on the line xy =  on 

the euclidean plane. This suggests a uniform distribution of the transformed 
points of the ( )iU  at 95% confidence level for these five TREs. However, the 

remaining five TREs empirical cumulative distribution plots show deviation 
from uniform distribution since the curves of the plots fall outside the 95% 
confidence bounds at the lower part of the graphs. Generally, there are some 
deviations observed, especially at the lower and middle portions in almost all 
of the empirical cumulative distribution plots with respect to the reference 
line, .xy =  This can be attributed to too many small values as compared to 

large values of the ( ).iU  This implies that many of the points occur with a 

smaller inter-distances than what the model would predict if Poisson 
distribution is assumed for occurrences of the TREs. This would lead to 
smaller intensities being predicted in some parts of the genome. It is also 
probable that the shape of these curves and the deviances from the expected 
values indicate that the linear form of the intensities may not be the best 
possible choice. The empirical cumulative distribution plots of the uniformly 
transformed points have shown that the occurrences are not homogeneous 
Poisson distributed. 
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Figure 2. Empirical cumulative distribution plots of ten (10) TREs with 95% 
confidence bounds. 
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The quantitative goodness-of-fit test (Kolmogorov-Smirnov test) for the 
transformed points ( )tΛ  and ( )iU  of all the transcriptional regulatory 

elements is shown in Table 3. The transformed points also known as the 
compensator by the random time change theorem should form a Poisson 
process with unit rate whilst the cumulative distribution of the inter-arrival 
times ( )τ  is uniformly distributed on the interval [ )1,0  if Poisson 

assumption is satisfied. 

It is generally observed that the transformed points of all the TREs are 
significantly different from the homogeneous Poisson process assumption at 
5% level of significance (Table 3). This is as result of the p-values in the two 
Kolmogorov-Smirnov tests been less than ,05.0=α  the significance level. 
However, it is observed that at 5% significance level, the inter-arrival times 
of only SIRT1 TRE is uniformly distributed on the interval [ ).1,0  Whilst the 

remaining nine TREs show a significant departure from the uniform 
distribution and thus the TREs are not distributed as homogeneous Poisson 
process. This may be as a result of the deviations of the ( )iU  at the extreme 

ends of the fits (Figure 2) and may be due to too many shorter and longer 
distances between the TFBS points. 

It is observed from the tests (both graphical and quantitative) that most of 
the TREs have too many small inter-distances between successive 
transformed points which may be due to the clustering nature of the 
occurrences of these TREs along the genome sequence as shown in Figure 1. 
This implies that an ordinary Hawkes model may not be good at capturing 
the extreme values for the inter-distances and a log linear Hawkes model may 
be preferred. The study will therefore incorporate (in later section) histone 
modifications as covariates in fitting a multivariate Hawkes model to adjust 
the baseline intensities rates for this poor fit as suggested by Carstensen et al. 
[5]. 
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Table 2. K.-S. test of homogeneous Poisson process for transformed times 
TREs Test statistic, Λ(t) p-values Test statistic, U(i) p-values 

BRG1 0.995 2.2e–16 0.096 9.8e–10 
CEBPE 0.995 2.2e–16 0.108 1.8e–14 
CTCF 0.995 2.2e–16 0.151 2.2e–16 
P300 0.995 2.2e–16 0.082 9.5e–8 

RARA 0.997 2.2e–16 0.053 1.4e–5 
RNAP 0.994 2.2e–16 0.041 0.0208 
PU1 0.990 2.2e–16 0.077 0.0023 

SIRT1 0.979 2.2e–16 0.082 0.0829 
H3K27 0.996 2.2e–16 0.064 2.4e–6 

H4KAC4 0.997 2.2e–16 0.036 0.0043 

We next investigate the independence among the transformed points of 
the TFBS. A graphical autocorrelation test is employed in the form of a 
scatter plot of the transformed points ( )1+iU  against ( )iU  to determine 

whether there is independence among ( ).iU  The scatter plots of ( )1+iU  

against ( )iU  is displayed in Figure 3, showing the test for autocorrelation 

among the TFBS. It is generally observed that transformed points are evenly 
dispersed in almost all the plots. However, there exist some clustering of the 
transformed points at the lower parts of the scatter plots towards zero on the 
( )iU  (or horizontal) axis in BRG1, CEBPE, CTCF and H4KAC4. This 

shows some dependencies between the ( )iU  at these parts of the plots for 

these TREs. The TREs P300, RARA, RNAP, PU1, SIRT1 and H3K27 are 
observed to exhibit independence between the inter-arrival times whilst the 
remaining TREs show incomplete independencies among ( ).iU  The 

incomplete independencies between the inter-arrival times in the four TREs 
may result in the baseline or the ground intensity not able to capture the 
active regions in the model. 
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Figure 3. A graphical autocorrelation test of independence among 
transformed points, ( ).iU  
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3.2. Multivariate modelling of transcriptional factor binding sites 

In this section, we employ multivariate Hawkes model to determine the 
dependence effect of one transcription factor binding site on the occurrence 
of the other TFBS along a genome sequence. A generalised linear Hawkes 
model is fitted to the ENCODE pilot data through the use of cubic B-spline 
basis functions to determine the effect of one transcription factor binding site 
on the other TFBS. The ( )⋅h -function described in the methods and stated as 

equation (2.8), is modelled using a spline basis with six equidistant fixed 
knots, resulting into two estimates for each TFBS of the Hawkes generalised 
linear model. The knots are placed at equidistant points to capture the 
occurrences of the TFBS and also limit the range of dependence among the 
occurrences of TFBS to the maximum. Results from the preliminary analysis 
shows that the conditional intensities of the TREs possess some properties       
of Hawkes processes and therefore can be modeled with multivariate 
generalised Hawkes model to capture the interactions among the TFBS. 

In this paper, we consider two kernels (Hawkes identity kernel and 
Hawkes log kernel) as link functions for modelling the cubic spline basis of 
the ( )⋅h -functions of equation (2.8) in other to model dependence effect of 

one TRE on the other TREs. The kernel density estimation is employed to 
estimate the ( )⋅h  function of the multivariate Hawkes model. It is a 

fundamental data smoothing method where inferences about the population 
are made, based on a finite sample data. Due to the unavailability of the 
closed form for the log-likelihood of the multivariate Hawkes model as 
described in the methods, the cubic B-spline functions are used to model the 
( )⋅h  with the application of the kernel estimation. The bandwidth of the 

kernel estimation used is 0.01 with 0-150 support. 

The coefficients of these models are displayed in Tables 3, 4 and 
Appendix A. The effects are estimated in a generalised multiple Hawkes 
model as coefficients using Hawkes identity kernel and Hawkes log kernel. 
The coefficients represent favoured distances for significant estimates and 
avoided distance for insignificant coefficients. The effects against the same 
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TRE in the model, estimates the self-excitation or inhabitation of the TRE if 
significant. By considering a log kernel process, it turns to obtain a more 
suitable model for extreme inter-distance of which the transformed points 
experienced poor fits (Figure 2). 

First of all, before we examine the models in the tables, there is the need 
to explain the intensity effect of an observed TRE, 1k  given a TRE, 2k  at a 

distance s to a reference fixed knot and thus relevance in this study. The 
intensity effect of TRE 1k  for observing TRE, 2k  at a distance s to a fixed 

knot is given as a baseline intensity times ( ).21, sh kk  If ( ) ,121, =sh kk  then 

the occurrences of TRE 2k  is not associated to the occurrences of TRE 1k  at 

the distance s to the fixed knot. Figure 4 shows sixty-four multivariate plots 
of the spline basis functions of the ( )⋅21,log kkh  with 95% confidence 

intervals. The ( )⋅h  functions are modelled with a cubic basis spline functions 

with a reference to the fixed knots. However, Figure 4 shows that some of 
the spline bases are above and below the zero horizontal line. A spline basis 
function below the zero horizontal line means that the significant number 
events of the observed TRE is below reference fixed knot and a positive 
spline basis function implies a significant number of events above the 
reference knot. Therefore, a negative spline function results in negative effect 
between the two TREs with the reference fixed knot at a distance, s. Since 
the study data was transformed before using it for analysis, it is therefore 
required that the transformation is reverse before making any judgement on 
the absolute interaction effect between two TREs at an observed distance. 
The spline basis graphs of BRG1 TRE on the other eight TREs including 
itself are shown in first row of Figure 4. It is observed that BRG1 against the 
others TREs produces negative spline basis functions in all the plots except 
with PU1 that record both negative and positive spline basis function over 
the support interval considered. It is generally observed that the spline 
functions plots under each TRE show similar characteristics of the spline 
functions lying below the zero horizontal line. 
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Table 3 presents the coefficients of the generalised Hawkes model for 
BRG1 TRE as response variable with the other TREs including the two 
histone modification (H3K27 and H4KAC4) elements as explanatory 
variables. The histone modification elements are used as covariates in the 
model to increase the effect of the baseline intensity for the TFBS in the 
model in order to capture the extreme inter-distances among the TREs 
observed in the previous section. Table A6 shows two sets of models namely; 
Hawkes identity kernel and Hawkes log kernel models. It is observed that the 
Hawkes log kernel model provides a better fit to the data, since its AIC 
(2310.80) is smaller. It is observed that there is significant negative effect          
(–0.98) of BRG1 TRE on itself at the first estimate and also a significant 
positive effect (8.54) for the second estimate. This means that there is a 
significant interaction within the transcription factor binding sites of BRG1 
itself at the breaks or fixed knots over the support interval. It can be deduced 
that the equidistant fixed knots have been able to capture the interactions 
among the TFBS of BRG1 against itself. The sign of the coefficients indicate 
whether the ( )⋅h  function is maximum or minimum between two successive 

fixed knots. A greater magnitude of the coefficient, results in a strong effect 
or dependency between the TREs over the interval. Table A6 shows that 
BRG1 TRE model records negative coefficients with CEBPE, CTCF, P300, 
RARA, RNAP and SIRT1 at the second estimate of each TREs and positive 
coefficients with CTCF (first estimate), PU1 and SIRT1 (second estimate) 
TREs. 

Table 4 presents CEBPE TRE Hawkes model with the other TREs as 
explanatory variables. Similarly, the table shows the coefficients of the 
Hawkes process model for the CEBPE TFBS with the other TREs including 
the two histone modification elements. Again, it is observed that the Hawkes 
log kernel model provides a better fit to the data, even though the identity 
kernel model records significant coefficients for all the TREs as compared to 
the log kernel model, which records three insignificant effects or interactions. 
It is however observed that CEBPE recorded significance effect with itself at 
both estimates with the ( )⋅h  function being minimum at both intervals 

between the fixed knots that the two coefficients are estimated. It is observed 
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that almost all the coefficients of Table 4 are negative implying that the cubic 
B-splines of ( ),⋅h  are minimum in between the fixed knots over the support 

interval. 

Table 3. Multivariate Hawkes model coefficients of BRG1 TRE on other 
TREs 

Hawkes identity kernel Hawkes log kernel Model 
variables Estimate p-values Estimate p-values 

Intercept 0.30 0.00 -1.33 0.00 
bSpline(BRG1)1 -0.98 0.00 -1.42 0.00 
bSpline(BRG1)2 8.54 0.00 9.71 0.00 
bSpline(CEBPE)1 -0.08 0.02 -0.27 0.05 
bSpline(CEBPE)2 -5.84 0.00 -7.39 0.00 
bSpline(CTCF)1 1.56 0.00 2.82 0.00 
bSpline(CTCF)2 -4.53 0.00 -8.69 0.00 
bSpline(P300)1 -0.13 0.00 -1.08 0.00 
bSpline(P300)2 -1.64 0.00 -0.27 0.71 
bSpline(RARA)1 -0.49 0.00 -0.58 0.00 
bSpline(RARA)2 -3.85 0.00 -2.44 0.01 
bSpline(RNAP)1 -0.03 0.26 -0.24 0.00 
bSpline(RNAP)2 -5.51 0.00 -3.39 0.00 
bSpline(PU1)1 0.27 0.00 1.90 0.00 
bSpline(PU1)2 0.89 0.03 -6.09 0.00 
bSpline(SIRT1)1 0.55 0.00 2.45 0.00 
bSpline(SIRT1)2 -2.69 0.00 -10.36 0.00 
bSpline(H3K27)1 0.06 0.00 -0.06 0.25 
bSpline(H3K27)2 5.11 0.00 7.17 0.00 
bSpline(H4KAC4)1 0.26 0.00 0.21 0.00 
bSpline(H4KAC4)2 3.40 0.00 3.08 0.00 
AIC 2821.20  2310.80  

Furthermore, Tables A1-A6 of Appendix A show the coefficients of the 
other multivariate Hawkes linear models of both the log kernel and identity 
kernel of each TREs and the corresponding explanatory variables (TREs). 
Generally, it is observed from Tables A1-A6 that CTCF and RARA TRE 
models depict approximately the same pattern of negative and positive 
coefficients for the explanatory TREs. The AICs shows that the Hawkes log 



G. Kallah-Dagadu, B. K. Nkansah and N. K. Howard 684 

kernel model produces a better fit to the data in all the situations. It is 
observed that there are significant effects or interaction among almost all the 
TREs at both the two estimates each. 

Table 4. Multivariate Hawkes model coefficients of CEBPE TRE on other 
TREs 

Hawkes identity kernel Hawkes log kernel Model 
variables Estimate p-values Estimate p-values 

Intercept 0.32 0.00 -1.08 0.00 
bSpline(BRG1)1 -1.17 0.00 -1.34 0.00 
bSpline(BRG1)2 11.51 0.00 10.58 0.00 
bSpline(CEBPE)1 -0.24 0.00 -0.46 0.00 
bSpline(CEBPE)2 -4.42 0.00 -6.65 0.00 
bSpline(CTCF)1 1.74 0.00 2.29 0.00 
bSpline(CTCF)2 -2.90 0.00 -6.24 0.00 
bSpline(P300)1 -0.12 0.00 -0.76 0.00 
bSpline(P300)2 -4.63 0.00 -3.03 0.00 
bSpline(RARA)1 -0.42 0.00 -0.27 0.00 
bSpline(RARA)2 -3.61 0.00 -2.80 0.00 
bSpline(RNAP)1 -0.08 0.01 -0.08 0.27 
bSpline(RNAP)2 -6.42 0.00 -5.07 0.00 
bSpline(PU1)1 0.29 0.00 1.73 0.00 
bSpline(PU1)2 2.98 0.00 -5.37 0.00 
bSpline(SIRT1)1 0.92 0.00 2.12 0.00 
bSpline(SIRT1)2 -16.55 0.00 -10.45 0.00 
bSpline(H3K27)1 0.09 0.00 -0.06 0.20 
bSpline(H3K27)2 4.73 0.00 6.98 0.00 
bSpline(H4KAC4)1 0.34 0.00 0.06 0.10 
bSpline(H4KAC4)2 2.71 0.00 3.73 0.00 
AIC 3422.20  2642.20  

4. Conclusions 

The paper obtains model for the conditional intensity of TFBS using the 
ENCODE pilot project data of 1% human genome. Eight TREs are identified 
along several chromosomes in addition to two histone modification elements 
in retinoic acid simulated human HL-60 cells gathered after 0, 2, 8, and 32 
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hours. It is revealed that the TREs occurrences along the DNA sequence can 
be modelled using a generalised linear Hawkes model. Additionally, the 
paper reveals that the multivariate Hawkes process is able to capture and 
explain the interactions between a set of transcription factor binding sites 
occurring along a DNA sequence. It is also identified that the log Hawkes 
kernel model is the most suitable for modelling the conditional intensity of 
the multivariate Hawkes linear model. The model thus adequately captures 
extreme inter-distances that are initially found to characterise the transform 
point process. With massive genomes data being sequenced and more 
experimental transcription regulation data becoming available, the paper has 
employed advance statistical techniques for analysing these data to serve as a 
confirmation of the experimental analysis. The study recommends that 
mathematical and statistical models such as Hawkes processes and Bayesian 
networks should be employed in providing the foundation for experimental 
determination of interactions between transcriptional regulatory elements or 
factors in DNA sequences. 
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Appendix A 

Multivariate Hawkes models coefficients TREs 

Table A1. CTCF TRE model 
Hawkes identity kernel Hawkes log kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.3 0.00 -1.36 0.00 
bSpline(BRG1)1 -0.51 0.00 -1.22 0.00 
bSpline(BRG1)2 3.54 0.00 6.98 0.00 
bSpline(CEBPE)1 -0.04 0.13 -0.03 0.87 
bSpline(CEBPE)2 -2.74 0.00 -5.93 0.00 
bSpline(CTCF)1 0.62 0.00 2.26 0.00 
bSpline(CTCF)2 -0.11 0.68 -4.19 0.00 
bSpline(P300)1 -0.21 0.00 -1.22 0.00 
bSpline(P300)2 -0.92 0.00 -0.21 0.76 
bSpline(RARA)1 -0.17 0.00 -0.3 0.01 
bSpline(RARA)2 -3.17 0.00 -3.37 0.00 
bSpline(RNAP)1 -0.09 0.00 -0.44 0.00 
bSpline(RNAP)2 -2.59 0.00 -2.19 0.00 
bSpline(PU1)1 -0.04 0.37 1.25 0.00 
bSpline(PU1)2 2.13 0.00 -1.72 0.16 
bSpline(SIRT1)1 0.43 0.00 1.4 0.00 
bSpline(SIRT1)2 -2.45 0.00 -11.87 0.00 
bSpline(H3K27)1 0.11 0.00 -0.09 0.17 
bSpline(H3K27)2 2.74 0.00 5.93 0.00 
bSpline(H4KAC4)1 0.22 0.00 0.35 0.00 
bSpline(H4KAC4)2 1.54 0.00 2.01 0.00 
AIC 2773  2411.9  

Table A2. P300 TRE model 
Hawkes identity kernel Hawkes log kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.36 0.00 -1.15 0.00 
bSpline(BRG1)1 -0.86 0.00 -1.16 0.00 
bSpline(BRG1)2 7.55 0.00 11.23 0.00 
bSpline(CEBPE)1 -0.14 0.00 -0.62 0.00 
bSpline(CEBPE)2 -5.07 0.00 -8.27 0.00 
bSpline(CTCF)1 1.46 0.00 3.06 0.00 
bSpline(CTCF)2 -2.92 0.00 -8.96 0.00 
bSpline(P300)1 -0.21 0.00 -1.64 0.00 
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bSpline(P300)2 -1.83 0.00 -2.02 0.01 
bSpline(RARA)1 -0.40 0.00 -0.27 0.01 
bSpline(RARA)2 -4.37 0.00 -2.66 0.00 
bSpline(RNAP)1 -0.10 0.00 -0.23 0.00 
bSpline(RNAP)2 -5.00 0.00 -4.55 0.00 
bSpline(PU1)1 0.14 0.00 2.09 0.00 
bSpline(PU1)2 1.82 0.00 -8.59 0.00 
bSpline(SIRT1)1 0.49 0.00 2.55 0.00 
bSpline(SIRT1)2 -2.93 0.00 -9.06 0.00 
bSpline(H3K27)1 0.10 0.00 -0.08 0.17 
bSpline(H3K27)2 4.89 0.00 8.36 0.00 
bSpline(H4KAC4)1 0.29 0.00 0.12 0.00 
bSpline(H4KAC4)2 3.03 0.00 4.22 0.00 
AIC 2999.70  2474.70  

Table A3. RARA TRE model 
Hawkes identity kernel Hawkes log kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.53 0.00 -0.68 0.00 
bSpline(BRG1)1 -1.55 0.00 -1.33 0.00 
bSpline(BRG1)2 13.59 0.00 9.53 0.00 
bSpline(CEBPE)1 -0.30 0.00 -0.36 0.00 
bSpline(CEBPE)2 -8.67 0.00 -6.53 0.00 
bSpline(CTCF)1 2.27 0.00 2.47 0.00 
bSpline(CTCF)2 -2.16 0.01 -7.71 0.00 
bSpline(P300)1 -0.19 0.00 -0.81 0.00 
bSpline(P300)2 -4.20 0.00 -1.15 0.05 
bSpline(RARA)1 -0.48 0.00 -0.35 0.00 
bSpline(RARA)2 -10.49 0.00 -2.63 0.00 
bSpline(RNAP)1 -0.14 0.00 -0.27 0.00 
bSpline(RNAP)2 -10.62 0.00 -3.85 0.00 
bSpline(PU1)1 0.08 0.32 1.87 0.00 
bSpline(PU1)2 5.79 0.00 -5.89 0.00 
bSpline(SIRT1)1 0.87 0.00 1.93 0.00 
bSpline(SIRT1)2 -4.42 0.00 -9.57 0.00 
bSpline(H3K27)1 0.11 0.00 -0.10 0.01 
bSpline(H3K27)2 9.37 0.00 6.97 0.00 
bSpline(H4KAC4)1 0.51 0.00 0.14 0.00 
bSpline(H4KAC4)2 6.03 0.00 3.13 0.00 
AIC 2466.70  1536.20  
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Table A4. RNAP TRE model 
Hawkes identity kernel Hawkes log kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.35 0.00 -0.97 0.00 
bSpline(BRG1)1 -1.16 0.00 -1.37 0.00 
bSpline(BRG1)2 8.06 0.00 8.93 0.00 
bSpline(CEBPE)1 0.27 0.00 0.13 0.28 
bSpline(CEBPE)2 -5.08 0.00 -5.51 0.00 
bSpline(CTCF)1 0.71 0.00 1.51 0.00 
bSpline(CTCF)2 3.87 0.00 -2.47 0.05 
bSpline(P300)1 -0.13 0.00 -0.16 0.30 
bSpline(P300)2 -4.86 0.00 -3.66 0.00 
bSpline(RARA)1 -0.18 0.00 -0.27 0.00 
bSpline(RARA)2 -8.79 0.00 -2.72 0.00 
bSpline(RNAP)1 0.26 0.00 -0.02 0.75 
bSpline(RNAP)2 -8.41 0.00 -6.12 0.00 
bSpline(PU1)1 -0.49 0.00 0.85 0.00 
bSpline(PU1)2 4.59 0.00 0.01 1.00 
bSpline(SIRT1)1 0.78 0.00 0.96 0.00 
bSpline(SIRT1)2 -2.51 0.00 -9.78 0.00 
bSpline(H3K27)1 0.23 0.00 0.00 1.00 
bSpline(H3K27)2 6.37 0.00 5.10 0.00 
bSpline(H4KAC4)1 0.13 0.00 -0.01 0.71 
bSpline(H4KAC4)2 4.78 0.00 3.31 0.00 
AIC 4815.90  3015.80  

Table A5. PU1 TRE model 
Hawkes identity Kernel Hawkes log Kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.13 0.00 -1.89 0.00 
bSpline(BRG1)1 -0.46 0.00 -1.50 0.00 
bSpline(BRG1)2 2.82 0.00 9.11 0.00 
bSpline(CEBPE)1 0.01 0.59 0.02 0.91 
bSpline(CEBPE)2 -1.46 0.00 -6.52 0.00 
bSpline(CTCF)1 0.45 0.00 2.02 0.00 
bSpline(CTCF)2 0.81 0.04 -5.51 0.00 
bSpline(P300)1 -0.19 0.00 -0.36 0.11 
bSpline(P300)2 -1.45 0.00 -1.99 0.05 
bSpline(RARA)1 -0.09 0.00 -0.63 0.00 
bSpline(RARA)2 -2.71 0.00 -1.59 0.16 
bSpline(RNAP)1 0.06 0.00 0.19 0.12 
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bSpline(RNAP)2 -2.38 0.00 -4.91 0.00 
bSpline(PU1)1 -0.16 0.00 0.63 0.02 
bSpline(PU1)2 0.78 0.01 -2.56 0.24 
bSpline(SIRT1)1 0.25 0.00 1.59 0.00 
bSpline(SIRT1)2 -0.86 0.00 -8.87 0.00 
bSpline(H3K27)1 0.15 0.00 0.15 0.06 
bSpline(H3K27)2 1.94 0.00 5.20 0.00 
bSpline(H4KAC4)1 0.12 0.00 0.11 0.06 
bSpline(H4KAC4)2 1.38 0.00 3.20 0.00 
AIC 3015.10  2378.40  

Table A6. SIRT1 TRE model 
Hawkes identity kernel Hawkes log kernel Model 

variables Estimate p-values Estimate p-values 
Intercept 0.07 0.00 -2.81 0.00 
bSpline(BRG1)1 -0.18 0.00 -1.27 0.00 
bSpline(BRG1)2 1.16 0.00 6.87 0.01 
bSpline(CEBPE)1 -0.03 0.06 -0.19 0.53 
bSpline(CEBPE)2 -0.70 0.00 -6.37 0.00 
bSpline(CTCF)1 0.24 0.00 2.32 0.00 
bSpline(CTCF)2 -0.60 0.01 -9.47 0.00 
bSpline(P300)1 -0.04 0.02 -0.86 0.02 
bSpline(P300)2 -0.05 0.72 2.94 0.13 
bSpline(RARA)1 -0.05 0.01 -0.41 0.06 
bSpline(RARA)2 -0.63 0.00 -2.96 0.14 
bSpline(RNAP)1 -0.02 0.14 -0.29 0.08 
bSpline(RNAP)2 -0.47 0.00 -0.88 0.54 
bSpline(PU1)1 0.03 0.17 1.51 0.00 
bSpline(PU1)2 -0.06 0.80 -9.62 0.02 
bSpline(SIRT1)1 0.16 0.00 1.53 0.03 
bSpline(SIRT1)2 -2.28 0.00 -11.31 0.04 
bSpline(H3K27)1 0.01 0.08 -0.04 0.72 
bSpline(H3K27)2 0.83 0.00 7.17 0.00 
bSpline(H4KAC4)1 0.06 0.00 0.24 0.01 
bSpline(H4KAC4)2 0.27 0.00 2.22 0.02 
AIC 1417.30  1276.90  
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