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ABSTRACT 
 

In macroeconomic theory and economic policy, changes in the general price level or the rate of 

inflation plays an essential role. Hence, for example, one of the motives behind the adoption of 

Inflation Targeting policy (IT) by Ghana and the treaty espoused by the European Monetary Union, 

known as the Maastricht Treaty, was the convergence of inflation rates. On the other hand there is a 

controversy about which is the order of integration in the inflation rates, some authors arguing that 

this variable is stationary I(0) Whittle others saying it is nonstationary I(1). In this study we examine 

the CPI inflation rates of Ghana from a different perspective allowing for fractional degrees of 

differentiation. Thus, the methodology is based on long memory or long-range dependence processes, 

using fractional integration and employing techniques based on Whittle parametric and 

semiparametric methods and autoregressive fractionally integrated moving average (ARFIMA) 

models. Standard I(0)/I(1) methods were also employed. Our findings indicate that long memory 

exists in the CPI inflation rate of Ghana. After processing fractional differencing and determining the 

short memory components, the following two models, ARFIMA(3,0.427,1) and ARFIMA(2,0.499,1) 

were respectively specified to describe the pre and post introduction of IT policy in May 2007. 

Consequently, the CPI inflation rate of Ghana is fractionally integrated and mean reverting. Long 

memory in financial time series has important implications for the critical explanation of 

financial time series behaviour, as it could provide an opportunity to earn speculative 

profits in financial markets and cast disbelief on the correctness of the EMH. For instance, 

when price changes exhibit long memory or long-range dependence, asset pricing models 

based on the Efficient Market Hypothesis (EMH) may overestimate or underestimate 

investment risk. Furthermore, the presence of long memory in inflation rates can provide 

vital information about the likely impact of shocks (e.g. demand/supply) on the economy 

with respect to time. The results obtained in this study would be very useful in setting up 

monetary policies or consolidating previous policies such as IT in order to enhance 

economic growth. Moreover, estimation of long memory in inflation rates can serve as an 

evaluation tool to assess the performance of monetary policy under different dispensations. 

Lastly, the presence of long memory can assist in identifying inflationary pressures in the 

economy.   
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INTRODUCTION 

 

In macroeconomic theory and economic policy, changes in the general price level or the 

rate of inflation plays an essential role. Hence, for example, one of the motives behind the 

adoption of Inflation Targeting policy (IT) by Ghana and the treaty espoused by the 

European Monetary Union, known as the Maastricht Treaty, was the convergence of 

inflation rates. Moreover, the last two decades of macro and financial economic research 

has resulted in a huge collection of important contributions in the area of long memory 

modelling, both from a theoretical and an empirical standpoint. From a theoretical 

perspective, considerable effort has been focussed in the areas of testing and estimation, 

and a  few significant contributions include Granger (1980), Granger and Joyeux (1980), 

Hosking (1981), Geweke and Porter-Hudak (1983), Lo (1991), Sowell (1992a), Ding et al. 

(1993), Cheung and Diebold (1994), Robinson (1994; 1995a,b), etc. The empirical analysis 

of long memory models also has seen equally remarkable treatment, including studies by 

Diebold and Rudebusch (1989, 1991a,b), Hassler and Wolters (1995), Gil-Alana and 

Robinson (1997), Hyung and Franses (2001), Bos et al. (2002). Indeed, the considerable 

array of publications on the subject is not surprising, given the importance of long memory 

models in economics following the seminal contributions made by Clive W.J. Granger (see 

e.g. Granger (1980).  

We have seen that a significant number of the analyses of financial time series 

and econometrics hinge on the assumption of an efficient market hypothesis (henceforth 

EMH), which in its weak form states that returns of variables such as inflation rates, 

exchange rates, interest rates, equity prices among others, are expected to be i.i.d. white 

noise. This means, they follow the martingale process, hence not predictable (Fama, 1970). 

Notwithstanding the countless number of research papers following the pioneering work 

of Nelson and Plosser (1982), differences still remain in the literature on the main question 

of whether or not the post-war inflation possesses a unit root. Even though there is 

substantial evidence backing the unit root process (e.g. Barsky, 1987; MacDonald and 
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Murphy, 1989; Ball and Cecchetti, 1990; Wickens and Tzavalis, 1992; and Kim 1993), 

Rose (1988) provided evidence of stationarity in inflation rates. Mixed evidence has been 

provided by Kirchgassner and Wolters (1993) whereas Brunner and Hess (1993) argued 

that the inflation rate was stationary before the 1960s, but that it possesses a unit root since 

then. 

A probable resolution to this debate should not only be of academic interest, as 

nonstationarity in inflation would have dire consequences for central banks’ ratification of 

inflationary shocks with its ripple effect on the macroeconomic policymakers’ response to 

external pressures. A breakthrough to the challenge of this conflicting evidence was 

recently provided by modelling inflation rates through fractionally integrated processes. 

Using fractional differentiation and ARFIMA models, Baillie et al. (1996) examined a 

group of seven countries (UK, USA, Italy, France, Germany, Canada and Japan), and found 

strong evidence of long memory in the inflation rates with the exception of Japan. 

Comparable evidence of long memory in inflation rates of the USA, the UK, Germany, 

France and Italy is also provided by Hassler and Wolters (1995). Delgado and Robinson 

(1994) found evidence of long memory in the Spanish inflation rates. The clarification of 

this evidence put forward that inflation rates are mean-reverting processes and that 

inflationary shock will persist but ultimately dissipate. 

A time series exhibits long memory when there is significant dependence between 

observations that are separated by a long period of time. Characteristics of a long memory 

time series are an autocorrelation function 𝜌(𝑘) that decays hyperbolically to zero and a 

spectral density function 𝑓𝑥(. ) that is unbounded in the neighborhood of zero frequency. 

Recent statistical literature has concerned itself with a study of long memory models which 

go beyond the presence of random walks and unit roots in univariate time series 

representations, and ARFIMA(𝑝, 𝑑, 𝑞), processes are known to be capable of modelling 

long-run persistence. They were introduced by Granger and Joyeux (1980), who generalize 

Box-Jenkins models, when the order 𝑑 of integration is allowed to be fractional. 

Since modelling the inflation rate as a fractionally integrated process appears to 

improve our understanding of inflationary dynamics, this paper extends the existing long 

memory analysis on inflation rates of Ghana along two lines. First, it performs long 

memory analysis using Whittle methods developed by Künsch (1987) and Robinson 

(1995a) together with exact maximum likelihood (EML) developed by Sowell (1992a). 

Second, we model the long memory process using the ARFIMA model, in order to capture 

the short-and long-range effects of the inflation response to shocks (e.g. demand/supply 

shocks). Interestingly, what makes this research different from other research is the 

emphasis on the method of estimating the fractional differencing parameter and our quest 

to obtain an appropriate model to describe the inflationary dynamics of Ghana. This is 

because a clear appreciation of inflation behaviour will inform policymakers to consolidate 

the adoption of inflation targeting (IT) policy and/or adapt other policies to control 

inflation. We are motivated to examine the dynamics of inflation on the grounds of 

economic policy and also on the basis of the superficiality and gaps in the existing literature 

in exploring the issue of long memory especially in the Ghanaian context in terms of 

coverage of issues and methods of estimating the fractional integration parameter.  

This paper makes a contribution to the existing literature on inflation in the 

following ways: (1) by establishing the existence or non-existence of long memory in the 

inflation of Ghana, and (2) knowing the properties of long memory in inflation may provide 
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useful information to policymakers as well as to investors decisions on investment and risk 

management since Ghana is one of the two countries in Sub-Saharan Africa with IT policy. 

 

LITERATURE REVIEW 

 

In Ghana, some research has been done regarding modelling and forecasting inflation. 

However, the use of the fractionally integrated approach in describing inflation dynamics 

is very limited. For instance, Tweneboah et al. (2015) conducted a study on long memory 

behaviour of real interest rates in Ghana using ARFIMA and FIGARCH models and found 

them to exhibit an indistinguishable integration property. Alagidede et al. (2014) also 

conducted a study on a regional analysis of inflation dynamics in Ghana: persistence, 

causes and policy implications, using fractional integration. Notable evidence of 

asymmetries in the degree of persistence was found in both regional and sectorial areas of 

the economy. Omane-Adjepong et al. (2013) examined which was the best approach for 

short-term forecasting of Ghanaian inflation between seasonal-ARIMA and Holt-Winters. 

From their study, they concluded that Ghana’s inflation could be described by seasonal-

ARIMA process especially for short-term forecasting. In another study, Atta-Mensah and 

Bawumia (2003) presented a Vector-Error-Correction Forecasting Model (VECFM), based 

on broad money to forecast some selected Ghanaian macroeconomic variables such as 

money, growth, inflation, output growth, treasury-bill rate and exchange rate. Their results 

revealed that the VECFM model performed well around the turning points. 

In Ghana, this will probably be the first paper developed to address the concept of long 

memory through a fractionally integrated approach and modelling the process using an 

ARFIMA model. It is evident that there is a serious lack of research in the area of long 

memory. The present study places itself in that context. The rest of the article is organised 

as follows: Section 3 describes the empirical framework.  Section 4 briefly describes the 

data used. Section 5 presents the empirical results and Section 6 provides some concluding 

remarks. 

 

EMPIRICAL METHODOLOGY 

 

In this section we provide a brief definition and tests for long memory together with an 

ARFIMA model. 

 

Definition of Long Memory 

 

Long memory describes the correlation structure of a time series that displays temporal 

dependence between observations distant, discrete and far apart in time (Baillie, 1996). By 

contrast, if the correlation between observations becomes negligible during long lags, the 

series is said to exhibit short memory. To be more precise, with a long memory process, 

shocks to financial asset returns tend to decay at a hyperbolic rate, whereas in the of case 

short memory process, shocks tend to decay at an exponential rate. McLeod and Hipel 

(1978, p.492) have suggested that ‘it is often assumed that recent values of time series 

possess more information with regard to present and future values than the values in the 

distant past’. They define a stationary process as having long memory such that its absolute 
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autocorrelation function has an infinite sum. Accordingly, the autocorrelation function 𝜌𝑗 

at lag 𝑗 is defined according to: 

 

lim
𝑛→∞

∑ |𝜌𝑗|𝑛
𝑗=−𝑛 = ∞                                                                                         (1) 

 

where 𝑛 is equal to the number of observations. This definition is consistent with the 

process that does not have unit roots, but whose autocorrelation function does not decay 

too fast or rapidly. Also, a process has a long memory if there exists a real number 𝐻 ∈
(0.5,1) and a finite positive constant 𝐶 such that the autocorrelation function 𝜌(𝑘) at lag 𝑘 

has the following rate of decays (Assaf, 2006): 

 

𝜌(𝑘) = 𝐶𝑘2𝐻−2 as  𝑘 → ∞                                                                                (2) 

 

The parameter 𝐻which is referred to as the Hurst exponent (Hurst, 1951), is a numerical 

estimate that represents the degree of long memory properties in a series. The value of 𝐻 

can be interpreted as follows: 

 

1. For 0 < 𝐻 < 1, the process is said to be long memory (long-range dependence or 

persistent). This indicates that larger values tend to be followed by larger values, 

smaller values tend to followed by smaller values. 

 

2. For 0 < 𝐻 < 0.5, the process is said to be anti-persistent. This means that larger 

values will be followed by smaller values and vice versa. 

 

3. For 𝐻 = 0.5, the process is said to be a random walk. 

 

As explained in Tsay (2002), Mills and Markellos (2008), Gil-Alana (2008), an example 

of long memory process is the fractional integrated process defined by: 

 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑦𝑡;     0.5 < 𝑑 < 0.5                                                                                (3) 

 

where {𝑦𝑡} is a white noise process, 𝐿 is the back shift operator and 𝑑 is the fractional 

integration parameter. The fractional integrated parameter is related to the Hurst exponent 

as follows: 𝑑 = 𝐻 − 0.5. Again, from the perspective of fractional integration, when 0 <
𝑑 < 0.5, then the process is regarded as long memory, whereas 𝑑 ≥ 0.5 and −0.5 < 𝑑 <
0 processes are regarded respectively as nonstationary and anti-persistent 

Indeed, long memory or long range dependence property describes the high-order 

correlation structure of a series; where the series are characterized by irregular cyclical 

fluctuations. Mandelbrot (1977) describes long memory processes as having fractal 

dimensions, in the form of non-linear behaviour marked by distinct but non-periodic 

cyclical patterns and long-term dependence between distant observations. A variety of 

measures have been used to detect long memory in time series. For example, in the time 

domain, long memory is associated with a hyperbolically decaying autocovariance 

function. Equivalently, the presence of long memory is indicated by a spectral density 

function that approaches infinity near the zero frequency; in other words, such series 
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display power at low frequencies (Lo, 1991; Disario et al., 2008). These concepts have led 

several authors to develop stochastic models that capture long memory behaviour, such as 

the fractionally-integrated 𝐼(𝑑) models introduced to economics and finance by Granger 

(1980), Granger and Joyeux (1980), and Hosking (1981). In particular, fractional 

integration theory asserts that the fractional difference parameter which indicates the order 

of integration, is not an integer value (0 or 1) but a fractional value (Baillie et al., 1996). 

Fractionally integrated processes are different from both stationary and unit-root processes 

in that they are persistent (i.e., they reflect long memory), but are also mean reverting and 

as a consequence provide a flexible alternative to standard 𝐼(1) and 𝐼(0) processes. 

 

Long Memory Test 

 

Long memory is an important empirical feature of many financial variables. The presence 

of long memory implies the existence of nonlinear forms of dependence between the first 

and the second moments, and hence the potential of time series predictability. Testing for 

long memory is an essential task since evidence of long memory will support the use of 

fractionally integrated ARIMA. 

 

Whittle Estimator 

 

The Whittle estimator, is often used to estimate the fractional differencing parameter 𝑑. 

One of the most promising of these is the local Whittle estimator initially proposed by 

Künsch (1987) and modified later by Robinson (1995b). This is obtained by minimizing 

the local Whittle log likelihood at Fourier frequencies close to zero, given by: 

 

Γ(𝑑) = −
1

2𝜋𝑚
∑

𝐼(𝜔𝑗)

𝑓(𝜔𝑗;𝑑)

𝑚
𝑗=1 −

1

2𝜋𝑚
∑ 𝑓(𝜔𝑗; 𝑑)𝑚

𝑗=1                                                        (4) 

 

where 𝑓(𝜔𝑗; 𝑑) is the spectral density (which is proportional to (𝜔𝑗)2𝑑). As frequencies 

close to zero are used, we require that 𝑚 → ∞ and 
1

𝑚
+

𝑚

𝑛
→ 0 as 𝑛 → ∞. Taqqu and 

Teverovsky (1997) showed that 𝑑̂𝑤  can be obtained by maximizing the following function: 

 

Γ(𝑑) = 𝑙𝑛 (
1

𝑚
∑

𝐼(𝜔𝑗)

𝐼(𝜔𝑗)−2𝑑
𝑚
𝑗=1 ) − 2𝑑

1

𝑚
∑ ln (𝜔𝑗)𝑚

𝑗=1                                                       (5) 

 

Indeed Robinson (1995b) showed that for the estimates of  𝑑 obtained in this way, 

(4𝑚)
1

2 (𝑑̂𝑤 − 𝑑) → 𝑁(0.1) for −0.5 < 𝑑 < 0.5. The robustness of the standard, local and 

aggregate Whittle estimator was studied by Taqqu and Teverosky (1997) and it was found 

to perform well in finite samples. 

 

Exact Maximum Likelihood Estimator 

 

The exact Gaussian maximum likelihood objective function for the model ARFIMS model 

 

𝜙(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = 𝜃(𝐿)𝜀𝑡 , 𝑡 ∈ 𝑍   is (when−0.5 < 𝑑 < 0.5):     
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            𝐿𝐸(𝑑, 𝜙, 𝜃, 𝜎2, 𝜇) = −
𝑇

2
ln|Ω| −

1

2
(𝑋 − 𝜇)′Ω−1(𝑌 − 𝜇𝑙)                                                     

(6) 

 

where 𝑙 = (1, … ,1)′, 𝑋 = (𝑥1, … , 𝑥𝑇), 𝜙  and 𝜃 are the parameters of 𝜙(𝐿) and 𝜃(𝐿), 𝜇 is 

the mean of 𝑋, and Ω is the variance matrix of 𝑋, which is a complicated function of 𝑑 and 

the remaining parameters of the model. Sowell (1992a) derived an efficient procedure for 

solving this function in terms of hypergeometric functions. Nevertheless, an important 

shortcoming is that the roots of the autoregressive polynomial cannot be multiple. 

Collecting the parameters in the vector 𝛾 = (𝑑, 𝜙′, 𝜃′, 𝜎2, 𝜇)′, the exact maximum 

likelihood (EML) estimator is obtained by maximizing the likelihood function (see 

Equation 6) with respect to 𝛾. Sowell (1992a) showed that the EML estimator of 𝑑  is a 

consistent and asymptotically normal, i.e. 

 

                 √𝑇(𝑑̂𝐸𝑀𝐿 − 𝑑) →𝑑 𝑁(0(
𝜋2

6
− 𝐶)−1)                                                               (7)               

 

where 𝐶 = 0 , when 𝑝 = 𝑞 = 0 and 𝑐 > 0 otherwise. The variance of the EML may be 

obtained as (1,1)′𝑡ℎ element of the inverse of the matrix: 

 

ARFIMA Model 

 

The concept of fractional integration in literature was pioneered by Granger and Joyeux 

(1980) and Hosking (1981). The model, known as Autoregressive Fractionally Integrated 

Moving Average (ARFIMA), allows for increased flexibility as far as modelling low-

frequency dynamics is concerned. The ARFIMA model is given as follows: 

 

𝜙(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝜃(𝐿)𝜀𝑡 , 𝜀𝑡~𝑖𝑖𝑑(0, 𝜎2)                                                             (8) 

 

Where 𝑑 is the fractional integration parameter, 𝐿 is the lag operator and 𝜀𝑡  is white noise 

residual. Polynomial structures of Equation (8) including AR, 𝜙(𝐿) and MA, 𝜃(𝐿)  lie 

outside the unit circle, satisfying the stationarity and invariability conditions. The fractional 

differencing lag operator (1 − 𝐿)𝑑 is defined by the binomial expansion as follows: 

 

(1 − 𝐿)𝑑 = 1 − 2𝑑 +
𝑑(𝑑−1)

2!
𝐿2 −

𝑑(𝑑−1)(𝑑−2)

3!
𝐿3 + ⋯,                                                 (9)   

 

ARFIMA process is nonstationary when 𝑑 ≥ 0.5. For 0 < 𝑑 < 0.5, the process is said to 

exhibit long memory. The process shows short memory when 𝑑 = 0 and anti-persistence 

when 𝑑 < 0. 

 

DATA AND STOCHASTIC PROPERTIES 

 

We perform the analysis on CPI inflation for Ghana (GHCPI). The data set obtained from 

the Bank of Ghana dated January 1971 to October 2014, totaling 526 observations was log 

transformed. A visual inspection of Figure 1 shows that Ghanaian inflation is skewed to 
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the right and potentially subject to some structural breaks, especially between 1980 and 

1990.  

FIGURE 1. THE BEHAVIOUR OF CPI INFLATION RATES OF GHANA 

 
     Source: Diagram produced from R 

     Note: The data is obtained from Bank of 

Ghana (BoG) 

 

The summarised statistics of the CPI inflation of Ghana is given in Table 1. The distribution 

of CPI inflation is fat tailed since kurtosis is greater than 3, as shown in Table 1. The 

coefficient of skewness is 0.292 which shows that the CPI inflation of Ghana is skewed to 

the right. This shows that the distribution is non-normal and leptokurtic. The Jarque-Bera 

(JB) test confirms these findings since it rejects normality. Results from the ARCH (18) 

test for conditional heteroscedasticity provide strong evidence of ARCH effects in the 

inflation rates of both countries. The presence of a significant non-zero autocorrelation can 

be seen in Table 1 with the Box-Pierce, Q-statistic coefficients of 2985.60. 

 

 

TABLE 1.  SUMMARY AND DESCRIPTIVE STATISTICS 

 

Series Mean Median Std. Deviation Skewness 

GHCPI 3.128 3.027 0.786 0.292 

     Series Kurtosis J-B test ARCH-LM (18) Q (18) 

GHCPI 3.498 12.942 

(0.000) 

357.906  (0.000) 2985.6 (0.000) 

 

Note: GHCPI indicates the CPI inflation rates of Ghana; J-B indicates J Jarque-Bera normality test; 

ARCH indicates LM conditional variance; Q(.) indicates Box-Pierce correlation test. In each case 

the null hypothesis is rejected. Source: Authors own calculation and BoG as data source. 
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RESULTS AND INTERPRETATION 

 

In this section, we discuss the sample results from the autocorrelation function analysis, tests 

for structural breaks and long memory. We shall also apply the ARFIMA model to the 

GHCPI after incorporating structural breaks borrowing the procedure proposed by Shimotsu 

(2006), which examines the null hypothesis against an alternative of structural change.  

Autocorrelation Function 

 

The distributional characteristics of GHCPI inflation presented in Figure 2 can be 

investigated further by analysing the behaviour of their autocorrelation functions. The 

autocorrelation function of GHCPI decreases slowly at a hyperbolic rate, an indication of 

long memory (or long-range dependence), which is also conformed to a fractionally 

integrated series (Haslett and Raftery, 1989; Gil-Alana, 2008). 

 

FIGURE 1.  THE BEHAVIOUR OF ACF FOR CPI INFLATION RATES OF 

GHANA 

 

 

 
Stationarity Test 

 

Before testing for long memory, CPI inflation of Ghana was subjected to a stationarity test 

using the Augmented Dickey-Fuller (ADF) (1979), Phillips- Perron (PP) (1988) and 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (1992) tests in order to determine whether 

the series is level stationary or differenced stationary. As presented in the Appendix 1, the 

hypothesis of stationarity is rejected at the 5% and 10% significance level for the Ghanaian 

inflation rate under KPSS test.  

 

Results of Long Memory Test 

 

We apply the Whittle and exact maximum (EML) tests to GHCPI inflation. The results 

obtained are reported in Table 2. The hypothesis of no long memory is rejected under the 

Whittle method and exact maximum likelihood (EML), indicating the presence of long 

memory. We are guided by the algorithm of Hyndman-Khandakar (2008) in choosing our 

short memory parameters. It is also well known that a neglected structural break could lead 

to bias in estimating long memory parameters. The explanation given by Granger and 

Hyung (2004) is related to the fact that long memory may be the result of various kinds of 

misspecifications and/or the presence of structural breaks. In this scheme of things, a 
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greater accumulation of misspecifications would naturally lead to greater spurious long 

memory. This paper takes the adoption of IT policy (in May 2007) in Ghana into 

consideration, in order to assess its significance in controlling inflation.1 

 

TABLE 2. LONG MEMORY TEST FOR CPI INFLATION RATE IN GHANA 

 
 

Test 
1971M1 – 2007M5 

(Before IT policy) 

2007M6 – 2014M10 

(After IT policy) 

Whittle test 0.957   (0.078) 0.929  (0.175) 

EML (Sowell, 1992) 0.999  (0.000) 1.0004   (0.000) 

 

 

 

 

 

Note: The null hypothesis of no long memory is rejected. Standard error are presented in 

parenthesis. The estimation of the long memory parameter was done using the first difference of 

GHCPI inflation. 

 

 

From Table 2, it is evident that GHCPI inflation possesses long memory and its highly 

persistent and non-mean reverting even after adopting IT policy in May 2007. Hence, the 

need to consolidate the IT policy and/ or adopt other monetary policies to control 

inflation. 
 

 

Modelling GHCPI Inflation Rates with the ARFIMA Model 

 

Next, we fit the ARFIMA model to the GHCPI inflation and the results are depicted in 

Tables 3 and 4 respectively, taken the introduction of the IT policy in 2007 into account. 
 

 

TABLE 3. DIFFERENT ARMA SPECIFICATION FOR GHCPI INFLATION 

BETWEEN 1971M1-2007M5 

 

ARMA Log. Likelihood AIC SIC 

(1, 0) -66.968 139.936 152.176 

(1, 2) -41.200 92.400 112.800 

(3, 1) -39.151 90.302 114.781 

(4, 2) -39.074 94.149 126.788 

(4, 1) -39.083 92.167 120.726 

Note: ARMA(3,1) specification was selected based on the AIC. 

 

 
1Using the approach in Gil-Alana (2008) that combines fractional integration with structural breaks, 

we found little evidence of a break at that date. Nevertheless, we separate the sample in two 

subsamples according to the introduction of the IT policy in May 2007. 
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TABLE 4.  PARAMETER ESTIMATES FOR ARFIMA(3, 0.427, 1) FOR 1971M1 – 

2007M5 

 

Parameter Estimate Std. Error t-value P(>│t│) 

d 0.427 0.078 5.443 0.000 

ϕ1 -0.414 0.121 -3.437 0.000 

ϕ2 0.658 0.121 5.462 0.000 

ϕ3 0.299 0.121 2.480 0.013 

θ1 0.866 0.192 4.521 0.000 

 

ARFIMA (3,0.427,1) model was specified to GHCPI inflation 1971M1 -2007M5 through 

the  Whittle method of estimation. From the results in Table 4 and 6, the estimate of 𝑑 and 

accompanying p-values for the null hypothesis of no long memory for GHCPI is 0.427 and 

0.499 respectively for the period of 1971M1-2007M5 and 2007M6-2014M10. The 

estimation of 𝑑 for GHCPI is significantly greater than zero, hence GHCPI inflation may 

contain long memory and are mean reverting. Essentially, the fractional integration 

parameter 𝑑 specified by the ARFIMA model in both context, captures the long-run effects, 

and the ARMA (see Table 3 and 6) parameters capture the short-run effects. In fact, the 

short-run effects describe the behaviour of the fractionally differenced process(1 −
𝐿)𝑑𝑦𝑡 , through ARMA processes whereas the long-run effects describe the behaviour of 

the fractionally integrated 𝑦𝑡 . 

 
TABLE 5.  DIFFERENT ARMA SPECIFICATION FOR GHCPI INFLATION 

BETWEEN 2007M6-2014M10 

 

ARMA Log. Likelihood AIC SIC 

(1, 0) -37.202 80.405 87.871 

(0, 1) -37.722 81.444 88.909 

(1, 2) -34.068 78.137 90.581 

(2, 1) -34.048 78.097 90.540 

(3, 3) -30.209 96.327 76.418 

Note: ARMA(2,1) specification was selected based on the AIC. 
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TABLE 6.  PARAMETER ESTIMATES FOR ARFIMA(2, 0.499, 1) FOR 2007M6-

2014M10 

 

Parameter Estimate Std. Error t-value P(>│t│) 

d 0.499 0.174 2.872 0.004 

ϕ1 0.431 0.156 2.744 0.006 

ϕ2 0.206 0.157 1.315 0.188 

θ1 -0.012 0.106 -0.109 0.912 

 

We have estimated different specifications previously described. Based on the AIC and the 

log likelihood (Log. Lik), an appropriate ARFIMA model was selected. AIC and log 

likelihood (Log. Lik) are reported in Table 3 and 5. The parameter estimates of these 

selected models are displayed in Table 4 and 6. The estimate of 𝑑 is large and statistically 

significant, indicating the evidence of long memory in GHCPI inflation. Again, we can see 

that, most of the estimated AR terms in both models are small and statistically insignificant 

for GHCPI. This indicates that the fractional integration parameter 𝑑 has accounted for all 

the dependencies in GHCPI. It is worth noting that the AR only affects the shape of the 

autocorrelation function in the short run, but the long-run dynamics is hardly affected.  

 

Model Diagnostics 

 

We perform residuals analysis on ARFIMA (3,0.427,1) and ARFIMA (2,0.499,1) in order 

to ensure white noise. We apply tests for normality, heteroscedasticity, ARCH LM and 

Box and Ljung tests. From Table 7 and 8, we observe that all the tests are statistically 

different from zero with the exception of normality. 

 

TABLE 7. RESIDUAL DIAGNOSTICS FOR ARFIMA(3,0.427,1) 

 
 Test type Test statistic P-value 

Residual Corr. Box-Jung test 5.946 0.819 

Serial Corr. Box-Pierce test 5.833 0.829 

ARCH Effects ARCH-LM 14.203 0.164 

Normality Jarque Bera test 3813.616 0.000 

 

TABLE 8: RESIDUAL DIAGNOSTICS FOR ARFIMA(2,0.499,1) 

 

 Test type Test statistic P-value 

Residual Corr. Box-Jung test 4.079 0.943 

Serial Corr. Box-Pierce test 3.762 0.957 

ARCH Effects ARCH-LM 3.957 0.949 

Normality Jarque Bera test 177-828 0.000 
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These results are consistent with previous studies. For instance, Hassler and Wolters (1995) 

investigated inflation rates of the US, the UK, France, Germany and Italy. They estimated 

ARFIMA models and identified “reliable” specifications. Table 6 of their work contains 

diagnostic tests for the ARFIMA models, and it turns out that normality of the residuals is 

rejected for all conventional significance levels for all models. In another study, Bos et al. 

(1999) estimated an ARFIMA model for US inflation with 𝑑 = 0.5. Unfortunately, they 

did not test for normality of the residuals. Our results are largely in agreement with similar 

work on inflation rates. There are indications of long memory in inflation notwithstanding 

the rejection of normality of residuals (See Appendix 2), the ARFIMA models seem to 

offer a well specified model for inflation rates. 

 

DISCUSSIONS AND CONCLUSIONS 

 

In this paper, we investigated the presence of long memory dynamics in the CPI inflation 

rates of Ghana (GHCPI). Applying Whittle methods along with EML tests, we found 

evidence of long memory in the inflation rate. The ARFIMA(3,0.427,1) and 

ARFIMA(2,0.499,1) models were found to be the most appropriate for GHCPI inflation 

before and after the introduction of IT policy in 2007. Thus, the fractional integration 

parameter which is a measure of speed of adjustment of inflation to equilibrium state, were 

found to be 0.427 and 0.499 for both regimes respectively (i.e.1971M1-2007M5 and 

2007M6-2014M6), indicating the presence of long memory. Clearly the impact of the 2007 

cannot be underestimated since the fractional differencing parameter increases in terms of 

magnitude in the second regime (2007M6-2014M10). The complete results suggest that 

GHCPI inflation are not efficient and can be predicted given the past information. 

Understanding possible causes of long memory in GHCPI is beyond the scope of this paper, 

but it is an essential issue to be addressed. Largely, the significance of 𝑑 obtained for 

GHCPI inflation accounted for the dependence in the series. Hence, the need to adopt more 

efficient policies including IT policy in order to steer the ever increasing inflation of to an 

equilibrium position. 

 Long memory in financial time series has important implications for the critical 

explanation of financial time series behaviour, as it could provide an opportunity to earn 

speculative profits in financial markets and cast disbelief on the correctness of the EMH. 

For instance, when price changes exhibit long memory or long-range dependence between 

observations, asset pricing models based on the EMH may overestimate or underestimate 

investment risk. The error in the Value-at-Risk (VaR) evaluation of investment risk implies 

an incorrect evaluation of assets (Lo, 1991). In a nut shell, the study of long memory will 

provide an important guide when implementing linear pricing models and it allows the 

development of non-linear pricing models to be taken into consideration. Furthermore, the 

presence of long memory in inflation rates can provide vital information about the likely 

impact of shocks (e.g. demand/supply) on the economy with respect to time. This 

information can be useful for the purposes of setting out monetary policy or consolidating 

previous policies such as IT in order to enhance economic growth. Moreover, estimation 

of long memory in inflation rates can serve as an evaluation tool to assess the performance 

of monetary policy under different dispensations. Lastly, the presence of long memory can 

assist in identifying inflationary pressures in the economy. In the near future it is our 

intention to address the issue of volatility in the GHCPI inflation.  
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APPENDIX 1. STATIONARITY TEST 

 

Series ADF test PP test KPSS test 

 Cont. Trend Cont. Trend Cont. Trend 

GHCPI 
-3.77** 

(-3.43) 

-4.35** 

(-3.41) 

-4.64** 

(-2.87) 

-5.22** 

(-3.42) 

0.74** 

(0.46) 

0.15** 

(0.14) 

 

Note: Values in the parenthesis are the critical values at 5%, ** the hypothesis of stationarity is rejected  

 

 

APPENDIX 2A:  RESIDUALS DIAGNOSTICS FOR ARFIMA(3,0.427,1) 
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APPENDIX 2B:  RESIDUALS DIAGNOSTICS FOR ARFIMA(2,0.499,1) 
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