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Abstract 

Genome mapping of transcription factor targeted by ChIP jointly with 
microarrays or sequencing procedures is a powerful instrument for 
laying a foundation for understanding transcriptional regulatory 
networks. Hence the need for computational methods that can form the 
basis of experimental verification of these networks. We employ a 
probabilistic graphical model of the form of linear Gaussian Bayesian 
network to model causal effects between transcriptional factors (TFs) 
in two genome datasets. The bnlearn R statistical package is used for 
learning the network structure of the ENCODE pilot data and Mouse 
Embryonic Stem Cell data. Our results show that the Bayesian 
network efficiently model the causal effects between TFs, handle 
uncertainty with respect to probability theory and establish indirect 
with direct causation. Finally, an integrated Bayesian network model 
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which can predict the TFs and identify experimentally verifiable 
relationships as well as missed relationships between TFs 
computationally is fitted to the genome data. 

1. Introduction 

The study of genetics and molecular biology has become increasingly 
accessible and affordable due to the microarray technology and gene 
regulatory networks from temporal gene expression data which has received 
growing interest. Every organism’s hereditary information is contained in the 
DNA and a comprehensive analysis of an organism’s genetic information has 
led to a satisfactory understanding of some phenotypic characteristics such as 
diseases (Bremer [4]). The unearthing of the molecular structure of 
deoxyribonucleic acid (DNA) by (Watson and Crick [31]), has progressively 
uncovered the information storage, extraction and conversion into proteins in 
the DNA. This has explained how certain variations in cells lead to 
abnormalities of individuals. 

Genomes form thousands of protein-coding and non-coding RNA genes, 
most of which are differentially expressed at various locations and times 
throughout development, or in response to environmental indications 
(Martinez and Walhout [21]). Differential gene expression is carried out 
through complex regulatory networks that are controlled in part by two types 
of trans-regulators: transcription factors (TFs) and microRNAs (miRNAs). 
TFs bind to cis-regulatory DNA elements that are often found in or near their 
target genes, while miRNAs hybridize to cis-regulatory RNA elements 
generally located in the untranslated region of their target miRNAs 
(Filipowicz et al. [8]). 

Understanding gene regulation process is of great interest in science, 
since a massive high-throughput data is being generated due to modern 
techniques of microarray technology such as ChIP-chip and ChIP-seq. In 
gene regulatory network the set of genes interact with one another through 
other genes, transcription factors, and protein products. The interactions 
between these elements contribute to the regulation of gene transcription and 
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translation, and the structure of gene regulatory networks play a vital role in 
cell behaviour and structure (Rau et al. [26]). 

The aim of this paper is to determine the complex interactions among 
genes and transcription factors along a DNA sequence or genome sequence 
through the use of Bayesian networks. The concept of gene networks is 
fundamental in system biology and we view networks as encompassing of 
nodes (genes or transcription factors) and the links (chemical reactions) 
between them. The networks describe the idea of stability and 
interconnections of molecular reactions and the challenge is to give these a 
statistical interpretation (Lotsi and Wit [20]). 

System biology needs a flexible statistical method which can 
computationally and efficiently infer the complexity, the dependence 
structure of the network topology and the functional relationship between the 
genes or transcription factors. Several literature in bioinformatics have 
considered static networks (Maucher et al. [22]; Friedman et al. [11, 12]) and 
signal pathways of genes and transcription factors (Chen et al. [6]). Also, a 
lot of literature exist for dynamic networks modelling of genes or 
transcription factors by state space models (Lotsi and Wit [20]; Rau et al. 
[26]; Beal et al. [2]; Fang-Xiang et al. [7]). 

We present a probabilistic graphical model which is based on Bayesian 
networks (Koller and Friedman [18]), and considers (conditional) 
probabilistic relationships in a set of random variables. Bayesian networks 
are useful tools for probabilistic inference among set of variables modelled 
using directed acyclic graph (DAG). The rest of the paper is organised as 
follows: Section 2 presents methods and materials of the study, Section 3 
also presents analysis and results of the two datasets employed and Section 4 
presents the conclusion of the study. 

2. Methods and Materials 

2.1. Bayesian networks 

Bayesian networks are probabilistic graphical models that can be 
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represented as set of causality relationships in a set of random variables 
(Koller and Friedman [18]). Bayesian networks have become a widespread 
technique used for inference of gene regulatory networks, due to their 
flexibility and intuitive interpretation (Lotsi and Wit [20]; Young et al. [33]; 
Rau et al. [26]). A Bayesian network can be described as, ( ),,, Θ= GB X  

where X  is the set of random variables { },...,,,, 321 pXXXX  G  is a 

directed acyclic graph that forms the structure of the network, (i.e. the graph 
that represents the conditional independences between the variables) and Θ is 
the set of parameters that specify the conditional probability distributions of 
the variables (Franzin et al. [9]; Koller and Friedman [18]). The graph G  

stands for conditional independence assumptions that allow the joint 
distribution to be decomposed and economising on the number of 
parameters. The graph G  encodes the Markov assumption; each variable is 

independent of its non-descendants, given its parents in .G  Applying the 

chain rule of probabilities and properties of conditional independence, any 
joint distribution that satisfies the Markov assumption, can be decomposed 
into the product form as 

( ) ( )( )∏
=

|=
p

i
iip XPaXPXXXP

1
21 ...,,,  

( ),...,,, 121 −|= ii XXXXP  (2.1) 

where ( )iXPa  is the set of parents of iX  in .G  The individual factors 

( )( )ii XPaXP |  are the conditional probability distributions or local 

probabilistic models for each variable iX  (Koller and Friedman [18]) and are 

denoted as Θ. Several representations can be employed when specifying the 
conditional probability distributions of .G  We consider two of the most 

commonly used representations and the choice of representation depending 
on the type of variables we are dealing with (i.e. discrete or continuous). 

Local probabilistic model for discrete-valued random variables of a 
Bayesian network are represented as tabular conditional probability 
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distributions, where ( )( )XPaXP |  is encoded as a table that contains entry 

for each joint assignment to X and ( ),XPa  Conditional probability 

distributions table contains nonnegative values and that for each value 
( ),XPa  we have 

 ( )( )
( )

∑
∈

=|
XValx

XPaXP .1  (2.2) 

A conditional probability distribution (CPD) needs to specify a conditional 
probability ( )( )XPaXP |  for every assignment of values ( )XPa  and X, but 

it does not have to do so by listing each such value explicitly. We should 
view CPDs not as tables listing all the conditional probabilities, but rather as 
functions that given ( )XPa  and X, return ( )( ).XPaXP |  This implicit 

representation suffices to specify a well-defined joint distribution as a 
Bayesian network to avoid problems that might arise with the discrete-valued 
random variables (see Koller and Friedman [18]). 

Most variables are best modelled as values in some continuous space and 
a tabular representation of the CPDs may not be possible. One common 
solution is to circumvent the entire issue by discretising all continuous 
variables. When continuous variables are discretised, we lose much of the 
structure that characterise the Bayesian network. There are many possible 
models one could use to model the continuous variables and the most 
commonly used parametric form for continuous density functions is the 
Gaussian distribution (Koller and Friedman [18]). Suppose Y is a continuous 
random variable with continuous parents nodes, ....,,, 21 pXXX  The 

variable Y has a linear Gaussian model if there are parameters ,,, 21 ββα  

pβ...,  and 2σ  such that 

 ( ) ( ).,~ 2σβ+α| XNX TY  (2.3) 

This can be represented as ∑ = ε+β+α= p
i ii XY 1 ,  a linear function of the 

variables ,...,,, 21 pXXX  with the addition of the Gaussian noise ( )ε  of 
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mean 0 and variance .2σ  This simple model captures many interesting 
dependencies. However, there are certain sides of the situation such as 
interaction (e.g. the variance of the child variable Y cannot depend on the 
actual values of the parents) might not be captured. The linear Gaussian 
model is a very natural one, which is a useful approximation in many 
practical applications. Bayesian networks based on the linear Gaussian 
models provide us with an alternative representation for multivariate 
Gaussian distributions, one that directly reveals more of the underlying 
structure. Situations where dependencies occur on a continuous variable with 
continuous and discrete parents or a discrete variable with continuous and 
discrete parents lead to Hybrid Bayesian network. Suppose X is a continuous 
variable, and ( )kUUUU ...,,, 21=  denotes its discrete parents and =Y  

( )pYYY ...,,, 21  denotes its continuous parents. Then X has a conditional 

linear Gaussian (CLG) conditional probability distribution, if for every value 
,Uu ∈  we have a set of 1+p  coefficients puuu ,1,0, ...,,, ααα  and a 

variance 2
uσ  such that 

 ( )( ) .,~,
1

2
,0, ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
σα+α| ∑

=

p

i
uiiuu yyuX N  (2.4) 

A conditional Bayesian network B  over Y given X is defined as a directed 
acyclic graph ,G  whose nodes are ,ZYX ∪∪  where X, Y, Z are disjoint. 

The variables in X are inputs, the variables in Y are outputs and the variables 
in Z are encapsulated. The variables in X have no parents in .G  The variables 

in ZY ∪  are associated with a conditional probability distribution. The 
network defines a conditional distribution using a chain rule 

 ( ) ( )( )∏
∈

|=|
ZYX

XPaXPXZYP
∪

.,B  (2.5) 

The distribution ( )XYP |B  is defined as the marginal of conditional Bayesian 

network as 
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 ( ) ( )∑ |=|
Z

XZYPXYP .,BB  (2.6) 

If Y is a random variable with k parents ,...,,, 21 kXXX  then the CPD 

( )kXXXYP ...,,, 21|  is an encapsulated CPD if it is represented using a 

conditional Bayesian network over Y given ....,,, 21 kXXX  

2.2. Inference of Bayesian networks 

Once the Bayesian network is constructed, there is the need to estimate 
the various probabilities or the causal effects from the model. For instance, in 
this paper, we intended to determine the causal probability effect of TFs on a 
particular TF in the model. The computation of these causal probability 
effects from the model is known as probabilistic inference. In this subsection, 
we describe probabilistic inference in Bayesian network since the network of 
variables of X, determines a joint probability distribution for X. In principle, 
we use the Bayesian network to compute any probability of interest. 
Generally, given a Bayesian network that specifies the joint probability 
distribution in a factored form, one can evaluate all possible inference 
queries by marginalisation of the variables or nodes. There are most often 
two types of inference support namely, predictive support for node ,iX  

based on evidence nodes connected to iX  through its parent nodes (also 

called top-down reasoning), and diagnostic support for node ,iX  based on 

evidence nodes connected to iX  through its children nodes (also called 

bottom-up reasoning). 

Generally, the inference for discrete variables or nodes is given by the 
following. Suppose that pXXXX ...,,,, 321  are discrete variables for p 

nodes, then the probability of iX  given its parents nodes ( ),iXPa  is 

computed as 

( )ki XXXXP ...,,,| 21  

 ( )
( )

( )
( )

,
...,,,,

...,,,,
...,,,

...,,,,

21

21
21

21

∑ ∗
∗

==

iX ki

ki
k

ki

XXXXP
XXXXP

XXXP
XXXXP  (2.7) 
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where ,pk <  and ji ≠  ( )kj ...,,2,1=  and ( )∑ ∗
iX P .  is the sum of the 

probability over all possible values of ,∗iX  whereas iX  assumes only one 

value of all the possible values of .∗iX  

This method becomes impractical when there are a lot of variables. 
However a conditional independence encoded in Bayesian network is 
employed to make this computation more efficient. 

The conditional distribution of a continuous node iX  given its parents 

( )iXPa  is specified by a Gaussian function if the variables are normally 

distributed. If pXXXX ...,,,, 321  are normally distributed random 

variables, then the conditional probability function of iX  given its parents 

nodes ( )iXPa  is 

 ( ) ( ),,~...,,, 2
21 σ| iki UNxxxXf  (2.8) 

where ( )( )∑ ∈ μ−β+μ=
iXPaj jjjiii xU ,  the jiβ  are the weights or the 

regression coefficients on the directed arcs to node i from its parents, pk <  

and ( )....,,2,1 kjji =≠  Equivalently, we may write 

 ( )
( )
∑

∈
σ+μ−β+μ=

iXPaj
iijjjiii WxX ,  (2.9) 

where ( )1,0~ NWi  is a white noise random variable. Alternatively, 

 
( )
∑

∈
+β=

iXPaj
ijjii CxX ,  (2.10) 

where ( )2,~ iii NC σμ  is a coloured noise term. 

The joint probability distribution has size ( ),2 pO  where p is the number 

of nodes for a binary case. In general, the full summation over discrete (or 
integration in the case of continuous) variables is the exact inference and 
known as an NP-hard problem. Several researchers have developed some 
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efficient probabilistic inference algorithms for Bayesian networks with 
discrete variables that exploit conditional independence (Ben-Gal [3]). One 
of the most popular algorithms is the message passing algorithm that solves 
the problem in ( )pO  steps (linear in the number of nodes) for polytrees, 

where there is at most one path between any two nodes (Pearl [23]; Pearl and 
Russel [25]). Lauritzen and Spiegelhalter [19]) extended the algorithm to 
general networks. Other exact inference methods include the cyclecutset 
conditioning (Pearl [23]), variable elimination and clique trees (Koller and 
Friedman [18]). Approximate inference methods have also been proposed in 
the literature such as, Monte Carlo sampling that gives gradually improving 
estimates as sampling proceeds (Pearl [24]). A diversity of standard 
techniques such as Markov chain Monte Carlo (MCMC) methods, including 
the Gibbs sampling and the Metropolis-Hastings algorithm, have been used 
for approximate inference (Griffiths and Yuille [13]; Koller and Friedman 
[18]). Methods such as the loopy belief propagation and variational methods 
(Jordan et al. [16]) which uses the law of large numbers to approximate large 
sums of random variables by their means and Bayesian networks with other 
distributions, like the generalized linear regression model, have also been 
developed (Saul et al. [27]; Jaakkola and Jordan [15]). 

2.3. Learning in Bayesian networks 

In many practical settings, the Bayesian network is unknown and one 
needs to learn it from the data. The task of constructing a model from a set of 
instances, such as data and prior information to estimate the graph topology 
and parameters of the joint probability distribution of a Bayesian network is 
model learning. Learning the Bayesian network structure is considered a 
harder problem than learning the parameters and moreover, other hurdles 
arise in situations of partial observability when nodes are hidden or when 
data is missing. In general, four Bayesian network learning problems arise of 
which different learning methods are proposed (Table 2.1). 
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Table 2.1. The four problems that arise in Bayesian network learning 
Case Bayesian network structure Observability Learning method 

1 Known Full Maximum likelihood estimation 
2 Known Partial EM (or gradient ascent), MCMC 
3 Unknown Full Search through model space 
4 Unknown Partial EM + search through model space 

Source: Ben-Gal [3]. 

The first case is the simplest and the goal of learning is to determine the 
values of the Bayesian network parameters (in each CPD) that maximize the 
log-likelihood of the training dataset (D). Given a training dataset =D  

( ),...,,, 21 mXXX  where ( ) ,...,,, 21
T

lnlll xxxX =  and the parameter set 

( ),...,,, 21 nθθθ=Θ  where iθ  is the vector of parameters for the conditional 

distribution of variable iX  (represented by one node in the graph). The log-

likelihood of the training dataset is a sum of terms, one for each node given 
as 

 ( ) ( )( )∑∑ θ|=|Θ
m n

iili XPaxPL .,loglog D  (2.11) 

The log-likelihood scoring function decomposes according to the graph 
structure, hence the contribution to the log-likelihood of each node is 
maximised independently (Aksoy [1]). Alternatively, we assign a prior 
probability density function to each parameter vector and use the training 
data to compute the posterior parameter distribution and the Bayes estimates. 
The zero occurrences in D of some sequences can be compensated with an 
appropriate conjugate prior distribution like the Dirichlet prior for the 
multinomial cases or the Wishart prior for the Gaussian case. This method 
results in a maximum a posteriori estimate or equivalent sample size (ESS) 
method (Ben-Gal [3]). 

In general, the other learning cases are computationally inflexible. The 
second case where the structure is known but partially observable calls for 
the EM (expectation maximization) algorithm to find a locally optimal 
maximum likelihood estimate of the parameters (Griffiths and Yuille [13]). 
MCMC is an alternative approach that has been used to estimate the 
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parameters of the Bayesian network model. In the third case, the goal is to 
learn a G  that best explains the data. This is an NP-hard problem, since the 

number of sG  on p variables is super-exponential in p. One method is to 

proceed with the simplest assumption that the variables are conditionally 
independent given a class, which is represented by a single common parent 
node to all the variable nodes. This structure corresponds to the naive 
Bayesian network, which surprisingly is found to give realistically good 
results in some practical problems. To compute the Bayesian score in the 
fourth case with partial observability and unknown graph structure, the 
hidden nodes and the parameters have to be marginalised out. Since this is 
usually intractable, it is common to use an asymptotic approximation to the 
posterior which is the Bayesian information criterion (BIC). In this case, one 
considers the trade-off effects between the likelihood term and a penalty term 
associated with the model complexity. An alternative approach is to conduct 
a local search steps inside the M step of EM algorithm known as structural 
EM, that presumably converges to a local maximum of the BIC score 
(Friedman et al. [10]). In this paper, we apply the third learning method of 
which the graph G  is searched through the model space since the structure is 

unknown and we have full observability of the data. 

2.4. Materials 

This paper employs two different set of data namely; ENCODE pilot 
data and Mouse Embryonic Stem Cell data. The ENCODE data is a ChIP-
chip data directed by Affymetrix for the ENCODE pilot project presented in 
Carstensen et al. [5]. The data contains regions with binding sites for ten 
different transcriptional regulatory elements (8 transcription factors and 2 
histone modification) in retinoic acid stimulated HL-60 cells reaped after 0, 
2, 8 and 32 hours. The ChIP-chip regions of the data have a mean length of 
about 400 base pairs which are the enhanced regions of DNA with regulatory 
elements. To determine the causal effect among the TREs, we compute the 
number of occurrences of TREs in each 21 chromosomes across the different 
garnered times of TREs. 

The Mouse Embryonic Stem Cell ChIP-seq data consists of thirteen 
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sequence-specific TFs (NANOG, OCT4, STAT3, SMAD1, SOX2, ZFX,          
C-MYC, N-MYC, KLF4, ESRRB, TCFCP2L1, E2F1, and CTCF), two 
transcription regulators (P300 and SUZ12) and 17442 genes. The analysis of 
the core transcriptional network of the data is presented in Chen et al. [6]. 
Embryonic stem cells are obtained from the initial preimplantation embryos, 
and they can be kept for extended periods of time in culture through self-
renewing partition (Smith [28]). To determine the causal effect among the 
TREs, we use the TRE-gene association scores computed by Chen et al. [6], 
which is a supplementary material of their study and details of the derivation 
of the scores is presented in their study. 

3. Analysis and Results 

The paper considers the two set of genome data described in Subsection 
2.4 and used by researchers for biological experimental analysis (Chen et al. 
[6], ENCODE [30]). Since both datasets are continuous, we fit a linear 
Gaussian Bayesian network to estimate the causal effects between TFs. In 
this network, each node represents a univariate normal distribution with a 
standard deviation and a mean of linear combination of an unconditional 
mean and the values sampled from the parent vertices. We study the structure 
of a Bayesian network to help us reveal the important relationships within the 
dataset and use the model for prediction. 

3.1. Results of ENCODE data 

To model the causal effects among the TREs of the ENCODE pilot data, 
the number of occurrences of the TREs along each chromosome of the ten 
TREs across the four different times that the TREs harvested was recorded 
and transformed to follow a Gaussian distribution. The TREs (variables) 
represent the nodes in the Bayesian network model graph and a sample size 
of 84 421( ×  chromosomes) was used for the study. For continuous 

networks, linear Gaussian networks provide a more appropriate technique for 
representing continuous probability distributions within the Bayesian 
network (Hellman et al. [14]). 

Figure 3.1 displays a linear Gaussian Bayesian network graph of causal 
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effect among the ten TREs of the ENCODE data. The nodes or vertices 
represent the TREs and each edge or arc with arrows corresponds to a 
dependence relationship between two TREs. The lines with arrows indicate 
significant causal effect between TREs. Using the Score-Base algorithm of 
heuristic search (hill-climbing), twenty-three significant causal effects or 
relationships are obtained between TREs after 270 tests conducted using BIC 
score. The H3K27 TRE (histone modification) is predicted by four TREs 
namely, P300, CTCF, H4KAC4 and BRG1. However, it is worth noting that 
H3K27 itself does not significantly predict any TRE. We also observed that 
BRG1 predicts directly the conditional distribution of five TREs; H3K27, 
RARA, CTCF, H4KAC4 and CEBPE. However, BRG1 is itself (and the only 
TRE) that is not predicted by any element. The second histone modification 
H4KAC4, significantly predicts two TFs (P300 and CTCF) and the other 
histone modification element (H3K27) but is predicted by three TREs (PU1, 
CEBPE and BRG1). 

 

Figure 3.1. ENCODE data directed acyclic graph network plot. 

The coefficients of the linear Gaussian Bayesian network model are 
displayed in Table 3.1. There are nine TREs been predicted conditionally by 
the combination of nine TREs directly. There are nine linear Gaussian 
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models predicting nine TREs of which the intercepts and the standard errors 
are the means and standard deviations of the predicted (child) TREs, 
respectively. It is generally observed that the intercepts of the linear Gaussian 
models are very negligible. This may be due to the transformation of the 
data. The coefficients of the independent variables (parent TREs) are known 
as the weights of the TREs in the linear Gaussian network and are estimated 
through least squares method. P300 TRE is predicted significantly by six 
TREs with two TREs negatively depending on it and the other four TREs 
positively depending on P300 directly. It is observed that CTCF and H3K27 
TREs are each predicted by four TREs and both are negatively influenced by 
H4KAC4. Four elements, namely, PU1, RARA, RNAP and SIRT1 are each 
predicted by one TRE while CEBPE and H4KAC4 are predicted directly by 
two and three TREs, respectively. It is generally observed that the linear 
Gaussian network models with many parent nodes (e.g. P300) records small 
standard deviation of the residuals. From Table 3.1, CTCF, for example, 
follows a Gaussian distribution as 

( RARABRGeNCTCF 339.01499.04.3~ 11 ++− −  

).049.0,44265.01526.0 KACHSIRT −+  

Table 3.1. Model coefficients of the conditional distributions of the 
ENCODE data TREs 

Model CEBPE CTCF P300 PU1 RARA RNAP SIRT1 H3K27 H4KAC4 

Intercept 5.1e–12 –3.4e–11 –4.3e–11 6.6e–11 –2.2e–11 2.6e–11 –4.6e–11 1.3e–11 3.1e–12 
BRG1 0.618 0.499 0.000 0.000 0.955 0.000 0.000 0.297 –0.387 

CEBPE 0.00 0.000 0.909 0.000 0.000 0.000 0.000 0.000 1.054 
CTCF 0.000 0.000 0.202 0.000 0.000 0.000 0.000 0.237 0.000 
P300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.812 0.000 
PU1 0.000 0.000 0.000 0.000 0.000 0.000 0.732 0.000 0.217 

RARA 0.00 0.339 –0.417 0.000 0.000 0.852 0.000 0.000 0.000 
RNAP 0.000 0.000 –0.262 0.815 0.000 0.000 0.000 0.000 0.000 
SIRT1 0.362 0.526 0.184 0.000 0.000 0.000 0.000 0.000 0.000 

H4KAC4 0.000 –0.265 0.221 0.000 0.000 0.000 0.000 –0.229 0.000 

STD. Error 0.560 0.222 0.174 0.582 0.299 0.527 0.685 0.220 0.393 

The residual analysis plots of the linear Gaussian Bayesian network 
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model fits are displayed in Appendix A (Figures A1-A3). Figure A1 shows 
the residual density plots of the TREs, the residual q-q plots and the residuals 
against the fitted values plot of each TREs are displayed in Figures A2 and 
A3, respectively. The plots indicate a good fit to the data as they depict that 
assumptions for model fit are generally valid. 

3.2. Results of mouse embryonic stem cell data 

In modelling the causal effects between the transcription factors (TFs) of 
the Mouse Embryonic Stem Cell data, we use the TF-gene association scores 
presented in Chen et al. [6]. The TF-gene association scores were computed 
through a technique of assigning association score based on the genome 
location of the binding site that is closest to the transcription start site (TSS). 
The association score was computed using the distribution of the nearest site-
to-TSS distances in the genome and the scores range from 0 – 1. A higher 
score suggests a higher possibility of the gene being the target of the TF and 
a zero score implies there is no possibility of the gene being a target of the 
TF. In all, there are 14 TFs and 17442 TF-genes association scores denoting 
the sample size. We fit linear Gaussian network model to this data, which is 
capable of displaying correctly identified network interactions between the 
TFs given that there is TF-gene association score of a gene with the TFs. 

A linear Gaussian Bayesian network of directed acyclic graph displaying 
the causal effect among the 14 TFs of Mouse Embryonic Stem Cell data is 
shown in Figure 3.2. The lines with arrows indicate significant causal effects 
between TFs. The score base search (hill-climbing) produce sixty-three 
significant direct causal effects among the 14 TFs after performing 1092 BIC 
score tests. The C-MYC TF, for example, is a parent node for nine TFs (or 
directly predicts the conditional density of nine TFs): KLF4, OCT4, STAT3, 
ESRRB, CTCF, SUZ12, E2F1, ZFX and N-MYC. However, it is the only TF 
that it is itself not predicted by any other TF. We observe that the linear 
Gaussian model of SMAD1 and TCFCP2L1 TFs are predicted directly by 5 
TFs and 10 TFs, respectively. However, the two are the only TFs that do not 
predict any other TF. The remaining eleven TFs serve as parent nodes and 
child nodes for TFs as they predict TFs or serve as independent variables in 
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linear Gaussian network models and also at other instances serve as 
dependent variables in the model. 

 

Figure 3.2. Mouse Embryonic Stem Cell data directed acyclic graph network 
plot. 

Table 3.2 shows the coefficients of the linear Gaussian Bayesian network 
models of mouse embryonic stem cell data. It is observed that of the thirteen 
linear Gaussian network models, the model with the highest number of 
covariates (10 TFs) is one predicting TCFCP2L1 and the model with least 
number of covariates (one TF) is one predicting N-MYC. It is observed that 
almost all the weights of the covariates measuring the causal effect in all the 
models are positive except for STAT3 and ZFX TREs models, in which the 
coefficient of SUZ12 is negative in both cases, and SUZ12 TF model 
recording negative coefficients with only two covariates. It is worth noting 
that the SMAD1 TRE linear Gaussian network model records the smallest 
standard error (0.082) whilst E2F1 TRE model records the largest standard 
error (0.401). The 13 linear Gaussian Bayesian network models of the TFs 
are said to follow a normal distribution with the usual parameter estimates. 
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Table 3.2. Model coefficients of the conditional distributions of Mouse 
Embryonic Stem Cell TFs 

Model NANOG OCT4 SOX2 SMAD1 STAT3 N-MYC KLF4 ESRRB TCFCP2L1 ZFX E2F1 SUZ12 CTCF 
Intercept 0.015 0.066 0.042 0.001 0.060 0.121 0.096 0.074 0.074 0.076 0.252 0.143 0.150 
NANOG 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.133 0.099 0.000 0.000 0.000 0.000 

OCT4 0.075 0.000 0.155 0.031 0.133 0.000 0.000 0.057 0.000 0.000 0.000 0.000 0.066 
SOX2 0.238 0.000 0.000 0.124 0.000 0.000 0.000 0.102 0.067 0.000 0.000 0.000 0.000 
STAT3 0.034 0.000 0.105 0.067 0.000 0.000 0.000 0.135 0.121 0.000 0.000 0.000 0.095 
C-MYC 0.000 0.078 0.000 0.000 0.044 0.705 0.075 0.039 0.000 0.091 0.246 -0.045 0.041 
N-MYC 0.000 0.040 0.000 0.000 0.000 0.000 0.135 0.000 0.042 0.170 0.504 0.000 0.000 
KLF4 0.013 0.059 0.015 0.000 0.046 0.000 0.000 0.112 0.094 0.102 0.000 0.000 0.035 

ESRRB 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.115 0.000 0.000 0.000 0.046 
ZFX 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.060 0.042 0.000 0.000 0.000 0.000 
E2F1 0.030 0.049 0.018 0.000 0.025 0.000 0.199 0.048 0.114 0.306 0.000 -0.116 0.019 

SUZ12 0.000 0.000 0.000 0.000 -0.018 0.000 0.000 0.077 0.089 -0.037 0.000 0.000 0.046 
CTCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.00 0.000 0.000 

STD Error 0.142 0.212 0.131 0.082 0.190 0.336 0.355 0.304 0.337 0.361 0.401 0.257 0.258 

It is generally observed from the residual analysis plots of the embryonic 
stem cell network (see Appendix A: Figures A4-A6) model that the residuals 
deviate from normality assumptions. The poor fit of the residuals may be as a 
result of very large sample observations. 

3.3. Discussion of results 

The first part of the analyses is based on ENCODE pilot, which covers 
only 1% of the human genome, and is a pilot study. The interactions between 
the transcriptional factors in this study corresponding to ENCODE data are 
not experimentally verified at present. However, our earlier computational 
study (Kallah-Dagadu et al. [17]) shows significant interactions among the 
TREs using multivariate linear Hawkes model. We therefore interpreted the 
findings of the analysis with some caution. The computational analysis often 
provides the basis for the starting points of experimental studies and 
validation for the specific causal effects found in the linear Gaussian 
Bayesian network. Nevertheless, the analysis of the Mouse Embryonic Stem 
Cells data shows that Bayesian network can find causal effects or direct 
interactions that can be experimentally verified. The study on the 
transcriptional regulatory networks with Mouse Embryonic Stem Cell by 
Chen et al. [6] locates specific genome regions extensively targeted by 
different TFs. Their study found 44 directed arcs or relationships between 
TFs whilst our study with the aid of Bayesian network significantly identify 
63 directed arcs. This study shows an integrated network of causal effects 
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among the fourteen TFs which is different from the study of Chen et al. [6] 
which established a network of transcriptional regulation integrated among 
eleven TFs. Chen et al. [6] shows two key signalling pathways which 
integrated to the OCT4, SOX2, and NANOG circuitries through SMAD1 and 
STAT3. Our study is consistent with the earlier studies (Chen et al. [6]; Ying 
et al. [32]) of multiple transcription factor-binding interaction among 
SMAD1, OCT4, SOX2, NANOG, KLF4, E2F1, ESRRB and TCFCP2L1. 
Strikingly, most TFs in the network are associated with TCFCP2L1 or 
ESRRB. The C-MYC TF is predominantly localised with OCT4, STAT3,        
N-MYC, KLF4, ESRRB, ZFX, E2F1, SUZ12 and CTCF. Thus, the linear 
Gaussian Bayesian network model has been able to establish the causal 
effects between transcriptional factors and capable of predicting accurately 
other TFs in the sequence. 

4. Conclusion 

We have presented a probabilistic graphical model which displays the 
causal relationships between transcriptional factors clearly and intuitively. 
We have shown that by learning Bayesian network structure, we can 
efficiently represent the causal effect between TFs, handle uncertainty 
through the established probability theory and represent indirect with direct 
causation. Furthermore, we have established an integrated Bayesian network 
model of the ENCODE pilot data which is capable of predicting the TREs 
and also serve as the basis for experimental verification. The linear Gaussian 
network model employed in this study can detect experimentally verifiable 
relationships as well as missed relationships between TFs of the Mouse 
Embryonic Stem Cell data computationally. Finally, the paper has shown that 
there exist causal effects between TREs and has determined a linear Gaussian 
Bayesian network models for predicting the TREs in the two genome data 
investigated. 
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Appendices 

Appendix A. Residual plots of TREs/TFs for ENCODE pilot and Mouse 
Embryonic Stem Cell data 

 
Figure A1. Histogram plots of TREs residuals of the ENCODE pilot data. 

 
Figure A2. q-q plots of TREs residuals of the ENCODE pilot data. 
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Figure A3. The plots of fitted values of TREs against their residuals of the 
ENCODE pilot data. 

 
Figure A4. Histogram plots of TREs residuals of mouse embryonic stem cell 
data. 
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Figure A5. q-q plots of TREs residuals of mouse embryonic stem cell data. 

 
Figure A6. The plots of fitted values of TREs against residuals of mouse 
embryonic stem cell data. 
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Appendix B. List of Abbreviations 

AIC : Akaike information criterion 

BIC : Bayesian information criterion 

DNA : deoxyribonucleic acid 

TRE : transcriptional regulatory element 

TF : transcription factor 

BRG1 : SWI/SNF related, matrix associated, acting 
dependent regulator of chromatin, subfamily 
a, member 4 

CEBPE : CCAAT/enhancer binding protein (C/EBP), 
epsilon 

CTCF : CCCTC-binding factor (zinc finger protein) 

H3K27me3 (H3K27T) : Histone H3 tri-methylated lysine 27 

H4Kac4 (HisH4) : Histone H4 tetra-acetylated lysine 

P300 : E1A binding protein p300 

PU1 : Spleen focus forming virus proviral 
integration oncogene 

RARA (RARecA) : Retinoic Acid Receptor-Alpha 

RNAP : RNA polymerase II 

SIRT1 : sirtuin (silent mating type information 
regulation 2 homolog) 1 

SMAD1 : MAD homolog 1 

ZFX : zinc finger protein X-linked 

SOX2 : SRY-box containing gene 2 

STAT3 : signal transducer and activator of 
transcription 3 
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SUZ12 : suppressor of zeste 12 homolog 

NANOG : Nanog homeobox 

C-MYC : myelocytomatosis oncogene 

E2F1 : E2F transcription factor 1 

N-MYC : v-myc myelocytomatosis viral related 
oncogene, neuroblastoma derived 

OCT4 : POU domain, class 5, transcription factor 1 


