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We demonstrate a simple projective measurement based on the quantum eraser concept that can
be used to characterize the disturbances of any communication channel. Quantum erasers are
commonly implemented as spatially separated path interferometric schemes. Here we exploit the
advantages of redefining the which-path information in terms of spatial modes, replacing physical
paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural
modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent
to the description of two independently marked paths. We explore the effects of fiber perturbations
by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial
mode encoding of information for ultra-fast fiber communications.

PACS numbers: 10.080, 30.010, 60.030

I. INTRODUCTION

The concept of which-way information has profound
implications in the study of coherence of light, giving
a different scope to the historical wave-particle duality.
The most revered demonstration of the wave-like nature
of photons was performed by Young in 1804, in his fa-
mous double-slit experiment [1], followed by modern vari-
ations [2–6]. The double-slit experiment is a two-path in-
terferometer in which a light source blocked by a screen
with two slits is split into two new sources traveling along
different paths. Upon propagation, these two new sources
interfere with each other to produce an interference pat-
tern of spatial fringes. Remarkably, interferometric phe-
nomena are not restricted to two-path interferometers; it
is also possible to observe interference of beams travel-
ing along the same path, but using different degrees of
freedom (DoF).

The combination of two DoF, orbital angular momen-
tum (OAM) and polarisation in a non-separable fashion,
known as vector beams, allows to perform novel versions
of the two-slit experiments. Here, the physical paths
are replaced by two components of one degree of free-
dom, e.g., two values of OAM. Vector beams have gained
significant amount of interest in a great variety of re-
search fields at both the classical and the quantum lev-
els. In particular, in the field of optical communication
and quantum information, their high dimensional encod-
ing capabilities have raised attention [7–10] due to their
potential applications in free-space and optical fibers [11–
13]. In quantum optics, photons entangled in OAM and
polarisation have been demonstrated to violate a Bell-like
inequality [14], being able also to tune its entanglement
or photon indistinguishability [15], similarly to the anal-
ogous version of a quantum eraser scheme using OAM
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and polarisation [16]. Other DoF can also be found to
demonstrate this particular type of correlations, e.g., in
the case of generating entanglement between momentum
and polarisation in a single photon [17], or even using
intense beams [18, 19].

The modern view of wave-particle duality has opened
new research avenues, for example in the development of
novel measurement schemes, as the ones based on quan-
tum non-demolition [20]. The traditional quantum eraser
experiment [21–29], and its delayed choice versions [29–
32] are related to the complementarity principle formu-
lated by Bohr in 1928 [33], which states that photons can
behave indistinctly as particles or waves but cannot be
observed as both simultaneously.

Importantly, the double-slit experiment and its mod-
ern variations allows to link the which-way information
provided by the whole system with the interference pat-
tern produced at the detection plane [34]. Thus, the
visibility of the interferometric pattern can be directly
related to the properties of the system. For example, the
decrease of quality in the interferometric measurement
can be associated to the perturbations introduced by the
system. This approach provides a useful tool for appli-
cations in optical communication in both free-space and
optical fibers [11–13], a hot topic nowadays due to the
realization of a pending bandwidth “capacity crunch”.

Here we report on the comparison of a quantum eraser
in free-space and a step-index fiber using the OAM and
polarization DoF provided by vector modes. This work
establishes the basis for a simple detection technique to
quantify perturbations introduced by the environment,
particularly in the communication channel, between the
source and the detection section. In our particular case,
a fiber optic link is formed by many different channels,
introducing some kind of perturbation depending on the
DoF that carries the encoded information. That is to say,
the results presented give a fast probing method to char-
acterize the different channel’s perturbation, and would
be useful for determining in an easy measurement what
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would be feasible for a quantum communication channel
down fiber.

II. CONCEPT

A. Revisiting the traditional which-way quantum
eraser

Previous demonstrations of the quantum eraser exper-
iment were performed with the aid of path interferome-
ters. We revisit a variation of the experiment based on
Thomas Young’s double-slit interferometer. Single pho-
tons traversing the two slits form interference fringes due
to each photon’s paths interfering (wave-like behaviour).
However, the lack of interference fringes is associated
with path distinguishability (particle-like behaviour). In
the quantum eraser experiment, the interference fringes
and which-way information cannot be observed simulta-
neously. Quantitatively, this is associated with the com-
plementarity inequality [35–38],

V 2 +D2 ≤ 1, (1)

where D is the amount of path information in the sys-
tem while V is the visibility of interference fringes. Thus,
gaining knowledge of path information (D 6= 0), reduces
the visibility of the fringes (V < 1). In the quantum
eraser experiment, the path information can be obtained
(minimal V) and subsequently erased (maximal V). To il-
lustrate this effectively with the aid of Eq. (1), consider a
double-slit marked with orthogonal polarizers. The quan-
tum state of the system, is given by

|Φ〉 =
1√
2

(|H〉 |s1〉+ |V 〉 |s2〉) , (2)

with |s1〉 and |s2〉 the states upon traversing the inde-
pendent paths s1 and s2, respectively, and |H〉 and |V 〉
represent the horizontal and vertical polarization states
that mark the two paths. Note that without the mark-
ers and taking into account perfect conditions, the two
paths are allowed to interfere, which leads to the triv-
ial case of interference fringes appearing at the detec-
tion plane, with D = 0 (minimal path information) and
V = 1 (maximal fringe visibility), due to path indistin-
guishably (wave-like behavior). On the contrary when
the slits are marked, the probability distribution of the
photons is | 〈Φ|Φ〉 |2 =

∑
i | 〈ψi|ψi〉 |2/2, which signals the

presence of path information in the system when project-
ing the polarization of the system onto the |H〉 or |V 〉
states. Thus, D = 1 (maximal path information) and
V = 0 (minimal fringe visibility), meaning that there is
a full knowledge of the which-path information (particle-
like behavior).

However, the interference fringes can be recovered with
a complimentary projection of the polarisation, in the di-
agonal basis (|H〉 ± |V 〉), which acts to remove the path
information and hence erase it from the system. Again,
D = 0 (minimal path information) and V = 1 (maximal

fringe visibility), showing a mutually exclusivity between
the two cases. Intriguingly, partial visibility and partial
distinguishability are permitted, where the result cannot
be explained exclusively by a wave-like or particle-like in-
teraction although the inequality in Eq. (1) is maintained
[38].

B. Redefining the quantum eraser with spatial
modes

Equation (2) represents a general state of a non-
separable or entangled path and polarisation DoF of a
single photon, a trait of non-separable DoF of a photon
[17]. Similarly, vector modes are a class of spatial modes
with non-separable polarization and OAM DoF with the
following general form

|ψ〉 =
1√
2

(
|R〉 |`〉+ eiζ |L〉 |−`〉

)
. (3)

Here, eiζ is a relative phase, the states |±`〉 are the
OAM eigenstates with ` representing the topological
charge of the spatial field, characterized by a helical phase
of ei`φ, and |R〉 and |L〉 the right and left circular polar-
ization states, respectively. In Eq. (3) the OAM eigen-
state of the photon are marked with orthogonal circular
polarization states. Through polarization control, the
OAM information can be determined and erased. For
example, by projecting the photon onto the polarization
state |R〉 or |L〉, the photon collapses onto the state |`〉
or |−`〉, respectively (D = 1, V = 0), where the spatial
fields are azimuthal donut-like rings with opposite helic-
ities. An example is illustrated in Fig. 1(e) for ` = ±10.
Analogously, the OAM eigenstates act as abstract paths
in contrast to the double-slit experiment. The OAM
modes can be interfered with a complimentary projec-
tion of the polarization, i.e, |R〉 ± |L〉, thus collapsing
the spatial mode onto a superposition state, |`〉 ± |−`〉,
where the interference fringes appear in the azimuthal di-
rection with a frequency proportional to 2|`| (see Fig. 1).
Hence this erases the OAM information of the photon
(D = 0, V = 1). Accordingly, the non-separability is ex-
ploited to demonstrate the quantum eraser with a single
photon described by a vector mode. Interestingly, these
spatial modes are natural modes of free-space and fiber,
the basic media of quantum information and communi-
cation.

C. Vector mode propagation in step-index fibers

Step-index fibers have cylindrical symmetry and a re-
fractive index with a step-like profile, as can be seen in
Fig. 2. The full vector wave equation for a step-index
fiber is given by

{∇2
t + n2k2 ∇t}ut +∇{ut · ∇tln(n2)} = β2ut, (4)

where k = 2π/λ is the wave vector, n is the index of re-
fraction which has a radial dependence, ut is the trans-
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FIG. 1. Intensity profile of vector modes described by Eq. (3), belonging to the ` = 1 subspace. (a) is the TM01 mode (ζ = 0,
` = 1) with field vectors pointing radially, (b) is the TE01 mode (ζ = π, ` = 1) with azimuthal field lines, (c) is the hybrid
electric even HEeven

21 (ζ = 0, ` = −1) and (d) hybrid odd HEodd
21 (ζ = π, ` = −1) modes. (e) is an illustration of the appearance

of azimuthal fringes when two OAM modes with a topological charge ` = ±10 are in a superposition state. The fringes appear
in the azimuthal direction with a frequency of 2|`|. (f) is an illustration of the OAM quantum eraser where the non-separable
spin-OAM coupling would be performed with a q-plate. The OAM would be distinguished and erased by a polarisation analyser,
where the spatial fringes are analysed by an azimuthal scanner of choice.

FIG. 2. A graphical illustration of the step-index fiber with
a characteristic step-like refractive index, where the highest
index of refraction is at the core and the lowest is found in
the cladding.

verse component of the electric field while β is the propa-
gation constant for each solution. The radial component
of the fields are described as follows,

u`p(r) =

J|`|(
β`p

a )/J|`|(β`p) r < a,

K|`|(
σ`p

a )/J|`|(σ`p) r ≥ a,
(5)

with a being the fiber core radius and the functions J|`|
and K|`| representing the higher-order Bessel and modi-
fied Bessel functions. The β`p and σ`p are the respective
propagation constants for the Bessel functions in the dif-
ferent regions of the fiber. Equation (5) is a consequence
of the step-index fibers cylindrical symmetry and refrac-
tive index profile. The first four cylindrically symmet-
ric higher-order vector solutions, which are nearly de-
generate, take the form of Eq. (3). They are known
as the transverse electric (TE01), transverse magnetic

(TM01), hybrid electric odd (HEodd
21 ) and hybrid electric

even (HEeven
21 ), where the two indices represent the num-

ber of half-wave patterns across the width and the height
of the waveguide, respectively.

In this paper, we consider the propagation of the TM01

mode which is also known for its radial polarization pro-
file and is defined by Eq. (3) for ` = 1 and ζ = 0 (see
Fig. 1 for intensity profiles).

III. IMPLEMENTATION

To generate the spatial modes marked with orthogo-
nal polarisation states we make use of a q-plate [39, 40], a
Pancharatnam-Berry phase element with a locally vary-
ing birefringence. A q-plate couples the polarization and
OAM DoF of light according to the following rules:

|R〉 |`〉 q-plate−−−−→ |L〉 |`− 2q〉 , (6)

|L〉 |`〉 q-plate−−−−→ |R〉 |`+ 2q〉 , (7)

with |L〉 and |R〉 being the left and right circular polariza-
tion states while q represents the charge of the q-plate.
The spin component of the photon is inverted with an
addition in OAM of ±2q. For example, a photon (or an
intense beam) with a Gaussian transverse distribution
given by |R〉 |0〉 is converted to |L〉 |−1〉, if q = 0.5 ac-
cording to Eq. 7. Notably, the quantum state |L〉 |−1〉
corresponds to a scalar mode: a class of spatial modes
with separable product states of polarization and OAM
DoF. In contrast, vector modes are superpositions of
these modes where on the contrary, the OAM and po-
larization entities are non-separable. These modes are
generated by first preparing linearly polarized photons,
for example, in the state 1√

2

(
|L〉 |0〉 + |R〉 |0〉

)
, set ac-

cordingly with polarization optical elements. The state
of the photon upon traversing the q-plate is given by,

|ψ〉 =
1√
2

(
|R〉 |`〉+ |L〉 |−`〉

)
, (8)

where ` = 2q. Equation (8) reminds us of the quantum
state represented by two paths distinguished by orthogo-
nal polarization markers (see Eq. (2)). We carry out the
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required projections for the quantum eraser on a pho-
ton encoded with the state presented in Eq. (8) through
polarization control, followed by a pattern sensitive scan-
ning technique. To achieve this, firstly we convert the po-
larization of the photon from the circular to linear basis
with a quarter wave-plate (QWP) oriented at 45◦ with
respect to the horizontal. Equation (8) now takes the
form

|ψ〉 =
1√
2

(
|H〉 |`〉+ eiδ |V 〉 |−`〉

)
, (9)

with a relative phase eiδ introduced by the QWP. Sec-
ondly, a polarization analyzer orientated at an angle α
(with respect to the horizontal), will project onto the
following target state

|α〉 = cos(α) |H〉+ sin(α) |V 〉 , (10)

thus allowing the “path” to evolve from marked to un-
marked by a judicious choice of α. Next, the visibility
of spatial fringes needs to be detected, which may eas-
ily be done with scanning detectors (or more expensive
camera-based systems). We instead make use of scanning
holograms and a fixed detector as our pattern sensitive
detector [41]. We create sector states from superpositions
of OAM with a relative intermodal phase of θ,

|θ〉 =
(
|`〉+ ei2θ |−`〉

)
. (11)

The phase structure of |θ〉 is azimuthally periodic, and
allows a measurement of the path (OAM) interference,
analogous to detecting OAM entanglement with Bell-like
measurements [42–45]. Thus the fringe pattern (or lack
thereof) can be detected by scanning through θ.

The normalized probability of photon detection given
the two projections is

P (α, θ) ∝ | 〈θ| 〈α| |ψ〉 |2

=
1

2
(1 + sin(2α) cos(2θ + δ)). (12)

Here P (α, θ) is equivalent to the experimental photon
counts. When the polarizer is orientated at α = 0◦, which
corresponds to the |H〉 polarization state, the probabil-
ity distribution with respect to θ is a constant since the
OAM abstract path is marked. Conversely, for α = ±45◦

which corresponds to complimentary polarization projec-
tions on |H〉±|V 〉, yields P (α = ±45◦, θ) ∝ 1±cos(2θ+δ)
and hence the sinusoidal dependence is an indication of
an interference pattern emerging from a superposition of
the OAM abstract paths. Therefore the OAM equiva-
lent which-path information has been erased. The fringe
visibility is given by

V =
Pmax − Pmin
Pmax + Pmin

, (13)

where Pmax and Pmin are the maximum and minimum
photon counts from rotating the azimuthal spatial mode
analyzer (SLM). The theoretical visibility of the spatial
fringes with respect to the angle of the polarizer (α) is
V = | sin(2α)|.

FIG. 3. Schematic of the experimental set-up used for the
free-space and fiber which-way erasure. An attenuated He-
Ne laser source that produces a horizontally polarized Gaus-
sian beam with a nominal wavelength of 633 nm was used. A
q-plate (QP) was used to generate the TM01 (radial mode)
and subsequently imaged into a 30 µm diameter core step-
index fiber (SIF) with lens L1 and a 20× microscope objective
(Obj). Lens L2 collect the photons at the output of the fiber.
The half wave-plate (HWP) and quarter wave-plate (QWP)
are used for polarization control while the spatial light modu-
lator (SLM) carries the spatial scanning. This is imaged into
a single-mode fiber with lens L3 and fiber coupler. Note that
free-space experiment is carried out in absence of Obj, SIF
and L2.

IV. EXPERIMENTAL SET-UP

We illustrate the concept of both the generation and
detection of our intra-particle quantum eraser with vec-
tor modes in free-space and step-index fiber, with the
aid of Fig. 3. In our experiment, we made use of an
attenuated laser as the single-photon source. The inci-
dent beam was horizontally polarized in order to be able
to generate our vector mode, by means of correlating the
polarization with the OAM DoF using a q-plate (q = 0.5)
[39, 40]. The resulting state after the q-plate is given by
Eq. (8), and is the one coupled into the step-index fiber
as seen schematically in Fig. 2. In order to give a proper
analysis of the hybrid state disturbance introduced by
the step-index fiber, we first performed the projective
measurement to the free-space transmitted vector mode
to have reference curves for the best case scenario.

The detection of the hybrid mode of Eq. (8) was carried
out by projecting first the polarization DoF with a set
of QWP, HWP and polarizer, followed by binary phase
masks encoded on a SLM (Holoeye PLUTO) to project
onto the particular spatial mode of the photon. This was
done for α = [0◦, 45◦], while scanning holograms through
θ = [0◦, 360◦]. The projected photons were collected
using a single-mode fiber and detected with avalanche
photo-diodes (Perkin-Elmer).

The key part of the experiment consists in coupling
the vector mode generated after the q-plate within the
30-mm-long step-index fiber core, and give an intuitive
result based in the quantum eraser experiment, showing
how much the hybrid state is affected by the disturbance
introduced by the fiber. An objective (20×) was used
to improve the coupling of the probing mode into the
fiber. Note that the following experimental results are a
proof-of-concept, that is why we use a short optical fiber
channel for testing the technique.
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(a)

(b)

FIG. 4. Experimental results for the free-space erasure show-
ing that (a) the “which-OAM” information is distinguishable
for α = 0◦ with visibility V = 0.02± 0.06 (squares) or indis-
tinguishable for α = 45◦ (triangles) with V = 0.99±0.01. The
inset on the bottom right corner is the spectral decomposition
of the OAM when α = 0◦ (top) and α = 45◦ (bottom) in the
range ` = [−3, 3] showing minimal mode cross-talk. In (b)
the intermediate cases are investigated by varying the polar-
ization projections from α = 0◦ to 45◦ were the experimental
visibility increases as the OAM information is depleted.

V. RESULTS

In the work presented here we explore the analogy be-
tween the path and the OAM degrees of freedom in a typ-
ical which-way information experiment. In this particu-
lar case, the path information is encoded into an OAM
mode, and thanks to its correlation with the polarization
generated in the q-plate, the which-way information can
be erased by projecting the hybrid state in the diagonal
polarization from Eq. (10). Figure 4 show the results for
the best case scenario, when the vector mode is trans-
mitted in free-space to give a reference curve, used later
to probe the step-index fiber.

As can be seen in Fig. 4(a), the visibility of the spa-
tial fringes that appear after projecting with the spatial
superposition described in Eq. (11), can be maximized
or minimized depending on the polarization projection α
value from Eq. (10). At α = 45◦ the projection value

FIG. 5. Experimental erasure results using the step-index
fiber channel. The extreme case for α = 90◦ (squares) with
a visibility V = 0.17 ± 0.02 and for α = 45◦ (triangles) with
a visibility of V = 0.98 ± 0.04. The inset on the bottom
right corner is the spectral decomposition of the OAM when
α = 90◦ (top) and α = 45◦ (bottom) in the range ` = [−3, 3].

has maximum visibility, corresponding to the which-way
information maximally erased. At α = 0◦ the visibility
is minimized due to the spatial superposition projection
of a single OAM mode. That is to say that low visibility
for the α = 0◦ case, corresponds to obtaining low spatial
cross-talk between OAM modes within the given com-
munication channel. Furthermore, the mode purity is
confirmed by the spectral decomposition (as can be seen
in the inset of Fig. 4(a)) where minimal mode cross-talk
is observed. In addition, the inset confirms that the po-
larization projections lead to distinct OAM photon states
when the OAM (path) is marked (α = 0◦) and a super-
position when the OAM is erased (α = 45◦). Figure 4(b)
shows the complete range of visibilities from the spatial
fringes, with respect to the polarization projection α val-
ues. The maximum visibility obtained in the free-space
configuration was V = 0.99 ± 0.01, and V = 0.02 ± 0.06
the minimum.

In Fig. 5 we see from the spatial fringe curves that
the fiber affects the hybrid transmitted state. From the
visibility of the α = 45◦ case we can deduce the quality
of erasing the which-way information after the photon
has traveled through the disturbing quantum channel.
The maximum visibility obtained was V = 0.98 ± 0.04,
which contrasts well with the reference free-space results,
meaning that the cross-talk affects the spatial modes in
a fairly symmetric manner. Thus, the spatial superposi-
tion is maintained as far as the good coupling into the
step-index fiber core is preserved. On the contrary, when
analyzing the results of α = 90◦ in Fig. 5, the mini-
mum visibility curve (V = 0.17 ± 0.02) is poorer than
the reference free-space curve from Fig. 4(b), implying
that the spatial state projected after the step-index fiber
is no longer a single OAM mode due to the cross-talk
within the core, increasing the spatial superposition be-
tween OAM modes and increasing also the spatial fringes



6

visibility correspondingly. Note that using α = 90◦ in-
stead of α = 0◦, only changes the polarization projec-
tion but the cross-talk being analyzed remains the same.
From Fig. 5 we note that the mean number of photons
detected in the case of α = 90◦ is not half of the nor-
malized mean number of photons detected in the case of
α = 45◦. This is because of alignment complications due
to the laser instability and step-index miss-coupling af-
ter a few minutes. Furthermore, the shape of the spatial
fringes is perturbed due to the changes in the polarization
and spatial DoF within the fiber. This is confirmed by
the spectral decomposition (see Fig. 5 inset) where modal
cross-talk between OAM modes is observed further dete-
riorating the quality of the spatial modes. These visi-
bilities and curves provide practical limits on what may
be achieved in a quantum communication link down a
fiber, and serve as a fast ”pretest” to a full quantum key
distribution or quantum state transfer down fiber.

The complete analogy between path information and
spatial fringe visibility is essential to our quantum eraser
scheme concept. By defining the two distinct paths using
the OAM DoF, we have shown that through polarization-
OAM hybrid state, it is possible to describe a simple pro-
jection scheme measurement capable of showing the total
amount of disturbance present in a particular communi-
cation channel.

We point out that any DoF could be studied using
this simple projective measurement, such as momentum,
time-bin and even the frequency DoF. The polarization-
OAM hybrid state is an attractive choice due to the pos-
sibility to explore the impact of spatial dimensionality

in optical fiber communication links. That is, both DoF
can be compensated before or after a particular distur-
bance in a communication channel by a unitary transfor-
mation, needing only a simple and fast detection scheme
to implement a feedback measurement. Previous works
have shown that the non-separability of vector modes
[46] can be advantageous in measuring techniques for
quantum entanglement to quantitatively determine their
mode quality in free-space [47] and fiber [13]. Here we
have performed a new channel measurement in fiber.

In conclusion, we have shown the complete analogy in
the which-way information concept, when using a path
encoding approach or using instead a spatial DoF such
as the OAM of a single photon. We have also derived a
simple and fast projective detection scheme to measure
the total impact of the environment on a polarization-
OAM hybrid state, independent of the quantum channel
used. We have focused our efforts in studying a step-
index optical fiber channel due to the increasing relevance
in high-order spatial encoding of information for ultra-
fast fiber communications.
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