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Abstract

Amplification of acoustic phonons propagating along the axis of a semiconductor

superlattice (SL) is investigated using the microscopic theory. A non-quantizing electric

field is applied to the S to produce a drift velocity VD f the charge carriers and

whenever VD exceeds v (sound velocity) amplification occurs. The threshold field EOat

which absorption switches over to amplification depends on the SL, parameters and v It

is noted that E in SL is by far lower than that in bulk semiconductor and that there

exists the possibility of finding a field E* such that-JF(E*)Ž F7(-E*). This allows in

principle the use of SL, as hypersound generator.



1. Introduction

The possibility of controlling the properties of semiconductor superlattice (SL) either by

varying the SL parameters or by external fields makes it suitable for opto- and acousto-

electronic devices. In view of that a lot of information has been reported on SL [11.

The interaction of acoustic waves with conduction electrons in homogeneous materials

has been considered on several occasions [11-15]. For instance, the study of ultrasonic

amplification and non-Ohmic behaviour of II - VI and III - V compounds such as GaAs,

GaSb and InSb [16-19]. Apart from that there are several reviews on this subject [20-23].

More recently, this subject is being studied in two-dimensional and nanostructures [24-26].

With SL because of its novel properties much work is also being done. In [27] Shmnelev

et al studied the hypersound amplification in a non-quantised electric field. They noted

that in principle Sb can be used as hypersound generator which is impossible to construct

in the case of homogeneous semiconductors. Kryuchkov [28] reported of oscillations of the

attenuation coefficient of ultrasound in quantising electric field. Mensah et al [29] considered

the effect of a high-frequency electric field on the hypersound and observed that the field

modulates the amplification coefficient. Photostimulated attenuation has also been reported

[30,31].

Very recent paper on generation of high-frequency coherent acoustic phonons in S is

reported in [32] where it is emphasized that the effect can be employed for electric generation

of high-frequency coherent acoustic phonons.

In this paper, we consider the amplification of hypersound in a degenerate semiconduc-

tor S in the presence of constant electric field. The motivation is due to the numerous

applications that can be derived from such study, e.g., phonon spectrometer, generation of

high-frequency electric oscillations, tetrahertz modulation of light, non-destructive testing



of microstructures and acoustic scanning.

The organization of the paper is as follows. In section 2, a kinetic equation based on the

linear approximation is set up for the phonon distribution function. In section 3 we derive

the growth rate of the phonon distribution function at low temperatures. In section 4 we

calculate the amplification coefficient and finally in section 5 we give brief discussion and

conclusions.

2. Kinetic Equation

In developing the kinetic equation we follow the work of Lee and Tzoar [33]. We consider

an electron phonon system where the electrons are assumed to be drifting relative to the ion

lattice because of an external field. In this process we ignore the electron-electron interactions

because firstly, we assume that the wavelength of the phonon is short compared with the

screening length for the electrons. Secondly it would only produce higher order corrections

to the phonon distribution function. The electron-phonon interaction C. is assumed to be

weak and treated as a perturbation. The unperturbed electron distribution function is given

by the shifted Fermi-Dirac function:

fp= [eXPfO ( - MVD) - I0i]'(1

where p' is the chemical potential, p is momentum of the electron, 83~ k is the Boltzmann

constant and VD is the net drift velocity relative to the ion lattice site.

According to perturbation theory, the transition probability per unit time from the ini-

tial state p), which consists of one electron having a momentum p, to the final state p),

(p, = p - q) which consists of an electron with momentum p' and a phonon with a wave
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vector q is obtained as follows (emission rate)

P+ = 2ICqI2Nq_)pp6(P + wq -fp( ,) (2)

here h = 1 (energy unit), where C-qj is the quantum-mechanical matrix element describing

the electron-phonon coupling. Similarly, the probability of absorbing a phonon q by a p'

electron is given as

p =2~ir NqP, (i- fp) 6 ~p(e, EP+wq (3)

The factor N. + 1 accounts for the presence of Nq phonons in the system when the additional

phonon is emitted. The t,, (i - fp) represents the probability that the initial p state is

occupied and the final electron state p' is empty. Similarly, the terms in Eq(3) arises from

the absorption process and the factors Nfp~ (ii - fp) again take care of the boson and

fermion statistics. The total rate of absorption and emission of phonon can be obtained by

the summation of Eq(2) and Eq(3) over all the initial and final electron states

4 = 1:p(4)

P,1P

The summation P' can be computed using the known 6 symbol. If the phonon state q is

highly excited (intense acoustic wave), ICq 2 C,12 and we can write the kinetic equation

for the phonon distribution as

ONq (t) - ~ i [,()+1 27rZJ P{N~) ]p( ~) 6 (EP, Ep wq)
p

-Nq (t) fpl (1 - fp) (p - -ep + Wq)} - lYNq (t) (5)

where Nq (t) represents the number of phonons with a wave vector q at time t and - is

the phonon losses. These losses can include phonon scattering or phonon absorption due to
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non-electronic mechanisms, phonon decay due to anharmnonicity of the lattice etc. In this

paper we neglected y.

It is important to note that the electron distribution functions in Eq(5) should be the

exact, time-dependent functions Fp (t) and Fp (t) instead of the unperturbed 4 andi j How-

ever, to the lowest order in the electron-phonon coupling, one can approximate Fp by hp*
We rewrite Eq(5) in a more transparent and convenient form after some algebraic ma-

nipulations as

aNq (t) 1 i q (t) +1 ± q1
q 1 - eXPO (Wq - q'V) 1expl3 (q VD- )

X E (f p) 6 (Ep, E6p+ q)

p

=27r 1q12 Nq (t) - ex/ wq-q D)-1 - sp)6 (P - - (p - q. VD)

where

fp= [exp, (, - p) +11 (7)

is the Fermi-Dirac equilibrium function and

Q E ~ fp -p, (8)

~p -E - w- ib

3. Phonon Instability

From Eq(8) we see that the phonon generation rate is given as

Fq=2 q1 2 IM Q (q, w-qVD) (9)
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=27T Eq2 (I!p - !p) (--p - -- ,- (Wq - q. VD)

p

By recalling that f (ep) Ž f (p.) when s. < E, it is easy to see that

Fq <>Ofor~ wqVD <>0 (10)

It follows from Eqs(6) and (10) that for Wq - q VD > 0, the system when perturbed would

always return to its equilibrium configuration,

since aNg >< 0 for Nq <> NqO. Note that the particular case VD = 0 is included since the

phonon frequency wq is, by definition, a positive quantity.However, for wq - q. VD < 0 there

is no stable equilibrium configuration since 8Ngvt) > 0 for all t according to Eqs(6) and (10).at -

The number of phonons would then generally grow exponentially at a rate given by Eq(9).

Therefore, if we set -y = 0 for a particular phonon wave vector q, the criterion for the onset

of phonon instability is just the Cerenkov condition

Wq - q. VD < 0. (12)

For finite y > 0, the instability criterion becomes

7q > -

It is clear that in addition to a drift velocity threshold whose component in the q direction

still has to exceed the phonon phase velocity there is also a threshold that the phonon rate

should become greater than the linear losses y.



4. Calculation of the Amplification Coefficient

In this section, we need to calculate the time rate of change of the phonon distribution

function. We hereby ignore the phonon decay rate y as stated earlier; since it can be taken

back into accounts trivially at the end. The time rate is then given by F'qY Eq(9). To evaluate

Fq, we need to know the quantity 1 CI. From [34] Cq has been given as

I~qI = (A2q ) 2 acoustic phonons (3

1[( ) (k~~' -k61)]2 optical phonons

where A is the deformation potential conatant, p is the crystal density, is the sound

velocity, wo is the frequency of an optical phonon, k and k are, respectively the low

frequency and optical permeabilities of the crystal.

It is important to state that in [34] Cq is calculated without taking into accounts screen-

ing effects. However, we know that if the electron concentration is finite, with the electron-

phonon interaction that we are considering be it deformation potential or piezoelectric cou-

pling, there will be a spatial redistribution of electrons and thereby leads to screening effects.

This modification can be accounted for in the framework of the standard linear response ap-

proach. Taking accounts of the finite electron concentration leads to a modification of the

interaction H,,t - H as well as

1Qqj2__4 Cq_ 2
= "i2(14)

Ix(' (q)1

where x~d) (q) is the electron permittivity. For details of such calculations see [25].

From Eq(9) using cylindrical coordinates, we change the summation to integral through

the following transformation

]]Jdpido5dpz (15)
(27r) 3 NP
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and obtain

F-' 2 } 1 pdpdodp. (f (p) - f (EP,)) S {Ep - Ep-q - (q - q VD)} (16)

For a strongly degenerate semiconductor SL

f () (--(p) - p)(17)

where p. is the fermi energy of the quasi-two-dimensional electron gas.

The dispersion relation of the SL is given in the usual form as form as

E (p) = P1 ±A (1 - cospd) (18)

where A is the width of the lowest-energy miniband, m is the transverse effective electron

mass (in the x-y plane), p±i and p, are the quasi-momentum components across and along

the SL axis respectively and d is the period of the SL. It should be emphasized here that

the electric field is non-quantised i.e., eEd << 2A. The phonon and the electric field are

directed along the SL axis.

Substituting Eqs(17) and (18) into (16) and integrating first with respect to do5 we obtain

Fq = 2 i JJ 1dP 1dP. (f (p) (Epl) 6(Ep - Cp-q) - (q - q.VD)) (19)

We then integrate with respect to dz. After some cumbersome calculations we obtain

Fq=12 fpidp± (4- F - i / -b o qd Wq (1 V)] '
47rAdsin qV1T/ jb (P ~ 2 JJ

-O - {EF -A[ - N/T -b2cos qd + Wq 1 d 20)

where

b- Vd ~ (21)
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Finally, integrating with respect to dp we obtain

Iq-M q 2 wq (i -s(2

-4irAd sin Vi7-d(22)

To find the exact form Of Vd we solved the Boltzmnann kinetic equation in the r approxi-

matom[27,29] and then calculated VD as

00 ~dt (3
VD V fo p -eEt) e7- (3
pvzfo(P-

where v = Adsinpd and obtained

1 Ad 2eEri

Vd = - (1 ed) 2 ) (24)

here h = 1.

5. Discussion and Conclusions

It is observed from Eq(22) that F. depends on in a complicated form and that there exists

a transparency "window" when Wq » i> However, when 2A » Wq the expression

becomes

FPq =o _Vd(25)

where FO = _jCg1
2Wg and so whenever Vd > V, F changes sign and amplification occurs.

4,rAd sin 2

This is due to Cerenkov effect. We write Eq(25) in terms of the electric field E as

rq= o -Ad eEdr (26)

and determine the threshold field E0 for which amplification occurs. We consider a linear

approximation on E, i.e., eEd-r << 1. From Eq(26) we obtain

Fq = F,, - Ad eEd) (27)
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which gives the threshold field E as

E> E0 =2v h2 (8
E > O =Ad2 er (8

where h has been reintroduced for the purpose of estimation. We noted that E0 is a function

of the SL parameters (d, A). We present for the purpose of comparismn the relation of the

threshold fields for the SL and homogeneous semiconductors in the form

m vAd2

EO m 2v., (29)

where v, is the velocity of sound in bulk semiconductor. Note that we have taken the same

value of T for both materials. For numerical estimates, we assume the following parameters:

m = 0.2me; r = 10-12 S; V;, = 5 X 10 3 MS-1 v 4.7 x 10 3MS'1; A = 0.1eV; d = 10OA 0 and

obtain for EOL 4.16 x 12V 'whiles in the usual semiconductor E . iOV 1

Hence amplification of phonons in SL could occur at a lower field than in homogeneous

semiconductors. We present a 3-dimensional plot of this relation (see fig.1).

Proceeding further, we plotted Eq(26) graphically (see figs.2 and 3). It is observed that

the dependence of F' on E is quite different from that of the homogeneous semiconductor.

The principal difference in the amplification of short wave sound in SL from a homogeneous

semiconductor is the possibility of the existence of E* such that E* > EO where -F (E*) >

F (-E*') [27]. This situation permits the use of SL as a hypersound generator in a similar

way as the long-wave sound generator operating on the homogeneous semiconductor. It is

interesting to note that when qd «l 1and Ad2 = , m* is effective mass of the electron

along the SL axis 34] and Eq(22) reduces to the expression for the bulk material [20].

Finally, we want to indicate that our calculations do not take into accounts phonon se,

nonetheless, we believe that the phonon losses may not considerably affect the results.

In conclusion, we have studied the amplification of hypersound in a degenerate semicin-
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ductor SL. Analytical expressions have been obtained for the amplification coefficient E.

It is shown that the threshold field EO for amplification is by far lower than that of the

homogeneous semiconductor and that there exists a nonlinear dependence of F' on E which

enables the use of SL, as hypersound generator.
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