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Abstract. We investigate theoretically the feasibility of amplification of terahertz radiation in aligned
achiral carbon nanotubes, a zigzag (12,0) and an armchair (10,10) in comparison with a superlattice using
a combination of a constant direct current (dc) and a high-frequency alternate current (ac) electric fields.
The electric current density expression is derived using the semiclassical Boltzmann transport equation
with a constant relaxation time. The electric field is applied along the nanotube axis. Analysis of the
current density versus electric field characteristics reveals a negative differential conductivity behavior at
high frequency, as well as photon assisted peaks. The photon assisted peaks are about an order of magnitude
higher in the carbon nanotubes compared to the superlattice. These strong phenomena in carbon nanotubes
can be used to obtain domainless amplification of terahertz radiation at room temperature.

1 Introduction

Terahertz (THz) region of the electromagnetic (EM) spec-
trum refers to the frequency range between the mid-
infrared and the microwave region (0.3 THz−10 THz).
This EM region has a lot of promising applications in
various areas of science and technologies include astron-
omy, broadband communication, pollution monitoring,
poisonous gas sensing, etc. [1,2]. In spite of the poten-
tial applications, this region of the EM spectrum is yet to
be fully exploited, due to the limited availability of device
sources and detectors [3]. Over the past decade, terahertz
science and technology has advanced considerably with
both optical-bench-based systems and solid state quantum
cascade lasers [3]. The main drawback of these quantum
cascade THz sources is low working temperatures, making
it difficult to maintain population inversion at room tem-
perature [4]. So far the highest temperature attained for
a THz source operating at 3 THz frequency is 160 K [5].
Creating a compact reliable source of THz radiation that
could operate at room temperature still remains one of
the most formidable challenges of contemporary applied
physics. Most recently, carbon nanotube has been identi-
fied for THz technology due to its superb physical prop-
erties. Different proposals of carbon nanotubes for THz
applications have been made; that ranges from multipli-
ers [1,6], amplifies [7], switches [8] to antennas [9].
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Carbon nanotube (CNT) is a single layer nanometer-
size cylinder made of carbon atoms. The cylinder has no
bulk atoms, only surface atoms. It is a layer of graphene
seamlessly rolled into a cylinder. CNTs have intriguing
physical properties (mechanical, electrical, optical, etc.)
due to their unique structure; combine with the one-
dimensional solid state characteristics [10]. These proper-
ties depend on the fundamental indices (n, m) of the CNT.
The indices (n, m) specify the diameter and the chiral an-
gle of the CNT. As n and m vary, conduction ranges from
metallic to semiconducting [11], with n = m been metal-
lic and m = 0 been semiconducting. The band gap of the
semiconducting CNTs has an inverse diameter (d) depen-
dent, ranging from 0.2 eV to 2 eV with Eg ≈ 0.9/d nm [12],
where d = a0 (n2 +m2 −nm)1/2/π is the nanotube diam-
eter and a0 = 0.246 nm is graphene lattice constant. The
peculiarity of CNTs (e.g., strong nonparabolic dispersion
law) raises the question of whether these structures could
be used for high-order harmonic generation [13,14]. Dif-
ferent theoretical models and experimental techniques are
being pursued to demonstrate the feasibility of using CNT
for THz applications [15–19]. These range from THz gen-
eration Cherenkov-type emitters based on hot electrons
in quasimetallic CNT (n − m = p with p as a non-zero
interger), frequency multiplication in chiral-nanotube-
based superlattices controlled by a transverse electric
field, and THz radiation detection and emission by arm-
chair nanotubes in a strong magnetic field [15], ab initio
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molecular dynamic simulations [16], CNT capacitor circuit
model [17], impedance transmission model [18], effective
conductivity model [19], just to mention a few.

Nonlinearity of the current density characteristics of
CNTs gives rise to generation of harmonics of microwaves
and direct current (dc) generation, as well as terahertz
generation [1,20,21]. However, Bloch oscillations of elec-
trons within the CNTs cause an appearance of negative
differential conductivity (NDC) for dc fields larger than
the critical electric field [14]. This leads to electric current
instabilities and formation of domains in the CNTs [22].
These current instabilities are destructive to the forma-
tion of the terahertz frequency. Therefore, it is important
to consider the scheme of generation of terahertz radia-
tion that can suppress electric instabilities while preserv-
ing high-frequency gain at room temperature. Theoretical
realizations of superlattice oscillators (SL) with ac bias
have been reported [23–25], that demonstrated domainless
amplification of terahertz radiation. However, there are
limited reports of such effects in CNTs, especially simulta-
neous utilization of dc-ac electric fields. In this report, we
present a theoretical investigation of a (12,0)-zigzag single
wall carbon nanotube (z-SWCNT) and a (10,10)-armchair
single wall carbon nanotube (a-SWCNT) in comparison
with superlattice (SL), stimulated with a time dependent
dc-ac electric fields for THz frequency amplification at
room temperature. Our results reveal an order of mag-
nitude effective suppression of the electric instability in
the one dimensional CNTs in comparison with the two-
dimensional SL [23–25].

2 Theoretical model

Following the approach of references [15–17], we consider
an undoped achiral CNTs (i.e., (12,0)-zigzag and (10,10)
armchair) exposed simultaneously to a dc-ac electric field.

E (t) = E0 + E1 cosωt (1)

where E0 is the constant electric field, E1 and ω are the
amplitude and the frequency of the ac field, respectively.
The investigation is done within the semiclassical approx-
imation in which conduction electrons with energy below
the energy of the interband transitions move in the crys-
talline lattice like free quasi-particles with dispersion law
extracted from quantum theory. Taking into account the
hexagonal crystalline structure of a rolled graphene in a
form of CNT and using the tight binding approximation,
the energy dispersion for z- and a-SWCNTs are expressed
as in equations (2) and (3), respectively [1]:

ε (sΔpϕ, pz) ≡ εs (pz) = ±γ0

[
1 + 4 cos (apz)

× cos
(

a√
3
sΔpϕ

)
+4cos2

(
a√
3
sΔpϕ

) ]1/2

(2)

ε (sΔpϕ, pz) ≡ εs (pz) = ±γ0

[
1 + 4 cos (asΔpϕ)

× cos
(

a√
3
pz

)
+ 4cos2

(
a√
3
pz

) ]1/2

(3)

where γ0 ∼ 3.0 eV is the overlapping integral, pz is
the axial component of quasimomentum, Δpϕ is trans-
verse quasimomentum level spacing and s is an integer.
The expression for a in equations (2) and (3) is given as
a = 3b/2�, b = 0.142 nm is the C-C bond length. The –
and + signs correspond to the valence and conduction
bands, respectively. Due to the transverse quantization of
the quasi-momentum, its transverse component can take
n discrete values, pϕ = sΔpϕ = π

√
3/an (s = 1, . . . , n).

Unlike transverse quasimomentum pϕ, the axial quasimo-
mentum pz is assumed to vary continuously within the
range 0 � pz � 2π/a, which corresponds to the model
of infinitely long CNT (L = ∞). This model is applicable
to the case under consideration because of the restriction
to the temperatures and /or voltages well above the level
spacing [1,11], i.e. kBT > εC , Δε, where kB is Boltzmann
constant, T is the temperature, εC is the charging energy.
The energy level spacing Δε is given by

Δε = π�υF /L (4)

where υF is the Fermi velocity and L is the carbon nan-
otube length [5].

Employing Boltzmann transport equation with a single
relaxation time approximation,

∂f(p)
∂t

+ eE(t)
∂f(p)
∂P

= − [f(p) − f0(p)]
τ

(5)

where e is the electron charge, f0(p) is the equilibrium
distribution function, f(p, t) is the distribution function,
and τ is the relaxation time. The time dependent elec-
tric field E(t) is applied along the CNT axis. In this case
the relaxation time τ is assumed to be constant. The
relaxation term of equation (5) describes the effects of
the dominant type of scattering (e.g. electron-phonon and
electron-twistons). For the electron scattering by twistons
(thermally activated twist deformations of the tube lat-
tice), τ is proportional to m (armchair dual index (m, n),
m = n) [26] and the I-V characteristics shows that scat-
tering by twistons increases and decreases in the negative
differential conductivity (NDC) region; the smaller m is,
the stronger this effect. Quantitative changes of the I-V
curves turn out to be insignificant in comparison with the
case of τ = const. [25,27].

The distribution functions for zigzag CNT could be
expanded in Fourier series [1] as,

f0(p) = Δpϕ

n∑
s =1

δ (pϕ − sΔpϕ)
∑
r �=0

frse
iarpz (6)

and

f (p, t) = Δpϕ

n∑
s = 1

δ (pϕ − sΔpϕ)
∑
r �= 0

frse
iarpz φυ (t) .

(7)
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Here the energy unit � = 1 has been used. δ(x) is the Dirac
delta function, r is summation over the stark component,
frs is the coefficient of the Fourier series and φυ(t) is the
factor by which the Fourier transform of the nonequilib-
rium distribution function differs from its equilibrium dis-
tribution counterpart. All other parameters are as defined
above. The equilibrium distribution function f0(p) can be
expanded in an analogous series with coefficient frs ex-
pressed as:

frs =
a

2πΔpϕS

2π
a∫

0

e−iarpz

1 + exp (εs (pz)/kBT )
dpz. (8)

Substituting equations (6) and (7) into equation (5), and
solving with equation (1) we obtain:

φυ (t) =
∞∑

k =−∞

∞∑
m =−∞

Jk (rβ) Jk−υ (rβ)
1 + i (Ωr + kω) τ

exp (iυωt) (9)

where β = eaE1
ω , Jk (β) is the Bessel function of the kth

order and Ω = eaE0.
To obtain the current density, we expand εs (pz)/γ0 in

Fourier series with coefficients εrs:

εs (ps, sΔpϕ)
γ0

= εs (pz) =
∑
r �=0

εrse
iarpz (10)

where

εrs =
a

2πγo

2π
a∫

o

εs (pz) e−iarpz , (11)

and expressing the velocity as

vz (pz, sΔpz) =
∂εs (pz)

∂pz
= γo

∑
r �=0

iarεrse
iarpz , (12)

the surface current density is then defined as

jz =
2e

(2π�)2

∫∫
f (p)υz (p) d2p

or

jz =
2e

(2π�)2

n∑
s=1

2π
a∫

0

f (pz, sΔpϕ, φυ(t)) υz (pz, sΔpϕ) dpz.

(13)
The integration is taken over the first Brillouin zone. Sub-
stituting equations (7), (9) and (12) into (13) we de-
termined the current density for the zigzag CNT after
averaging over a period of time t as:

jz =
8eγ0√
3�na

i
∑
r=1

r

n∑
s=1

frsεrs

×
∞∑

k=−∞

J2
k (rβ)(1 − i (Ωr + kω) τ)

1 + ((Ωr + kω) τ)2
. (14)

When the electric field amplitudes are small β � 1, we
can use the Bessel function approximation J2

±1 ∼ (r2β/2)2

and J2
0 ∼ 1 − r4β

2

2 . Hence from equation (14) we obtain
real part of the current density to be,

jz = j0

∞∑
r=1

r2
n∑

s=1

frsεrs

×
⎛
⎝

(
1 + (ωτ)2 − (ωBτr)2

)
[
1 + ((ωBr − ω) τ)2

] [
1 + ((ωBr + ω) τ)2

]
⎞
⎠ (15)

and the imaginary part

jz = j0

∞∑
r=1

r

n∑
s=1

frsεrs

×
⎛
⎝ iωτ

(
1−3 (τωBr)2+(ωτ)2

)
[
1+(ωBrτ)2

][
1+((ωBr−ω) τ)2

][
1+((ωBr+ω) τ)2

]
⎞
⎠

(16)

where j0 = 8eγ0√
3�na

(
(ωBrτ)β2

2

)
and ωB = Ω. These ex-

pressions are similar to the equations obtained in refer-
ence [24] for β � 1. On the other hand we can re-write
equation (14) in the form of reference [25] as:

jz = j0

∞∑
r=1

r
∞∑

k=−∞
J2

k (rβ) jdc (ωBr + kE∗)
n∑

s=1

frsεrs

(17)
where E∗ = �ω

a and for k �= 0, jdc (ωBr + kE∗) is the
photon replicas.

Expression (17) is the superposition of the dc current
density and its various photon replicas. We obtained the
dc differential conductivity as:

σz =
∂jz

∂E0
= σo

∞∑
r=1

r
∞∑

k=−∞
kj2

k (rβ)

×
(
1 − (ωBr + kE∗)2

)
(1 + (ωBr + kE∗))2

n∑
s=1

frsεrs. (18)

However, for a SL [27],

jz = j0

∞∑
k=−∞

J2
k (β) jdc (ωB + kE∗) (19)

and

σz =
∂jz

∂E0
= σo

∞∑
k=−∞

kj2
k (β)

(
1 − (ωB + kE∗)2

)
(1 + (ωB + kE∗))2

(20)

where ωB = eaE0 for the zigzag CNT and ωB = eaE0/
√

3
for the armchair CNT and β = eaE1/ω. Comparing equa-
tions (17)−(20), it is evident that the 1D CNTs have the
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Fig. 1. jz/j0 vs. ω/ωB curves for the superlattice (SL, thick
solid black curve), the (10,10) armchair SWCNT (a-SWCNT,
red dotted curve), and the (12,0) zigzag SWCNT (z-SWCNT,
green thin solid curve) using τ = 3×10−12 s and T = 287.5 K.

stark component (summation over r, Eqs. (17) and (18))
which is absent in SL (Eqs. (19) and (20)) [27]. The stark
component and the specific dispersion law inherent in the
hexagonal crystalline structure of the CNTs are responsi-
ble for the very high nonlinearity.

3 Results, discussion and conclusion

We present the results of a semiclassical theory of elec-
tron transport in achiral SWCNT (armchair (10,10) and
zigzag (12,0)) exposed to dc-ac electric fields. The results
are compared with that of a superlattice under similar con-
ditions. The Boltzmann transport equation is solved in the
framework of momentum-independent relaxation time. An
analytical expression for the current density is obtained for
the situation β � 1. The nonlinearity is analyzed using
dependence of the current density on the frequency.

In Figure 1, we show the plots of the real part of the
normalized high-frequency conductivity, jz/jo (Eqs. (17)
and (19)) as a function of dimensionless frequency (ω/ωB)
for the superlattice (SL, thick solid black curve), the
(10,10) armchair-SWCNT (a-SWCNT, red dotted curve)
and the (12,0) zigzag-SWCNT (z-SWCNT, green solid
thin curve), respectively. In all three systems, the real
part of the differential conductivity is initially negative at
zero frequency and becomes more negative with increas-
ing frequency, until it researches a resonance minimum at
a frequency just below the Bloch frequency ωBτ = 1.0
and then turning positive (resonance enhancement) just
below the Bloch frequency (Fig. 1). This resonance en-
hancement is indicative of terahertz gain at that frequency
without the formation of current instabilities induced by
negative dc conductivity. It is worth noting that the ef-
fect is about two times and three times stronger in the
a-SWCNT and z-SWCNT, respectively, in comparison to

0

Fig. 2. jz/j0 vs. Eo/E∗ curves for the superlattice (SL, thick
solid black curve), the (10,10) armchair SWCNT (a-SWCNT,
red dotted curve), and the (12,0) zigzag SWCNT (z-SWCNT,
green thin solid curve) using τ = 3×10−12 s and T = 287.5 K.

Fig. 3. σz/σ0−E0/E∗ curves for for the superlattice (SL, thick
solid black curve), the (10,10) armchair SWCNT (a-SWCNT,
red dotted curve), and the (12,0) zigzag SWCNT (z-SWCNT,
green thin solid curve) using τ = 3×10−12 s and T = 287.5 K.

the SL. This indicates a stronger effective suppression of
the current instability in SWCNTs.

The dependence of jz on E0 (Eq. (17)) as well as σz

(Eq. (18)) on E0 arise under the action of strong ac field.
When ac field is applied along the SWCNT axis in addi-
tion to the dc field, new transport channels are opened
at large ac fields which are seen as distinctive peaks in
the current density and the conductivity characteristics
as shown in Figures 2 and 3, respectively. We noted a
very steep positive slope in the neighborhood of the max-
imum electric field, which indicates that the differential
conductivity is positive (PDC) in this region (Fig. 2). The
PDC is considered one of the conditions for electric sta-
bility in the nonlinear system. The negative ac conduc-
tivity at the drive frequency ω appears when electric field
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is weak. We observed that in the nonlinear regime with
high-enough frequency, the dc differential conductivity is
positive, while the large-signal high frequency differential
conductivity remains negative (Fig. 3), which can be used
for THz gain.

The magnitude of the current density as well as
the dc differential conductivity is an order of magni-
tude higher in the armchair SWCNT (10,10) and the
zigzag SWCNT (12,0) in comparison to that of the SL.
The strong effects in the CNTs are due to the higher
density of free electrons in the CNTs. The mechanism
of the nonlinearity in CNTs is due to the presence
of the high stark components (summation with respect
to r, Eqs. (16)−(18)) [14] which are absent in SL, equa-
tion (19) [27].

In conclusion, we have used the semi-classical
Boltzmann transport equation to obtain the electric
current density and the dc conductivity in an achiral
SWCNTs (armchair (10,10) and zigzag (12,0)) under
the influence of simultaneous dc-ac electric fields applied
parallel to the tube axis. Our analysis on the current
density versus electric field characteristics demonstrate
negative frequency differential conductivity resonance en-
hancement, photon assisted peaks, suppression of current
instability induced by negative dc conductivity and there-
fore the possibility of terahertz gain at room temperature
without electric instabilities.
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