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PACS. 47.10 - General theory. 
PACS. 47.20 - Hydrodynamic stability and instability. 
PACS. 68.10 - Fluid surfaces and interfaces with fluids (inc. surface tension, capillarity, 

wetting and related phenomena). 

Abstract. - A liquid drop falling in a lighter miscible fluid either undergoes a cascade of 
fragmentations, each appearing as a dynamic instability, or it mixes by diffusion, depending on 
the value of a fragmentation number F .  F is the ratio of the diffusion time to the time required 
for the fluid to convectively mix. We assign an accurate experimental value to the critical 
fragmentation number F,, which appears to be universal. When the fragmentation occurs, the 
interfacial area increases via successive splittings which display striking symmetries. We 
present experimental evidence and a qualitative explanation of such a phenomenon. 

Hydrodynamic instabilities provide many case studies of spatio-temporal organization in 
extended macroscopic systems [l]. We must distinguish between instabilities in confined 
systems and in open flows. In the former case, spatial effects are affected by boundaries, as 
for example in the Rayleigh-Benard (RB) [2] and Taylor-Couette (TC) flows [3,41. Likewise, 
in open flows many pattern forming effects have been classified, such as the von Karman 
instability at  the boundary layer of a flow passing round a cylinder, the Kelvin-Helmholtz 
(KH) instability at the interface between two fluids moving with different velocities and the 
Rayleigh-Taylor (RT) instability when a heavier fluid stands above a lighter one [l, 3,5,61. 

The purpose of this letter is to report on the evolution of a liquid drop falling through a 
lighter miscible liquid confined in a vessel much larger than the drop size. The result is an 
open hydrodynamic instability described by Helmholtz [7] and Thomson et al. [81 in the last 
century and which can be viewed as one of the simplest in an open system. It has some of the 
characteristics of the KH and RT instabilities, and it is by far easier to observe 
experimentally, even though, at present, no theory exists to explain it. 
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We fill a long transparent vessel with a liquid and carefully release onto the free surface a 
drop of the heavier liquid with zero initial velocity. The drop volume is controlled by a micro- 
syringe. All reported experiments have been performed under isothermal conditions at a 
temperature of 20 "C. Initially the drop behaves as a falling body where the downward force 
due to gravity is proportional to the density difference A,c of the two fluids. After a transient 
ruled by a time constant z' = pr2(u (,c = drop density, T = drop radius, ,U = viscosity of the 
surrounding fluid); (here and below, we skip multiplicative constants of order unity), the 
drop motion reaches steady state whereby the gravity force is compensated by the Stokes 
force, which in turn is proportional to the product of the drop velocity and the viscosity ;L. In 
all our experiments the equilibration time z' is at most 0.1 s, that  is neglegible with respect 
to the time scales of the main phenomena. Furthermore, the Reynolds number R is always 
of the order of unity, even for the largest drop, thus Stokes approximation can still be used 
to build a qualitative argument [9]. Hence, in the sedimentation regime, the asymptotic 
velocity U, scales as U, = g A,cr2(u. 

For  a convenient observation of the initial stages, the evolution of the drop can be slowed 
down by playing on the quantity A,C/:L. Using a solution of glycerin and water in the volume 
ratio 60 : 40 in the vessel and heavier drops of glycerin-water in volume ratios from 70 : 30 to 
90: 10, the sequence of phenomena is qualitatively the same for drops of radii r within a 
range specified later. 

We experimentally observed the evolution of the falling drop in two ways: 1) laterally, 
where pictures were recorded from a translucent paper glued to the opposite side of the cell 
and facing the incoming white light, and 2) vertically, where the image of the drop was 
projected on the bottom when we shine from the top with an expanded laser beam. The 
image contrast relies on the lensing effects provided by small differences in the refractive 
index between the two fluids. Data are recorded by a standard CCD camera on a TV tape. 

Fig. 1. - Evolution of a falling liquid drop with r = 0.29 cm and A,. = 0.0789 glcc. a)$) Sequence of 
lateral views of the drop motion taken at  the following positions from the free surface and times from 
the deposition: a )  2.0 cm, 1.05 s; b) 6.0 cm, 3.03 s; e) 8.0 cm, 4.0 s; d )  10.0 cm, 5.2 s; e )  13.0 cm, 7.34 s; 
andf)  16.0 cm, 10.0 s. e )  shows the appearance of the turban instability, andf)  the torus breaking by 
RT instability. 

In fig. 1 we show the phenomenology through a sequence of successive frames. The 
drops, composed of 90% glycerin and 10% water, and with initial radius T = 1 mm, have been 
seeded with tiny carbon particles (of size around 70 pm) for the sake of demonstration of the 
vortex motions. However, most of the experimental observations (successive figures) refer 
to  nonseeded drops with a concentration 70 : 30. 

A qualitative interpretation of the results is the following. In  the initial stages, the falling 
drop tends to generate a region with growing vorticity as a consequence of shear at the 
interface between the two fluids. Thus in the centre-of-mass system of the falling drop, the 
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drop edges move upwards. This mechanism, similar to that responsible for KH instability, 
tends to deform the drop into the shape of a mushroom (fig. l b ) ) .  Combination of the vertical 
velocity with the angular velocity transferred by shear induces a radial drift, hence the 
mushroom expands horizontally. This resembles the vortex ring formation at a nozzle [91. 
Indeed, the mushroom shape assumed by a falling drop suggested the identification with a 
vortex ring to Thomson [8]. However, a very essential phenomenon was overlooked in those 
observations. 

In  the further evolution of the mushroom, there exists a membrane which connects 
continuously the drop’s bottom part. From fig. la)-e),  this membrane is convex as viewed 
from below, but it gets thinner during the radial expansion. Eventually the membrane’s 
curvature changes sign from convex to concave as observed in fig. Id)  and e ) .  Once the 
concavity is formed, the ring is exposed to shear both in its inner and outer parts and hence 
the circulation is rapidly slowed down to a full stop. We consider the change of sign in the 
curvature of the bottom membrane as the onset of what we call turban instability (just after 
fig. I d ) )  since the deformed drop looks like a turban. This instability builds up rapidly since, 
as matter flows by gravity from the trailing membrane to the ring, the membrane’s 
sedimentation velocity reduces further with respect to that of the ring. The above 
qualitative description is supported by a quantitative appreciation of the decay of the 
circulation in the slowing-down of the tracing particles in successive frames. Such a 
behaviour is at variance with that of a standard vortex ring, where, apart from the 
relatively small losses due to viscosity, the circulation is conserved (Kelvin’s theorem) [lo]. 

After the onset of the turban instability, the radial expansion of the ring tends to stop and 
eventually the torus becomes unstable by the RT instability. Indeed the fluid inside the 
torus is heavier than the liquid below, hence a small perturbation in the height of the torus 
results in a destabilizing pressure change which breaks the torus at two or more points, 
depending on the drop size (fig. l f ) ) .  The liquid inside the ring falls towards these points, 
thus the whole turban (ring plus membrane) looses its round symmetry, stretching along a 
line joining the instability points. (This is better appreciated from the top views, fig. 3b) and 
e ) ,  to be discussed later.) The regions around the instability points are filled by the falling 
matter, and they generate secondary drops which undergo exactly the same process but 
oriented at right angles to the primary drop. Henceforth, by combination of turban and RT 
instability, each secondary drop will produce tertiary drops and so on, as shown in fig. 2. 

Fig. 2. - Lateral v i e w  of‘ the fi-agmentation process for eipe’riment 9 of table 1. Space-time data, 
defined as in fig. 1, are: a)  13.0 em, 27.52 s; h )  17.0 em, 44.86 s; e )  24.0 em, 93.08 s. 
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The successive divisions lead to a cascade of multiple pairs of secondary droplets forming a 
finely divided ensemble (fig. Zc)). 

These obseri7ations are confirmed by taking the shadow<graph of the drop shined 
vertically. In fig. 3 ,  a typical sequence is shown. A regular torus is evident in fig. 3n), and 
after being destabilized it stretches into an elliptical shape (fig. 3b)) .  Secondary droplets are 
formed at  the extremes of the major axis, and then expand normally to that axis (fig. 3c). 
Each secondary droplet gives rise to two tertiary droplets (fig. W). 

Fig. 3. - Vertical projection of the fallinq drop (bottom view). hequc>nce of four frames (n)-r l ) )  of space- 
time evolution. The measured times of the frames a re  0 )  10, h )  23, e )  35, d )  8.5s. 

This cascade of fragmentations eventually stops for the following reasons. Diffusian 
becomes more and more effective for  small radii, because its characteristic time reduces as 
T = r'/D, where D is the cliffusion coefficient between the two fluids. As the sedimentation 
velocity decreases, by reduction of both A,c and r ,  the circulation transferred by shear and 
responsible for ring formation reduces also, until a situation is reached where the diffusion 
time is shorter than the onset time of the turban instability. From here on the drops 
disappear by pure diffusion without further shape transformation. In the experiment of fig. 
2 and 3, this occurs after three divisions. 

The borderline between turban instability and drop disappearance by diffusion can be 
assigned via an adimensional number F expressed as the ratio of two characteristics times. 
Fragmentation of a drop falling with the asymptotic velocity v, implies the onset of a 
circular velocity, and this requires at  least a time y1 corresponding to the transfer of l ' ,  

across the drop radius, that is, -I = r /u ,  =,u/(A,qp-). Such a process is counteracted by 
diffusion, which takes place over the time T. As expected, and observed experimentally. the 
fragmentation stops at  a radius where -I becomes longer than fixed fraction of 7 ,  that is 
fragmentation occurs when 

F = I =  - (. g-- tC ;) >F,.  (1) 

Here F is the fra<gmentation number and F ,  has to be specified empirically. We have 
expressed F in terms of the drop volume V rather than the cubic power of its radius, since V 
is a directly measurable quantity. 

As we seed drops with F > F,, fragmentation stops when the daughter drop volume is 
such that F d F,, while, if the initial drop has F < F ,  no fragmentation occurs. An accurate 

- 1  
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calibration of F,  has been performed over eight samples, which differ either in glycerin- 
water ratios of solvent, or drop or in drop volume. The data are reported in table I and fig. 4. 

TABLE I. 

Exp Volume ratio ,U A ~ .  i o 2  v. 103 D .  106 Results 
no. glyceriniwater g.cm-l.s-' (g .  (em3) (em2 * s-l) 

E Fragmen- 
Solvent Drop tation 

1 60140 
2 60140 
3 60140 
4 70130 
5 70130 
6 70130 
7 70130 
8 70130 
9 60140 

75125 
70130 
70130 
80120 
80120 
75125 
75125 
75/25 
70130 

0.11 
0.11 
0.11 
0.21 
0.21 
0.21 
0.21 
0.21 
0.11 

3.9 
2.6 
2.6 
2.6 
2.6 
1.3 
1.3 
1.3 
2.6 

1.0 1.25 
1.0 1.20 
2.0 1.20 
2.0 0.98 
3.0 0.98 
3.0 0.84 
4.0 0.84 
5.0 0.84 

10.5 1.20 

0.11 Y 
- 0.23 N 

0.52 Y 
- 0.12 N 

0.24 Y 
- 0.25 N 

0.00 YIN 
0.21 Y 
2.63 Y 

f r a g m e n t a t i o n  

VI 

region f r a g m e n t a t i o n  of no :\ 

confidence line 1 

1 0 - 1 1  

Fig. 4. - Plot of VID ws. Aplp (log-log scale) close to the onset of fragmentation for nine experimental 
situations numbered as in table I. Each measured point is repeated several times. The confidence line 
corresponds t o  F ,  = g ( A p .  V(u . D), = (2.8 f 0.1) + lo5. Experiment 9 ( E  = 2.63) yields three frag- 
mentations before diffusing away. I t  corresponds to the sequence reported in fig. 2, 3. 

The viscosity data are interpolated from the tables of ref. [ l l ]  and drop volumes have been 
accurately calibrated by a micro-syringe. As for diffusion no accurate data were available in 
the literature, thus the values of D reported in table I were measured by using a laser light 
deflection method [12] (details will be reported elsewhere). The points 1-8 reported in table I 
and fig. 4 represent the closest approach achievable to the demarcation line between pure 
diffusion (N = no fragmentation, Y = fragmentation and YIN = fragmentation in 50% of 
cases). The line drawn is a suitable confidence line; it corresponds to a value F e =  
= (2.8 f 0.1) + lo5. For each point of table I, we report the relative fragmentation number 
E = FIF, - 1. E = 0 marks the onset of the turban instability. As we increase E above zero, the 
number of successive fragmentations increases. In order to reach three fragmentations as 
shown in fig. 2 and 3, we had to go to ~ = 2 . 6 3  (point 9 of table I and fig. 4). 
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These phenomena have been tested on other fluids (water and salty water, or different 
alcoholic mixtures). Regimes at high E yield a number of fragmentations much larger than 
three. In such cases, we can describe the instantaneous shapes in terms of a spectrum of 
scale lengths. The dependence of this spectrum on E will be reported elsewhere. 

Experiments have also been performed with drops of lighter fluid introduced at the 
bottom of the vessel through a capillary tube. We observed similar cascades reversed along 
the vertical direction. As seen from the different size and composition of the samples, F ,  is a 
universal number, independent of the nature of the two miscible liquids. We have thus 
assigned a reliable demarcation line between diffusion and fragmentation phenomena. 
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